1
|
Xiang H, Yang Z, Liu X, Lu F, Zhao F, Chai L. Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications. Adv Colloid Interface Sci 2025; 338:103403. [PMID: 39862803 DOI: 10.1016/j.cis.2025.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater. Despite the growing interest in adsorption-based REEs separation, comprehensive reviews of both traditional and novel adsorbents toward REEs recovery remain limited. This review aims to provide a thorough analysis of various adsorbents for the recovery of REEs. The types of adsorbents examined include activated carbons, functionalized silica nanoparticles, and microbial synthetic adsorbents, with a detailed evaluation of their adsorption capacities, selectivity, and regeneration potential. This study focuses on the mechanisms of REEs adsorption, including electrostatic interactions, ion exchange, surface complexation, and surface precipitation, highlighting how surface modifications can enhance REEs recovery efficiency. Future efforts in designing high-performance adsorbents should prioritize the optimization of the density of functional groups to enhance both selectivity and adsorption capacity, while also maintaining a balance between overall capacity, cost, and reusability. The incorporation of covalently bonded functional groups onto mechanically robust adsorbents can significantly strengthen chemical interactions with REEs and improve the structural stability of the adsorbents during reuse. Additionally, the development of materials with high specific surface areas and well-defined porous structures is benifitial to facilitating mass transfer of REEs and maximizing adsorption efficiency. Ultimately, the advancement of the design of efficient, highly selective and recyclable adsorbents is critical for addressing the growing demand for REEs across diverse industrial applications.
Collapse
Affiliation(s)
- Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiyu Lu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
2
|
Samghouli N, Bencheikh I, Azoulay K, Jansson S, El Hajjaji S. Mechanistic and reactional activation study of carbons destined for emerging pharmaceutical pollutant adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:259. [PMID: 39928232 PMCID: PMC11811452 DOI: 10.1007/s10661-025-13685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons' surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.
Collapse
Affiliation(s)
- Nora Samghouli
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Imane Bencheikh
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Karima Azoulay
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| |
Collapse
|
3
|
Zhu M, Wang H, Liu X, Wang S, Zhang D, Peng Z, Fu L, Chen Y, Xiang D. Synthesis of metal-organic frameworks with multiple nitrogen groups for selective capturing Ag(I) from wastewater. J Colloid Interface Sci 2024; 663:761-774. [PMID: 38437755 DOI: 10.1016/j.jcis.2024.02.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
As a noble metal with extremely high economic benefits, the recovery of silver ions has attracted a particular deal of attention. However, it is a challenge to recover silver ions efficiently and selectively from aqueous solutions. In this research, the novel metal-organic frameworks (MOFs) adsorbent (Zr-DPHT) is prepared for the highly efficient and selective recovery of silver ions from wastewater. Experimental findings reveal that Zr-DPHT's adsorption of Ag(I) constitutes an endothermic process, with an optimal pH of 5 and exhibits a maximum adsorption capacity of 268.3 mg·g-1. Isotherm studies show that the adsorption of Ag(I) by Zr-DPHT is mainly monolayer chemical adsorption. Kinetic studies indicate that the internal diffusion of Ag(I) in Zr-DPHT may be the rate-limiting step. The mechanism for Ag(I) adsorption on Zr-DPHT involves electrostatic interactions and chelation. In competitive adsorption, Ag(I) has the largest partition coefficient (9.64 mL·mg-1), indicating a strong interaction between Zr-DPHT and Ag(I). It is proven in the adsorption-desorption cycle experiments that Zr-DPHT has good regeneration performance. The research results indicate that Zr-DPHT can serve as a potential adsorbent for efficiently and selectively capturing Ag(I), providing a new direction for MOFs in the recycling field of precious metals.
Collapse
Affiliation(s)
- Manying Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Hao Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Xiang Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Dekun Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Zhengwu Peng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Yuefeng Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Dawei Xiang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
4
|
Acevedo S, Giraldo L, Moreno-Piraján JC. Kinetic study of CO 2 adsorption of granular-type activated carbons prepared from palm shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39839-39848. [PMID: 37067718 DOI: 10.1007/s11356-023-26423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The adsorption kinetics of activated carbon (AC)-type adsorbent materials, which were prepared from a by-product of African palm (shells) processing by chemical activation with dehydrating metal salts at two different concentrations, was studied. N2 physisorption was performed in order to determine the textural characteristics of the adsorbent solids, obtaining materials with BET areas between 721 and 1334 m2g-1 and micropore volumes between 0.33 and 0.55 cm3g-1; FTIR determination was also used as a chemical characterization technique in order to observe variations in the functional groups present. CO2 adsorption was determined, obtaining values between 175 and 274 mg∙g-1; these results are correlated with the physicochemical characteristics of the materials. With the experimental data obtained in this adsorption, the kinetic study was carried out taking into account the kinetic models of pseudo-first-order, pseudo-second-order, and intraparticle diffusion, showing a better adjustment to this last model of a physisorption process. Finally, CO2 adsorption calorimetry was performed on the two adsorbents that presented the highest adsorption capacities, evidencing variations in the characteristics of the activated carbons with the change of the impregnant used. A correlation is observed between the speed of the CO2 adsorption process and the adsorption capacity.
Collapse
Affiliation(s)
- Sergio Acevedo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 30 No 45-03, Bogotá D.C., Colombia.
- Escuela de Ciencias Básicas, Universidad Nacional Abierta y a Distancia, Calle 5 # 1-08, Sogamoso, Colombia.
| | - Liliana Giraldo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 30 No 45-03, Bogotá D.C., Colombia
| | - Juan C Moreno-Piraján
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Cra. 1ª No. 18A-10, Bogotá D.C., Colombia
| |
Collapse
|
5
|
Sharma M, Sharma S, Paavan, Gupta M, Goyal S, Talukder D, Akhtar MS, Kumar R, Umar A, Alkhanjaf AAM, Baskoutas S. Mechanisms of microbial resistance against cadmium - a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:13-30. [PMID: 38887775 PMCID: PMC11180082 DOI: 10.1007/s40201-023-00887-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/15/2023] [Indexed: 06/20/2024]
Abstract
The escalating cadmium influx from industrial activities and anthropogenic sources has raised serious environmental concerns due to its toxic effects on ecosystems and human health. This review delves into the intricate mechanisms underlying microbial resistance to cadmium, shedding light on the multifaceted interplay between microorganisms and this hazardous heavy metal. Cadmium overexposure elicits severe health repercussions, including renal carcinoma, mucous membrane degradation, bone density loss, and kidney stone formation in humans. Moreover, its deleterious impact extends to animal and plant metabolism. While physico-chemical methods like reverse osmosis and ion exchange are employed to mitigate cadmium contamination, their costliness and incomplete efficacy necessitate alternative strategies. Microbes, particularly bacteria and fungi, exhibit remarkable resilience to elevated cadmium concentrations through intricate resistance mechanisms. This paper elucidates the ingenious strategies employed by these microorganisms to combat cadmium stress, encompassing metal ion sequestration, efflux pumps, and enzymatic detoxification pathways. Bioremediation emerges as a promising avenue for tackling cadmium pollution, leveraging microorganisms' ability to transform toxic cadmium forms into less hazardous derivatives. Unlike conventional methods, bioremediation offers a cost-effective, environmentally benign, and efficient approach. This review amalgamates the current understanding of microbial cadmium resistance mechanisms, highlighting their potential for sustainable remediation strategies. By unraveling the intricate interactions between microorganisms and cadmium, this study contributes to advancing our knowledge of bioremediation approaches, thereby paving the way for safer and more effective cadmium mitigation practices.
Collapse
Affiliation(s)
- Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Paavan
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, 133101 Haryana India
| | - Mahiti Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Soniya Goyal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Daizee Talukder
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Mohd. Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001 Uttar Pradesh India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and ArtsPromising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001 Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Abdulrab Ahmed M. Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 11001 Najran, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500 Patras, Greece
| |
Collapse
|
6
|
Rashidi F, Larki A, Jafar Saghanezhad S. Cost-effective removal of Cr(VI) ions from aqueous media using L-cysteine functionalized gold nanoparticles embedded in melamine-based covalent organic framework (Cys-AuNPs@COF). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123762. [PMID: 38128331 DOI: 10.1016/j.saa.2023.123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Due to the growing concern about the environmental effects of heavy metals, researchers are developing materials that possess high absorption capacity in addition to selectivity and high absorption speed. Recently, covalent organic frameworks (COFs) have been considered as emerging and promising adsorbents for the removal of many types of pollutants. In this work, a novel and selective adsorbent (Cys-AuNPs@COF) was prepared by embedding gold nanoparticles functionalized with L-cysteine in melamine-based COF for the removal of Cr(VI) ions from wastewater. The synthesized Cys-AuNPs@COF were characterizedby Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Thermo-gravimetric analysis (TGA), and elemental mapping (EMA) analysis. The removal of Cr(VI) ions was performed using a batch mode process by taking advantage of response surface methodology (RSM) based on a central composite design (CCD) model. The maximum adsorption capacity of Cys-AuNPs@COF was 151.5 mg g-1. The experimental results followed the Langmuir model and showed pseudo-second-order kinetics. A portable, low-cost, and highly sensitive device with a smartphone colorimeter platform was developed for in situ measurement of trace amounts of chromium (VI) ions. Due to its simplicity and versatility, this method has the potential to serve as an alternative to conventional field analysis methods.
Collapse
Affiliation(s)
- Fatemeh Rashidi
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | | |
Collapse
|
7
|
Yuan X, Cao Y, Li J, Patel AK, Dong CD, Jin X, Gu C, Yip ACK, Tsang DCW, Ok YS. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv 2023; 67:108181. [PMID: 37268152 DOI: 10.1016/j.biotechadv.2023.108181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
The sustainable utilization of biochar produced from biomass waste could substantially promote the development of carbon neutrality and a circular economy. Due to their cost-effectiveness, multiple functionalities, tailorable porous structure, and thermal stability, biochar-based catalysts play a vital role in sustainable biorefineries and environmental protection, contributing to a positive, planet-level impact. This review provides an overview of emerging synthesis routes for multifunctional biochar-based catalysts. It discusses recent advances in biorefinery and pollutant degradation in air, soil, and water, providing deeper and more comprehensive information of the catalysts, such as physicochemical properties and surface chemistry. The catalytic performance and deactivation mechanisms under different catalytic systems were critically reviewed, providing new insights into developing efficient and practical biochar-based catalysts for large-scale use in various applications. Machine learning (ML)-based predictions and inverse design have addressed the innovation of biochar-based catalysts with high-performance applications, as ML efficiently predicts the properties and performance of biochar, interprets the underlying mechanisms and complicated relationships, and guides biochar synthesis. Finally, environmental benefit and economic feasibility assessments are proposed for science-based guidelines for industries and policymakers. With concerted effort, upgrading biomass waste into high-performance catalysts for biorefinery and environmental protection could reduce environmental pollution, increase energy safety, and achieve sustainable biomass management, all of which are beneficial for attaining several of the United Nations Sustainable Development Goals (UN SDGs) and Environmental, Social and Governance (ESG).
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Yirdaw G, Dessie A, Birhan TA. Optimization of process variables to prepare activated carbon from Noug (Guizotia abyssinica cass.) stalk using response surface methodology. Heliyon 2023; 9:e17254. [PMID: 37484225 PMCID: PMC10361380 DOI: 10.1016/j.heliyon.2023.e17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Even though adsorption is considered the simple, effective, and efficient method for the treatment of wastewater, accessibility of low-cost and locally available activated carbon remains the challenge. In response to this, recently significant amounts of agricultural byproducts have been investigated to prepare low-cost porous carbon, but there is still a problem related to cost and availability. So, Noug stalk, chosen because of its abundance and low cost as an agricultural byproduct in Ethiopia, was chemically activated with phosphoric acid to produce a low-cost porous carbon. The production of Noug stalk activated carbon (NSAC) is optimized using response surface methodology. A central composite design was used to investigate the effect of three process parameters, namely carbonization temperature (450-650 °C), activation time (90-150 min), and impregnation ratio (w/w) (1-3), on the BET surface area and yield of porous carbon. The analysis of variance (ANOVA) result shows that all three process parameters showed a significant effect on the surface area of porous carbon, while only carbonization temperature showed a significant effect on the yield of porous carbon. The best conditions for NSAC preparation were a carbonization temperature of 537.50 °C, an activation time of 127 min, and an impregnation ratio of 1.95, resulting in a BET surface area and yield of 473.45 m2 g-1 and 53.78%, respectively. The expected and observed values of the model for the outcome variable were highly comparable. Several analytical techniques, including proximal analysis, Fourier transform infrared spectroscopy, and N2 adsorption-desorption, were used to characterize the NSAC. The results demonstrated that the prepared NSAC has a highly porous structure comparable to porous carbon obtained from other biomass feedstocks. This implies it would be used as a potential low-cost alternative for wastewater treatment using the adsorption process.
Collapse
Affiliation(s)
- Getasew Yirdaw
- Department of Environmental Health Science, College of Medicine and Health Sciences, Debre Markos University, P.O Box 269, Debre Markos, Ethiopia
| | - Awrajaw Dessie
- Department of Environmental and Occupational Health and Safety, College of Medicine and Health Sciences, University of Gondar, P.O Box 196, Gondar, Ethiopia
| | - Tsegaye Adane Birhan
- Department of Environmental and Occupational Health and Safety, College of Medicine and Health Sciences, University of Gondar, P.O Box 196, Gondar, Ethiopia
| |
Collapse
|
9
|
Memetova A, Tyagi I, Singh P, Mkrtchyan E, Burakova I, Burakov A, Memetov N, Gerasimova A, Shigabaeva G, Galunin E, Kumar A. Porous material based on modified carbon and the effect of pore size distribution on the adsorption of methylene blue dye from an aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22617-22630. [PMID: 36301394 DOI: 10.1007/s11356-022-23486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Carbon porous materials obtained through KOH activation of a furfural + hydroquinone + urotropine mixture were applied as adsorbent for the remediation of methylene blue (MB). The impact of porous structure with special attention to pore size distribution along with well-known pore volume and specific surface area on the remediation of MB was well investigated and elucidated. Findings obtained revealed that pore size distribution plays a crucial role in the liquid-phase adsorption of organic dyes like MB. By varying the synthesis mode parameters, in particular, the activating agent/precursor mass ratio, with the composition and initial components ratios remaining unchanged, samples with different pore size distribution were obtained. It was found that the material predominantly containing pores with an average equivalent diameter of ~ 3.5 nm appears to be the efficient MB adsorbent. The resulting highly porous carbon materials demonstrated high MB adsorption capacity (up to 2555 mg/g). Furthermore, to fully elucidate the adsorption mechanisms occurring on the obtained materials, a comprehensive mathematical processing of experimental data was performed out using the known kinetic and diffusion models (pseudo-first- and pseudo-second order, and intraparticle diffusion), as well as adsorption equilibrium isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich).It can be concluded that the porous carbon materials obtained and described in the present work are effective adsorbents for the removal of MB and may possess great potential for the treatment of dye-containing wastewater.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St, 392000, Tambov, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700053, West Bengal, India.
| | - Pratibha Singh
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Elina Mkrtchyan
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St, 392000, Tambov, Russian Federation
| | - Irina Burakova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St, 392000, Tambov, Russian Federation
| | - Alexander Burakov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St, 392000, Tambov, Russian Federation
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St, 392000, Tambov, Russian Federation
| | - Alena Gerasimova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St, 392000, Tambov, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St, Tyumen, 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St, Tyumen, 625003, Russian Federation
| | - Ajay Kumar
- Department of Chemistry, D.B.S. (PG) College, Dehradun, 248001, India
| |
Collapse
|
10
|
Wang B, Lan J, Bo C, Gong B, Ou J. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv 2023; 13:4275-4302. [PMID: 36760304 PMCID: PMC9891085 DOI: 10.1039/d2ra07911a] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the rapid development of the social economy and the massive increase in population, human beings continue to undertake processing, and commercial manufacturing activities of heavy metals, which has caused serious damage to the environment and human health. Heavy metals lead to serious environmental problems such as soil contamination and water pollution. Human health and the living environment are closely affected by the handling of heavy metals. Researchers must find several simple, economical and practical methods to adsorb heavy metals. Adsorption technology has been recognized as an efficient and economic strategy, exhibiting the advantages of recovering and reusing adsorbents. Biomass-derived activated carbon adsorbents offer large adjustable specific surface area, hierarchically porous structure, strong adsorption capacity, and excellent high economic applicability. This paper focuses on reviewing the preparation methods of biomass-derived activated carbon in the past five years. The application of representative biomass-derived activated carbon in the adsorption of heavy metals preferentially was described to optimize the critical parameters of the activation type of samples and process conditions. The key factors of the adsorbent, the physicochemical properties of the heavy metals, and the adsorption conditions affecting the adsorption of heavy metals are highlighted. In addition, the challenges faced by biomass-derived activated carbon are also discussed.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Gama BMV, Sales DCS, Nascimento GE, Rodriguez-Díaz JM, Barbosa CMBM, Duarte MMMB. Modeling Mono- and Multicomponent Adsorption of Phenol and Cadmium from Aqueous Solution by Peanut Shell Biochar. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brígida M. V. Gama
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Av. Arthur de Sá, S/N, 50740-521Recife, Pernambuco, Brazil
| | - Deivson C. S. Sales
- Escola Politécnica de Pernambuco, Universidade Estadual de Pernambuco, Rua Benfica, 455, Madalena, 50720-001Recife, Pernambuco, Brazil
| | - Graziele E. Nascimento
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Av. Arthur de Sá, S/N, 50740-521Recife, Pernambuco, Brazil
| | - Joan M. Rodriguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo130104, Ecuador
| | - Celmy M. B. M. Barbosa
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Av. Arthur de Sá, S/N, 50740-521Recife, Pernambuco, Brazil
| | - Marta M. M. B. Duarte
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Av. Arthur de Sá, S/N, 50740-521Recife, Pernambuco, Brazil
| |
Collapse
|
12
|
Mandal S, Marpu SB, Omary MA, Dinulescu CC, Prybutok V, Shi SQ. Lignocellulosic-Based Activated Carbon-Loaded Silver Nanoparticles and Chitosan for Efficient Removal of Cadmium and Optimization Using Response Surface Methodology. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8901. [PMID: 36556707 PMCID: PMC9784523 DOI: 10.3390/ma15248901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The cadmium-contaminated water body is a worldwide concern for the environment and toxic to human beings and the removal of cadmium ions from drinking and groundwater sustainably and cost-effectively is important. A novel nano-biocomposite was obtained by impregnating silver nanoparticles (AgNPs) within kenaf-based activated carbon (KAC) in the presence of chitosan matrix (CS) by a simple, facile photoirradiation method. The nano-biocomposite (CS-KAC-Ag) was characterized by an environmental scanning electron microscope equipped with energy dispersive X-ray spectroscopy (ESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and Brunauer−Emmett−Teller (BET) method. A Box−Behnken design of response surface methodology (RSM) was used to optimize the adsorption of Cd2+. It was found that 95.1% of Cd2+ (10 mg L−1) was eliminated at pH 9, contact time of 120 min, and adsorbent dosage of 20 mg, respectively. The adsorption of Cd2+ by CS-KAC-Ag is also in agreement with the pseudo-second-order kinetic model with an R2 (coefficient of determination) factor greater than 99%. The lab data were also corroborated by tests conducted using water samples collected from mining sites in Mexico. Along with Cd2+, the CS-KAC-Ag exhibited superior removal efficiency towards Cr6+ (91.7%) > Ni2+ (84.4%) > Co2+ (80.5%) at pH 6.5 and 0.2 g L−1 dose of the nano-adsorbent. Moreover, the adsorbent was regenerated, and the adsorption capacity remained unaltered after five successive cycles. The results showed that synthesized CS-KAC-Ag was a biocompatible and versatile porous filtering material for the decontamination of different toxic metal ions.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sreekar B. Marpu
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | - Mohammad A. Omary
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | | | - Victor Prybutok
- Toulouse Graduate School, University of North Texas, Denton, TX 76201, USA
- G. Brint Ryan College of Business, University of North Texas, Denton, TX 76201, USA
| | - Sheldon Q. Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
13
|
Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ. Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers (Basel) 2022; 14:5244. [PMID: 36501638 PMCID: PMC9736154 DOI: 10.3390/polym14235244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
Collapse
Affiliation(s)
- Yi Ding Chai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
14
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Hasan MS, Karmakar AK. Removal of car battery heavy metals from wastewater by activated carbons: a brief review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73675-73717. [PMID: 36085225 DOI: 10.1007/s11356-022-22715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Spent automobile batteries are one of the most significant secondary sources of harmful heavy metals for the environment. After being incorporated into the aquatic ecosystems, these metals disseminate to various plants, microorganisms, and the human body and cause multiple adverse effects. Activated carbons (ACs) have long been used as an effective adsorbent for different heavy metals in wastewater treatment processes. Although numerous research works have been published to date on this topic, they are scattered in the literature. In this review, we have assembled these works and provided an extensive overview of the application of ACs for treating spent car battery heavy metals (CBHMs) from aquatic systems. The preparation of ACs from different precursor materials, their application in the adsorption of CBHMs, the adsorption mechanism, kinetics, adsorption isotherms and various parameters that may affect the adsorption processes have been discussed in detail. A brief comparative analysis of the adsorption performances of ACs prepared from different precursor materials is also provided. Finally, recommendations for future research works are also offered.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
16
|
Recent Developments in Activated Carbon Catalysts Based on Pore Size Regulation in the Application of Catalytic Ozonation. Catalysts 2022. [DOI: 10.3390/catal12101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to its highly developed pore structure and large specific surface area, activated carbon is often used as a catalyst or catalyst carrier in catalytic ozonation. Although the pore structure of activated carbon plays a significant role in the treatment of wastewater and the mass transfer of ozone molecules, the effect is complicated and unclear. Because different application scenarios require catalysts with different pore structures, catalysts with appropriate pore structure characteristics should be developed. In this review, we systematically summarized the current adjustment methods for the pore structure of activated carbon, including raw material, carbonization, activation, modification, and loading. Then, based on the brief introduction of the application of activated carbon in catalytic ozonation, the effects of pore structure on catalytic ozonation and mass transfer are reviewed. Furthermore, we proposed that the effect of pore structure is mainly to provide catalytic active sites, promote free radical generation, and reduce mass transfer resistance. Therefore, large external surface area and reasonable pore size distribution are conducive to catalytic ozonation and mass transfer.
Collapse
|
17
|
Memetova A, Tyagi I, Singh L, Karri RR, Tyagi K, Kumar V, Memetov N, Zelenin A, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E, Mubarak NM, Agarwal S. Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155943. [PMID: 35577088 DOI: 10.1016/j.scitotenv.2022.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Due to rapidly deteriorating water resources, the world is looking forward to a sustainable alternative for the remediation of noxious pollutants such as heavy metals and organic and gaseous contaminants. To address this global issue of environmental pollution, nanoporous carbon materials (NPCMs) can be used as a one-stop solution. They are widely applied as adsorbents for many toxic impurities and environmental contaminants. The present review provides a detailed overview of the role of different synthesis factors on the porous characteristics of carbon materials, activating agents, reagent-precursor ratio and their potential application in the remediation. Findings revealed that synthetic parameters result in the formation of microporous NPCMs (SBET: >4000 m3/g; VTotal (cm3/g) ≥ 2; VMicro (cm3/g) ≥ 1), micromesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.7) and mesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.5) NPCMs. Moreover, it was observed that a narrow pore size distribution (0.5-2.0 nm) yields excellent results in the remediation of noxious contaminants. Further, chemical activating agents such as NaOH, KOH, ZnCl2, and H3PO4 were compared. It was observed that activating agents KОН, H3PO4, and ZnCl2 were generally used and played a significant role in the possible large-scale production and commercialization of NPCMs. Thus, it can be interpreted that with a well-planned strategy for the synthesis, NPCMs with a "tuned" porosity for a specific application, in particular, microporosity for the accumulation and adsorption of energetically important gases (CO2, CH4, H2), micro-mesoporosity and mesoporosity for high adsorption capacity for towards metal ions and a large number of dyes, respectively.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India.
| | - Lipi Singh
- Department of Environmental Engineering, Delhi Technological University, New Delhi 110042, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Andrey Zelenin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Vladimir Bogoslovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenina Ave., Tomsk 634050, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Shilpi Agarwal
- Center for Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Liu C, Lin J, Chen H, Wang W, Yang Y. Comparative Study of Biochar Modified with Different Functional Groups for Efficient Removal of Pb(II) and Ni(II). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811163. [PMID: 36141437 PMCID: PMC9517685 DOI: 10.3390/ijerph191811163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 05/27/2023]
Abstract
The potential application of biochar in water treatment is attracting interest due to its sustainability and low production cost. In the present study, H3PO4-modified porous biochar (H-PBC), ethylenediaminetetraacetic acid-modified porous biochar (E-PBC), and NaOH-modified porous biochar (O-PBC) were prepared for Ni(II) and Pb(II) adsorption in an aqueous solution. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller analysis (BET), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the as-obtained samples, and their capacities for Ni(II) and Pb(II) adsorption were determined. SEM showed that H-PBC retained the hierarchical porous structure of pristine biochar. FT-IR showed that H-PBC possessed abundant oxygen-containing and phosphorus-containing functional groups on the surface. BET analysis demonstrated that the surface areas of H-PBC (344.17 m2/g) was higher than O-PBC (3.66 m2/g), and E-PBC (1.64 m2/g), respectively. H-PBC, E-PBC, and O-PBC all exhibited excellent performance at Ni(II) and Pb(II) adsorption with maximum adsorption capacity of 64.94 mg/g, 47.17 mg/g, and 60.24 mg/g, and 243.90 mg/g, 156.25 mg/g, and 192.31 mg/g, respectively, which were significantly higher than the adsorption capacity (19.80 mg/g and 38.31 mg/g) of porous biochar (PBC). Pseudo-second order models suggested that the adsorption process was controlled by chemical adsorption. After three regeneration cycles, the Ni(II) and Pb(II) removal efficiency with H-PBC were still 49.8% and 56.3%. The results obtained in this study suggest that H-PBC is a promising adsorbent for the removal of heavy metals from aqueous solutions.
Collapse
Affiliation(s)
- Chengcheng Liu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Jiaxin Lin
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| | - Wanjun Wang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Yan Yang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| |
Collapse
|
19
|
Fabrication and Characterization of Activated Carbon from Phyllostachys edulis Using Single-Step KOH Activation with Different Temperatures. Processes (Basel) 2022. [DOI: 10.3390/pr10091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomass waste from harvestable output is produced in significant quantities by agricultural and forestry processes and can have detrimental effects on the ecosystem. Therefore, biomass derived from the waste in the environment has been recognized as a potential source for preparing functional materials in recent years. In this study, activated carbon (ACs) was fabricated and characterized from Phyllostachys edulis (Moso bamboo) using single-step potassium hydroxide (KOH) activation at different temperatures (500 °C to 1000 °C). The prepared ACs were characterized for surface morphology, surface area, functional groups and crystallinity using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, Fourier transform infrared (FTIR) and X-ray diffraction (XRD), respectively. The SEM revealed well-formed pores on the surface of all ACs, while BET analysis revealed the presence of microporous (≤800 °C) and mesoporous (>800 °C) structures. SBET surface area and total pore volume increased with increasing activation temperature, from 434 to 1790 m2/g and 0.2089 to 0.8801 cm3/g, reaching a maximum at 900 °C. FTIR revealed the presence of carbonyl and hydroxyl groups on the surface. XRD showed a dominant amorphous structure and a low crystallization degree in all ACs.
Collapse
|
20
|
Chromium Removal from Electroplating Wastewater Using Activated Coffee Husk Carbon. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7646593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chromium (Cr) is a heavy metal that has a serious environmental pollution problem. Electroplating wastewater contains high level of Cr that surpassed the acceptable environmental discharge standard limit in surface water bodies and causes aquatic ecosystem risks. Various studies have been conducted in Ethiopia on the removal of Cr from various types of wastewater; however, factual studies on the adaptability of cost-effective activated coffee husk carbon for the removal of Cr from electroplating wastewater are lacking. Thus, this study was conducted to evaluate the Cr adsorption efficiency of activated coffee husk carbon from electroplating wastewater at laboratory scale. The activated coffee husk carbon’s pH, electrical conductivity (EC), ash content, moisture content, bulk density, particle size, pore volume, porosity, volatile organic matter, carbon yield, and carbon:nitrogen ratio were determined following standard methods. In the adsorption experiment, adsorbent dosage, agitation speed, contact time, pH, and initial concentration were optimized. Models were used to examine the adsorption isotherms and kinetics. The ability of activated coffee husk carbon to desorb Cr was investigated. The adsorbent functional groups and surface morphology were examined using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM), respectively. Analysis of the physicochemical characteristics of the adsorbent showed that the activated coffee husk carbon has good quality, and thus, playing an important role in metal adsorption. Furthermore, FTIR analysis also confirmed the presence of hydroxyl, carboxyl, and other important functional groups, which promote heavy metal adsorption. The adsorption process optimization revealed 99.65% maximum Cr adsorption efficiency at 120 min contact time, 40 mgL-1 initial concentration, 150 rpm agitation speed, pH 7.0, and 20 gL-1 adsorbent dosages. From the adsorption model studies, Freundlich sorption isotherm and pseudosecond-order models were well fitted with respective
values of 0.987 and 0.999. A 60% Cr was removed according to desorption studies. In general, due to the ease with which coffee husk can be obtained from coffee processing facilities, its use as an absorbent will be cost-effective and considered as an alternative option in removing Cr metal from wastewaters.
Collapse
|
21
|
Dinh VC, Hou CH, Dao TN. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups. CHEMOSPHERE 2022; 293:133622. [PMID: 35033519 DOI: 10.1016/j.chemosphere.2022.133622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Oxygen- and nitrogen-doped porous oxidized biochar (O,N-doped OBC) was fabricated in this study. Biochar (BC) can be enriched in surface functional groups (O and N) and the porosity can be improved by a simple, convenient and green procedure. BC was oxidized at 200 °C in an air atmosphere with quality control via oxidation time changes. As the oxidation time increased, the O and N contents and porosity of the materials improved. After 1.5 h of oxidation, the O and N contents of O,N-doped OBC-1.5 were 54.4% and 3.9%, higher than those of BC, which were 33.4% and 1.8%, respectively. The specific surface area and pore volume of O,N-doped OBC-1.5 were 88.5 m2 g-1 and 0.07 cm3 g-1, respectively, which were greater than those of BC. The improved surface functionality and porosity resulted in an increased heavy metal removal efficiency. As a result, the maximum adsorption capacity of Cu(II) by O,N-doped OBC was 23.32 mg L-1, which was twofold higher than that of pristine BC. Additionally, for a multiple ion solution, O,N-doped OBC-1.5 showed a greater adsorption behavior toward Cu(II) than Zn(II) and Ni(II). In a batch experiment, the concentration of Cu(II) decreased 92.3% after 90 min. In a filtration experiment, the O,N-doped OBC-based filter achieved a Cu(II) removal capacity of 12.90 mg g-1 and breakthrough time after 250 min. Importantly, the chemical mechanism was mainly governed by monolayer adsorption of Cu(II) onto a homogeneous surface of O,N-doped OBC-1.5. Surface complexation and electrostatic attraction were considered to be the chemical mechanisms governing the adsorption process.
Collapse
Affiliation(s)
- Viet Cuong Dinh
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi, 100000, Viet Nam.
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd, Taipei, 10617, Taiwan; Research Center for Future Earth, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd, Taipei, 10617, Taiwan
| | - Thuy Ninh Dao
- Faculty of Economics and Construction Management, Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi, 100000, Viet Nam
| |
Collapse
|
22
|
Alcañiz-Monge J, Román-Martínez MDC, Lillo-Ródenas MÁ. Chemical Activation of Lignocellulosic Precursors and Residues: What Else to Consider? Molecules 2022; 27:1630. [PMID: 35268734 PMCID: PMC8911564 DOI: 10.3390/molecules27051630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
This paper provides the basis for understanding the preparation and properties of an old, but advanced material: activated carbon. The activated carbons discussed herein are obtained from "green" precursors: biomass residues. Accordingly, the present study starts analyzing the components of biomass residues, such as cellulose, hemicellulose, and lignin, and the features that make them suitable raw materials for preparing activated carbons. The physicochemical transformations of these components during their heat treatment that lead to the development of a carbonized material, a biochar, are also considered. The influence of the chemical activation experimental conditions on the yield and porosity development of the final activated carbons are revised as well, and compared with those for physical activation, highlighting the physicochemical interactions between the activating agents and the lignocellulosic components. This review incorporates a comprehensive discussion about the surface chemistry that can be developed as a result of chemical activation and compiles some results related to the mechanical properties and conformation of activated carbons, scarcely analyzed in most published papers. Finally, economic, and environmental issues involved in the large-scale preparation of activated carbons by chemical activation of lignocellulosic precursors are commented on as well.
Collapse
Affiliation(s)
| | | | - María Ángeles Lillo-Ródenas
- MCMA Group, Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.A.-M.); (M.d.C.R.-M.)
| |
Collapse
|
23
|
Lin Z, Zhang Y, Zhao Q, Cui Y, Chen A, Jiao B. In-situ decomposed nanofluids dispersive liquid-phase microextraction for detection of seven triazole fungicidets in fruit juices and tea drinks. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Niu HY, Li X, Li J. Dithiocarbamate modification of activated carbon for the efficient removal of Pb( ii), Cd( ii), and Cu( ii) from wastewater. NEW J CHEM 2022. [DOI: 10.1039/d1nj05293d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proposed adsorption mechanisms: ion exchange and chelation.
Collapse
Affiliation(s)
- Huai-Yuan Niu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xueting Li
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
25
|
Liu W, Wang B, Zhang M. Effect of Process Parameters on the Microstructure and Performance of TiO 2-Loaded Activated Carbon. ACS OMEGA 2021; 6:35076-35092. [PMID: 34963989 PMCID: PMC8697605 DOI: 10.1021/acsomega.1c05833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 05/07/2023]
Abstract
In this study, the visible-light-driven photocatalytic regeneration performance of TiO2-loaded activated carbon (TiO2/AC) was effectively improved. By carefully controlling the activation condition at 700 °C for 2 h with a 60% H3PO4 concentration and 3:1 TBT (tetrabutyl titanate) impregnation ratio, 90.5% of methylene blue (50 mg/L) was removed within 2 h by a low-dose TiO2/AC (0.5 g/L), which was much higher than those obtained in previous studies on TiO2/AC. Moreover, the effects of process variables on the microstructure and performance of TiO2/AC were systematically investigated. The results showed that (1) the long period of activation time effectively inhibited the photogenerated charge carrier recombination and enhanced the regeneration performance of samples; (2) the photogenerated charge carrier recombination rate was lowered initially and then increased as the temperature ascended, whereas the pore volume showed an opposite variation tendency, and thus the adsorption and regeneration performances of samples were improved at 500-700 °C and then weakened at 800 °C; (3) the increase of H3PO4 concentration effectively inhibited the charge carrier recombination and had an improvement in the adsorption and regeneration performances of samples; and (4) the photogenerated charge carrier recombination rate and bandgap value of samples decreased initially and then increased with increasing TBT mass ratio, so the regeneration performances of samples were improved initially and then lowered.
Collapse
Affiliation(s)
- Wenjing Liu
- College
of Materials Science and Art Design, Inner
Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Wang
- College
of Materials Science and Art Design, Inner
Mongolia Agricultural University, Hohhot 010018, China
| | - Minghui Zhang
- College
of Materials Science and Art Design, Inner
Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
26
|
Surface functionalization of mesoporous silica with maltodextrin for efficient adsorption of selective heavy metal ions from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Costa RLT, do Nascimento RA, de Araújo RCS, Vieira MGA, da Silva MGC, de Carvalho SML, de Faria LJG. Removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water with activated carbons synthetized from waste murumuru (Astrocaryum murumuru Mart.): Characterization and adsorption studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Ali A, Alharthi S, Ahmad B, Naz A, Khan I, Mabood F. Efficient Removal of Pb(II) from Aqueous Medium Using Chemically Modified Silica Monolith. Molecules 2021; 26:molecules26226885. [PMID: 34833976 PMCID: PMC8619109 DOI: 10.3390/molecules26226885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
The adsorptive removal of lead (II) from aqueous medium was carried out by chemically modified silica monolith particles. Porous silica monolith particles were prepared by the sol-gel method and their surface modification was carried out using trimethoxy silyl propyl urea (TSPU) to prepare inorganic–organic hybrid adsorbent. The resultant adsorbent was evaluated for the removal of lead (Pb) from aqueous medium. The effect of pH, adsorbent dose, metal ion concentration and adsorption time was determined. It was found that the optimum conditions for adsorption of lead (Pb) were pH 5, adsorbent dose of 0.4 g/L, Pb(II) ions concentration of 500 mg/L and adsorption time of 1 h. The adsorbent chemically modified SM was characterized by scanning electron microscopy (SEM), BET/BJH and thermo gravimetric analysis (TGA). The percent adsorption of Pb(II) onto chemically modified silica monolith particles was 98%. An isotherm study showed that the adsorption data of Pb(II) onto chemically modified SM was fully fitted with the Freundlich and Langmuir isotherm models. It was found from kinetic study that the adsorption of Pb(II) followed a pseudo second-order model. Moreover, thermodynamic study suggests that the adsorption of Pb(II) is spontaneous and exothermic. The adsorption capacity of chemically modified SM for Pb(II) ions was 792 mg/g which is quite high as compared to the traditional adsorbents. The adsorbent chemically modified SM was regenerated, used again three times for the adsorption of Pb(II) ions and it was found that the adsorption capacity of the regenerated adsorbent was only dropped by 7%. Due to high adsorption capacity chemically modified silica monolith particles could be used as an effective adsorbent for the removal of heavy metals from wastewater.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Chemistry, The University of Haripur, Haripur 22620, Pakistan
- Correspondence: or ; Tel.: +92-3471214422
| | - Sarah Alharthi
- Department of Chemistry, Taif University, Taif 21944, Saudi Arabia;
| | - Bashir Ahmad
- Department of Biology, The University of Haripur, Haripur 22620, Pakistan;
| | - Alia Naz
- Department of Environmental Science, The University of Haripur, Haripur 22620, Pakistan; (A.N.); (I.K.)
| | - Idrees Khan
- Department of Environmental Science, The University of Haripur, Haripur 22620, Pakistan; (A.N.); (I.K.)
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Haripur 19200, Pakistan;
| |
Collapse
|
29
|
Li D, Cui H, Cheng Y, Xue L, Wang B, He H, Hua Y, Chu Q, Feng Y, Yang L. Chemical aging of hydrochar improves the Cd 2+ adsorption capacity from aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117562. [PMID: 34426395 DOI: 10.1016/j.envpol.2021.117562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO3) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd2+ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g-1 (initial Cd2+ concentration was 50 mg L-1), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd2+ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd2+. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd2+ removal from water.
Collapse
Affiliation(s)
- Detian Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu, 241003, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu, 241003, China
| | - Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse/School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huayong He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Yun Hua
- College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
30
|
Lan Y, Du Q, Tang C, Cheng K, Yang F. Application of typical artificial carbon materials from biomass in environmental remediation and improvement: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113340. [PMID: 34328868 DOI: 10.1016/j.jenvman.2021.113340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Artificial carbon materials (ACMs), notably hydrochar, pyrochar, and artificial humic substances, etc., are considered to be sustainable and eco-friendly materials for environmental remediation and improvement. At present, almost relevant literature mainly focuses on biochar, and it is necessary to systematically summarize and expand studies on ACMs. ACMs are widely used to solve pollution problems in water and soil environments, as well as to remediate and improve soil quality. This review focuses on the following issues: 1. Reveal the synthetic mechanisms and compositional reactions effects of the charring process; 2. Define artificial humus as a novel class of ACMs and discuss the application of environmental remediation and relative enhancement effects; 3. Research the relative mechanisms and significance of ACMs during remediation process, involving removal and fixation of heavy metal ions (HMs)/organic pollutants (OPs), modification of soil physicochemical properties, affecting microbial community effects, and improving fertility for crop growth. Finally, the cost-benefit analysis and security-risk evaluation of ACMs are pointed out.
Collapse
Affiliation(s)
- Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Chunyu Tang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| |
Collapse
|
31
|
Nie R, Yang C, Zhang J, Dong K, Zhao G. Removal of multiple metal ions from wastewater by a multifunctional metal-organic-framework based trap. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1594-1607. [PMID: 34662299 DOI: 10.2166/wst.2021.340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design and preparation of multifunctional adsorbent for practical wastewater treatment is still an enormous challenge. To remove multiple metal ions from wastewater, we developed a broad-spectrum metal ions trap named UIO-67-EDTA by incorporation of ethylenediaminetetraacetic acid into robust UIO-67. The adsorption experiments for 15 kinds of heavy metal ions including hard acid (Mn2+, Ba2+, Al3+, Cr3+, Fe3+), borderline acid (Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Sn2+, Bi2+), soft acid (Ag+, Cd2+, Hg2+), and two kinds of dissolved minerals (Mg2+, Ca2+) show that the trap is very effective both in batch adsorption processes and breakthrough processes. At a pH value of 4.0, the removal efficiency for all metal ions was over 98% within 10 min, and the maximum static adsorption capacity for the representative metal ions Cr3+, Hg2+and Pb2+ was up to 416.67, 256.41, and 312.15 mg g-1, respectively. The adsorption kinetics fitted well with the pseudo-second-order model, indicating that the chemical adsorption was the rate-determining step in the adsorption process. Meanwhile, the material showed high stability and recyclability, the removal efficiency for the three representative metals was still maintained over 93% after five consecutive adsorption cycles.
Collapse
Affiliation(s)
- Rong Nie
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail: ; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Gansu Provincial Key Discipline 'Analysis and Treatment of Regional Typical Environmental Pollutants', School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Cailing Yang
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail:
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail:
| | - Kun Dong
- Gansu Province Centre for Disease Control and Prevention, Lanzhou 730000, China
| | - Guohu Zhao
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail: ; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Gansu Provincial Key Discipline 'Analysis and Treatment of Regional Typical Environmental Pollutants', School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| |
Collapse
|
32
|
Chen N, Cao S, Zhang L, Peng X, Wang X, Ai Z, Zhang L. Structural dependent Cr(VI) adsorption and reduction of biochar: hydrochar versus pyrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147084. [PMID: 34088126 DOI: 10.1016/j.scitotenv.2021.147084] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Hydrochar and pyrochar are two typical biochars, and possess different intrinsic structures and chemical properties as well as pollutant removal abilities. However, their structural dependent pollutant removal performances and the related mechanisms are far less studied. In this study, we systematically compared the Cr(VI) removal processes of hydrochar and pyrochar in dark and under simulated sunlight at pH 5.7 ± 0.1, aiming to clarify the structural dependent Cr(VI) removal of biochar. In dark, hydrochar could remove 19.0% of Cr(VI) only via adsorption within 8 h, less than that (23.5%) of pyrochar via both adsorption and indirect solution •O2- reduction pathway. Although simulated sunlight irradiation could significantly promote the Cr(VI) reduction performances of both hydrochar and pyrochar, the Cr(VI) reduction percentage (88.1%) of hydrochar via both direct surface electron reduction and indirect solution •O2- reduction pathways, was much higher than that (30.2%) of pyrochar only via indirect solution •O2- reduction pathway. This different Cr(VI) reduction pathway of hydrochar and pyrochar was arisen from their structural dependent Cr(VI) adsorption models, as revealed by ATR-FTIR characterization and DFT calculation. More phenolic -OH group on hydrochar surface provided abundant sites for Cr(VI) chemical adsorption to form a strong inner-sphere complex, favoring the interfacial electron transfer for the direct surface Cr(VI) reduction. In contrast, more micropores in pyrochar were responsible for the Cr(VI) physical adsorption via intra-particle and boundary layer diffusion, which hampered the surface Cr(VI) direct reduction because of the weak interfacial interaction between Cr(VI) and pyrochar. This study clarifies the influence of surface structure on the Cr(VI) adsorption and reduction pathways of biochar, and also provides an efficient Cr(VI) removal strategy with sunlight and hydrochar.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| |
Collapse
|
33
|
Fabrication of microwave assisted biogenic magnetite-biochar nanocomposite: A green adsorbent from jackfruit peel for removal and recovery of nutrients in water sample. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
|
35
|
Abbo HS, Gupta KC, Khaligh NG, Titinchi SJJ. Carbon Nanomaterials for Wastewater Treatment. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanna S. Abbo
- University of the Western Cape Department of Chemistry Cape Town South Africa
- University of Basrah Department of Chemistry Basrah Iraq
| | - K. C. Gupta
- Indian Institute of Technology Polymer Research Laboratory Department of Chemistry 247 667 Roorkee India
| | - Nader G. Khaligh
- University of Malaya Nanotechnology and Catalysis Research Center Institute of Postgraduate Studies Kuala Lumpur Malaysia
| | | |
Collapse
|
36
|
Shahriyari Far H, Hasanzadeh M, Najafi M, Masale Nezhad TR, Rabbani M. Efficient Removal of Pb(II) and Co(II) Ions from Aqueous Solution with a Chromium-Based Metal–Organic Framework/Activated Carbon Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Targol Rahimi Masale Nezhad
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| |
Collapse
|
37
|
Dinari M, Mokhtari N, Hatami M. Covalent triazine based polymer with high nitrogen levels for removal of copper (II) ions from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02463-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Rashidi NA, Yusup S. Co-valorization of delayed petroleum coke - palm kernel shell for activated carbon production. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123876. [PMID: 33264948 DOI: 10.1016/j.jhazmat.2020.123876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
In this study, a binary mixture of petroleum coke and palm kernel shell had been investigated as potential starting materials for activated carbon production. Single-stage potassium carbonate (K2CO3) activation under nitrogen (N2) atmosphere was adopted in this research study. Effect of several operating parameters that included the impregnation ratio (1-3 wt./wt.), activation temperature (600-800 °C), and dwell time (1-2 hrs) were analyzed by using the Box-Behnken experimental design. Influence of these parameters towards activated carbon yield (Y1) and carbon dioxide (CO2) adsorption capacity at an atmospheric condition (Y2) were investigated. The optimum conditions for the activated carbon production were attained at impregnation ratio of 1.75:1, activation temperature of 680 °C, and dwell time of 1 h, with its corresponding Y1 and Y2 is 56.2 wt.% and 2.3991 mmol/g, respectively. Physicochemical properties of the pristine materials and synthesized activated carbon at the optimum conditions were analyzed in terms of their decomposition behavior, surface morphology, elemental composition, and textural characteristics. The study revealed that the blend of petroleum coke and palm kernel shell can be effectively used as the activated carbon precursors, and the experimental findings demonstrated comparable CO2 adsorption performance with commercial activated carbon as well as that in literatures.
Collapse
Affiliation(s)
- Nor Adilla Rashidi
- Chemical Engineering Department, National Higher Institution Centre of Excellence - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Suzana Yusup
- Chemical Engineering Department, National Higher Institution Centre of Excellence - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
39
|
Bhushan B, Nayak A, Kotnala S. Green synthesis of highly porous activated carbon from jackfruit peel: Effect of operating factors on its physico-chemical characteristics. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.08.554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Liu C, Wang W, Wu R, Liu Y, Lin X, Kan H, Zheng Y. Preparation of Acid- and Alkali-Modified Biochar for Removal of Methylene Blue Pigment. ACS OMEGA 2020; 5:30906-30922. [PMID: 33324799 PMCID: PMC7726758 DOI: 10.1021/acsomega.0c03688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
Walnut shell biochar (WSC) and wood powder biochar (WPC) prepared using the limited oxygen pyrolysis process were used as raw materials, and ZnCl2, KOH, H2SO4, and H3PO4 were used to modify them. The evaluation of the liquid-phase adsorption performance using methylene blue (MB) as a pigment model showed that modified biochar prepared from both biomasses had a mesoporous structure, and the pore size of WSC was larger than that of WPC. However, the alkaline modified was more conducive to the formation of pores in the biomass-modified biochar materials; KOH treatment resulted in the highest modified biochar-specific surface area. The isothermal adsorption of MB by the two biomass pyrolysis charcoals conformed to the Freundlich equation, and the adsorption process conformed to the quasi-second-order kinetic equation, which is mainly physical adsorption. The large number of oxygen-containing functional groups on the particle surface provided more adsorption sites for MB adsorption, which was beneficial to the adsorption reactions. The adsorption effects of woody biomass were obviously higher than that of shell biomass, and the adsorption capacities of the two raw materials' pyrolysis charcoal were in the order of WPC > WSC. The adsorption effects of different treatment reagents on MB were in the order ZnCl2 > KOH > H3PO4 > H2SO4. The maximum adsorption capacities of the two biomass treatments were 850.9 mg/g for WPC with ZnCl2 treatment and 701.3 mg/g for WSC with KOH treatment.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory of
State Forestry Administration for Highly-Efficient Utilization of
Forestry Biomass Resources in Southwest China, College of Materials
Science & Engineering, Southwest Forestry
University, Kunming 650224, PR China
| | - Wendong Wang
- Key Laboratory of
State Forestry Administration for Highly-Efficient Utilization of
Forestry Biomass Resources in Southwest China, College of Materials
Science & Engineering, Southwest Forestry
University, Kunming 650224, PR China
| | - Rui Wu
- Key Laboratory of
State Forestry Administration for Highly-Efficient Utilization of
Forestry Biomass Resources in Southwest China, College of Materials
Science & Engineering, Southwest Forestry
University, Kunming 650224, PR China
| | - Yun Liu
- College
of Life Science, Southwest Forestry University, Kunming 650224, PR China
| | - Xu Lin
- Key Laboratory of
State Forestry Administration for Highly-Efficient Utilization of
Forestry Biomass Resources in Southwest China, College of Materials
Science & Engineering, Southwest Forestry
University, Kunming 650224, PR China
| | - Huan Kan
- College
of Life Science, Southwest Forestry University, Kunming 650224, PR China
| | - Yunwu Zheng
- Key Laboratory of
State Forestry Administration for Highly-Efficient Utilization of
Forestry Biomass Resources in Southwest China, College of Materials
Science & Engineering, Southwest Forestry
University, Kunming 650224, PR China
| |
Collapse
|
41
|
Gao Y, Yue Q, Gao B, Li A. Insight into activated carbon from different kinds of chemical activating agents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141094. [PMID: 32745853 DOI: 10.1016/j.scitotenv.2020.141094] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 05/12/2023]
Abstract
Activated carbon (AC) is an important material in various fields owing to its low cost, well-developed porosity, and favorable chemical stability. Key factors for the optimal synthesis of AC are the carbon precursors, activation pathways, activating agents, and design of the procedure parameters. So far, no case studies have reviewed the activating agents used during the chemical activation process. Accordingly, the present review provides a summary of recent research, highlighting the development of activating agents during the process of AC. Detailed lists of pore-forming mechanisms by various activating agents, including alkaline, acidic, neutral, and self-activating agents, have been systematically summarized. Furthermore, the effects of activating agents on the experimental procedures have also been established. Finally, a comprehensive discussion about the influences of activating agents on the physical and chemical properties of the resultant AC is included. The objective of this study is to reveal and distinguish the individual roles of different activating agents during AC synthesis.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China; National Marine Environmental Monitoring Center, Dalian 116023, PR China.
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
42
|
Ali Z, Ahmad R, Farooq WA, Khan A, Khan AA, Bibi S, Adalat B, Almutairi MA, Yaqub N, Atif M. Synthesis and Characterization of Functionalized Nanosilica for Zinc Ion Mitigation; Experimental and Computational Investigations. Molecules 2020; 25:molecules25235534. [PMID: 33255844 PMCID: PMC7728340 DOI: 10.3390/molecules25235534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Zinc is an essential trace metal and its concentration above 4ppm reduces the aesthetic value of water. This study explores the possibility of using functionalized nanohybrids as Zn(II) ion scavengers from aqueous solution. Functionalized nanohybrids were synthesized by the attachment of thiosemicarbazide to silica. The material was characterized by TGA, SEM, FTIR, EDX, and BET analysis, which revealed ligand bonding to silica. The functionalized silica was employed as Zn(II) ion extractant in batch experiments and removed about 94.5% of the Zn(II) ions at pH 7, near zero point charge (6.5) in 30 min. Kinetics investigations revealed that zinc adsorption follows an intra particle diffusion mechanism and first-order kinetics (K = 0.1020 min−1). The data were fitted to Freundlich, Dubinin–Radushkevich, and Langmuir models and useful ion exchange parameters were determined. The impact of co-existing ions on Zn(II) ion sequestration was also studied and it was found that the adsorbent can be used for selective removal of zinc with various ions in the matrix. Quantum mechanical investigations revealed that the Zn(II) ion adsorption on ZnBS1 is more favorable, having higher binding energy (BE) (−178.1 kcal/mol) and ∆H (−169.8), and making tridentate complex with the N and S sites of the chelating ligand. The negative ∆G and BE values suggest highly spontaneous Zn(II) adsorption on the modified silica even at low temperatures.
Collapse
Affiliation(s)
- Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan; (Z.A.); (S.B.); (B.A.)
| | - Rashid Ahmad
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Pakistan; (R.A.); (A.A.K.)
- Chemistry Division, PINSTECH, PO Nilore 45650, Islamabad, Pakistan;
| | - W. Aslam Farooq
- Department of Physics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.Y.); (M.A.)
- Correspondence:
| | - Aslam Khan
- Chemistry Division, PINSTECH, PO Nilore 45650, Islamabad, Pakistan;
| | - Adnan Ali Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Dir Lower, Pakistan; (R.A.); (A.A.K.)
| | - Saira Bibi
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan; (Z.A.); (S.B.); (B.A.)
| | - Bushra Adalat
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan; (Z.A.); (S.B.); (B.A.)
| | - Mona A. Almutairi
- Department of Physics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.Y.); (M.A.)
| | - Nafeesah Yaqub
- Department of Physics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.Y.); (M.A.)
| | - Muhammad Atif
- Department of Physics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.Y.); (M.A.)
| |
Collapse
|
43
|
Li B, Yang Y, Wu H, Zhang C, Zheng W, Sun D. Adsorptive removal and mechanism of monocyclic aromatics by activated carbons from water: Effects of structure and surface chemistry. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Saadi Z, Fazaeli R, Vafajoo L, Naser I. Adsorptive removal of apramycin antibiotic from aqueous solutions using Tween 80-and Triton X-100 modified clinoptilolite: experimental and fixed-bed modeling investigations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:558-583. [PMID: 31064216 DOI: 10.1080/09603123.2019.1612039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
This study examined the performance of natural clinoptilolite (NC) modified with two surfactants of Triton X-100 (NC-Triton) and Tween 80 (NC-Tween) on apramycin (APR) adsorption from wastewater in batch and continues systems. The optimum pH, contact time, adsorbent dosage, and temperature were achieved. The findings revealed that the sorption was best described using the Langmuir isotherm compared to other isotherms. The maximum adsorption capacity of NC-Triton was greater than NC and NC-Tween. The lumped method was applied to solve the fixed-bed equations; predict breakthrough curve; determine axial dispersion coefficient and overall mass transfer coefficient parameters; and compare theoretical results with experimental results. Good fitness of experimental data with kinetic models of intra-particle diffusion, pseudo-first-order/liquid film diffusion and pseudo-second-order for NC, NC-Tween and NC-Triton, respectively, indicated that they were more suitable than the other models. Endothermic and spontaneous processes were resulted from positive enthalpy and negative Gibbs free energy changes, respectively.
Collapse
Affiliation(s)
- Zahra Saadi
- Department of Chemical engineering, Faculty of engineering, South Tehran Branch, Islamic Azad University , Tehran, Iran
| | - Reza Fazaeli
- Department of Chemical engineering, Faculty of engineering, South Tehran Branch, Islamic Azad University , Tehran, Iran
| | - Leila Vafajoo
- Department of Chemical engineering, Faculty of engineering, South Tehran Branch, Islamic Azad University , Tehran, Iran
| | - Iraj Naser
- Department of Chemical engineering, Faculty of engineering, South Tehran Branch, Islamic Azad University , Tehran, Iran
| |
Collapse
|
45
|
Wang L, Deng M, Xu H, Li W, Huang W, Yan N, Zhou Y, Chen J, Qu Z. Selective Reductive Removal of Silver Ions from Acidic Solutions by Redox-Active Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37619-37627. [PMID: 32814408 DOI: 10.1021/acsami.0c11463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The selective removal and recovery of silver ions from an aqueous solution is necessary, owing to the toxicity, persistency, and recoverable value. Herein, we first reported that silver ions could be selectively removed from an acidic solution by utilizing redox-active covalent organic framework (COF) materials as an adsorbent, resulting in the loading of Ag nanoparticles (NPs) with a narrow size distribution onto the framework simultaneously. The redox-active COF not only showed promising performance in adsorbing silver ions but also had a high selectivity at a low pH value. Subsequently, it was found that the N sites of amine groups within the framework took responsibility for the Ag NP generation after the systematic investigation on the redox adsorption mechanism. Furthermore, the recycled Ag@COF materials could be further used as new adsorbents to remove Hg(II) ions from water via NPs as a "bridge", exhibiting ultrahigh atomic utilization (>100%). Accordingly, this work not only provides a novel insight for the use of redox-active COF in the removal of metal ions but also opens a new field for designing of functionalized COF for their potential application in diverse areas.
Collapse
Affiliation(s)
- Longlong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mei Deng
- CSSC Nanjing Luzhou Environmental Protection Co., Ltd., Nanjing 210039, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongxian Zhou
- CSSC Nanjing Luzhou Environmental Protection Co., Ltd., Nanjing 210039, China
| | - Jisai Chen
- CSSC Nanjing Luzhou Environmental Protection Co., Ltd., Nanjing 210039, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
46
|
Kumar A, Kumar J, Bhaskar T. High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. ENVIRONMENTAL RESEARCH 2020; 186:109533. [PMID: 32334171 DOI: 10.1016/j.envres.2020.109533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Biochar is a biomass-derived carbon-rich, highly porous, and renewable material, which can be used as catalyst support. In this study, high surface area biochar is prepared from Sargassum tenerrimum dry seaweed (SDSW) by the chemical activation method. The effect of variations in experimental conditions (KOH amount, carbonization temperature, activation time, and heating rate) on the physicochemical properties of activated biochar was investigated. Optimum activated carbon (SDSW-ABC) has been used as catalyst support for the preparation of Ni and Co based catalyst. Prepared catalyst (NiCo/SDSW-ABC) was characterized using BET, TGA, XRD, TPD, TPR, and TEM. Catalytic activity of NiCo/SDSW-ABC was evaluated for phenol hydrogenation at a wide range of temperatures (60-140 °C), hydrogen pressures (3-7 MPa), and reaction times (2-8 h) in various polar solvents. The catalyst demonstrated selective phenol conversion (≥99.9%) to cyclohexanol (≥99.9%) at 5 MPa, 100 °C, and 4 h in isopropanol. NiCo/SDW-ABC also explored for hydrogenation of few other lignin model compounds with different functionalities to evaluate the applicability of catalyst.
Collapse
Affiliation(s)
- Adarsh Kumar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, Uttarakhand, India
| | - Jitendra Kumar
- Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, Uttarakhand, India
| | - Thallada Bhaskar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, Uttarakhand, India.
| |
Collapse
|
47
|
Choudhary M, Kumar R, Neogi S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu +2 and Ni +2 from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122441. [PMID: 32193109 DOI: 10.1016/j.jhazmat.2020.122441] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 05/22/2023]
Abstract
Applicability of biochar in water treatment is gaining interest due to its sustainability and low production cost. Herein, the biochar (BC) and activated biochar (ABC) synthesized from the cladodes of Opuntia ficus-indica (OFI) cactus were evaluated as a renewable adsorbent for adsorption of organic as well as inorganic pollutants including malachite green (MG) dye, Cu+2 and Ni+2 heavy metals. The modification of biochar with NaOH resulted higher surface basicity regarding more oxygen containing functional groups on the surface. The maximum uptake of 1341 mg g-1, 49 mg g-1 and 44 mg g-1 onto activated biochar for malachite green dye, Cu+2 and Ni+2 was acquired through the best fitted Langmuir isotherm model. Pseudo-second-order and Elovich models were found to provide a suitable fit indicating towards the chemisorption of all three components. Film diffusion and chemisorption are the main steps in adsorption of MG dye and heavy metals on activated biochar. The adsorption mechanisms were also hypothesized for adsorption of MG dye, Cu+2 and Ni+2. The remarkable adsorption capacities with higher reusability characteristics for adsorption of organic pollutants as well as inorganic heavy metals entrusts this activated biochar as a potential cost-effective adsorbent to mitigate water pollution issue.
Collapse
Affiliation(s)
- Manisha Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Rahul Kumar
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sudarsan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
48
|
Kumar A, Saini K, Bhaskar T. Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals. BIORESOURCE TECHNOLOGY 2020; 299:122564. [PMID: 31879059 DOI: 10.1016/j.biortech.2019.122564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 05/12/2023]
Abstract
The aim of this review is to provide the comprehensive and mechanistic information of biochar based catalytic systems for the production of fuels and fine chemicals with a concept of integrated biorefinery. The review presents an in-depth assessment of relationships between physico-chemical properties and catalytic performances of biochar based catalytic systems during the production of targeted compounds at the molecular/fundamental level. The catalytic performance of the biochar is associated with its unique physico-chemical properties (surface area/surface functionality/pores/mechanical strength/inorganic species) which provide a distinct catalytic route. The review also discusses the preparation methods and significance of the activation process for tuning of physico-chemical properties of biochar.
Collapse
Affiliation(s)
- Adarsh Kumar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Komal Saini
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Thallada Bhaskar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India.
| |
Collapse
|
49
|
A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 2020; 276:102088. [PMID: 31887574 DOI: 10.1016/j.cis.2019.102088] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023]
Abstract
The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.
Collapse
|
50
|
Poblete R, Pérez N. Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109697. [PMID: 31634745 DOI: 10.1016/j.jenvman.2019.109697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
A research of the depuration of landfill leachate using sawdust as activated carbon material to be applied in adsorption process as pretreatment of solar photo-Fenton and solar photo-Fenton + O3, was carried out. The activated sawdust shows very irregular shapes and pores, and a high capacity to remove ammonium (87.0%), iron (70.2%) and copper (61.1%). As well, it has the capacity to remove humic acid (18.3%), COD (33.7%) and colour (19.5%). Also, a removal of organic matter was obtained in terms of COD (76.4%), colour (74.9%), nitrate (50.0%), ammonium (12.8%) and humic acid (73.3%) due to the joint action of ozone and solar photo-Fenton process. The overall treatment (filtration, adsorption, photo-Fenton and photo-Fenton + ozone) carried out showed a very high removal of pollutants, with a reduction of COD, colour, ammonium and humic acid of 95.1%, 95.0%, 94.5% and 97.9%, respectively. With this enhancement in the landfill leachate (LL) quality, there is a reduction of toxicity, obtaining with the LL 50% diluted, a germination index for Lactuca sativa of 20% GI. This shows that the incorporation of sawdust is a useful pretreatment of photo-Fenton in the treatment of landfill leachate.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente, Chile.
| | - Norma Pérez
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Departamento de Acuicultura, Chile
| |
Collapse
|