1
|
Mi X, Wang T, Chen Y, Cao D, Ma N, Dai W. Ingenious construction of a magnetic-recyclable photo-Fenton catalyst ZnFe 2O 4@MIL-88A(Fe) and its adsorption-degradation activity toward levofloxacin. J Environ Sci (China) 2025; 151:677-691. [PMID: 39481972 DOI: 10.1016/j.jes.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 11/03/2024]
Abstract
Monotonic pore size and particles inseparability of metal-organic frameworks (MOFs) caused serious effects on its light absorption ability and charge separation, restricting its application for antibiotic such as levofloxacin (LEV) degradation in water. In this study, a magnetically detachable nano-photocatalyst (ZnFe2O4@MIL-88A(Fe)) was synthesized using a simple two-step hydrothermal technique. The morphology and microstructure analyses showed that n-type ZnFe2O4 catalyst particles were efficiently assembled onto the surface of MIL-88A(Fe) crystal. Photocatalytic activity studies indicated that the ZnFe2O4@MIL-88A(Fe) plus H2O2 exhibiting a significantly boosted photo-Fenton activity toward LEV at visible light irradiation, compared to the pure ZnFe2O4 and MIL-88A(Fe), the degradation efficiency accordingly reached up to nearly 82% and 25% within 60 min. This excellent photocatalytic performance was ascribed to the synergistic effects of the heterogeneous structure of ZnFe2O4 and MIL-88A(Fe), whereby the efficient separation of charge carriers in the catalytic system is mutually reinforced with the efficient reduction of Fe3+ and Fe2+. Meanwhile, the degradation mechanism and intermediates of LEV during the photo-Fenton reaction process were also studied in depth through free radical burst, electron paramagnetic resonance, and mass spectrometry analyses, etc. Additionally, the ZnFe2O4@MIL-88A(Fe) composite catalyst displayed significant stability and ease of separation, indicating potential for the photo-oxidative degradation of organic pollutants.
Collapse
Affiliation(s)
- Xichen Mi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Tingwei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yitong Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Dan Cao
- Jinhua Customs Comprehensive Technology Service Center, Jinhua 321004, China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Tang J, Gao Z, Xu L, Zhao Q, Hu T, Luo Y, Dou J, Bai Y, Xia L, Du K. Smartphone-assisted colorimetric biosensor for the rapid visual detection of natural antioxidants in food samples. Food Chem 2025; 462:141026. [PMID: 39216373 DOI: 10.1016/j.foodchem.2024.141026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Quantitative monitoring of the concentrations of epigallocatechin gallate (EGCG) and cysteine (Cys) is of great significance for promoting human health. In this study, iron/aluminum bimetallic MOF material MIL-53 (Fe, Al) was rapidly prepared under room temperature using a co-precipitation method, followed by investigating the peroxidase-like (POD-like) activity of MIL-53(Fe, Al) using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate. The results showed that the Michaelis -Menten constants of TMB and H2O2 as substrates were 0.167 mM and 0.108 mM, respectively. A colorimetric sensing platform for detecting EGCG and Cys was developed and successfully applied for analysis and quantitative detection using a smartphone. The linear detection range for EGCG was 15∼80 μM (R2=0.994) and for Cys was 7∼95 μM (R2=0.998). The limits of detection (LOD) were 0.719 μM and 0.363 μM for EGCG and Cys, respectively. This work provides a new and cost-effective approach for the real-time analysis of catechins and amino acids.
Collapse
Affiliation(s)
- Jun Tang
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Zhenyu Gao
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Longfei Xu
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Qianqian Zhao
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Tianfeng Hu
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Yongfeng Luo
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Jinkang Dou
- Department of Energetic Materials Science and Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Liaoyuan Xia
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China
| | - Kun Du
- Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha 410004, China.
| |
Collapse
|
3
|
Shi K, Li X, Tian Z, Luo Y, Ding R, Zhu Y, Yao H. Synergistic and efficient photocatalytic degradation of rhodamine B and tetracycline in wastewater based on novel S-scheme heterojunction phosphotungstic Acid@MIL-101(Cr). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123716. [PMID: 39689543 DOI: 10.1016/j.jenvman.2024.123716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
To efficiently treat rhodamine B (RhB) and tetracycline (TC) in wastewater, MIL-101(Cr) was prepared by hydrothermal method and encapsulated with phosphotungstic acid (H3PW12O40, abbreviated as PTA) to form an S-scheme heterojunction PTA@MIL-101(Cr)-x (P@M-x, x = 50, 100, 150, 200). The experimental results showed that after 180 min under visible light at pH 7, the degradation rates of RhB and TC were 97.81% and 99.9%, respectively. Meanwhile, the cycling experiments have showed that the P@M-100 S-scheme heterojunction exhibits good stability. Density Functional Theory (DFT) calculations theoretically verified the experimental results and elucidated the electrons migrate to MIL-101(Cr) and hole enrichment on the PTA surface. It was also revealed that the P@M-x photocatalyst belongs to the S-scheme heterojunction. Moreover, •O2- and h+ had been identified as the main active constituents during the photocatalytic degradation process. The synergistic effect of MIL-101(Cr) and PTA enhances the visible light absorption of P@M-x S-scheme heterojunction, resulting in more efficient electron transfer ability and faster photoreaction rate, thereby improved its photocatalytic performance. This study provides a potential solution for addressing aromatic pollutants in water.
Collapse
Affiliation(s)
- Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyu Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Zhiqiang Tian
- General Hospital of Ningxia Medical University, College of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Yuren Luo
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Runmei Ding
- General Hospital of Ningxia Medical University, College of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanshu Zhu
- General Hospital of Ningxia Medical University, College of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiqin Yao
- General Hospital of Ningxia Medical University, College of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Dvorsky R, Svoboda L, Bednář J, Vilamová Z, Šimonová Z. Novel continuous in situ measurement of photocatalyst efficiency in liquid dispersions by laser absorption method. Sci Rep 2024; 14:30238. [PMID: 39632855 PMCID: PMC11618616 DOI: 10.1038/s41598-024-80585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
This work presents a novel method and reactor design for measuring photocatalytic activity. This method allows continuous in situ monitoring of the decrease in pollutant concentration in a liquid dispersion containing the tested photocatalyst. Due to the presence of the photocatalyst in the liquid dispersion, the standard Beer-Lambert absorption law cannot be used directly to determine pollutant concentration in photocatalytic measurements. Therefore, the presented in situ measurement method also utilizes a newly derived modification of the absorption law, which, in addition to absorption, also considers the scattering effect caused by the dispersed photocatalyst. Repeated correlation analysis showed an average deviation of only 1.04% from approximately 500 measurements. At the same time, the measured points obtained by the presented method were within the uncertainty intervals of the standard method for measuring photocatalytic activity. It has been demonstrated that this novel continuous in situ measurement method can replace the current standard measurement method and can provide an even more consistent and faster way of testing photocatalytic materials. In addition, a novel and open source (patented experimental setup for the photocatalytic reactor system, consisting of a spectrometric laser and probe, is fully described in this paper.
Collapse
Affiliation(s)
- Richard Dvorsky
- Centre for Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava- Poruba, Czech Republic
| | - Ladislav Svoboda
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
| | - Jiří Bednář
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Zuzana Vilamová
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Zuzana Šimonová
- Centre for Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava- Poruba, Czech Republic
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
5
|
Zheng Y, Ran L, Zhang X, Zhu L, Zhang H, Xu J, Zhao Q, Zhou L, Ye Z. Enhanced Fenton catalytic degradation of methylene blue by the synergistic effect of Fe and Ce in chitosan-supported mixed-metal MOFs (Fe/Ce-BDC@CS). Int J Biol Macromol 2024; 279:134872. [PMID: 39173787 DOI: 10.1016/j.ijbiomac.2024.134872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/28/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Methylene blue (MB) is a refractory organic pollutant that poses a potential threat to the aquatic environment. Fenton reaction is considered a primrose strategy to treat MB. However, the traditional Fenton process is plagued by narrow pH application range, poor stability, and secondary pollution. To solve these problems, many Fenton-like catalysts including metal-organic frameworks (MOFs) have been prepared. Herein, a novel bimetallic MOF (Fe/Ce-BDC@CS) was prepared through simple adsorption for the effective removal of MB, where chitosan (CS) was used as the carrier. The degradation performance of Fe/Ce-BDC@CS (100 % within 20 min) was better than that of most reported monometallic MOFs. Moreover, Fe/Ce-BDC@CS exhibited good repeatability and its anti-interference performance of some inorganic ions was also remarkable. Column loading experiments showed that the removal efficiency of MB was still about 50 % over 155 h with a flowing speed of 0.30 L/h. Comparative analysis indicated that such excellent performances could be attributed to the synergistic effect between Fe and Ce. Furthermore, the results of quenching tests indicate that OH, O2-, and 1O2 contributed to MB degradation. In brief, Fe/Ce-BDC@CS has promising prospects in MB treatment, which can provide scientific references for the design and application of bimetallic MOFs.
Collapse
Affiliation(s)
- Yajuan Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Lang Ran
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Xu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Lingxiao Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Heng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Jiaming Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
6
|
Zhu S, Sun C, Zhu Z, Qu J, Fang Z, Chen Y, Lin J, Xu X, Cheng M, Jiang M, Zheng H. Copper-based photocatalysts with natural organic ligands for efficient removal of tetracycline under visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123052. [PMID: 39447352 DOI: 10.1016/j.jenvman.2024.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The excessive use of broad-spectrum antibiotics, such as tetracycline, presents a significant challenge to human survival and development. Oxygen vacancies (OVs) metal-organic framework (MOF) materials were synthesized using natural organic acids (L-malic acid, L-aspartic acid, and L-asparagine) with similar structures but different charge densities, along with copper as the metal linking agent. The presence of oxygen vacancies in the catalyst provides abundant active sites for photocatalytic reactions. The employment of flexible straight-chain organic ligands devoid of rigid polycyclic rings, combined with the incorporation of different substituents to induce variations in charge density, the resulting catalysts exhibit distinct photocatalytic activities under visible light. Density functional theory calculations confirm that L-asparagine exhibits the largest electron density difference, and the Cu-based MOF (Cu-ASU) synthesized as an organic ligand exhibits the highest photocatalytic activity under visible light excitation. The catalyst displayed remarkable photocatalytic activity against tetracycline antibiotics under identical conditions (with removal rates of 93.5 % for tetracycline, 81.4 % for terramycin, and 95.6 % for chloramphenicol hydrochloride). This provides a novel approach for the design and synthesis of photocatalysts for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Shouxin Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Can Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zhexiao Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jingyi Qu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yangben Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahui Lin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaolu Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Miaoyan Cheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Min Jiang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Hui Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
7
|
Zheng Y, Sun F, Zeng P, Su Y, Liu G. Constructing of Core-Satellite Structure Bimetallic MOFs for Synergistic Enhanced Adsorption-Photocatalytic Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20966-20976. [PMID: 39319825 DOI: 10.1021/acs.langmuir.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Various industries generate a large amount of wastewater, which contains soluble organic compounds that can seriously jeopardize the environment and human health. Therefore, new photocatalytic materials with the function of efficiently degrading pollutants have become a research hotspot. In this research, bimetallic metal-organic frameworks (MOFs) with a core-satellite structure were prepared through a simple one-pot method in the presence of a polyvinylpyrrolidone structure-directing agent and crystal size. Also, the synergy of the adsorption-catalytic properties of the core-satellite structure bimetallic MOFs was achieved via the interaction of aluminum and iron groups. Meanwhile, the type I heterojunction structure based on MIL-53(Al@Fe)-OH realized the effective separation of the photogenerated carriers. Under the synergistic adsorption-catalytic degradation, the degradation efficiency of methylene blue (MB) was nearly 100% after adsorption (of 2 h) and photocatalysis (of 2 h), and the removal rate of MB still reached 90.43% after five cycles. This study provides a new strategy for the construction of bimetallic MOF structures for efficient adsorption-catalyzed degradation of environmental pollutants.
Collapse
Affiliation(s)
- Yaxin Zheng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Sun
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengjin Zeng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Su
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guojin Liu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Taian 271000, Shandong, China
| |
Collapse
|
8
|
Chen B, Wang Y, Shen S, Zhong W, Lu H, Pan Y. Lattice Defects and Electronic Modulation of Flower-Like Zn 3In 2S 6 Promote Photocatalytic Degradation of Multiple Antibiotics. SMALL METHODS 2024; 8:e2301598. [PMID: 38168900 DOI: 10.1002/smtd.202301598] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Photocatalysis is an effective technique to remove antibiotic residues from aquatic environments. Typical metal sulfides like Zn3In2S6 have been applied to a wide range of photocatalytic applications. However, there are currently no readily accessible methods to increase its antibiotic-degrading activity. Here, a facile hydrothermal approach is developed for the preparation of flower-like Zn3In2S6 with tunable sulfur lattice defects. Photogenerated carriers can be separated and transferred more easily when there is an adequate amount of lattice defects. Moreover, lattice defect-induced electronic modulation enhances light utilization and adsorption properties. The modified Zn3In2S6 demonstrates outstanding photocatalytic degradation activity for levofloxacin, ofloxacin, and tetracycline. This work sheds light on exploring metal sulfides with sulfur lattice defects for enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Baofu Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yichao Wang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Shijie Shen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Wenwu Zhong
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Hongsheng Lu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yin Pan
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| |
Collapse
|
9
|
Sheela JAH, Kunapalli CK, Saravanan P, Radhakrishnan K, Dinesh A, Wadaan MA, Praburaman L, Nivetha MS. Visible-light enhanced tetracycline degradation via SnO 2/TiO 2-Ni@rGO ternary heterostructures. LUMINESCENCE 2024; 39:e4906. [PMID: 39319701 DOI: 10.1002/bio.4906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
This study explores the synthesis, characterization, and photocatalytic performance of a SnO2/TiO2-Ni@rGO nanocomposite for tetracycline (TC) degradation under visible light irradiation. The nanocomposite was precisely designed to enhance structural stability, charge transfer efficiency, and catalytic activity. X-ray diffraction (XRD) analysis confirmed the structural integrity of the SnO2/TiO2-Ni@rGO composite, demonstrating excellent reusability and resistance to photo-corrosion after multiple cycles. Photocatalytic experiments revealed that the SnO2/TiO2-Ni@rGO nanocomposite significantly outperformed individual SnO2/TiO2-Ni and rGO catalysts, achieving a remarkable 94.6% degradation of TC within 60 min. The degradation process followed pseudo-first-order kinetics, with a rate constant (k) of 0.046 min-1. The Z-scheme charge transfer mechanism facilitated efficient separation and migration of photogenerated charge carriers, generating reactive oxygen species such as superoxide (•O2 -) and hydroxyl (•OH) radicals crucial for the oxidation of TC. Radical scavenger studies confirmed that superoxide and hydroxyl radicals were the primary active species. The SnO2/TiO2-Ni@rGO composite also exhibited excellent reusability, maintaining high catalytic performance over four consecutive cycles. These findings suggest that the SnO2/TiO2-Ni@rGO nanocomposite is a promising candidate for the efficient and sustainable photocatalytic degradation of persistent organic pollutants like TC, offering significant potential for environmental remediation applications.
Collapse
Affiliation(s)
- Johnrose Arul Hency Sheela
- Department of Chemistry, Muslim Arts College, Azhagiamandapam, Thiruvithancode, Kanyakumari District, (Affliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli - 627012), Tiruchirappalli, Tamil Nadu, India
| | | | - P Saravanan
- Department of Chemistry, St. Joseph's College of Engineering, Chennai, India
| | - Kothalam Radhakrishnan
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ayyar Dinesh
- Department of Chemistry, K. Ramakrishnan College of Engineering (Autonomous), Affiliated to the Anna University, Samayapuram, Trichy, Tamil Nadu, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - L Praburaman
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute Medical and Technical Sciences, Chennai, India
| | - M Sherlin Nivetha
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Azqandi M, Ramavandi B, Nasseh N, Zaarei D, Fanaei F. Green synthesis of manganese ferrite magnetic nanoparticle and its modification with metallic-organic frameworks for the tetracycline adsorption from aqueous solutions: A mathematical study of kinetics, isotherms, and thermodynamics. ENVIRONMENTAL RESEARCH 2024; 256:118957. [PMID: 38636645 DOI: 10.1016/j.envres.2024.118957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
In the current investigation, MnFe2O4/ZIF-8 nanocomposite was generated as a magnetic nanoadsorber using the extract of Dracocephalum plant and characterized by XRD, FTIR, VSM, BET, FESEM, EDS-mapping, TEM, XPS, TPD-NH3, and TGA analyses. Also, to determine its efficiency in the adsorption process of tetracycline, the effect of pH (3-9), nanocomposite dose (0.025-2 g/L), initial pollutant concentration (5-100 mg/L), contact time (5-200 min), and temperature (5-50 °C) were studied. The results of the morphological properties of the magnetic nanocomposite confirmed the spherical shape of this nanoadsorber with an average size of 54 ± 31 nm. BET analysis showed that modification of MnFe2O4 material with ZIF-8 as a new nanoadsorber leads to excellent modification of SBET (143.8 m2/g) and VTotal (0.44 cm3/g). The highest removal efficiency of tetracycline in optimal conditions (pH = 7, contact time = 120 min, nanocomposite dose = 1.5 g/L, and temperature = 20 °C for a tetracycline concentration of 20 mg/L) was 90.11%. As the temperature increased, the removal efficiency increased from 40.46% to 95.06% during 120 min, which indicates that the adsorption reaction is endothermic. In addition, the data obtained from the isotherms of Langmuir (R2 = 0.958), Freundlich (R2 = 0.534), and Temkin (R2 = 0.747) showed that the tetracycline adsorption is monolayer and on the homogeneous surface of the synthesized magnetic nanoadsorber. The elimination process of tetracycline by nanoadsorber followed the pseudo-second order model (R2 = 0.998). Investigating the effect of interfering ions also confirmed the decrease in the adsorption efficiency. Also, the investigation of the reusability of the synthesized magnetic nanoadsorber in tetracycline adsorption indicates that after eight cycles, the efficiency decreases by %16.51. According to the results, the magnetic nanocomposite synthesized in this work can be a suitable and economical adsorber for the removal of tetracycline from aqueous environments.
Collapse
Affiliation(s)
- Moslem Azqandi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Bahman Ramavandi
- Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negin Nasseh
- Department of Health Education and Promotion, School of Health, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Davood Zaarei
- Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farzaneh Fanaei
- Department of Environmental Health Engineering, Ferdows Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
11
|
Bose S, Kumar M. Comparative evaluation of α-Bi 2O 3/CoFe 2O 4 and ZnO/CoFe 2O 4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143071. [PMID: 39128776 DOI: 10.1016/j.chemosphere.2024.143071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2-) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2- but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, 'hotspots' were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2- and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation.
Collapse
Affiliation(s)
- Saptarshi Bose
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
12
|
Yan X, Yao Y, Xiao C, Zhang H, Xie J, Zhang S, Qi J, Zhu Z, Sun X, Li J. Shaping Phenolic Resin-Coated ZIF-67 to Millimeter-Scale Co/N Carbon Beads for Efficient Peroxymonosulfate Activation. Molecules 2024; 29:4059. [PMID: 39274907 PMCID: PMC11397324 DOI: 10.3390/molecules29174059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol-formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min-1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications.
Collapse
Affiliation(s)
- Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Chae SH, Lee H, Nam K. Mechanistic study of visible light driven photocatalytic degradation of clofibric acid using Fe-based metal organic frameworks (MOFs). CHEMOSPHERE 2024; 359:142365. [PMID: 38763402 DOI: 10.1016/j.chemosphere.2024.142365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Although a series of past studies proved the potential usage of Fe-based metal-organic frameworks (MOFs) as photocatalysts, there remains a knowledge gap of the photocatalytic mechanism stemming from the challenge to separate the simultaneous sorption and photocatalytic degradation. Thus, this article aimed to suggest a novel approach by desorbing target molecules during photocatalysis to excavate the underlying mechanisms of sorption and photocatalytic degradation. In this study, two Fe-based MOFs, MIL-101(Fe) and MIL-101(Fe)-NH2, were selected to remove clofibric acid under visible light irradiation. Prior to photocatalysis, sorption mechanism was uncovered based on the sorption kinetic, isotherm, thermodynamic interpretation, and of its dependence on solution pH. The results inferred that the primary sorption mechanism was through the π-π interaction between the benzene ring of clofibric acid and the organic ligand of Fe-based MOFs. Based on these results, photocatalytic mechanism could be independently or jointly assessed during the photocatalytic degradation of clofibric acid. Subsequently, the application of the Tauc method and XPS spectra revealed that the bandgap structure of Fe-based MOFs had the potential to oxidize clofibric acid by producing ROS through the electron excitation upon visible-light illumination. On top of that, the amine functionalization of Fe-based MOF altered the structural moiety that led to an additional strong acid-base interaction with clofibric acid but a decrease in the bandgap limiting the ROS production during photocatalytic activity.
Collapse
Affiliation(s)
- Seung Hee Chae
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hosub Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyoungphile Nam
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Akbari Beni F, Izadpanah Ostad M, Niknam Shahrak M, Ayati A. Unveiling the remarkable simultaneous adsorption-photocatalytic potential of Ag nanoparticles-anchored phosphotungestic acid loaded ZIF-8 for Congo red removal. ENVIRONMENTAL RESEARCH 2024; 252:119049. [PMID: 38704003 DOI: 10.1016/j.envres.2024.119049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This research paper presents a direct approach to synthesize AgNPs deposited on polyoxometalate/ZIF-8 on-site (referred to as AgNPS@PW@ZIF-8) to develop a highly efficient photocatalyst in the water treatment. Phosphotungestic acid (PW) serves a multi-purpose in this context: it acts as a bridge layer between AgNPs and Zeolitic Imidazolate Framework-8 (ZIF-8), a local reducing agent, and a catalyst for electron transfer during the photocatalysis process. A comprehensive characterization of the resulting nanostructure was performed utilizing an array of techniques, such as XRD, FTIR, EDX, TEM, BET, Raman, and TGA. The nanostructure that was created exhibited effective removal of Congo red at different pH levels via a combination of simultaneous adsorption and photocatalysis. After 60 min at pH 7, the dye molecules were completely eliminated in the presence of 0.5 g/L AgNPS@PW@ZIF-8 at room temperature. The charge transfer can be facilitated by the PW bridge layer connecting AgNPs and ZIF-8, owing to the photoactive characteristics and strong electron transfer capabilities of PW molecules. Strong electron transferability of PW between Ag nanoparticles and ZIF-8 facilitates charge transfer and significantly improves the photocatalytic performance of ZIF-8. Moreover, the nanostructure demonstrated great structural stability and recyclability, sustaining a high efficiency of removal throughout five consecutive cycles through the implementation of a simple procedure. Widespread applications of the developed nanostructure in aquatic environments for adsorption and photocatalytic reactions are possible.
Collapse
Affiliation(s)
- Faeze Akbari Beni
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran
| | - Mohammad Izadpanah Ostad
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran; EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russian Federation.
| |
Collapse
|
15
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
16
|
Guo X, Sun C, Liu H. Triangular Triazine-Triphenylamine Functionalized Hybrid Fluorescent Porous Polymers for Detection and Photodegradation of Tetracycline Hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13070-13081. [PMID: 38860681 DOI: 10.1021/acs.langmuir.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
First, an organic semiconductor fluorescent molecule of 4',4″,4"'-(2,4,6-triphenyl-1,3,5-triazine)-4-(N,N-diphenyl-(1,1'-biphenyl)-4-amine (TPTz) is successfully synthesized by the Suzuki-Miyaura coupling reaction of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine with 4-(diphenylamino)phenylboronic acid. TPTz offers as high as 85% fluorescence quantum yield and a strong solvent effect, with fluorescent colors across the visible spectrum in different solvents. Then, an organic-inorganic hybrid fluorescent porous polymer of PCS-TPTz with a surface area of 714 m2 g-1 and pore volume of 0.660 cm3 g-1 is prepared by the Friedel-Crafts reaction of TPTz and octavinylsilsesquioxane; PCS-TPTz showed a high fluorescence quantum yield of 17% with a large Stokes shift of up to 280 nm. The excellent fluorescence properties and insolubility of PCS-TPTz make it to act as a heterophase sensor for tetracycline hydrochloride (TH) with a KSV of 2.39 × 104 M-1. In addition, PCS-TPTz exhibits an excellent photodegradation activity for antibiotic TH without the requirement for additional oxidants or pH adjustments. ESR spectra and free radical trapping experiment indicate that superoxide radical (•O2-) is the active radical for achieving the photodegradation. The simultaneous detection and degradation of TH are achieved by PCS-TPTz.
Collapse
Affiliation(s)
- Xiaolin Guo
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nan lu, Jinan 250100, China
| | - Chenyu Sun
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nan lu, Jinan 250100, China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nan lu, Jinan 250100, China
| |
Collapse
|
17
|
Qin Y, Zhang M, Zhang F, Ozer SN, Feng Y, Sun W, Zhao Y, Xu Z. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133780. [PMID: 38401213 DOI: 10.1016/j.jhazmat.2024.133780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Chemically durable and effective adsorbents for radiotoxic TeOx2- (TeIV and TeVI) anions remain in great demand for contamination remediation. Herein, a low-cost iron-based metal-organic framework (MIL-101(Fe)) was used as an adsorbent to capture TeOx2- anions from contaminated solution with ultrafast kinetics and record-high adsorption capacity of 645 mg g-1 for TeO32- and 337 mg g-1 for TeO42-, outperforming previously reported adsorbents. Extended X-ray absorption fine structure (EXAFS) and density functional theory (DFT) calculations confirmed that the capture of TeOx2- by MIL-101(Fe) was mediated by the unique C-O-Te and Fe-O-Te coordination bonds at corresponding optimal adsorption sites, which enabled the selective adsorption of TeOx2- from solution and further irreversible immobilization under the geological environment. Meanwhile, MIL-101(Fe) works steadily over a wide pH range of 4-10 and at high concentrations of competing ions, and it is stable under β-irradiation even at high dose of 200 kGy. Moreover, the MIL-101(Fe) membrane was fabricated to efficiently remove TeO32- ions from seawater for practical use, overcoming the secondary contamination and recovery problems in powder adsorption. Finally, the good sustainability of MIL-101(Fe) was evaluated from three perspectives of technology, environment, and society. Our strategy provides an alternative to traditional removal methods that should be attractive for Te contamination remediation.
Collapse
Affiliation(s)
- Yongbo Qin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Meng Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Fuhao Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Seda Nur Ozer
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yujing Feng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Wenlong Sun
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yongming Zhao
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhanglian Xu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
18
|
Wang Q, Ma W, Qian J, Li N, Zhang C, Deng M, Du H. S-scheme towards interfacial charge transfer between POMs and MOFs for efficient visible-light photocatalytic Cr (VI) reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123707. [PMID: 38447652 DOI: 10.1016/j.envpol.2024.123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The establishment of heterojunctions was considered as an exceptional strategy to obtain high-efficiency charge separation and enhanced photocatalytic performance. Herein, a series of FePMo/MIL-53(Fe) (FeM-53) heterojunctions were successfully constructed through in-situ growth of FePMo onto MIL-53(Fe) surface and their photocatalytic capacity were examined by visible-light-induced Cr(VI) reduction. Interestingly, the as-fabricated composites offered various photocatalytic activities controllably relying on the mass ratio of FePMo to MIL-53(Fe). Particularly, the one with the 10% ratio displayed the highest Cr(VI) reduction rate (100%) within 75 min, which was respectively over 4 and 2 folds higher than pure FePMo and MIL-53(Fe). The boosted photoactivity might be ascribed to the establishment of S-scheme heterojunction with suitable band alignment between FePMo and MIL-53(Fe), which broadened the light absorption range and improved charge separation. Further mechanism investigations implied both •O2- and e- were the key reactive species for Cr(VI) removal. Besides, the composite preserved excellent stability after 4 consecutive tests, and performed well in the presence of organic dyes. Such a S-scheme heterojunction may promise for highly efficient environmental mitigation.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wanggang Ma
- Hangzhou Hangda Environmental Protection Engineering Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Jianying Qian
- CCTEG Hangzhou Research Institute Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chao Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
19
|
He X, Chang C. Construction of SU-102 for adsorption and photocatalytic synergistic removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24446-24460. [PMID: 38438646 DOI: 10.1007/s11356-024-32737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Tetracycline (TC) is a significant group of broad-spectrum antibiotics that are frequently employed in medical health and animal husbandry. However, the problem of TC residues has been increasing globally with the large-scale production and widespread use, posing a serious threat to the human health and ecological environment. In this paper, a green plant-based MOF SU-102 was prepared, and the adsorption characteristics of SU-102 on TC were investigated. SU-102 was columnar crystal with considerable specific surface area and pore structure, and it could adsorb TC quickly and effectively. And compared to SU-102-a, the adsorption rate of TC by SU-102-b has increased by nearly four times. The adsorption reaction was a spontaneous, entropy-gaining, heat-absorbing process. The adsorption mechanisms between SU-102 and TC were π-π interaction and hydrogen bonding. In addition, SU-102 also had considerable photocatalytic properties, and its application in adsorbent desorption treatment effectively solved the problem of secondary pollution.
Collapse
Affiliation(s)
- Xiaohui He
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
20
|
Zisti F, Al-Behadili FJM, Nadimpour M, Rahimpoor R, Mengelizadeh N, Alsalamy A, Alawadi A, Doghiam Abdullah M, Balarak D. Synthesis and characterization of Fe 3O 4@SiO 2 -supported metal-organic framework PAEDTC@MIL-101 (Fe) for degradation of chlorpyrifos and diazinon pesticides. ENVIRONMENTAL RESEARCH 2024; 245:118019. [PMID: 38142730 DOI: 10.1016/j.envres.2023.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
In this study, a new core-shell Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) photocatalyst was prepared by sol-gel method and used to degrade diazinon (DZN) and chlorpyrifos (CPS) from aqueous solutions. The characteristics analyzed by various techniques indicate that the core-shell photocatalyst with a specific surface area of 992 m2/g, pore size of 1.35 nm and saturation magnetization of nanocomposite was 12 emu/g has been successfully synthesized and can be separated from the reaction solution by a magnetic field. The maximum efficiencies of DZN (98.8%) and CPS (99.9%) were provided at pH of 5, photocatalyst dosage of 0.6 g/L, pollutant concentration of 25 mg/L, radiation intensity of 15 W, and time of 60 min. The presence of anions such as sulfate, nitrate, bicarbonate, phosphate, and chloride had a negative effect on the performance of the photocatalysis system. Compared to the adsorption and photolysis systems alone, the photocatalytic process based on Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) under two UV and visible light sources showed a high efficiency of 90% in the reaction time of 60 min. The BOD5/COD ratio improved after 50 min to above 0.4 with TOC and COD removal rates >80%. Scavenging tests showed that •OH radical, hole (h+), electron (e-), and O2•- anion were produced in the reaction reactor, and the •OH radical was the dominant species in the degradation of DZN and CPS. The stability tests confirmed the recyclability of the photocatalyst in 360 min of reactions, with a minimum reduction of 7%. Energy consumption for the present system during different reactions was between 15.61 and 25.06 kWh/m3 for DZN degradation and 10-22.87 kWh/m3 for CPS degradation.
Collapse
Affiliation(s)
- Fatemeh Zisti
- Department of Chemistry, University of Brock, St.chatarines, Ontario, Canada
| | | | - Mahsa Nadimpour
- Department of Basic Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Razzagh Rahimpoor
- Department of Occupational Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Alsalamy
- . College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University; Najaf; Iraq; College of Technical Engineering, The Islamic University of Al Diawaniyah; Al Diawaniyah; Iraq; Collage of Technical Engineering; The Islamic University of Babylon; Babylon; Iraq
| | | | - Davoud Balarak
- Department of Environmental Health Engineering, Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
21
|
Wang B, Liu X, Liu B, Huang Z, Zhu L, Wang X. Three-dimensional porous La(OH) 3/g-C 3N 4 adsorption-photocatalytic synergistic removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22158-22170. [PMID: 38403828 DOI: 10.1007/s11356-024-32546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
La(OH)3/g-C3N4 composites were successfully synthesized via one-step calcination using urea, melamine, and La(NO3)3·nH2O as raw materials, and applied to UV-induced photocatalytic tetracycline (TC) removal. Comprehensive characterization by an X-ray diffraction (XRD), Fourier transform infrared reflection (FT-IR), high-resolution transmission electron microscope (HRTEM), and other techniques analyzed effects of La3+ doping, especially N vacancies and cyano groups as active sites. Compared to pure g-C3N4 and La(OH)3, synthesized La(OH)3/g-C3N4 composites exhibited a three-dimensional porous nanosheet structure with specific surface area of 83.62 m2/g and equilibrium TC adsorption capacity up to 285.59 mg/g; La(OH)3 doping significantly improved composite structure. After dispersing 10 mg La-CN-0.5 photocatalyst in 60 mL 40 mg/L TC solution, TC removal reached 91.08% in 30 min under UV irradiation, exhibiting excellent performance. Additionally, La-CN-0.5 showed significant adsorption-photocatalytic synergism, with the quasi-primary kinetic constant increased by 1.83-fold. The efficiency of high tetracycline (TC) concentration treatment through adsorption photocatalytic degradation by La-CN-0.5 was confirmed by the utilization of free radical trapping and electron spin resonance (ESR) tests. The significant involvement of ∙O2-, ∙OH, and h+ in this process was observed. These findings propose that the prepared La-CN-0.5 material exhibits a unique capability for adsorption photocatalysis, providing a promising approach for the efficient removal of high TC concentrations.
Collapse
Affiliation(s)
- Bohai Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bei Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhongwei Huang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan, 430065, China.
| |
Collapse
|
22
|
Sheik A, Ranjith KS, Ghoreishian SM, Yang Y, Park Y, Son S, Han YK, Huh YS. Green approach for the fabrication of dual-functional S/N doped graphene tagged ZnO nanograins for in vitro bioimaging and water pollutant remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123077. [PMID: 38135138 DOI: 10.1016/j.envpol.2023.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Dual-functional S/N (sulfur and nitrogen) doped graphene-tagged zinc oxide nanograins were synthesized for bioimaging applications and light-dependent photocatalytic activity. Applying the green synthesis approach, graphene was synthesized from kimchi cabbage through a hydrothermal process followed by tagging it with synthesized zinc oxide nanoparticles (ZnO-NPs). The 2D/0D heterostructure prepared by combining both exhibited exceptional advantages. Comprehensive characterizations such as TEM, SEM, XRD, FTIR, XPS, and UV-Vis spectra have been performed to confirm the structures and explore the properties of the synthesized nanocomposite. The graphene/ZnO-NP composite produced exhibited more intense fluorescence, greater chemical stability and biocompatibility, lower cytotoxicity, and better durability than ZnO NPs conferring them with potential applications in cellular imaging. While tagging the ZnO NPs with carbon derived from a natural source containing hydroxyl, sulfur, and nitrogen-containing functional group, the S/N doped graphene/ZnO heterostructure evidences the high photocatalytic activity under UV and visible irradiation which is 3.2 and 3.8 times higher than the as-prepared ZnO-NPs. It also demonstrated significant antibacterial activity which confers its application in removing pathogenic contaminant bacteria in water bodies. In addition, the composite had better optical properties and biocompatibility, and lower toxicity than ZnO NPs. Our findings indicate that the synthesized nanocomposite will be suitable for various biomedical and pollutant remediation due to its bright light-emitting properties and stable fluorescence.
Collapse
Affiliation(s)
- Aliya Sheik
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Kugalur Shanmugam Ranjith
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Yujeong Yang
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - YongHyeon Park
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Sejin Son
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
23
|
Salahshoori I, Namayandeh Jorabchi M, Baghban A, Khonakdar HA. Integrative analysis of multi machine learning models for tetracycline photocatalytic degradation with MOFs in wastewater treatment. CHEMOSPHERE 2024; 350:141010. [PMID: 38154677 DOI: 10.1016/j.chemosphere.2023.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs. Sensitivity analysis revealed that the illumination duration is the primary influencer of TC photodegradation with MOF photocatalysts, while the MOFs' surface area is the second crucial parameter shaping the efficiency and dynamics of the TC-MOF photocatalytic system. The developed LSSVM models display impressive predictive capabilities, effectively forecasting the experimental degradation of TC with high accuracy. Among these models, the GAPSO-LSSVM model excels as the top performer, achieving notable evaluation metrics, including STD, RMSE, MSE, MRE, and R2 at values of 3.09, 3.42, 11.71, 5.95, and 0.986, respectively. In comparison, the PSO-LSSVM, ICA-LSSVM, and GA-LSSVM models yield mean relative errors of 6.18%, 7.57%, and 11.37%, respectively. These outcomes highlight the exceptional predictive capabilities of the GAPSO-LSSVM model, solidifying its position as the most accurate and dependable model for predicting TC photodegradation in this study. This study contributes to advancing photocatalytic research and effectively reinforces the importance of leveraging machine learning methodologies for tackling environmental challenges.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Baghban
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| |
Collapse
|
24
|
Kazemi Z, Jafari AJ, Kermani M, Kalantary RR. Evaluating the photocatalytic performance of MOF coated on glass for degradation of gaseous styrene under visible light. Sci Rep 2024; 14:1083. [PMID: 38212370 PMCID: PMC10784502 DOI: 10.1038/s41598-023-51098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
Styrene is a volatile organic compound with various applications, especially in the plastics and paint industries. Exposure to it leads to symptoms such as weakness, suppression of the central nervous system, and nausea, and prolonged exposure to it increases the risk of cancer. Its removal from the air is a topic that researchers have considered. Various methods such as absorption, membrane separation, thermal and catalytic oxidation, biofiltration have been used to remove these compounds. The disadvantages of these compounds include the need for high energy, production of secondary pollutants, large space, providing environmental conditions (temperature and humidity) and long time. The photocatalyst process is considered as an advanced process due to the production of low and safe secondary pollutants. MOFs are nanoparticles with unique photocatalytic properties that convert organic pollutants into water and carbon dioxide under light irradiation and in environmental conditions, which prevent the production of secondary pollutants. The present study aimed to investigate the efficiency of MIL100 (Fe) nanoparticles coated on glass in removing styrene vapor from the air. Surface morphology, crystal structure, pore size, functional groups, and chemical composition of the catalyst were analyzed by SEM, XRD, BET, FTIR, and EDX analysis. The effect of parameters such as initial pollutant concentration, temperature, time, relative humidity, and nanoparticle concentration was evaluated as effective parameters in the removal process. Based on the results, MIL100 (Fe) 0.6 g/l with an 89% removal rate had the best performance for styrene removal. Due to its optimal removal efficiency, it can be used to degrade other air pollutants.
Collapse
Affiliation(s)
- Zohre Kazemi
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Wang X, Yan F, Chen Y, Bai X, Fu Y. Localized electron-accepted yellow-emission carbon dots encapsulated in UiO-66 for efficient visible-light driven photocatalytic activity. CHEMOSPHERE 2023; 343:140250. [PMID: 37741371 DOI: 10.1016/j.chemosphere.2023.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Metal organic frameworks (MOFs) possess a large surface area, inherent porosity and high crystallinity. Nevertheless, they lack electron acceptors, which limit the exploitation of their photocatalytic properties. Carbon dots (CDs) known for excellent optical properties can serve as localized electron acceptors. As a novel hybrid nanomaterial, the structure of CDs@MOFs effectively facilitates charge separation and carrier transfer, bring about a marked improvement of photocatalytic activity. In this study, yellow-emission carbon dots (YCDs) were encapsulated within zirconium-based metal organic framework (UiO-66) via a dynamic adsorption method. Compared with blue carbon dots (BCDs), the YCDs@UiO-66 exhibited superior degradation performance. It demonstrates that incorporation of YCDs broadens the UV absorption range of UiO-66, thereby enhancing light utilization. The degradation efficiency of YCDs@UiO-66 was 92.6%, whereas UiO-66 alone achieved only 63.1%. Notably, the results of the radical quenching experiment and electron paramagnetic resonance (EPR) revealed that h+ and •O2- played a prominent role in the photodegradation of tetracycline hydrochloride (TCH). This study highlights that the introducing YCDs in MOFs-mediated photocatalytic reactions is a viable strategy to improve catalytic efficiency.
Collapse
Affiliation(s)
- Xiule Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Ying Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Xinyi Bai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
26
|
Wu Y, Zhong W, Wang X, Wu W, Muddassir M, Daniel O, Raj Jayswal M, Prakash O, Dai Z, Ma A, Pan Y. New Transition Metal Coordination Polymers Derived from 2-(3,5-Dicarboxyphenyl)-6-carboxybenzimidazole as Photocatalysts for Dye and Antibiotic Decomposition. Molecules 2023; 28:7318. [PMID: 37959737 PMCID: PMC10648955 DOI: 10.3390/molecules28217318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2·1.9H2O] (1), [Mn3(HL)(L)(μ3-OH)(H2O)(phen)2·2H2O] (2), and [Cd(HL)4(H2O)]·H2O (3) (H3L = 2-(3,5-dicarboxyphenyl)-6-carboxybenzimidazole; phen = 1,10-phenanthroline) have been synthesized and characterized spectroscopically and by single crystal X-ray diffraction. Single crystal X-ray diffraction results indicated that 1 forms a 2D layer-like framework, while 2 exhibits a 3-connected net with the Schläfli symbol of (44.6), and 3 displays a 3D supramolecular network in which two adjacent 2D layers are held by π···π interactions. All three compounds have been used as photocatalysts to catalyze the photodegradation of antibiotic dinitrozole (DTZ) and rhodamine B (RhB). The photocatalytic results suggested that the Mn-based CP 2 exhibited better photodecomposition of DTZ (91.1%) and RhB (95.0%) than the other two CPs in the time span of 45 min. The observed photocatalytic mechanisms have been addressed using Hirshfeld surface analyses.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Wenxu Zhong
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Weiping Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Mohd. Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Omoding Daniel
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Madhav Raj Jayswal
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Aiqing Ma
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| |
Collapse
|
27
|
ÖZCAN E, MERMER Z, ZORLU Y. Metal-organic frameworks as photocatalysts in energetic and environmental applications. Turk J Chem 2023; 47:1018-1052. [PMID: 38173745 PMCID: PMC10760874 DOI: 10.55730/1300-0527.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) are an exciting new class of porous materials with great potential for photocatalytic applications in the environmental and energy sectors. MOFs provide significant advantages over more traditional materials when used as photocatalysts due to their high surface area, adaptable topologies, and functional ability. In this article, we summarize current developments in the use of MOFs as photocatalysts for a variety of applications, such as CO2 reduction, water splitting, pollutant degradation, and hydrogen production. We discuss the fundamental properties of MOFs that make them ideal for photocatalytic applications, as well as strategies for improving their performance. The opportunities and challenges presented by this rapidly expanding field are also highlighted.
Collapse
Affiliation(s)
- Elif ÖZCAN
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Zeliha MERMER
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Yunus ZORLU
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| |
Collapse
|
28
|
Wang J, Zhang Y, Liu F, Liu Y, Wang L, Gao G. Preparation of a Multifunctional and Multipurpose Chitosan/Cyclodextrin/MIL-68(Al) Foam Column and Examining Its Adsorption Properties for Anionic and Cationic Dyes and Sulfonamides. ACS OMEGA 2023; 8:32017-32026. [PMID: 37692232 PMCID: PMC10483522 DOI: 10.1021/acsomega.3c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
A multifunctional cylindrical hybrid foam column, referred to as the chitosan/cyclodextrin/MIL-68(Al) (CS/CD/MIL-68(Al)) foam column, was prepared for the first time. The prepared foam column could be used for the adsorption/removal of hydrophilic and hydrophobic contaminants by different forms. Here, it was placed in hydrophilic dye solutions to investigate the adsorption behavior of methylene blue and trypan blue. The adsorption process followed the pseudo-second-order kinetic model with R2 ranging from 0.9983 to 0.9998 for methylene blue and from 0.9993 to 1.0000 for trypan blue, and the adsorption process was consistent with the Langmuir isothermal model with R2 greater than 0.96. The RL values for methylene blue and trypan blue were 0.8871 and 0.5366, respectively, which were present between 0 and 1, indicating that the adsorption behaviors of the two dyes onto the CS/CD/MIL-68(Al) foam column were favorable. The maximum adsorption capacities (Qm) of methylene blue and trypan blue were 60.61 and 454.55 mg/g at 298 K, respectively. Also, the CS/CD/MIL-68(Al) foam column was spun into a syringe and used to adsorb trace hydrophobic sulfonamides from water in the form of filtration. The porous structure impeded the need for any external force and equipment, allowing the water sample to pass through the foam column smoothly. The conditions of the CS/CD/MIL-68(Al) foam column were optimized. The adsorption was carried out under the condition of pH = 4, the amount of the adsorbent was two foam columns, and no salt was added. It was found that the removal rate of the CS/CD/MIL-68(Al) foam column for six sulfonamides was 100%, and it could be reused at least five times. Therefore, this CS/CD/MIL-68(Al) foam column had a simple preparation method, offered a flexible and diverse form of use, was nonpolluting, biodegradable, and reusable, and could have a wider application in the field of environmental pollutant removal and adsorption.
Collapse
Affiliation(s)
- Jing Wang
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, No. 4655, University Road, University Science Park, Changqing District, Jinan 250355, Shandong Province, P. R. China
| | - Yong Zhang
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Fubin Liu
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Ying Liu
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Litao Wang
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Guihua Gao
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, No. 4655, University Road, University Science Park, Changqing District, Jinan 250355, Shandong Province, P. R. China
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| |
Collapse
|
29
|
Zhang Q, Wang J, Wei Z, Li Y, Li W, Yang X, Wu X. S modified manganese oxide for high efficiency of peroxydisulfate activation: Critical role of S and mechanism. CHEMOSPHERE 2023; 328:138563. [PMID: 37028724 DOI: 10.1016/j.chemosphere.2023.138563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Mn2O3 as a typical Mn based semiconductor has attracted growing attention due to its peculiar 3d electron structure and stability, and the multi-valence Mn on the surface is the key to peroxydisulfate activation. Herein, an octahedral structure of Mn2O3 with (111) exposed facet was synthesized by a hydrothermal method, which was further sulfureted to obtained a variable-valent Mn oxide for the high activation efficiency of peroxydisulfate under the light emitting diode irradiation. The degradation experiments showed that under the irradiation of 420 nm light, S modified manganese oxide showed an excellent removal for tetracycline within 90 min, which is about 40.4% higher than that of pure Mn2O3. In addition, the degradation rate constant k of S modified sample increased 2.17 times. Surface sulfidation not only increased the active sites and oxygen vacancies on the pristine Mn2O3 surface, but also changed the electronic structure of Mn due to the introduce of surface S2-. This modification accelerated the electronic transmission during the degradation process. Meanwhile, the utilization efficiency of photogenerated electrons was greatly improved under light. Besides, the S modified manganese oxide had an excellent reuse performance after four cycles. The scavenging experiments and EPR analyses showed that •OH and 1O2 were the main reactive oxygen species. This study therefore provides a new avenue for further developing manganese-based catalysts towards high activation efficiency for peroxydisulfate.
Collapse
Affiliation(s)
- Qingwen Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wanqing Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
30
|
Cui ML, Lin ZX, Xie QF, Zhang XY, Wang BQ, Huang ML, Yang DP. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook. Food Chem 2023; 412:135554. [PMID: 36708671 DOI: 10.1016/j.foodchem.2023.135554] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tetracycline antibiotics (TCs), one of the important antibiotic groups, have been widely used in human and veterinary medicines. Their residues in foodstuff, soil and sewage have caused serious threats to food safety, ecological environment and human health. Here, we reviewed the potential harms of TCs residues to foodstuff, environment and human beings, discussed the luminescence and aptamer sensors based analytical determination, adsorptive removal, and degradation strategies of TCs residues from a recent 5-year period. The advantages and intrinsic limitations of these strategies have been compared and discussed, the potential challenges and opportunities in TCs residues degradation have also been deliberated and explored.
Collapse
Affiliation(s)
- Ma-Lin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Zi-Xuan Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Fan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiao-Yan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing-Qing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Miao-Ling Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
31
|
Bao R, Zhao Y, Chen C, Cui M, Yang L, Xia J, Li H. Growth of 3D-TNAs@Ti-MOFs by dual titanium source strategy with enhanced photoelectrocatalytic/photoelectro-Fenton performance for degradation of tetracycline under visible light irradiation. RSC Adv 2023; 13:17959-17967. [PMID: 37323459 PMCID: PMC10263107 DOI: 10.1039/d3ra03098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Visible-light-active 3D-TNAs@Ti-MOFs composite electrodes were fabricated by decorating nanoscaled Ti-based metal-organic frameworks on three-dimensional TiO2 nanotube arrays (3D-TNAs) prepared by a facile in situ solvothermal method. The photoelectrocatalytic performance of electrode materials was evaluated by degradation of tetracycline (TC) under visible light irradiation. The experiment results show that Ti-MOFs nanoparticles are highly distributed on the top and side walls of TiO2 nanotubes. The 3D-TNAs@NH2-MIL-125 solvothermally synthesized for 30 h exhibited the best photoelectrochemical performance compared with 3D-TNAs@MIL-125 and pristine 3D-TNAs. In order to further enhance the degradation efficiency of TC by 3D-TNAs@NH2-MIL-125, a photoelectro-Fenton (PEF) system was constructed. The influence of H2O2 concentration, solution pH and applied bias potential on TC degradation were explored. The results showed that when pH was 5.5, H2O2 concentration was 30 mM, and applied bias was 0.7 V, the degradation rate of TC was 24% higher than the pure photoelectrocatalytic degradation process. The enhanced photoelectro-Fenton performance of 3D-TNAs@NH2-MIL-125 could be attributed to the large specific surface area, excellent light utilization, efficient interfacial charge transfer, low electron-hole recombination rate and high production of ˙OH as the result of the synergistic effect between TiO2 nanotubes and NH2-MIL-125.
Collapse
Affiliation(s)
- Ruiyu Bao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| | - Yue Zhao
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| | - Chen Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| | - Mengmeng Cui
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| | - Ling Yang
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| | - Jianxin Xia
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| | - Hua Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences, Minzu University of China Beijing 100081 China
| |
Collapse
|
32
|
Wang Q, Wang L, Zheng S, Tan M, Yang L, Fu Y, Li Q, Du H, Yang G. The strong interaction and confinement effect of Ag@NH 2-MIL-88B for improving the conversion and durability of photocatalytic Cr(VI) reduction in the presence of a hole scavenger. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131149. [PMID: 36924745 DOI: 10.1016/j.jhazmat.2023.131149] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Selectively regulating active factors in photocatalytic reactions by designing materials is one of the very important factors. Herein, we prepared spindle-like core-shell Ag@NH2-MIL-88B composites (Ag@NM-88) by a two-step hydrothermal method. The as-prepared Ag@NM-88 displayed superior photocatalytic activity for Cr(VI) reduction under LED light, compared with the activities of pure NH2-MIL-88B (NM-88) and Ag/NM-88 (Ag was deposited on NH2-MIL-88B). The core-shell structure Ag@NM-88 was not only beneficial to the absorption of light but also beneficial to the separation of photogenerated e- and h+. More importantly, it was further confirmed by active radical capture experiments and nitroblue tetrazolium (NBT) conversion experiments that the design of the core-shell structure could effectively prevent photogenerated e- from combing with O2 to form •O2-, so that photogenerated e- directly reduced Cr(VI), thereby improving the reaction rate. In addition, it could still maintain good stability after 5 cycles, indicating that the construction of a core-shell structure is also conducive to improving stability. This work provides a strategy for selectively regulating the active components of photocatalysts, and provides new insights into the relationship between interfacial charge transfer and molecular oxygen activation in photocatalytic reduction Cr(VI) systems.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuzhen Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lingxuan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangjie Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
33
|
Li T, Yin W, Zhang P, Zhao X, Wei R, Zhou W, Tu X. Dual heterojunctions and sulfur vacancies of AgInS2/rGO/MoS2 co-induced photocatalytic degradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
34
|
Zhong J, Yuan X, Xiong J, Wu X, Lou W. Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption of tetracycline. ENVIRONMENTAL RESEARCH 2023; 226:115633. [PMID: 36931373 DOI: 10.1016/j.envres.2023.115633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The accumulated antibiotics in the aquatic environment pose great threat to human and ecological health, boosting the development of porous materials for antibiotic removal. Mesoporous metal-organic frameworks (MOFs) have shown great promise in adsorption, which, however, usually need supramolecular design or cooperative template strategy for synthesis. Here we report the successful construction of mesoporous zirconium based metal-organic frameworks (Zr-MOFs) via a simple solvent-dependent strategy. Regulation of the ratio of water to N, N-dimethylacetamide during synthesis determined the porous structure of the synthesized MOFs. Systematic characterizations including SEM, FTIR, XRD and nitrogen sorption isotherm were carried out for structure analysis of the MOFs. With water fraction of 20% (v/v), the obtained Zr-MOF exhibited the highest adsorption capacity (Qmax of 337.0 mg⋅g-1) towards tetracycline (TC). The adsorption kinetics fitted the pseudo-second-order kinetics, and the adsorption isotherms fitted the Freundlich model well. Adsorption mechanism investigation revealed that the abundant Zr-OH groups stemming from coordination defects mainly accounted for TC adsorption. The hydrogen bonding interaction between TC and Zr-MOF and the generated mesopores contributed to the satisfactory adsorption capacity. This work is anticipated to provide insights on facile synthesis of mesoporous MOFs and application in environmental remediation.
Collapse
Affiliation(s)
- Jin Zhong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
35
|
Ghodsinia SSE, Eshghi H, Mohammadinezhad A. Synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe composite and its elevated performance for Pb 2+ removal in water. Sci Rep 2023; 13:8092. [PMID: 37208417 DOI: 10.1038/s41598-023-35149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/13/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we report the synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe (DSS/MIL-88A-Fe) composite through a hydrothermal method. To survey the structural and compositional features of the synthesized composite, a variety of spectroscopic and microscopic techniques, including FT-IR, XRD, BET, TEM, FE-SEM, EDX, and EDX-mapping, have been employed. A noteworthy point in this synthesis procedure is the integration of MOF with PMO to increase the adsorbent performance, such as higher specific surface area and more active sites. This combination leads to achieving a structure with an average size of 280 nm and 1.1 μm long attributed to DSS and MOF, respectively, microporous structure and relatively large specific surface area (312.87 m2/g). The as-prepared composite could be used as an effective adsorbent with a high adsorption capacity (250 mg/g) and quick adsorption time (30 min) for the removal of Pb2+ from water. Importantly, DSS/MIL-88A-Fe composite revealed acceptable recycling and stability, since the performance in Pb2+ removal from water remained above 70% even after 4 consecutive cycles.
Collapse
Affiliation(s)
- Sara S E Ghodsinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
36
|
Wang Y, Han D, Wang Z, Gu F. Efficient Photocatalytic Degradation of Tetracycline under Visible Light by an All-Solid-State Z-Scheme Ag 3PO 4/MIL-101(Cr) Heterostructure with Metallic Ag as a Charge Transmission Bridge. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22085-22100. [PMID: 37102611 DOI: 10.1021/acsami.3c01255] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Z-type Ag/Ag3PO4/MIL-101(Cr) heterojunction photocatalyst (referred to as AAM-x) was successfully prepared by a simple in situ precipitation method. The photocatalytic activity of the AAM-x samples was evaluated using a common tetracycline (TC) antibiotic. All AAM-x materials are more effective in removing TC than Ag3PO4 and MIL-101(Cr). Among them, AAM-3 exhibited efficient photodegradation efficiency and excellent structural stability, and the removal rate of TC (20 mg L-1) by AAM-3 (0.5 g L-1) under 60 min of visible light was 97.9%. The effects of photocatalyst dosage, pH, and inorganic anions were also systematically investigated. According to the X-ray photoelectron spectroscopy analysis, metallic silver particles appeared on the surface of the Ag3PO4/MIL-101(Cr) mixture during the catalyst synthesis. The results of photoluminescence spectra, photocurrent response, EIS, and fluorescence lifetime showed that AAM-3 has a high photogenic charge separation efficiency. An all-solid-state Z-type heterojunction mechanism including Ag3PO4, metallic Ag, and MIL-101(Cr) is proposed to rationalize the excellent photocatalytic performance and photostability of AAM-x composites and to explain the effect of metallic Ag acting as a charge transfer bridge. The TC intermediates were identified using liquid chromatography-mass spectrometry and possible routes of TC degradation were also discussed. This work provides a viable idea for removing antibiotics by an Ag3PO4/MOF-based heterogeneous structured photocatalyst.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
37
|
Cao D, Wang X, Zhang H, Yang D, Yin Z, Liu Z, Lu C, Guo F. Rational Design of Monolithic g-C 3N 4 with Floating Network Porous-like Sponge Monolithic Structure for Boosting Photocatalytic Degradation of Tetracycline under Simulated and Natural Sunlight Illumination. Molecules 2023; 28:molecules28103989. [PMID: 37241732 DOI: 10.3390/molecules28103989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In order to solve the problems of powder g-C3N4 catalysts being difficult to recycle and prone to secondary pollution, floating network porous-like sponge monolithic structure g-C3N4 (FSCN) was prepared with a one-step thermal condensation method using melamine sponge, urea, and melamine as raw materials. The phase composition, morphology, size, and chemical elements of the FSCN were studied using XRD, SEM, XPS, and UV-visible spectrophotometry. Under simulated sunlight, the removal rate for 40 mg·L-1 tetracycline (TC) by FSCN reached 76%, which was 1.2 times that of powder g-C3N4. Under natural sunlight illumination, the TC removal rate of FSCN was 70.4%, which was only 5.6% lower than that of a xenon lamp. In addition, after three repeated uses, the removal rates of the FSCN and powder g-C3N4 samples decreased by 1.7% and 2.9%, respectively, indicating that FSCN had better stability and reusability. The excellent photocatalytic activity of FSCN benefits from its three-dimensional-network sponge-like structure and outstanding light absorption properties. Finally, a possible degradation mechanism for the FSCN photocatalyst was proposed. This photocatalyst can be used as a floating catalyst for the treatment of antibiotics and other types of water pollution, providing ideas for the photocatalytic degradation of pollutants in practical applications.
Collapse
Affiliation(s)
- Delu Cao
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Xueying Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Hefan Zhang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Daiqiong Yang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Ze Yin
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Zhuo Liu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Feng Guo
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
38
|
Wang M, Song J, Yin B, Wang R, Huang M. MIL-101(Fe) based biomass as permeable reactive barrier applied to EK-PRB remediation of antimony contaminated soil. CHEMOSPHERE 2023; 332:138889. [PMID: 37164193 DOI: 10.1016/j.chemosphere.2023.138889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Numerous studies have demonstrated that electrokinetic-permeable reactive barrier (EK-PRB) can be used for the remediation of heavy metal contaminated soils, and their remediation efficiency is mainly determined by the filler material selected. By growing MIL-101(Fe) in situ on hollow loofah fiber (HLF), a novel material entitled HLF@MIL-101(Fe) was developed. The morphological characteristics and loading conditions were investigated, the adsorption characteristics were analyzed, and finally the synthesized composite material was applied to treat antimony-contaminated soil with EK-PRB as the reaction medium. The results show that MIL-101(Fe) is stably loaded on HLF. The adsorption capacity of Sb(III) can reach up to 82.31 mg g-1, and the adsorption is in accordance with the quasi-secondary kinetic model, which indicates that chemisorption is dominant. The isothermal adsorption model indicates that the adsorption form of HLF@MIL-101(Fe) is mainly monolayer adsorption with more uniform adsorption binding energy. In the EK-PRB experiment, when ethylenediaminetetraacetic acid (EDTA) is used as the cathodic electrolyte, it can effectively enhance the electromigration and electroosmotic effects, and the overall remediation efficiency of the soil is increased by 38.12% compared with the citric acid (CA) group. These demonstrate the feasibility of HLF@MIL-101(Fe) in collaboration with EK-PRB in the treatment of antimony-contaminated soil.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Bingkui Yin
- Shanghai Jierang Environmental Technology Co., LTD, Shanghai, 201101, China
| | - Ruizhe Wang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
39
|
Liang H, Zhu C, Wang A, Palanisamy K, Chen F. Facile synthesis of NiAl 2O 4/g-C 3N 4 composite for efficient photocatalytic degradation of tetracycline. J Environ Sci (China) 2023; 127:700-713. [PMID: 36522099 DOI: 10.1016/j.jes.2022.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/17/2023]
Abstract
Designing high-efficiency photocatalysts responsive to visible light is important for the degradation of antibiotics in water. Heterojunction engineering is undoubtedly an effective strategy to improve the photocatalytic performance. In this work, spinel-type metal oxides (NiAl2O4, NAO) are synthesized by a simple sol-gel and calcination process. After compounding graphitic carbon nitride (g-C3N4), NAO/g-C3N4 heterojunction is obtained, which then is used as the photocatalyst for tetracycline hydrochloride (TC). The effects of photocatalyst dosage, the initial concentration of TC, and solution pH on photodegradation performance are systematically studied. The removal rate of TC on NAO/g-C3N4 reach up to ∼90% after visible light irradiation for 2 hr and the degradation rate constant is ∼7 times, and ∼32 times higher than that of pure NAO and g-C3N4. The significantly improved photocatalytic activity can be attributed to the synergistic effect between well matched energy levels in NAO/g-C3N4 heterojunctions, improvement of interfacial charge transfer, and enhancement of visible light absorption. This study provides a way for the synthesis of efficient photocatalysts and an economic strategy for removing antibiotics contamination in water.
Collapse
Affiliation(s)
- Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221008, China.
| | - Chenxi Zhu
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Anhu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Kannan Palanisamy
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China.
| |
Collapse
|
40
|
Cheng R, Mao X, Yu J, Liu F, Guo L, Luo D, Wan Y. A dispersive solid-phase extraction method for the determination of Aristolochic acids in Houttuynia cordata based on MIL-101(Fe): An analytes-oriented adsorbent selection design. Food Chem 2023; 407:135074. [PMID: 36493489 DOI: 10.1016/j.foodchem.2022.135074] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In view of the molecular structure of Aristolochic acid I (AA-I) and Aristolochic acid II (AA-II), MIL-101(Fe) was selected as the sorbent to develop a dispersive solid-phase extraction (d-SPE) method for capturing the two analytes from Houttuynia cordata. The interactions between the sorbent and analytes were investigated by FT-IR, XPS and UV-Vis DRS spectra. The optimized method demonstrated good linearity with R2 > 0.9999. The limit of detections (LODs) were 0.007 mg/L and 0.014 mg/L for AA-I and AA-II, respectively, lower than the limit stipulated by Chinese Pharmacopoeia (0.001 %, w/w). The recoveries for AA-I and AA-II were within the range of 73.3-106.4 %. The precisions of intra-day and inter-day were 0.9-5.8 % and 2.1-5.8 %, respectively. Thus, the established method demonstrated to be efficient and reliable to determine AA-I and AA-II in Houttuynia cordata.
Collapse
Affiliation(s)
- Rui Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fan Liu
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Lan Guo
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Dongmei Luo
- School of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
41
|
Lv B, Chao J, Zhao Y, Li Y, Liu J, Zhang Q, Xu L. Zeolitic imidazolate framework-L loaded on melamine foam for removal tetracycline hydrochloride from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66840-66852. [PMID: 37186183 DOI: 10.1007/s11356-023-27013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Zeolitic imidazolate framework-L/melamine foam (ZIF-L/MF) is fabricated by an in situ growth method to treat the tetracycline hydrochloride in wastewater. The results show that a large amount of leaf-like ZIF-L is vertically grown on the MF surface. ZIF-L/MF exhibits well adsorption performance with a maximum adsorption ability of 1346 mg/g. The pseudo-second-order kinetic model and the Langmuir isotherm model are used to describe the adsorption process well. In addition, the influences of pH and coexisting ions are studied. According to the experimental data and analysis, the adsorption mechanisms may involve H-bonding, π-π interaction, and weak electrostatic interaction. A dynamic adsorption experiment is also performed, and the results show that the time required to achieve the same removal efficiency as static adsorption is reduced by half. This work shows that the obtained ZIF-L/MF has practical applications in antibiotic adsorption.
Collapse
Affiliation(s)
- Bizhi Lv
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jiabao Chao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yongchao Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jinhua Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Linqiong Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
42
|
Li Z, Meng F, Li R, Fang Y, Cui Y, Qin Y, Zhang M. Amino-functionalized Fe(III)-Based MOF for the high-efficiency extraction and ultrasensitive colorimetric detection of tetracycline. Biosens Bioelectron 2023; 234:115294. [PMID: 37126877 DOI: 10.1016/j.bios.2023.115294] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
In order to achieve the simultaneous extraction and detection of tetracycline (TC) in milk, the amino-functionalized Fe-based metal-organic frameworks (NH2-MIL-88B) was synthesized via a solvothermal method with Fe3+ and 2-aminoterephthalic acid (NH2-BDC) as precursor. Thanks to the unique structure of NH2-MIL-88B, it could be used to highly effective extract of TC in milk. More interestedly, the introduced -NH2 could react with -OH from TC by a hydrogen-bonding interaction to cause the electronic interactions that enhances the peroxidase-like activity of NH2-MIL-88B, which result in the enhancement of Fenton reaction by the transfer of the electron between TC and NH2-MIL-88B. Under the optimal testing conditions, the linear absorbance response is well correlated with the TC concentration range of 50-1000 nM, which can reach a low LOD of 46.75 nM. Besides, the sensor exhibits excellent selectivity to TC, and the proposed strategy can also be applied to milk with good recovery (83.33-107.00%). Finally, the NH2-MIL-88B and cellulose acetate (CA) are combined to form nanozyme hybrid membranes through the non-solvent induced phase separation method, which can be used to prepare point-of-care testing (POCT) for rapid and in-situ detection of TC.
Collapse
Affiliation(s)
- Zongda Li
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Ruizhi Li
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Yan Fang
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China
| | - Yincang Cui
- Physics and Chemistry Analysis Center, Xinjiang University, Xinjiang, 830046, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China.
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Xinjiang, 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang, 830046, China.
| |
Collapse
|
43
|
Ding C, Zhu Q, Yang B, Petropoulos E, Xue L, Feng Y, He S, Yang L. Efficient photocatalysis of tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C 3N 4 composite under visible light: Process and mechanisms. J Environ Sci (China) 2023; 126:249-262. [PMID: 36503753 DOI: 10.1016/j.jes.2022.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/17/2023]
Abstract
AgCl/ZnO/g-C3N4, a visible light activated ternary composite catalyst, was prepared by combining calcination, hydrothermal reaction and in-situ deposition processes to treat/photocatalyse tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater under visible light. The morphological, structural, electrical, and optical features of the novel photocatalyst were characterized using scanning electron microscopy (SEM), UV-visible light absorption spectrum (UV-Vis DRS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and transient photocurrent techniques. All analyses confirmed that the formation of heterojunctions between AgCl/ZnO and g-C3N4 significantly increase electron-hole transfer and separation compared to pure ZnO and g-C3N4. Thus, AgCl/ZnO/g-C3N4 could exhibit superior photocatalytic activity during TC-HCl assays (over 90% removal) under visible light irradiation. The composite could maintain its photocatalytic stability even after four consecutive reaction cycles. Hydrogen peroxide (H2O2) and superoxide radical (·O2) contributed more than holes (h+) and hydroxyl radicals (·OH) to the degradation process as showed by trapping experiments. Liquid chromatograph-mass spectrometer (LC-MS) was used for the representation of the TC-HCl potential degradation pathway. The applicability and the treatment potential of AgCl/ZnO/g-C3N4 against actual pharmaceutical wastewater showed that the composite can achieve removal efficiencies of 81.7%, 71.4% and 69.0% for TC-HCl, chemical oxygen demand (COD) and total organic carbon (TOC) respectively. AgCl/ZnO/g-C3N4 can be a prospective key photocatalyst in the field of degradation of persistent, hardly-degradable pollutants, from industrial wastewater and not only.
Collapse
Affiliation(s)
- Chenman Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210018, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China
| | - Qiurong Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210018, China
| | - Bei Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China
| | | | - Lihong Xue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210018, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China
| | - Yanfang Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210018, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China
| | - Shiying He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210018, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China.
| | - Linzhang Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210018, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210018, China
| |
Collapse
|
44
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
45
|
Chen Y, Li R, Yang L, Wang R, Li Z, Li T, Liu M, Ramakrishna S, Long Y. Synergistic Effects of Magnetic Z-Scheme g-C 3N 4/CoFe 2O 4 Nanofibres with Controllable Morphology on Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1142. [PMID: 37049235 PMCID: PMC10096916 DOI: 10.3390/nano13071142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The rational design of interfacial contacts plays a decisive role in improving interfacial carrier transfer and separation in heterojunction photocatalysts. In Z-scheme photocatalysts, the recombination of photogenerated electron-hole pairs is prevented so that the redox capacity is maintained. Here, one-dimensional graphitic carbon nitride (g-C3N4)/CoFe2O4 fibres were synthesised as a new type of magnetic Z-scheme visible-light photocatalyst. Compared with pure g-C3N4 and CoFe2O4, the prepared composite photocatalysts showed considerably improved performance for the photooxidative degradation of tetracycline and methylene blue. In particular, the photodegradation efficiency of the g-C3N4/CoFe2O4 fibres for methylene blue was approximately two and seven times those of g-C3N4 and CoFe2O4, respectively. The formation mechanism of the Z-scheme heterojunctions in the g-C3N4/CoFe2O4 fibres was investigated using photocurrent spectroscopy and electrochemical impedance spectroscopy. We proposed that one of the reasons for the improved photodegradation performance is that the charge transport path in one-dimensional materials enables efficient photoelectron and hole transfer. Furthermore, the internal electric field of the prepared Z-scheme photocatalyst enhanced visible-light absorption, which provided a barrier for photoelectron-hole pair recombination.
Collapse
Affiliation(s)
- Yelin Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ru Li
- Instrumental Analysis Center of Qingdao University, Qingdao 266071, China
| | - Lei Yang
- Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Rongxu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Zhi Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Tong Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Meijie Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers & Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
46
|
Ma Y, Wang R, Gao C, Han R. Carbon nanotube-loaded copper-nickel ferrite activated persulfate system for adsorption and degradation of oxytetracycline hydrochloride. J Colloid Interface Sci 2023; 640:761-774. [PMID: 36905888 DOI: 10.1016/j.jcis.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
In this study, a new composite (MWCNTs-CuNiFe2O4) prepared by loading magnetic CuNiFe2O4 particles onto carboxylated carbon nanotubes (MWCNTs) through co-precipitation was applied to remove oxytetracycline hydrochloride (OTC-HCl) in solution. The magnetic properties of this composite could address of the issue of difficulty associated with the separation of MWCNTs from mixtures when applied as an adsorbent. In addition to the good adsorption properties recorded for MWCNTs-CuNiFe2O4 towards OTC-HCl, this developed composite could be used to activate potassium persulfate (KPS) for an efficient degradation of OTC-HCl. The MWCNTs-CuNiFe2O4 was systematically characterized using Vibrating Sample Magnetometer (VSM), Electron Paramagnetic Resonance (EPR) and X-ray Photoelectron Spectroscopy (XPS). The influence of dose of MWCNTs-CuNiFe2O4, the initial pH, the amount of KPS and the reaction temperature on the adsorption and degradation of OTC-HCl by MWCNTs-CuNiFe2O4 were discussed. The adsorption and degradation experiments showed that MWCNTs-CuNiFe2O4 exhibited an adsorption capacity of 270 mg·g-1 for OTC-HCl with the removal efficiency 88.6% at 303 K (at an initial pH 3.52, 5 mg KPS, 10 mg composite, 10 mL reaction concentration 300 mg·L-1 of OTC-HCl). The Langmuir and Koble-Corrigan models were used to describe the equilibrium process while the Elovich equation and Double constant model were suitable to describe the kinetic process. The adsorption process was based on single-molecule layer reaction and non-homogeneous diffusion process. The mechanisms of adsorption were complexation and hydrogen bond whereas active species such as SO4‧-, ‧OH and 1O2 were confirmed to have played a major role in the degradation of OTC-HCl. The composite was also found to be very stable with good reusability property. These results confirm the good potential associated with the use of MWCNTs-CuNiFe2O4/KPS system for the removal of some typical pollutants from wastewater.
Collapse
Affiliation(s)
- Yuting Ma
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China.
| | - Rong Wang
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China.
| | - Chenping Gao
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, China.
| |
Collapse
|
47
|
Chen Z, Lin B, Huang Y, Liu Y, Wu Y, Qu R, Tang C. Pyrolysis temperature affects the physiochemical characteristics of lanthanum-modified biochar derived from orange peels: Insights into the mechanisms of tetracycline adsorption by spectroscopic analysis and theoretical calculations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160860. [PMID: 36521614 DOI: 10.1016/j.scitotenv.2022.160860] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) derived from orange peels was modified using LaCl3 to enhance its tetracycline (TC) adsorption capacity. SEM-EDS, FT-IR, XRD, and BET were used to characterize the physiochemical characteristics of La-modified biochar (La-BC). Batch experiments were conducted to investigate the effects of several variables like pyrolysis temperature, adsorbent dosage, initial pH, and coexisting ions on the adsorption of TC by La-BC. XPS and density functional theory (DFT) were used to elucidate the TC adsorption mechanism of La-BC. The results demonstrated that La was uniformly coated on the surface of the La-BC. The physiochemical characteristics of La-BC highly depended on pyrolysis temperature. Higher temperature increased the specific surface area and functional groups of La-BC, thus enhancing its TC adsorption capacity. La-BC prepared at 700 °C (BC@La-700) achieved the maximum adsorption capacity of 143.20 mg/g, which was 6.8 and 4.6 times higher than that of BC@La-500 and BC@La-600, respectively. The mechanisms of TC adsorption by La-BC were most accurately described by the pseudo-second-order kinetic model. Furthermore, the adsorption isotherm of La-BC was consistent with the Freundlich model. BC@La-700 achieved good TC adsorption efficiencies even at a wide pH range (pH 4-10). Humic acid significantly inhibited TC adsorption by La-BC. The presence of coexisting ions (NH4+, Ca2+, NO3-) did not significantly affect the adsorption capacity of La-BC, particularly BC@La-700. Moreover, BC@La-700 also exhibited the best recycling performance, which achieved relative high adsorption capacity even after 5 cycles. The XPS results showed that π-π bonds, oxygen-containing functional groups, and La played a major role in the adsorption of TC on La-BC. The result of DFT showed that the adsorption energy of La-BC was the greatest than that of other functional groups on biochar. Collectively, our findings provide a theoretical basis for the development of La-BC based materials to remove TC from wastewater.
Collapse
Affiliation(s)
- Zhihao Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Bingfeng Lin
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yanbiao Liu
- Donghua University, College of Environmental Science & Engineering, Text Pollution Controlling Engineering Center, Ministry of Environmental Protection, Shanghai 201620, China
| | - Yonghong Wu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
48
|
Zhang H, Wu S, Zhang Y, Mao Z, Zhong Y, Sui X, Xu H, Zhang L. Fabrication of Fe-BTC on aramid fabrics for repeated degradation of isoproturon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35214-35222. [PMID: 36527560 DOI: 10.1007/s11356-022-24473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Catalytic degradation is a promising and ideal technology in environmental remediation. Among them, catalytic oxidation and photocatalysis respectively based on catalysts and photocatalysts both trigger broad interests because of their high removal activity. However, the reusability of the powder catalysts still faces substantial challenges. Here, a simple strategy is proposed to load Fe-BTC catalyst on aramid fabrics (AF) to construct Fe-BTC MOF @ aramid fabric (Fe-BTC@AF) composite materials with layer-by-layer in situ self-assembly methods. The experimental results illustrated that 98% isoproturon could be removed by Fe-BTC@AF20 with oxidant H2O2, while the single Fe-BTC@AF20 could photo-degrade 99% isoproturon within 7 h. Meanwhile, it could sustain a high degradation rate of more than 80%, even if it had gone through 5 degradation cycles. Thus, the Fe-BTC@AF composite has a significant advantage in the recycling ability for degradation of isoproturon, which will have potential applications in the efficient removal of organic contaminants in water.
Collapse
Affiliation(s)
- Hongyu Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Shouying Wu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Ying Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, 271000, Shandong, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China.
- Key Lab Bioorganic Phosphorus Chem & Chem Biol, Ministry of Education, Dept. Chem, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
49
|
Pazhand H, Sabbagh Alvani AA, Sameie H, Salimi R, Poelman D. The Exact Morphology of Metal Organic Framework MIL‐53(Fe) Influences its Photocatalytic Performance**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hooman Pazhand
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
- Standard Research Institute Alborz 3174734563 Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Reza Salimi
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Dirk Poelman
- Department of Solid State Sciences Lumilab Ghent University Krijgslaan 281-S1 9000 Ghent Belgium
| |
Collapse
|
50
|
Chen Z, Li Y, Cai Y, Wang S, Hu B, Li B, Ding X, Zhuang L, Wang X. Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. CARBON RESEARCH 2023; 2:8. [DOI: doi.org/10.1007/s44246-023-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/25/2023]
Abstract
AbstractWith the fast development of agriculture, industrialization and urbanization, large amounts of different (in)organic pollutants are inevitably discharged into the ecosystems. The efficient decontamination of the (in)organic contaminants is crucial to human health and ecosystem pollution remediation. Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) have attracted multidisciplinary research interests because of their outstanding physicochemical properties like high stability, large surface areas, high sorption capacity or catalytic activity. In this review, we summarized the recent works about the elimination/extraction of organic pollutants, heavy metal ions, and radionuclides by MOFs and COFs nanomaterials through the sorption-catalytic degradation for organic chemicals and sorption-catalytic reduction-precipitation-extraction for metals or radionuclides. The interactions between the (in)organic pollutants and COFs/MOFs nanomaterials at the molecular level were discussed from the density functional theory calculation and spectroscopy analysis. The sorption of organic chemicals was mainly dominated by electrostatic attraction, π-π interaction, surface complexation and H-bonding interaction, whereas the sorption of radionuclides and metal ions was mainly attributed to surface complexation, ion exchange, reduction and incorporation reactions. The porous structures, surface functional groups, and active sites were important for the sorption ability and selectivity. The doping or co-doping of metal/nonmetal, or the incorporation with other materials could change the visible light harvest and the generation/separation of electrons/holes (e−/h+) pairs, thereby enhanced the photocatalytic activity. The challenges for the possible application of COFs/MOFs nanomaterials in the elimination of pollutants from water were described in the end.
Collapse
|