1
|
Liu B, Liu YL, Sun M. Remove legacy perfluoroalkyl acids and emerging per- and polyfluoroalkyl ether acids by single-use and regenerable anion exchange resins: Rapid small-scale column tests and model fits. WATER RESEARCH 2024; 257:121661. [PMID: 38677109 DOI: 10.1016/j.watres.2024.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Rapid small-scale column tests (RSSCT) are used to study the removal of per- and polyfluoroalkyl substances (PFAS) for drinking water treatment by ion exchange. Breakthroughs of 15 emerging per- and perfluoroalkyl ether acids and six legacy perfluoroalkyl acid analogs are studied using a single-use PFAS-selective anion exchange resin (AER1) and a regenerable, generic anion exchange resin (AER2). The Bohart-Adams model was used to describe and predict breakthrough, with the modeled results reasonably aligned with RSSCT results in most cases, enabling shorter RSSCT duration for future applications. AER1 exhibited high uptake capacity with no breakthrough for 11 of the 21 tested PFAS during the 144,175 BV continuous operation, allowing compliance with the new National Primary Drinking Water Regulation in many application scenarios. AER2 exhibited much faster breakthroughs for most PFAS and is not a promising option for drinking water treatment. However, the summed PFAS capacity via model fit and total PFAS adsorbed via measurement were only <0.01 % of both resin capacities at full breakthrough, suggesting PFAS could only occupy a tiny portion of the ion exchange sites even for the PFAS-selective AER1. Ether group insertion in the PFAS group leads to later breakthrough, and linear isomers were better captured by the resins than the branched isomers. Overall, PFAS uptake capacity increases and kinetics decrease when the PFAS molecular volume increases. Regeneration using 10 % NaCl solutions partially released PFAS from AER2 but not from AER1, with more short-chain PFAS released than long-chain ones. Ether group insertion decreased the PFAS recoveries during the regeneration of AER2. The regenerated resins showed much faster breakthroughs than the pristine resins, making them unfavorable for drinking water treatment applications. Adsorption displacement of short-chain PFAS by long-chain PFAS was observed in pristine AER1, and post-regeneration leaching occurred for both resins, both phenomena making the resins a possible PFAS source in long-term use.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Yen-Ling Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mei Sun
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
2
|
Vakili M, Cagnetta G, Deng S, Wang W, Gholami Z, Gholami F, Dastyar W, Mojiri A, Blaney L. Regeneration of exhausted adsorbents after PFAS adsorption: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134429. [PMID: 38691929 DOI: 10.1016/j.jhazmat.2024.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.
Collapse
Affiliation(s)
| | - Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Zahra Gholami
- ORLEN UniCRE, a.s, Revoluční 1521/84, 400 01 Ústí nad Labem, Czech Republic
| | - Fatemeh Gholami
- Department of Mathematics, Physics, and Technology, Faculty of Education, University of West Bohemia, Klatovská 51, Plzeň 301 00, Czech Republic
| | - Wafa Dastyar
- Chemical, Environmental, and Materials Engineering Department, McArthur Engineering Building, University of Miami, Coral Gables, FL 33124, USA
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Pannu MW, Huang A, Plumlee MH. Variable PFAS removal by adsorbent media with sufficient prediction of breakthrough despite reduced contact time at pilot scale. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11035. [PMID: 38761092 DOI: 10.1002/wer.11035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 05/20/2024]
Abstract
One alternative adsorbent (AA) and five ion exchange (IX) resins were tested for the removal of per- and polyfluoroalkyl substances (PFAS) from groundwater in pilot-scale columns for up to 19 months using empty bed contact times (EBCTs) representative of full-scale treatment. For the six detected PFAS in the pilot feed water, the long-chain PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], and perfluorohexanesulfonic acid [PFHxS]) were well removed with only PFOA, which is a perfluoroalkyl carboxylic acid (PFCA) eventually breaking through as the media became exhausted. Perfluorobutanesulfonic acid (PFBS), a short-chain perfluorosulfonic acid (PFSA), was also well removed, whereas short-chain PFCAs (perfluoropentanoic acid [PFPeA] and perfluorobutanoic acid [PFBA]) were not removed (i.e., immediate breakthrough). Overall, IX and AA demonstrated superior removal of PFSAs compared to PFCAs (i.e., later breakthrough of PFSAs translating to longer media life). Media life varied, ranging from 6 to 15 months before adsorbents reached a significant PFOA breakthrough. The performance of the two adsorbents piloted at shorter EBCT reasonably predicted the longer (representative) pilot EBCT results (within ±20-30%) for the same adsorbents following data scaling. This suggests that pilot-scale testing may be conducted at a faster pace and therefore more economically. PRACTITIONER POINTS: Long-chain PFAS (PFOA, PFOS, and PFHxS) were well removed by five ion exchange and one alternative adsorbent tested herein. One short-chain PFAS (PFBS) was well removed with no removal of two other short-chain PFAS (PFBA and PFPeA). Performance of the two adsorbents piloted at shorter EBCT reasonably predicted the longer (representative) pilot EBCT results for the same adsorbents following data scaling.
Collapse
Affiliation(s)
- Manmeet W Pannu
- Research and Development Department, Orange County Water District, Anaheim, California, USA
| | - Andrew Huang
- Research and Development Department, Orange County Water District, Fountain Valley, California, USA
| | - Megan H Plumlee
- Research and Development Department, Orange County Water District, Fountain Valley, California, USA
| |
Collapse
|
4
|
Zhang M, Wang W, Gong T, Wu Y, Chen G. Cutting-edge technologies and relevant reaction mechanism difference in treatment of long- and short-chain per- and polyfluoroalkyl substances: A review. CHEMOSPHERE 2024; 354:141692. [PMID: 38490606 DOI: 10.1016/j.chemosphere.2024.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants. Compared with short-chain PFAS, long-chain PFAS are more hazardous. Currently, little attention has been paid to the differences in reaction mechanisms between long-chain and short-chain PFAS. This pressing concern has prompted studies about eliminating PFAS and revealing the mechanism difference. The reaction rate and reaction mechanism of each technology was focused on, including (1) adsorption, (2) ion exchange (IX), (3) membrane filtration, (4) advanced oxidation, (5) biotransformation, (6) novel functional material, and (7) other technologies (e.g. ecological remediation, hydrothermal treatment (HT), mechanochemical (MC) technology, micro/nanobubbles enhanced technology, and integrated technologies). The greatest reaction rate k of photocatalysis for long- and short-chain PFAS high up to 63.0 h-1 and 19.7 h-1, respectively. However, adsorption, membrane filtration, and novel functional material remediation were found less suitable or need higher operation demand for treating short-chain PFAS. Ecological remediation is more suitable for treating natural waterbody for its environmentally friendly and fair reaction rate. The other technologies all showed good application potential for both short- and long-chain PFAS, and it was more excellent for long-chain PFAS. The long-chain PFAS can be cleavaged into short-chain PFAS by C-chain broken, -CF2 elimination, nucleophilic substitution of F-, and HF elimination. Furthermore, the application of each type of technology was novelly designed; and suggestions for the future development of PFAS remediation technologies were proposed.
Collapse
Affiliation(s)
- Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute Engineering Consulting (Group) Co. Ltd., China
| | - Guangyao Chen
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Uwayezu JN, Ren Z, Sonnenschein S, Leiviskä T, Lejon T, van Hees P, Karlsson P, Kumpiene J, Carabante I. Combination of separation and degradation methods after PFAS soil washing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168137. [PMID: 37890625 DOI: 10.1016/j.scitotenv.2023.168137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The current study evaluated a three-stage treatment to remediate PFAS-contaminated soil. The treatment consisted of soil washing, foam fractionation (FF), and electrochemical oxidation (EO). The possibility of replacing the third stage, i.e., EO, with an adsorption process was also assessed. The contamination in the studied soils was dominated by perfluorooctane sulfonate (PFOS), with a concentration of 760 and 19 μg kg-1 in soil I and in soil II, accounting for 97 % and 70 % of all detected per-and polyfluoroalkyl substances (PFAS). Before applying a pilot treatment of soil, soil washing was performed on a laboratory scale, to evaluate the effect of soil particle size, initial pH and a liquid-to-soil ratio (L/S) on the leachability of PFAS. A pilot washing system generated soil leachate that was subsequently treated using FF and EO (or adsorption) and then reused for soil washing. The results indicated that the leaching of PFAS occurred easier in 0.063-1 mm particles than in the soil particles having a size below 0.063 mm. Both alkaline conditions and a continual replacement of the leaching solution increased the leachability of PFAS. The analysis using one-way ANOVA showed no statistical difference in means of PFOS washed out in laboratory and pilot scales. This allowed estimating twenty washing cycles using 120 L water to reach 95 % PFOS removal in 60 kg soil. The aeration process removed 95-99 % PFOS in every washing cycle. The EO and adsorption processes achieved similar results removing up to 97 % PFOS in concentrated soil leachate. The current study demonstrated a multi-stage treatment as an effective and cost-efficient method to permanently clean up PFAS-contaminated soil.
Collapse
Affiliation(s)
- Jean Noel Uwayezu
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
| | - Zhongfei Ren
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Sarah Sonnenschein
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Tore Lejon
- Department of Chemistry, UiT-The Arctic University of Norway, Norway
| | | | | | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
6
|
Zhang Y, Thomas A, Apul O, Venkatesan AK. Coexisting ions and long-chain per- and polyfluoroalkyl substances (PFAS) inhibit the adsorption of short-chain PFAS by granular activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132378. [PMID: 37643572 DOI: 10.1016/j.jhazmat.2023.132378] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
We assessed the competitive adsorption between long-chain and short-chain PFAS and the impact of coexisting ions to understand the mechanisms leading to the early breakthrough of short-chain PFAS from granular activated carbon (GAC) filters. Three pairs of short-chain and long-chain PFAS representing different functional groups were studied using GAC (Filtrasorb 400) in batch systems. In bisolute systems, the presence of long-chain PFAS decreased the adsorption of short-chain PFAS by 30-50% compared to their single solute adsorption capacity (0.22-0.31 mmol/g). In contrast to the partial decrease observed in bisolute systems, the addition of long-chain PFAS to GAC pre-equilibrated with short-chain PFAS completely desorbed all short-chain PFAS from GAC. This suggested that the outermost adsorption sites on GAC were preferentially occupied by short-chain PFAS in the absence of competition but were prone to displacement by long-chain PFAS. The presence of inorganic/organic ions inhibited the adsorption of short-chain PFAS (up to 60%) but had little to no impact on long-chain PFAS, with the inhibitory trend inversely correlated with Kow values. Study results indicated that the displacement of short-chain PFAS by long-chain PFAS and charge neutralization are important mechanisms contributing to the early breakthrough of short-chain PFAS from GAC systems.
Collapse
Affiliation(s)
- Yi Zhang
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Amanda Thomas
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Onur Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, USA
| | - Arjun K Venkatesan
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
7
|
Niarchos G, Georgii L, Ahrens L, Kleja DB, Fagerlund F. A systematic study of the competitive sorption of per- and polyfluoroalkyl substances (PFAS) on colloidal activated carbon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115408. [PMID: 37666203 DOI: 10.1016/j.ecoenv.2023.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Treatment of environmental media contaminated with per- and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC. Batch tests were conducted with natural soil and spiked water, using CAC at 0.2% w/w to remove seven PFAS with individual starting concentrations up to 0.05 mmol L-1. PFAS sorption to CAC was evaluated in three systems: a composite mixture of all studied compounds, a binary-solute system, and a single-solute system. The sorption experiments exhibited strong PFAS affinity to CAC, with removal rates between 41% and 100%, and solid/liquid partition coefficients (Kd) between 10 and 104 L kg-1. Differences were noticed among the various spiking mixtures, based on perfluorocarbon chain length, functional group, and the starting PFAS concentrations. Competition effects were detected when PFAS were in a multi-solute system, with an average 10% drop in removal, which can evidently become more relevant at higher concentrations, due to the observed non-linearity of the sorption process. The PFAS most vulnerable to competition effects in multi-solute systems were the short-chain perfluoropentanoic acid (PFPeA) and perfluorobutane sulfonic acid (PFBS), with an up to 25% reduction in removal. In bi-solute systems, perfluorooctane sulfonamide (FOSA) dominated over its ionisable counterparts, i.e. perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA), indicating the importance of hydrophobic effects or layer formation in the sorption process. These results underscore the importance of considering competition in PFAS sorption processes when designing and implementing remediation techniques for PFAS-contaminated media.
Collapse
Affiliation(s)
- Georgios Niarchos
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden.
| | - Linnea Georgii
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Dan Berggren Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P. O. Box 7090, SE-750 07 Uppsala, Sweden
| | - Fritjof Fagerlund
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
8
|
Wang W, Gong M, Zhu D, Vakili M, Gholami Z, Jiang H, Zhou S, Qu H. Post-synthetic thiol modification of covalent organic frameworks for mercury(II) removal from water. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100236. [PMID: 36793397 PMCID: PMC9923162 DOI: 10.1016/j.ese.2023.100236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Various materials have been developed for environmental remediation of mercury ion pollution. Among these materials, covalent organic frameworks (COFs) can efficiently adsorb Hg(II) from water. Herein, two thiol-modified COFs (COF-S-SH and COF-OH-SH) were prepared, through the reaction between 2,5-divinylterephthalaldehyde and 1,3,5-tris-(4-aminophenyl)benzene, followed by post-synthetic modification using bis(2-mercaptoethyl) sulfide and dithiothreitol, respectively. The modified COFs showed excellent Hg(II) adsorption abilities with maximum adsorption capacities of 586.3 and 535.5 mg g-1 for COF-S-SH and COF-OH-SH, respectively. The prepared materials showed excellent selective absorbability for Hg(II) against multiple cationic metals in water. Unexpectedly, the experimental data showed that both co-existing toxic anionic diclofenac sodium (DCF) and Hg(II) performed positive effect for capturing another pollutant by these two modified COFs. Thus, a synergistic adsorption mechanism between Hg(II) and DCF on COFs was proposed. Moreover, density functional theory calculations revealed that synergistic adsorption occurred between Hg(II) and DCF, which resulted in a significant reduction in the adsorption system's energy. This work highlights a new direction for application of COFs to simultaneous removal of heavy metals and co-existing organic pollutants from water.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Minjuan Gong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | | | - Zahra Gholami
- ORLEN UniCRE, a.s, Revoluční 1521/84, 400 01, Ústí nad Labem, Czech Republic
| | - Huanhuan Jiang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Han Qu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Zhang X, Zhu D, Wang S, Zhang J, Zhou S, Wang W. Efficient adsorption and degradation of dyes from water using magnetic covalent organic frameworks with a pyridinic structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34669-34683. [PMID: 36515876 DOI: 10.1007/s11356-022-24688-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3 h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shiyi Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Jinwen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China.
| |
Collapse
|
10
|
Yu H, Chen H, Fang B, Sun H. Sorptive removal of per- and polyfluoroalkyl substances from aqueous solution: Enhanced sorption, challenges and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160647. [PMID: 36460105 DOI: 10.1016/j.scitotenv.2022.160647] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have garnered attention globally given their ubiquitous occurrence, toxicity, bioaccumulative potential, and environmental persistence. Sorption is widely used to remove PFASs given its simplicity and cost-effectiveness. This article reviews recently fabricated sorbents, including carbon materials, minerals, polymers, and composite materials. The characteristics and interactions of the sorbents with PFASs are discussed to better understand sorptive processes. Various sorbents have exhibited high removal rates for legacy perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Novel polymers with special design better remove long- and short-chain PFASs than other sorbents. Although hydrophobic and electrostatic interactions mainly drive the sorption of anionic, cationic, and zwitterionic PFASs, enhancing PFAS sorption on designed sorbents has mainly depended on improving electrostatic interactions. Pearson correlation analysis showed that PFOS sorption capacity of sorbents is positively correlated with their specific surface area. Newly discovered pathways, including the air-water interfacial adsorption, F-F fluorophilic interactions, and (hemi) micelle formation, can enhance PFAS sorption to a certain extent. In addition to PFOA and PFOS, the sorption of emerging PFASs, including aqueous film-forming foam-relevant PFASs, constitutes a new research direction. The functionalization methods for enhancing PFAS sorption and challenges of PFAS sorption are also discussed to provide scope for future research. The discussions herein may contribute to developing efficient sorption technologies to remove PFASs.
Collapse
Affiliation(s)
- Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Tan HM, Pan CG, Yin C, Yu K. Insights into the Understanding of Adsorption Behaviors of Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFASs) on Various Anion-Exchange Resins. TOXICS 2023; 11:161. [PMID: 36851036 PMCID: PMC9961606 DOI: 10.3390/toxics11020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have received extensive attention due to their various harmful effects. In this study, the adsorptive removal of 10 legacy and emerging PFASs by four anion-exchange resins (including gel and macroreticular resins) were systematically investigated. Our results showed that the capacities of resins absorbing PFASs were ranked in the following order: gel strong base HPR4700 (297~300 μg/g) ≈ macroreticular strong base S6368 (294~300 μg/g) ≈ macroreticular weak base A111S (289~300 μg/g) > gel weak base WA10 (233~297 μg/g). Adsorption kinetic results indicated that the adsorption process might involve chemical and Henry regime adsorption or reaction control. Intraparticle diffusion was probably the major removal step. Co-existing fulvic acid (0.5, 1, 5 mg/L) and inorganic anions (5 mg/L of sulfate, carbonate, bicarbonate) would hinder the PFAS removal by resins with WA10 showing the highest inhibition rate of 17% and 71%, respectively. The adsorption capacities of PFBA decreased from 233 μg/g to 194 μg/g, and from 233 μg/g to 67 μg/g in the presence of fulvic acid and inorganic anions, respectively. PFASs were more easily removed by HPR4700, S6368, and A111S under neutral and alkaline environment. Moreover, WA10 was not able to remove PFASs under an alkaline medium. This study offered theoretical support for removing PFASs from aqueous phases with various resins.
Collapse
Affiliation(s)
- Hong-Ming Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Chao Yin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Karbassiyazdi E, Kasula M, Modak S, Pala J, Kalantari M, Altaee A, Esfahani MR, Razmjou A. A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. CHEMOSPHERE 2023; 311:136933. [PMID: 36280122 DOI: 10.1016/j.chemosphere.2022.136933] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/23/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The removal of poly- and perfluoroalkyl substances (PFAS) from the aquatic environment is a universal concern due to the adverse effects of these substances on both the environment and public health. Different adsorbents, including carbon-based materials, ion exchange resins, biomaterials, and polymers, have been used for the removal of short-chain (C < 6) and long-chain (C > 7) PFAS from water with varying performance. Metal-organic frameworks (MOFs), as a new generation of adsorbents, have also been recently used to remove PFAS from water. MOFs provide unique properties such as significantly enhanced surface area, structural tunability, and improved selectivity compared to conventional adsorbents. However, due to various types of MOFs, their complex chemistry and morphology, different PFAS compounds, lack of standard adsorption test, and different testing conditions, there are inconclusive and contradictory findings in the literature. Therefore, this review aims to provide critical analysis of the performance of different types of MOFs in the removal of long-chain (C > 7), short-chain (C < 6), and ultra-short-chain (C < 3) PFAS and comprehensively study the efficiency of MOFs for PFAS removal in comparison with other adsorbents. In addition, the adsorption mechanisms and kinetics of PFAS components on different MOFs, including Materials of Institute Lavoisier (MIL), Universiteit of Oslo (UiO), Zeolitic imidazolate frameworks (ZIFs), Hong Kong University of Science and Technology (HKUST), and other hybrid types of MOF were discussed. The study also discussed the effect of environmental factors such as pH and ionic strength on the adsorption of PFAS on MOFs. In addition to the adsorption process, the reusability and regeneration of MOFs in the PFAS removal process are discussed. Finally, challenges and future outlooks of the utility of MOFs for PFAS removal were discussed to inspire future critical research efforts in removing PFAS.
Collapse
Affiliation(s)
- Elika Karbassiyazdi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Medha Kasula
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA
| | - Sweta Modak
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA
| | - Jasneet Pala
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA
| | - Mohammad Kalantari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ali Altaee
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA.
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
13
|
Liu Y, Shao LX, Yu WJ, Bao J, Li TY, Hu XM, Zhao X. Simultaneous removal of multiple PFAS from contaminated groundwater around a fluorochemical facility by the periodically reversing electrocoagulation technique. CHEMOSPHERE 2022; 307:135874. [PMID: 35926750 DOI: 10.1016/j.chemosphere.2022.135874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Increasing attentions have been paid on widespread contaminations of perfluoroalkyl substances (PFAS). Particularly, simultaneous occurrence of multiple PFAS in the aquatic environments globally has been recognized as a crucial emerging issue. The present study aimed to perform simultaneous removal of multiple PFAS contaminations from groundwater around a fluorochemical facility based upon the technique of periodically reversing electrocoagulation (PREC). Accordingly, the experiments were implemented on the best conditions, actual application, and removal mechanism in the process of PREC with Al-Zn electrodes. Consequently, 1 mg/L synthetic solution of ten PFAS could be eliminated ideally during the initial 10 min, under the optimal conditions involving voltage at 12 V, pH at 7.0, and electrolyte with NaCl. The maximum removal rates of perfluorobutanoic acid (PFBA), perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) were 90.9%, 91.0%, 99.7%, and 100%, respectively. The PREC performed a significant improvement for the wide scope of PFAS removal with the levels ranging from 10 μg/L to 100 mg/L. In addition, the optimized PREC technique was further applied to remove various PFAS contaminations from the natural groundwater samples underneath the fluorochemical facility, subsequently generating the removal efficiencies in the range between 31.3% and 99.9%, showing the observable advantages compared with other removal techniques for the actual application. Finally, the mechanism of PFAS removal was mainly related to enmeshment and synergistic bridging adsorption, together with oxidation degradation that determined by potential formation of short-chain PFAS in the PREC process. As a result, the PREC technique would be a promising technique for the efficient removal of multiple PFAS contaminations simultaneously from natural water bodies.
Collapse
Affiliation(s)
- Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Li-Xin Shao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Wen-Jing Yu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China; School of Water Resources & Environment, China University of Geosciences, Beijing, 100083, China
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Ting-Yu Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Xiao-Min Hu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
14
|
Ellis AC, Liu CJ, Fang Y, Boyer TH, Schaefer CE, Higgins CP, Strathmann TJ. Pilot study comparison of regenerable and emerging single-use anion exchange resins for treatment of groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). WATER RESEARCH 2022; 223:119019. [PMID: 36049246 DOI: 10.1016/j.watres.2022.119019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study reports the results of an 8-month pilot study comparing both regenerable and emerging single-use anion exchange resins (AERs) for treatment of per- and polyfluoroalkyl substances (PFASs) at a source zone impacted by historical use of aqueous film-forming foam (AFFF). Two regenerable (Purolite A860 and A520E) and three single-use (Purolite PFA694E, Calgon CalRes 2301, and Dowex PSR2+) AERs were tested in parallel, collecting effluent samples after treatment for 30-sec and 2-min total empty bed contact time (EBCT). Results demonstrate that single-use AERs significantly outperform regenerable resins, particularly for treatment of long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). No detectable concentrations of ≥C7 PFCAs or PFSAs were observed within 150,000 bed volumes (BVs) after treatment with the single-use resins (2-min EBCT). Analysis of effluent samples following 30-sec EBCT treatment shows that even the shortest-chain PFSAs do not reach 50% breakthrough within the first 350,000 BVs, though differences in removal of short-chain PFCAs was less dramatic. The regenerable polyacrylic A860 resin performed very poorly compared to all polystyrene resins, with >90% breakthrough of all PFASs occurring within 10,000 BVs. The greater affinity of polystyrene resins is attributed to increased hydrophobic interactions in addition to electrostatic ion exchange. Analysis of breakthrough profiles reveals empirical correlation with ion exchange affinity coefficients (logKex) measured in batch experiments. Postmortem analysis of PFASs extracted from spent resins revealed chromatographic elution behavior and competition among PFASs for adsorption to the resins. PFSAs and long-chain PFCAs were preferentially adsorbed to earlier sections in the AER columns, whereas short-chain PFCAs were competitively displaced towards the later sections of the columns and into the effluent, consistent with effluent concentrations of the latter structures exceeding influent values. These results provide insights into the mechanisms that govern PFAS adsorption to AERs in real multisolute groundwater matrices and support findings from other diverse sites regarding PFAS affinity, elution behavior, and competition for exchange sites.
Collapse
Affiliation(s)
- Anderson C Ellis
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Charlie J Liu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States; Kennedy Jenks Consultants, San Francisco, California 94118, United States
| | - Yida Fang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States; CDM Smith, Bellevue, Washington 98807, United States
| | - Treavor H Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University (ASU), Tempe, Arizona 85287, United States
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.
| |
Collapse
|
15
|
Wang Y, Warner M, Li K, Hawkins GL, Huang Q. Assessing explicit models of per- and polyfluoroalkyl substances adsorption on anion exchange resins by rapid small-scale column tests. CHEMOSPHERE 2022; 300:134547. [PMID: 35405197 DOI: 10.1016/j.chemosphere.2022.134547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Managing per- and polyfluoroalkyl substance (PFAS) contamination has gained worldwide attention due to their ubiquitous occurrence in water systems. Anion exchange resins (AERs) have been proven effective in removing both long-chain and short-chain PFASs. In this study, an explicit model was developed to describe the breakthrough behavior of an individual PFAS as a single solute onto anion exchange resin in a column filtration process. The model was further modified to predict the breakthrough curve of co-existing PFASs on AER in multi-solute systems by incorporating a separation factor describing the competitive adsorption and a blockage factor describing the loss of adsorption sites. Rapid small-scale column tests (RSSCTs) were performed with six AERs of various properties and three model PFASs in both single- and multi-solutes systems. The breakthrough behaviors of RSSCTs for both single- and multi-solute systems were found adequately described by the models developed in this study. The experiments and accompanied model simulations reveal some important relationships between the AER performance and the properties of both the AERs and the PFASs.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Max Warner
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Ke Li
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Gary L Hawkins
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
16
|
Ambaye TG, Vaccari M, Prasad S, Rtimi S. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58405-58428. [PMID: 35754080 DOI: 10.1007/s11356-022-21513-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, New Delhi, 110012, India
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, CH-1201, Geneva, Switzerland.
| |
Collapse
|
17
|
Robarts DR, Venneman KK, Gunewardena S, Apte U. GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology 2022; 477:153259. [PMID: 35850385 PMCID: PMC9741548 DOI: 10.1016/j.tox.2022.153259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023]
Abstract
The toxicity induced by the persistent organic pollutants per- and polyfluoroalkyl substances (PFAS) is dependent on the length of their polyfluorinated tail. Long-chain PFASs have significantly longer half-lives and profound toxic effects compared to their short-chain counterparts. Recently, production of a short-chain PFAS substitute called ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, also known as GenX, has significantly increased. However, the adverse health effects of GenX are not completely known. In this study, we investigated the dose-dependent effects of GenX on primary human hepatocytes (PHH). Freshly isolated PHH were treated with either 0.1, 10, or 100 μM of GenX for 48 and 96 h; then, global transcriptomic changes were determined using Human Clariom™ D arrays. GenX-induced transcriptional changes were similar at 0.1 and 10 μM doses but were significantly different at the 100 μM dose. Genes involved in lipid, monocarboxylic acid, and ketone metabolism were significantly altered following exposure of PHH at all doses. However, at the 100 μM dose, GenX caused changes in genes involved in cell proliferation, inflammation and fibrosis. A correlation analysis of concentration and differential gene expression revealed that 576 genes positively (R > 0.99) and 375 genes negatively (R < -0.99) correlated with GenX concentration. The upstream regulator analysis indicated HIF1α was inhibited at the lower doses but were activated at the higher dose. Additionally, VEGF, PPARα, STAT3, and SMAD4 signaling was induced at the 100 µM dose. These data indicate that at lower doses GenX can interfere with metabolic pathways and at higher doses can induce fibroinflammatory changes in human hepatocytes.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Kaitlyn K Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
18
|
Kancharla S, Choudhary A, Davis RT, Dong D, Bedrov D, Tsianou M, Alexandridis P. GenX in water: Interactions and self-assembly. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128137. [PMID: 35016121 DOI: 10.1016/j.jhazmat.2021.128137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, a.k.a. "GenX", is a surfactant introduced as a safer alternative to replace perfluorooctanoate (PFOA) in the manufacturing of fluorinated polymers, however, GenX is shown to cause adverse health effects similar to, or even worse than, those of the legacy PFOA. With an overarching goal to understand the behavior of GenX molecules in aqueous media, we report here on GenX micelle formation and structure in aqueous solutions, on the basis of results obtained from a combination of experimental techniques such as surface tension, fluorescence, viscosity, and small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. To our best knowledge, this is the first report on GenX micelles. The critical micelle concentration (CMC) of GenX ammonium salt in water is 175 mM. GenX forms small micelles with association number 6-8 and 10 Å radius. GenX molecules prefer to align along the micelle surface, and the ether oxygen of GenX has very little interaction with and exposure to water. Information on the surfactant and interfacial properties of GenX is crucial, since such properties are manifestations of interactions between GenX molecules and between GenX and water molecules and, in turn, the amphiphilic character of GenX dictates its fate and transport in the aqueous environment, its interactions with various biomolecules, and its binding to adsorbent materials.
Collapse
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Aditya Choudhary
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Ryan T Davis
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Dengpan Dong
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA.
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
19
|
Zhang Q, Wu X, Lyu X, Gao B, Wu J, Sun Y. Effects of anionic hydrocarbon surfactant on the transport of perfluorooctanoic acid (PFOA) in natural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24672-24681. [PMID: 34826077 DOI: 10.1007/s11356-021-17680-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The widespread usage of per- and polyfluoroalkyl substances (PFASs) has led to their ubiquitous co-existence with hydrocarbon surfactants in the subsurface environment. In this study, column experiments were conducted to investigate the effect of an anionic hydrocarbon surfactant (sodium dodecylbenzene sulfonate, SDBS, 1 and 10 mg/L) on the transport of perfluorooctanoic acid (PFOA) in two saturated natural soils under different cation type (Na+ and Ca2+) conditions. Results showed that SDBS (10 mg/L) significantly enhanced the transport of PFOA in two soils. This was likely because SDBS had a stronger adsorption affinity to the soils than PFOA, and can outcompete PFOA for the finite adsorption sites on the soil surface. The effect of SDBS on PFOA transport varied greatly in the two soils. More negatively charged soil surface and greater soil particle size likely contributed to the more noticeable transport-enhancement of PFOA resulting from the presence of SDBS. Also, the enhancement effect of SDBS (10 mg/L) with Ca2+ on PFOA transport was more significantly than that with Na+. This was possibly due to the blocking effect of SDBS to the more positively charged soil surface induced by Ca2+. Findings of this study point out the importance of anionic hydrocarbon surfactants on PFOA transport when assessing its environmental risks and implementing remediation efforts.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Xiaoli Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Lei X, Yao L, Lian Q, Zhang X, Wang T, Holmes W, Ding G, Gang DD, Zappi ME. Enhanced adsorption of perfluorooctanoate (PFOA) onto low oxygen content ordered mesoporous carbon (OMC): Adsorption behaviors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126810. [PMID: 34365231 DOI: 10.1016/j.jhazmat.2021.126810] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The pollution of perfluorooctanoic acid (PFOA) in water bodies has been a serious threat to environment and human health. Ordered mesoporous carbons (OMCs) with different oxygen contents were prepared and first used for adsorbing PFOA from aqueous solutions. The OMC-900 with a lower oxygen content has a higher PFOA adsorption capacity than the oxygen-rich OMC-700. OMCs require a much shorter time to reach the adsorption equilibrium comparing with other adsorbents reported in literature. The mesopores play an important role in this rapid adsorption kinetics. The pseudo-second-order model better fitted the kinetic data. The multilayers adsorption was proposed for the adsorption of PFOA onto OMCs since the Freundlich isotherm model fits the experimental data well. The micelle or hemi-micelle structures may be formed during the adsorption. Various background salts showed a positive effect on PFOA adsorption due to the salting-out and divalent bridge effects. The humic acid can lead to a discernible reduction in PFOA adsorption by competing for adsorption sites on OMCs. The hydrophobic interaction and electrostatic interaction adsorption mechanisms were proposed and verified by the adsorption data. The high adsorption capacity and fast adsorption kinetics of the OMC make it a potential adsorbent for PFOA removal in engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, PR China
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Nanyang Vocational College of Agriculture, Nanyang 473000, PR China
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Guoyu Ding
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiatong University, Beijing 100044, PR China
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA.
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
22
|
Vo HNP, Nguyen TMH, Ngo HH, Guo W, Shukla P. Biochar sorption of perfluoroalkyl substances (PFASs) in aqueous film-forming foams-impacted groundwater: Effects of PFASs properties and groundwater chemistry. CHEMOSPHERE 2022; 286:131622. [PMID: 34303903 DOI: 10.1016/j.chemosphere.2021.131622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs)-related products such as aqueous film-forming foams (AFFF) has led to increasing contamination of groundwater systems. The concentration of PFASs in AFFF-impacted groundwater can be several orders of magnitude higher than the drinking water standard. There is a need for a sustainable and effective sorbent to remove PFASs from groundwater. This work aims to investigate the sorption of PFASs in groundwater by biochar column. The specific objectives are to understand the influences of PFASs properties and groundwater chemistry to PFASs sorption by biochar. The PFASs-spiked Milli-Q water (including 19 PFASs) and four aqueous film-forming foams (AFFF)-impacted groundwater were used. The partitioning coefficients (log Kd) of long chain PFASs ranged from 0.77 to 4.63 while for short chain PFASs they remained below 0.68. For long chain PFASs (C ≥ 7), log Kd increased by 0.5 and 0.8 for each CF2 moiety of PFCAs and PFSAs, respectively. Dissolved organic matter (DOM) was the most influential factor in PFASs sorption over pH, salinity, and specific ultraviolet absorbance (SUVA). DOM contained hydrophobic compounds and metal ions which can form DOM-PFASs complexes to provide more sorption sites for PFASs. The finding is useful for executing PFASs remediation by biochar filtration column, especially legacy long chain PFASs, for groundwater remediation.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Thi Minh Hong Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Pradeep Shukla
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
23
|
Liu YL, Sun M. Ion exchange removal and resin regeneration to treat per- and polyfluoroalkyl ether acids and other emerging PFAS in drinking water. WATER RESEARCH 2021; 207:117781. [PMID: 34731662 DOI: 10.1016/j.watres.2021.117781] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/27/2023]
Abstract
Ion exchange (IX) is a promising technology to remove legacy anionic per- and polyfluoroalkyl substances (PFAS) from water. As increasing numbers of per- and polyfluoroalkyl ether acids (PFEA) and other emerging PFAS were detected in the environment, it is necessary to understand how well IX resins remove these emerging PFAS for drinking water treatment. In this study, nine commercially available IX resins were tested to treat a drinking water source spiked with 40 legacy and emerging PFAS at 600 ng/L, including PFEA, perfluoroalkyl carboxylic and sulfonic acids, fluorotelomer sulfonic acids, perfluoroalkane sulfonamides, perfluoroalkane sulfonamidoacetic acids, and zwitterionic species. With limited contact time (15 min), PFAS properties such as the fluorinated chain length, charge, and functional groups all affected PFAS adsorption to resins. However, the impact of PFAS properties on PFAS removal became less pronounced when the contact time increased beyond 2 h, while the resin polymer matrix became the critical factor for PFAS removal. All five tested polystyrene-divinylbenzene (PS-DVB) resins achieved more than 90% removal in 24 h of 35 PFAS compounds, while polymethacrylate and polyacrylic resins achieved >90% removal for less than half of the compounds. Regenerating PS-DVB resin was investigated using different salt species, regenerant pH, brine concentrations, and methanol contents. Sodium chloride and ammonium chloride were found the best brines for regenerating the tested resins. Increasing brine concentrations enhanced the regeneration efficiency, especially for short-chain PFAS. Using simple salt regenerants, up to 94% of selected short-chain PFAS was released from resins designed for general water treatment, but no meaningful regeneration was achieved for long-chain PFAS or PFAS-specific resins when the organic solvent content was less than 20%.
Collapse
Affiliation(s)
- Yen-Ling Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Mei Sun
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States.
| |
Collapse
|
24
|
Uriakhil MA, Sidnell T, De Castro Fernández A, Lee J, Ross I, Bussemaker M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. CHEMOSPHERE 2021; 282:131025. [PMID: 34118624 DOI: 10.1016/j.chemosphere.2021.131025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are xenobiotics, present at variable concentrations in soils and groundwater worldwide. Some of the current remediation techniques being researched or applied for PFAS-impacted soils involve solidification-stabilisation, soil washing, excavation and disposal to landfill, on site or in situ smouldering, thermal desorption, ball milling and incineration. Given the large volumes of soil requiring treatment, there is a need for a more environmentally friendly technique to remove and treat PFASs from soils. Sorbents such as granular/powdered activated carbon, ion exchange resins and silicas are used in water treatment to remove PFAS. In this work, PFAS adsorption mechanisms and the effect of pore size, pH and organic matter on adsorption efficacy are discussed. Then, adsorption of PFAS to soils and sorbents is considered when assessing the viability of remediation techniques. Sonication-aided treatment was predicted to be an effective removal technique for PFAS from a solid phase, and the effect of varying frequency, power and particle size on the effectiveness of the desorption process is discussed. Causes and mitigation strategies for possible cavitation-induced particle erosion during ultrasound washing are also identified. Following soil remediation, degrading the extracted PFAS using sonolysis in a water-organic solvent mixture is discussed. The implications for future soil remediation and sorbent regeneration based on the findings in this study are given.
Collapse
Affiliation(s)
- Mohammad Angaar Uriakhil
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Tim Sidnell
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | | | - Judy Lee
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Ian Ross
- Tetra Tech, Quay West at MediaCityUK, Trafford Wharf Rd, Trafford Park, Manchester, England, M17 1HH, UK
| | - Madeleine Bussemaker
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK.
| |
Collapse
|
25
|
A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04603-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Heidari H, Abbas T, Ok YS, Tsang DCW, Bhatnagar A, Khan E. GenX is not always a better fluorinated organic compound than PFOA: A critical review on aqueous phase treatability by adsorption and its associated cost. WATER RESEARCH 2021; 205:117683. [PMID: 34607087 DOI: 10.1016/j.watres.2021.117683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Hexafluoropropylene oxide dimer acid (GenX) has been marketed as a substitute for perfluorooctanoic acid (PFOA) to reduce environmental and health risks. GenX and PFOA have been detected in various natural water sources, and adsorption is recognized as a typical treatment process for PFOA removal. In this paper, comparisons of GenX and PFOA adsorption are evaluated, including adsorption potential, adsorption mechanisms, and associated costs. A detailed literature review suggests that anion-exchange resins are more effective in removing GenX than activated carbon. GenX removal efficiency through activated carbon (30%) is lower than that of PFOA (80-95%), while GenX and PFOA removal efficiencies by anion exchange resins are similar (99%). Unconventional adsorbents, such as ionic fluorogels and covalent organic frameworks can effectively remove GenX from water. The review reveals that GenX adsorption is more challenging, requiring almost 4 times the treatment cost of its predecessor, PFOA. Annual operation and maintenance costs for GenX adsorption (initial concentration of GenX and PFOA = 0.2 µg.L-1) by GAC for treating 10,000 m3 per day is almost US$1,000,000 per year, but only around US$240,000 per year for PFOA. Desorption of GenX in the presence of PFOA highlights GenX's inferior treatability by adsorption. It is believed that GenX is a more environmentally friendly compound than PFOA, but this environmental friendliness comes with the price.
Collapse
Affiliation(s)
- Hamed Heidari
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Tauqeer Abbas
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV, United States.
| |
Collapse
|
27
|
Haupert LM, Pressman JG, Speth TF, Wahman DG. Avoiding pitfalls when modeling removal of per- and polyfluoroalkyl substances by anion exchange. ACTA ACUST UNITED AC 2021; 3. [PMID: 34124610 DOI: 10.1002/aws2.1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are receiving a great deal of attention from regulators, water utilities, and the general public. Anion-exchange resins have shown high capacities for removal of these substances from water, but there is currently a paucity of ion-exchange treatment models available to evaluate performance. In this work, important theoretical and practical considerations are discussed for modeling PFAS removal from drinking water using gel-type, strong-base anion-exchange resin in batch and column processes. Several important limitations found in the literature preclude movement toward model development, including the use of inappropriate isotherms, inappropriate kinetic assumptions, and experimental conditions that are not relevant to drinking water conditions. Theoretical considerations based on ion-exchange fundamentals are presented that will be of assistance to future researchers in developing models, designing batch and column experiments, and interpreting results of batch and column experiments.
Collapse
Affiliation(s)
- Levi M Haupert
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio
| | - Jonathan G Pressman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio
| | - Thomas F Speth
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio
| | - David G Wahman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio
| |
Collapse
|
28
|
Kah M, Oliver D, Kookana R. Sequestration and potential release of PFAS from spent engineered sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142770. [PMID: 33071146 DOI: 10.1016/j.scitotenv.2020.142770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have contaminated land and water at numerous sites worldwide that now require remediation. The most common approach for treating contaminated water currently relies on removal of PFAS by sorption. The spent sorbents loaded with PFAS can potentially be disposed of at landfills, provided the sorbed contaminants remain sequestered and certain risk criteria are met. Hence, it is essential that remediation sorbents (i) rapidly adsorb a large variety of PFAS under varying water chemistry conditions, and (ii) do not release the adsorbed PFAS in due course. This review aims at establishing the current state of knowledge about the potential release of PFAS that may occur during and after treatment. The scientific literature currently provides data for a very restricted range of long-chain PFAS. Our knowledge of the dynamics of PFAS adsorption processes on engineered sorbents is limited, and even less is known about their desorption processes. The sorption of PFAS can be strongly affected by changes in the solution pH, ionic strength and dissolved organic matter content, and the process is also subject to complex competition mechanisms in the presence of other PFAS as well as organic contaminants and inorganic salts. Several studies suggest that changes in one or several of these factors may trigger the release of PFAS from engineered sorbents. This phenomenon is more likely to occur for PFAS with shorter carbon chain lengths (<C8), at high pH and in the presence of other PFAS or other anionic sorbates. The release of PFAS from spent sorbent materials, stored or deposited under conditions that vary over time, is highly undesirable, as they can potentially become a secondary source of PFAS in the environment. Our analysis identifies a number of knowledge-gaps that should be urgently addressed in order to design sustainable remediation solutions, including an improved management of spent sorbent materials.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Danielle Oliver
- CSIRO, Land & Water, Locked bag 2, Glen Osmond, SA, Australia
| | - Rai Kookana
- CSIRO, Land & Water, Locked bag 2, Glen Osmond, SA, Australia; University of Adelaide, School of Agriculture, Food and Wine, Locked bag 1, Glen Osmond 5064, Australia
| |
Collapse
|
29
|
Singh G, Lee JM, Kothandam G, Palanisami T, Al-Muhtaseb AH, Karakoti A, Yi J, Bolan N, Vinu A. A Review on the Synthesis and Applications of Nanoporous Carbons for the Removal of Complex Chemical Contaminants. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200379] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jang Mee Lee
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gopalakrishnan Kothandam
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thavamani Palanisami
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ala'a H. Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123, Muscat, Oman
| | - Ajay Karakoti
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nanthi Bolan
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
30
|
Ching C, Klemes MJ, Trang B, Dichtel WR, Helbling DE. β-Cyclodextrin Polymers with Different Cross-Linkers and Ion-Exchange Resins Exhibit Variable Adsorption of Anionic, Zwitterionic, and Nonionic PFASs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12693-12702. [PMID: 32924449 DOI: 10.1021/acs.est.0c04028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) occur in groundwater as mixtures of anionic, cationic, zwitterionic, and nonionic species, although few remediation technologies have been evaluated to assess the removal of different types of PFASs. In this study, we evaluated the performance of three β-cyclodextrin polymers (CDPs), an anion-exchange (AE) resin, and a cation-exchange (CE) resin for the removal of anionic, zwitterionic, and nonionic PFASs from water. We found that a CDP with a negative surface charge rapidly removes all zwitterionic PFASs with log KD values ranging between 2.4 and 3.1, and the CE resin rapidly removes two zwitterionic PFASs with log KD values of 1.8 and 1.9. The CDPs with a positive surface charge rapidly remove all anionic PFASs with log KD values between 2.7 and 4.1, and the AE resin removes all anionic PFASs relatively slowly with log KD values between 2.0 and 2.3. All adsorbents exhibited variable removal of the nonionic PFASs and some adsorption inhibition at higher pH values and in the presence of groundwater matrix constituents. Our findings provide insight into how adsorbents can be combined to remediate groundwater contaminated with complex mixtures of different types of PFASs.
Collapse
Affiliation(s)
- Casey Ching
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Max J Klemes
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brittany Trang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|