1
|
Shahmirzaee M, Hemmati-Sarapardeh A, Husein MM, Mohammadi MR, Schaffie M, Ranjbar M. Artificial intelligence modeling and experimental studies of oily pollutants uptake from water using ZIF-8/carbon fiber nanostructure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123010. [PMID: 39490015 DOI: 10.1016/j.jenvman.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
In this study, the experimental and modeling of oily pollutants (crude oil, asphaltene, and maltene) uptake by ZIF-8/carbon fiber nanostructure was investigated. The influence of pollutant type, concentration, ionic strength, and sorption time on uptake was systematically examined using a batch absorption system. Then, the experimental data of uptake was modeled using cascade forward (CFNN), multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression (GRNN) neural networks. ZIF-8/carbon fiber nanostructure distinguished by its high hydrophobicity (WCA of 150°) and a complex meso-micro pore structure, demonstrated remarkable efficiency in oil pollutant uptake. Furthermore, the modeling results unveiled that the CFNN-LM model yielded superior predictions, achieving an impressive accuracy rate, as approximately 98% of the uptake data demonstrated an average absolute percent relative error (AAPRE,%) below 3%. Moreover, sensitivity analysis showed that the concentration of pollutants had the most notable impact on the pollutant uptake. Furthermore, the uptake values exhibited an upward trend with elevated concentrations of the pollutant and extended process time, while showing a decline with an increase in ionic strength. These results affirm the reliability of the proposed CFNN-LM model in accurately estimating uptake amounts during the separation process. In summary, the ZIF-8/carbon fiber nanostructure stands out as a highly promising remedy for eliminating oil pollutants from oil/water mixtures, with the added benefit of accurate uptake predictions facilitated by the CFNN-LM model.
Collapse
Affiliation(s)
- Mozhgan Shahmirzaee
- Nanotechnology Group, Department of Materials Engineering and Metallurgy, Shahid Bahonar University of Kerman, Kerman Province, Kerman-Islami Republic Blvd, Faculty of Engineering, PO Box: 133-76175, 7618868366, Iran.
| | - Abdolhossein Hemmati-Sarapardeh
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China.
| | - Maen M Husein
- Department of Chemical & Petroleum Engineering, University of Calgary, Canada
| | | | - Mahin Schaffie
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ranjbar
- Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Pan Z, Zeng B, Shen L, Teng J, Lai T, Zhao L, Yu G, Lin H. Innovative treatment of industrial effluents through combining ferric iron and attapulgite application. CHEMOSPHERE 2024; 358:142132. [PMID: 38670505 DOI: 10.1016/j.chemosphere.2024.142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored. Employing Fe3O4 as a heterogeneous catalyst and AMATP for adsorption, CODCr was reduced by 78.38-79.14%, total nitrogen by 71.53-77.43%, and phosphorus by 97.74-98.10% in pharmaceutical effluents. Similarly, for dyeing effluents, Fe(III)-AMATP achieved 79.87-80.94% CODCr, 68.59-70.93% total nitrogen, and 79.31-83.33% phosphorus reduction. Regeneration experiments revealed that Fe3O4 maintained 59.48% efficiency over three cycles, and Fe(III)-AMATP maintained 62.47% efficiency over four cycles. This work offers an economical, hybrid approach for effective pharmaceutical and dyeing effluent treatment, with broad application potential.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tongli Lai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Torsello M, Ben-Zichri S, Pesenti L, Kunnath SM, Samorì C, Pasteris A, Bacchelli G, Prishkolnik N, Ben-Nun U, Righi S, Focarete ML, Kolusheva S, Jelinek R, Gualandi C, Galletti P. Carbon dot/polylactic acid nanofibrous membranes for solar-mediated oil absorption/separation: Performance, environmental sustainability, ecotoxicity and reusability. Heliyon 2024; 10:e25417. [PMID: 38420388 PMCID: PMC10900409 DOI: 10.1016/j.heliyon.2024.e25417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Shani Ben-Zichri
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Lucia Pesenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Sisira M Kunnath
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Chiara Samorì
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Greta Bacchelli
- Interdepartmental Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Via S. Alberto, 163, 48123, Ravenna, Italy
| | - Noa Prishkolnik
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uri Ben-Nun
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Serena Righi
- Interdepartmental Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Via S. Alberto, 163, 48123, Ravenna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Carlo Berti Pichat, 6/2, 40126, Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Sofiya Kolusheva
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
| | - Paola Galletti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| |
Collapse
|
4
|
Mishra Y, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Farani MR, Huh YS, Serrano-Aroca Ã, Tambuwala MM. Carbon nanotube-wastewater treatment nexus: Where are we heading to? ENVIRONMENTAL RESEARCH 2023; 238:117088. [PMID: 37683781 DOI: 10.1016/j.envres.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Water treatment is crucial in solving the rising people's appetite for water and global water shortages. Carbon nanotubes (CNTs) have considerable promise for water treatment because of their adjustable and distinctive arbitrary, physical, as well as chemical characteristics. This illustrates the benefits and risks of integrating CNT into the traditional water treatment resource. Due to their outstanding adsorbent ability and chemical and mechanical properties, CNTs have gained global consideration in environmental applications. The desalination and extraction capability of CNT were improved due to chemical or physical modifications in pure CNTs by various functional groups. The CNT-based composites have many benefits, such as antifouling performance, high selectivity, and increased water permeability. Nevertheless, their full-scale implementations are still constrained by their high costs. Functionalized CNTs and their promising nanocomposites to eliminate contaminants are advised for marketing and extensive water/wastewater treatment.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ãngel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, United Kingdom.
| |
Collapse
|
5
|
Zhao M, Shang Y, Xiong Y, Zhang X. Reusable, Stable, Efficient and Multifunctional Superhydrophobic and Oleophilic Polyurethane Sponge for Oil-Water Separation Prepared Using Discarded Composite Insulator. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6320. [PMID: 37763597 PMCID: PMC10532702 DOI: 10.3390/ma16186320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Oil spills and chemical leakages are a serious source of pollution in oceans and rivers, and have attracted worldwide attention. Many scientists are currently engaged in the development of oil-water separation technology. In this study, the umbrella skirt of a discarded silicone rubber insulator was utilized as feedstock, and polydimethylsiloxane (PDMS) was employed to immobilize the prepared powder (FXBW) onto a polyurethane (PU) sponge skeleton. Without any modifications using chemical reagents, a novel oil-water separation material, FXBW-PU, was developed, with a water contact angle of 155.3°. The FXBW-PU sponge exhibited an absorption capacity ranging from 11.79 to 26.59 g/g for various oils and organic solvents, while maintaining an excellent selective adsorption performance, even after undergoing ten compression cycles, due to its exceptional chemical and mechanical stability. With the assistance of a vacuum pump, the FXBW-PU sponge was utilized in a continuous separation apparatus, resulting in a separation efficiency exceeding 98.6% for various oils and organic solvents. The separation efficiency of n-hexane remains as high as 99.2% even after 10 consecutive separation cycles. Notably, the FXBW-PU sponge also separated the dichloromethane-in-water emulsions, which achieved the effect of purifying water. In summary, FXBW-PU sponge has great potential in the field of cleaning up oil/organic solvent contamination due to its low preparation cost, environmental friendliness and excellent performance.
Collapse
Affiliation(s)
- Meiyun Zhao
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
- College of Mechanical & Power Engineering, China Three Gorges University, Yichang 443000, China
| | - Yuanyuan Shang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
| | - Yufan Xiong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
| | - Xiaolong Zhang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenace, China Three Gorges University, Yichang 443000, China; (M.Z.)
| |
Collapse
|
6
|
Saleem J, Moghal ZKB, Shakoor RA, McKay G. Sustainable Solution for Plastic Pollution: Upcycling Waste Polypropylene Masks for Effective Oil-Spill Management. Int J Mol Sci 2023; 24:12368. [PMID: 37569746 PMCID: PMC10419313 DOI: 10.3390/ijms241512368] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The use of Polypropylene PP in disposable items such as face masks, gloves, and personal protective equipment has increased exponentially during and after the COVID-19 pandemic, contributing significantly to microplastics and nanoplastics in the environment. Upcycling of waste PP provides a useful alternative to traditional thermal and mechanical recycling techniques. It transforms waste PP into useful products, minimizing its impact on the environment. Herein, we synthesized an oil-sorbent pouch using waste PP, which comprises superposed microporous and fibrous thin films of PP using spin coating. The pouch exhibited super-fast uptake kinetics and reached its saturation in fewer than five minutes with a high oil uptake value of 85 g/g. Moreover, it displayed high reusability and was found to be effective in absorbing oil up to seven times when mechanically squeezed between each cycle, demonstrating robust oil-sorption capabilities. This approach offers a potential solution for managing plastic waste while promoting a circular economy.
Collapse
Affiliation(s)
- Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | | | - Rana Abdul Shakoor
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (Z.K.B.M.); (R.A.S.)
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
7
|
Dang A, Liu X, Wang Y, Liu Y, Cheng T, Zada A, Ye F, Deng W, Sun Y, Zhao T, Li T. High-efficient adsorption for versatile adsorbates by elastic reduced graphene oxide/Fe 3O 4 magnetic aerogels mediated by carbon nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131846. [PMID: 37320905 DOI: 10.1016/j.jhazmat.2023.131846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Fabrication of highly elastic three-dimensional aerogel adsorbents with outstanding adsorption capacities is a long pursuit for the treatment of industrial contaminated water. In this work, a magnetic reduced graphene oxide (rGO)/Fe3O4/carbon nanotubes (CNTs) aerogel material was constructed by the electrostatic attraction between the negatively charged GO and positively charged CNTs following a one-pot water bath treatment. The as-synthesized aerogel demonstrated high compressive stress (28.4 kPa) and lower density (24.11 mg/cm3) with exceptional adsorption capacities for versatile adsorbates which are attributed to CNTs and magnetic Fe3O4 nanoparticles. The effect of pH, initial concentration of adsorbates (dyes, Cd (ІІ) ions, organic solvents, and pump oil), content of CNTs and cyclic times on the adsorption capacities of the aerogel were investigated in detail. Furthermore, from simulation, the adsorption kinetics, and thermodynamics of the aerogel for adsorbates were more satisfied by endothermic quasi-second-order kinetic model with characteristic physical adsorption. Thus, the optimized rGO/Fe3O4/CNTs-10 aerogel adsorbent can be used as a powerful and versatile tool to deal with contaminated industrial or domestic wastewater.
Collapse
Affiliation(s)
- Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yujia Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tao Cheng
- Shanghai Institute of Spacecraft Equipment, Shanghai 200240, PR China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Fei Ye
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tingkai Zhao
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
8
|
Song YY, Zhang X, Yang JL, Zhang ZQ, Cheng GG, Liu Y, Lv GJ, Yu ZP. Ultrafast sorption of micro-oil droplets within water by superhydrophobic-superoleophilic conical micro-arrays. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Xi D, Xie W, Qi F, Huang Z, Wen S, Fan B, Yin P, Zhang X, Fang Z, Ye L, Yang S. Sustainable treatment of sewage sludge via plasma-electrolytic liquefaction for bio-friendly production of polyurethane foam. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117072. [PMID: 36584516 DOI: 10.1016/j.jenvman.2022.117072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Safe and green disposal or utilization of sewage sludge (SS) has attracted significant attention as SS is increasingly produced worldwide and emerges as an environmental burden if without proper treatment. In this study, efficient and sustainable treatment of SS was achieved using plasma-electrolytic liquefaction (PEL) with alkaline catalysts including sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and sodium acetate (NaAc) and renewable solvents including polyethylene glycol (PEG) 200 and glycerol. Furthermore, the obtained bio-oil with abundant hydroxyl groups could partially replace polyols derived from fossil energy to synthesize bio-based polyurethane foams (BPUFs) for oil adsorption. The results showed that the Na2CO3 catalyst exhibited better performance and yielded bio-oil with a higher heating value (HHV) of 26.26 MJ/kg, very low nitrogen content (0.14%) and metal ions, and a nearly neutral pH of 7.41, under the optimized conditions. Compared with conventional oil bath liquefaction, PEL can significantly improve the liquefaction efficiency, promote the transfer of metal ions in SS to the solid residue (SR), and facilitate the transfer of nitrogen to the gas phase and SR, thereby upgrading the bio-oil to a certain extent. The BPUFs showed excellent oil adsorption capacity, reusability, and desorption and can play an important role in combating oil spills. The PEL method may provide a green avenue for SS valorization and the comprehensive utilization of the obtained products.
Collapse
Affiliation(s)
- Dengke Xi
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Wenquan Xie
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Feng Qi
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Ziwei Huang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Shangxin Wen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bangxu Fan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Pengfei Yin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Xianhui Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China.
| | - Zhi Fang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 210009, China.
| | - Liyi Ye
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Size Yang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Engineering Research Center for EDA, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Mousavi FS, Nasouri K. Novel 3D carbon fibers derived from Luffa wastes for oil/water separation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121093. [PMID: 36657512 DOI: 10.1016/j.envpol.2023.121093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
In this study, the 3D structure of carbon fibers (CFs) was prepared from Luffa sponge wastes by H3PO4 impregnation with various ratios and a low-temperature carbonization process at 500 °C in a nitrogen atmosphere. The H3PO4-treated Luffa sponge had higher thermal stability and carbonic yield (∼60-70%) than neat-Luffa (∼21%). Characterization analyses exposed that the synthesized CFs derived from H3PO4-treated Luffa exhibited oleophilic and hydrophobic carbonic nature with 3D sponge skeletal, reflecting an ideal structure for oil sorption. The engine oil sorption properties on the CFs were studied by varying the contact time. The engine oil sorption equilibrium data for 3D CFs samples was explained by the pseudo-second-order and intraparticle diffusion models. The equilibrium oil sorption capacities of 3D CFs were as large as 23.1 ± 0.4 g/g for engine oil, 23.7 ± 1.0 g/g for gasoline, 28.1 ± 1.0 g/g for almond oil, and 29.2 ± 0.8 g/g for pomegranate seed oil in 20 min. Moreover, the optimized 3D CFs can be selectively for oil/water separation applications, such as high capacities for various oils, fast kinetic sorption, and reusability (>6 cycles). This research presented a facile and cost-effective process for the 3D CFs through recycling Luffa sponge wastes for rapid oil sorption.
Collapse
Affiliation(s)
- Fatemeh Sadat Mousavi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Komeil Nasouri
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
11
|
Dong T, Liu Y, Tian N, Zhang Y, Han G, Peng F, Lou CW, Chi S, Liu Y, Liu C, Lin JH. Photothermal and Concus Finn capillary assisted superhydrophobic fibrous network enabling instant viscous oil transport for crude oil cleanup. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130193. [PMID: 36265385 DOI: 10.1016/j.jhazmat.2022.130193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rapid and effective removal of highly viscous oil spills from the sea remains a great challenge globally. Superhydrophobic materials are attractive candidates for handling oil spills, but they are restrained to recover oils with low viscosity exclusively. Herein, we report a novel polypyrrole wrapped superhydrophobic fibrous network using cross-shaped polyester fibers as starting blocks. The polypyrrole coating enables the absorbent to convert light to heat, ensuring that the viscosity of heavy oils in the proximity can be easily controlled. In the meanwhile, the special structure of the starting fibers initiates Concus Finn (CFin) capillary allowing instant oil transport in the network. When the absorbent is exposed to light oils (0-500 mPa.s), the oils can be transported instantly via CFin capillary. Interestingly, under synergistic effect of light-to-heat conversion and CFin capillary, a drawing-sticking crude oil strip (105 mPa.s) is sucked instantly against gravity by the absorbent. The absorbent is successfully applied to efficiently separate both oil/water mixtures and oil/water emulsions (efficiency > 99%). Such absorbent can absorb 62.99-74.23 g/g light oils on average and up to 123.3 g/g crude oil under 0-2 sun illumination, holding a huge potential in managing oil spills.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China.
| | - Yanhui Liu
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Na Tian
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Fudi Peng
- Fujian Aton Advanced Materials Science and Technology Co., Ltd, Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, PR China
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, PR China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan.
| |
Collapse
|
12
|
Deep eutectic solvent assisted preparation of ZnO deposited carbonized wood for efficient CO2 storage and oil absorption. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Bai L, Wang X, Sun X, Li J, Huang L, Sun H, Gao X. Enhanced superhydrophobicity of electrospun carbon nanofiber membranes by hydrothermal growth of ZnO nanorods for oil-water separation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Li Z, Lin Z, Tian Q, Yue X, Qiu F, Zhang T. Solar-heating superhydrophobic modified melamine sponge for efficient recovery of viscous crude oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129799. [PMID: 36027746 DOI: 10.1016/j.jhazmat.2022.129799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Developing self-heating sorbents for rapid clean-up of viscous oil spills by using clean solar energy is attracting attention. Still, simple and scalable fabrication approaches of solar-heating sorbents remain challenging. Herein, a facile and practical modification strategy was presented to develop a solar-heating modified melamine sponge (rGO/CNT/MS) by dip-coating layer-by-layer (LBL) electrostatic assembly of GO and CNT with opposite charges onto MS skeleton followed by thermal reduction, without any complicated microfabrication and hydrophobic modification processes. Based on the intercalation of CNT into rGO layers and strong conjugation/hyperconjugation synergy of rGO and CNT, the light sorption ability, photothermal conversion, hydrophobicity and mechanical properties of the rGO/CNT/MS sorbent were further improved compared to rGO/MS and CNT/MS. The surface temperature could reach 75 ℃ in 100 s under 1 sun radiation (1 kW m-2), which would effectively absorb crude oil by in-situ sunlight-heating to reduce its viscosity. The sorption speed increased by about 30 times compared with no sunlight irradiation, and the continuous sorption capacity was up to 1.71 g/cm2 at 610 s driven by pump force. The easily-prepared solar-assisted rGO/CNT/MS with high photothermal performance, corrosion resistance, mechanical compressibility, coating firmness and oil sorption ability showed huge potential application in oil spill recovery.
Collapse
Affiliation(s)
- Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Zhipeng Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
15
|
Chen Q, Zhang L, Shan Y, Liu Y, Zhao D. Novel Magnetically Driven Superhydrophobic Sponges Coated with Asphaltene/Kaolin Nanoparticles for Effective Oil Spill Cleanup. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3527. [PMID: 36234658 PMCID: PMC9565408 DOI: 10.3390/nano12193527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fast and effective cleanup of oil spills remains a global challenge. A modified commercial sponge with superhydrophobicity, strong absorption capacity, outstanding magnetic response, and fire resistance were fabricated by a facile and inexpensive route of dip-coated melamine sponge carbonization. The low-cost petroleum asphaltene and kaolin nanoparticles were used as the dip-coating reagent. High absorption capacity of the fabricated sponges allowed rapid and continuous removal of oil contaminants. Taking advantage of the good refractory property, the sponges can be used in burning conditions and directly reused after burning out of the absorbed oil. Reusability tests showed that the modified sponges still maintained high absorption capacity (>85%) after six regeneration and reuse cycles. These characteristics make the fabricated sponge a promising aid to promote effective in situ burning cleanup of oil spills, contributing as a magnetic oil collector and a fire-resistant flexible boom. An example usage scenario of the sponges applied to in situ burning cleanup of oil spills is described.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lingling Zhang
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanhang Shan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yindong Liu
- Petrochemical Research Institute, PetroChina Co., Ltd., Beijing 100195, China
| | - Dongfeng Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
16
|
Dan H, Ji K, Gao Y, Yin W, Gao B, Yue Q. Fabrication of superhydrophobic Enteromorpha-derived carbon aerogels via NH 4H 2PO 4 modification for multi-behavioral oil/water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155869. [PMID: 35561933 DOI: 10.1016/j.scitotenv.2022.155869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrophobic and oleophilic biomass-based block materials are considered to be highly promising candidates used for oil/water separation. However, the crucial hydrophobic modification process often involves various toxic and hazardous organic substances or requires high energy inputs. Inspired by the flame retardant principle of phosphorus-containing flame retardants, herein, an Enteromorpha-derived carbon (ADP-EP) aerogel with a water contact angle of 144.2° was prepared by successive freeze-shaping, freeze-drying and low-temperature carbonization treatment (300 °C), using NH4H2PO4 (ADP) as a modifier. The results demonstrated that the introduction of NH4H2PO4 could largely facilitate the removal of oxygenated groups from the pristine EP aerogels and enhance their surface roughness, thereby achieving surface hydrophobic modification. Featuring intrinsic low density, rich porosity and strong lipophilicity, the as-fabricated ADP-EP aerogels exhibited exceptional performance in both oil spill adsorption (~140 g/g) and water-in-oil emulsion separation. Moreover, the good reusability for oil uptake was also realized thanks to its robust mechanical compressibility and thermal stability. This work provides a facile, economical and eco-friendly route to obtain a desirable hydrophobic/oleophilic surface.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Kaidi Ji
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Ma S, Xu M, Zhao Z, Pan J, Zhao S, Xue J, Ye Z. Preparation of 3D superhydrophobic porous g-C3N4 nanosheets@carbonized kapok fiber composites for oil/water separation and treating organic pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Facile generation of crumpled polymer strips by immersion electrospinning for oil spill cleanups. J Colloid Interface Sci 2022; 626:581-590. [DOI: 10.1016/j.jcis.2022.06.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
|
19
|
Calabrese L, Piperopoulos E, Jovanovic VS, Mitic V, Mitic M, Milone C, Proverbio E. Oil spill remediation: Selectivity, sorption, and squeezing capacity of silicone composite foams filled with clinoptilolite. J Appl Polym Sci 2022. [DOI: 10.1002/app.52637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luigi Calabrese
- Dipartimento di Ingegneria Università di Messina, Contra di Dio‐Sant'Agata Messina Italy
| | - Elpida Piperopoulos
- Dipartimento di Ingegneria Università di Messina, Contra di Dio‐Sant'Agata Messina Italy
| | | | - Violeta Mitic
- Department of Chemistry, Faculty of Science and Mathematics University of Nis Nis Serbia
| | - Milan Mitic
- Department of Chemistry, Faculty of Science and Mathematics University of Nis Nis Serbia
| | - Candida Milone
- Dipartimento di Ingegneria Università di Messina, Contra di Dio‐Sant'Agata Messina Italy
| | - Edoardo Proverbio
- Dipartimento di Ingegneria Università di Messina, Contra di Dio‐Sant'Agata Messina Italy
| |
Collapse
|
20
|
Zheng X, Zhang H, Liu M, Zhou X, Wang H, Jiang R. Porous sponge with surface modified for superhydrophobic/superoleophilic and special functionalization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Novel fabrication of hydrophobic/oleophilic human hair fiber for efficient oil/water separation through one-pot dip-coating synthesis route. Sci Rep 2022; 12:7632. [PMID: 35538093 PMCID: PMC9090757 DOI: 10.1038/s41598-022-11511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Frequent oil spill accidents and industrial wastewater discharge has always been one of the most severe worldwide environmental problems. To cope with this problem, many fluorine-containing and high-cost materials with superwettability have been extensively applied for oil-water separation, which hinders its large-scale application. In this work, a novel human hair fiber (HHF)-polymerized octadecylsiloxane (PODS) fiber was fabricated with a facile one-pot dip-coating synthesis approach, inspired by the self-assembly performance and hydrophobicity of OTS modification. The benefits of prominent hydrophobic/lipophilic behavior lie in the low surface energy, and a rough PODS coating was rationally adhered on the surface of HHF. Driven solely by gravity and capillary force, the HHF-PODS showed excellent oil/water separation efficiency (> 99.0%) for a wide range of heavy and light oil/water mixtures. In addition, HHF-PODS demonstrated durability toward different harsh environments like alkaline, acid, and salty solutions.
Collapse
|
22
|
Camilli L, Capista D, Eramo P, D'Archivio AA, Maggi MA, Lazzarini A, Crucianelli M, Passacantando M. Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment. NANOTECHNOLOGY 2022; 33:245707. [PMID: 35259735 DOI: 10.1088/1361-6528/ac5bb7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water. Carbon nanotube (CNT) sponges, for example, are excellent in removing oleophilic contaminants; however, due to their super-hydrophobic nature, they are not as efficient when it comes to absorbing water-soluble substances. Here, by means of a scalable method consisting of simply treating CNT sponges at mild temperatures in air, we attach oxygen-containing functional groups to the CNT surface. The functionalized sponge becomes hydrophilic while preserving its micro- and macro-structure and can therefore be used to successfully remove toxic contaminants, such as pesticides, that are dissolved in water. This discovery expands the current range of applications of CNT sponges to those fields in which a hydrophilic character of the sponge is more suitable.
Collapse
Affiliation(s)
- Luca Camilli
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome I-00133, Italy
| | - Daniele Capista
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Piergiorgio Eramo
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Angelo Antonio D'Archivio
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Maria Anna Maggi
- Hortus Novus, Via Campo Sportivo 2, Canistro (AQ) I-67050, Italy
| | - Andrea Lazzarini
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Marcello Crucianelli
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| |
Collapse
|
23
|
Jiang G, Zhang C, Xie S, Wang X, Li W, Cai J, Lu F, Han Y, Ye X, Xue L. Facile Fabrication of Electrospun Nanofibrous Aerogels for Efficient Oil Absorption and Emulsified Oil-Water Separation. ACS OMEGA 2022; 7:6674-6681. [PMID: 35252662 PMCID: PMC8892654 DOI: 10.1021/acsomega.1c06080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Developing superabsorbents for efficiently separating immiscible oil-water mixtures and oil-water emulsions are highly desirable for addressing oily wastewater pollution problems, but it remains a challenge. Ultralight nanofibrous aerogels (NFAs) with unique wetting properties show great potential in oily wastewater treatment. In this study, a facile and efficient method for producing hierarchical porous structured NFAs with hydrophobicity for high efficiency oil-water separation was developed. The synthesis included three steps: wet electrospinning, freeze drying, and in situ polymerization. The obtained NFA demonstrated outstanding oil absorption capacity toward numerous oils and organic solvents, as well as efficient surfactant-stabilized water-in-oil emulsion separation with high separation flux and excellent separation efficiency. Furthermore, these NFAs displayed excellent corrosion resistance and outstanding recoverability. We assume that the resultant NFAs fabricated by this facile strategy are highly promising as ideal oil absorbents for practical oily wastewater treatment under harsh conditions.
Collapse
Affiliation(s)
- Guojun Jiang
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Caidan Zhang
- Key
Laboratory of Yarn Materials Forming and Composite Processing Technology
of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Sheng Xie
- Key
Laboratory of Yarn Materials Forming and Composite Processing Technology
of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaohong Wang
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Weiwei Li
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Jiajie Cai
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Fei Lu
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Yuhang Han
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Xiangyu Ye
- Zhejiang
Light Industrial Products Inspection and Research Institute, Hangzhou 310020, China
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Lixin Xue
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| |
Collapse
|
24
|
Tian N, Wu S, Han G, Zhang Y, Li Q, Dong T. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127393. [PMID: 34656938 DOI: 10.1016/j.jhazmat.2021.127393] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Using tubular kapok fibers (KF) and sodium alginate (SA) as the natural building block, we put forward a novel oriented neurovascular network-like superhydrophobic aerogel with robust dry and wet compression resilience by directional freeze-drying and chemical vapor deposition. In the block, SA forms aligned channel structures providing space for rapid oil transmission, while KF serves as vascular-like capillaries acting as instant "tentacle" to capture the tiny oil droplets in water, facilitating fascinating oil capture efficiency for versatile oil/water separation, The aerogel after dry and wet compression (under a strain of 60%) can recover 96.0% and 97.3% its original, respectively, facilitating stable oil recovery (81.1-89.8%) by squeezing, high separation efficiency (99.04-99.64%) and permeation flux separating oil contaminants from water. A pump-supported experiment shows the aerogel efficiently collecting oil contaminants from the water's surface and bottom by 11503-25611 L·m-2·h-1. Particularly, the aerogel as robust oil droplets captor facilely achieves isolation of 99.39-99.68% emulsified oils from oil/water emulsions by novel oil trapping mechanism which simply involves exerting kinetic energy on emulsified oils through repeated oscillation, potentially indicating a simple and efficient alternative to membrane-based oily wastewater remediation via filtration.
Collapse
Affiliation(s)
- Na Tian
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Shaohua Wu
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Qiang Li
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Ting Dong
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| |
Collapse
|
25
|
Tian L, Zhuo Q, Lu J, Liu J, Xu X, You X, Xu M, Yang B, Niu J. Degradation of florfenicol in a flow-through electro-Fenton system enhanced by wood-derived block carbon (WBC) cathode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Ge J, Jia Y, Cheng C, Sun K, Peng Y, Tu Y, Qiang Y, Hua Z, Zheng Z, Ye X, Xue L, Jiang G. Polydimethylsiloxane‐functionalized
polyacrylonitrile nanofibrous aerogels for efficient oil absorption and oil/water separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.51339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Junyan Ge
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yuxin Jia
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Chuang Cheng
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Ke Sun
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yuying Peng
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yingfang Tu
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yingying Qiang
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Zheyi Hua
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Zhong Zheng
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Xiangyu Ye
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Lixin Xue
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Guojun Jiang
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| |
Collapse
|
27
|
Mokoba T, Lu J, Zhang TC, Ouyang L, Yuan S. Superhydrophobic ODT-TiO2 NW-PDA nanocomposite-coated polyurethane sponge for spilled oil recovery and oil/water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Abdullah TA, Juzsakova T, Rasheed RT, Salman AD, Sebestyen V, Domokos E, Sluser B, Cretescu I. Polystyrene-Fe 3O 4-MWCNTs Nanocomposites for Toluene Removal from Water. MATERIALS 2021; 14:ma14195503. [PMID: 34639913 PMCID: PMC8509402 DOI: 10.3390/ma14195503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
In this research, multi-walled carbon nanotubes (MWCNTs) were functionalized by oxidation with strong acids HNO3, H2SO4, and H2O2. Then, magnetite/MWCNTs nanocomposites were prepared and polystyrene was added to prepare polystyrene/MWCNTs/magnetite (PS:MWCNTs:Fe) nanocomposites. The magnetic property of the prepared nano-adsorbent PS:MWCNTs:Fe was successfully checked. For characterization, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and BET surface area were used to determine the structure, morphology, chemical nature, functional groups, and surface area with pore volume of the prepared nano-adsorbents. The adsorption procedures were carried out for fresh MWCNTs, oxidized MWCNTs, MWCNTs-Fe, and PS:MWCNTs:Fe nanocomposites in batch experiments. Toluene standard was used to develop the calibration curve. The results of toluene adsorption experiments exhibited that the PS:MWCNTs:Fe nonabsorbent achieved the highest removal efficiency and adsorption capacity of toluene removal. The optimum parameters for toluene removal from water were found to be 60 min, 2 mg nano-sorbent dose, pH of 5, solution temperature of 35 °C at 50 mL volume, toluene concentration of 50 mg/L, and shaking speed of 240 rpm. The adsorption kinetic study of toluene followed the pseudo-second-order kinetics, with the best correlation (R2) value of 0.998, while the equilibrium adsorption study showed that the Langmuir isotherm was obeyed, which suggested that the adsorption is a monolayer and homogenous.
Collapse
Affiliation(s)
- Thamer Adnan Abdullah
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10001, Iraq;
| | - Tatjána Juzsakova
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Rashed Taleb Rasheed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10001, Iraq;
| | - Ali Dawood Salman
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Viktor Sebestyen
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Endre Domokos
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Brindusa Sluser
- Faculty Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
- Correspondence: (B.S.); (I.C.); Tel.: +40-741-914-342 (I.C.)
| | - Igor Cretescu
- Faculty Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
- Correspondence: (B.S.); (I.C.); Tel.: +40-741-914-342 (I.C.)
| |
Collapse
|
29
|
Hoang AT, Nižetić S, Duong XQ, Rowinski L, Nguyen XP. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. CHEMOSPHERE 2021; 277:130274. [PMID: 33770690 DOI: 10.1016/j.chemosphere.2021.130274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The threat of environmental pollution caused by spilled oil is rapidly increasing along with the expansion of oil exploration, the development of maritime activities and industrial growth. Oil spill incidents usually affect seriously the ecosystem and human life. Therefore, the treatment and recovery of the oil spill have been considered as an ultra-important issue to protect the environment and to minimize its negative impacts on socio-economic activities. Among methods of oil spill recovery, porous materials have emerged as potential absorbents possessing the capacity of absorbing spilled oil at a fast rate, high adsorption capacity, good selectivity, and high reusability. In this review paper, two types of polymer-based porous absorbents modified surface and structure were introduced for the treatment strategy of the oil-polluted water. In addition, the absorption mechanism and factors affecting the adsorption capacity for oils and organic solvents were thoroughly analyzed. More importantly, characteristics of polymer-based porous materials were discussed in detail based on microstructure analysis, absorption efficiency, and reusability. In general, this paper has provided an overview and a comprehensive assessment of the use of advanced polymer-based porous materials for the treatment of oil-polluted water, although the impacts of environmental factors such as wind, wave, and temperature should be further investigated in the future.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH), Ho Chi Minh city, Viet Nam.
| | | | - Xuan Quang Duong
- Department of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Lech Rowinski
- Institute of Naval Architecture and Ocean Engineering, Gdansk University of Technology, Poland
| | - Xuan Phuong Nguyen
- Institute of Maritime, Ho Chi Minh city University of Transport, Ho Chi Minh city, Viet Nam.
| |
Collapse
|
30
|
Ghasemi S, Abareshi H. Swelling behavior of super‐absorbent lipophilic polyelectrolytes based on poly(lauryl acrylate‐
co
‐styrene) comprised quaternary ammonium compounds with tetrafluoroborate anion in organic solvents. NANO SELECT 2021. [DOI: 10.1002/nano.202100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Soheila Ghasemi
- Department of Chemistry Shiraz University Shiraz 7194684795 I.R. Iran
| | - Habib Abareshi
- Department of Chemistry Shiraz University Shiraz 7194684795 I.R. Iran
| |
Collapse
|
31
|
Oliveira LMTM, Saleem J, Bazargan A, Duarte JLDS, McKay G, Meili L. Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124842. [PMID: 33412364 DOI: 10.1016/j.jhazmat.2020.124842] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Accidents involving oil transportation has increase due to directly connection with the elevation of global energy demand. The environmental losses are tremendous and brings huge economic issues to remediate the spilled oil. This report presents an up-to-date review on an overall aspects of oil spill remediation techniques, the fundamentals and advantages of sorption, the most applied materials through diverse types of oil spill sites and oils with variety features, highlight to natural materials and future prospective. As the environment preservation progressively becomes a major social concern issue, the achievement of a worldwide distribution process aligned with environmental legislation and economic viability is crucial to the oil industry. For this, a specific preparation considering several scenarios must be carried out regarding minimization of oil spillages. Since the sorbent materials are decisive for sorption, it was approached the main sorbents: natural, graphenic, nano, polymeric and waste materials, and future trends.
Collapse
Affiliation(s)
- Leonardo M T M Oliveira
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Alireza Bazargan
- School of Environment, College of Engineering, University of Tehran, Iran
| | - José Leandro da S Duarte
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil.
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Lucas Meili
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
32
|
Yang Y, Ali N, Bilal M, Khan A, Ali F, Mao P, Ni L, Gao X, Hong K, Rasool K, Iqbal HM. Robust membranes with tunable functionalities for sustainable oil/water separation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Zhou J, Du E, He Y, Fan Y, Ye Y, Tang B. Preparation of Carbonized Kapok Fiber/Reduced Graphene Oxide Aerogel for Oil‐Water Separation. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ji Zhou
- Hubei University Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering 430062 Wuhan China
| | - Enhui Du
- Hubei University Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering 430062 Wuhan China
| | - Yu He
- Hubei University Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering 430062 Wuhan China
| | - Yunde Fan
- Hubei University Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering 430062 Wuhan China
| | - Yong Ye
- Hubei University Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering 430062 Wuhan China
| | - Bin Tang
- Wuhan Textile University National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production 430073 Wuhan China
- Deakin University Institute for Frontier Materials 3216 Geelong/Melbourne Victoria Australia
| |
Collapse
|
34
|
Carbon Nanotubes-Filled Siloxane Composite Foams for Oil Recovery Application: Compression Properties. FIBERS 2020. [DOI: 10.3390/fib8070045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This paper studies the correlation between oil recovery usability and mechanical behavior under compression loads of an innovative oil recovery material. The examined composites are silicone foams filled with carbon nanotubes (CNT). Here, the reutilization of oil recovery processes of the newly developed composite foams is evaluated. In this regard, static and cyclic compressive tests are carried out. Samples filled with pristine and functionalized CNT are tested to evaluate the influence of the filler’s characteristics on the composite foam’s mechanical behavior. The results show that the presence of CNT (CNT-0) increases the elastic modulus (0.030 MPa) and collapse stress (0.010 MPa) of the siloxane matrix. On the contrary, as the CNT functionalization degree increases, a worsening of the composite’s mechanical performance is observed. CNT-0 foam evidences, also, the optimal mechanical stability to cyclic compressive loads, maintaining high stress values until 30 cycles. Furthermore, a correlation between the absorption capacity, elastic modulus, and cyclability is reported, highlighting a simplified approach to tailor the high absorption durability performance of filled CNT silicone foams. The promising results confirm the possible reuse of these new composite foams as absorbent materials for oil spill recovery applications.
Collapse
|