1
|
Lee S, Kim D, Meresa AA, Chang ST, Kim FS. Compatibility of cellulose-PEDOT:PSS composites and anions in solid-state organic electrochemical transistors. Carbohydr Polym 2025; 352:123146. [PMID: 39843043 DOI: 10.1016/j.carbpol.2024.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
We investigate the effects of water-processable celluloses on the charge-transport properties in the conducting polymer composites and their solid-state organic electrochemical transistors (OECTs). Water-soluble methyl cellulose (MC) and water-dispersible cellulose nanofiber (CNF) are blended with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in solution and used as a conductive channel. Both cellulose-PEDOT:PSS composites show fibrillar structures in thin films with respective dimensions of cellulose. The electrical conductivity was increased with 5-10 wt% of cellulose in the composite. The solid-state OECTs show better performance when the ionogel contains 1-ethyl-3-methylimidazolium triflate (EMIM:OTf) compared to the system with the commonly used EMIM bis(trifluoromethyl sulfonyl)imide (EMIM:TFSI). The MC-PEDOT:PSS composite paired with an EMIM:OTf-based ionogel exhibits a high figure-of-merit (μC⁎) of OECTs of >50 F cm-1 V-1 s-1 and an on-to-off current ratio of >103. Our results show that cellulose and EMIM:OTf are compatible with PEDOT:PSS and that appropriate materials pairing can improve the properties of PEDOT:PSS-based composites and the performance of their electrochemical devices.
Collapse
Affiliation(s)
- Solin Lee
- Department of Chemical Engineering, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Donguk Kim
- Department of Chemical Engineering, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Alem Araya Meresa
- Department of Chemical Engineering, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Suk Tai Chang
- Department of Chemical Engineering, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Felix Sunjoo Kim
- Department of Chemical Engineering, Chung-Ang University (CAU), Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Muzzio N, Garcia S, Flores L, Newman G, Gomez A, Santi A, Usen Nazreen MS, Martinez-Cartagena EM, Yirgaalem D, Sankarasubramanian S, Romero G. Biocompatible EDOT-Pyrrole Conjugated Conductive Polymer Coating for Augmenting Cell Attachment, Activity, and Differentiation. ACS APPLIED BIO MATERIALS 2025. [PMID: 39849945 DOI: 10.1021/acsabm.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation. The synthesized copolymer was characterized by Raman spectroscopy and dynamic light scattering. Its electrochemical properties were studied using galvanostatic charge-discharge (GCD) and voltammetry. PPy-PEDOT:PSS-coated hydrogels were characterized by Raman spectroscopy and atomic force microscopy, and protein adsorption was assessed using a quartz crystal microbalance with dissipation monitoring. Attachment and differentiation of the ND7/23 neuron hybrid cell line and C2C12 myoblasts were evaluated by cell cytoskeleton staining and quantification of morphological parameters. Viability was assessed by live/dead staining using flow cytometry. Cortex neural activity was studied by calcium ion influx that could be detected through the dynamic fluorescence changes of Fluo-4. The PPy-PEDOT:PSS coating supported cell attachment and differentiation and was nontoxic to cells. Primary neurons attached and remained responsive to electrical stimulation. Altogether, the biocompatible copolymer PPy-PEDOT:PSS is a simple yet effective alternative for hydrogel coating and presents great potential as an interface for nervous and other electrically excitable tissues.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| | - Samantha Garcia
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luis Flores
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gary Newman
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Athena Santi
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mohamed Shahid Usen Nazreen
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | - Delina Yirgaalem
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shrihari Sankarasubramanian
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Horike S, Nandal V, Wei Q, Seki K. Contributions of Both the Eastman Entropy of Transfer and Electric Double Layer to the Electromotive Force of Ionic Thermoelectric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4984-4995. [PMID: 39789981 DOI: 10.1021/acsami.4c19795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered. Herein, we theoretically estimated the open circuit voltages generated in the Stern layer, the diffuse layer and by the Eastman entropy of transfer. The Grahame equation has been generalized to consider the temperature gradient in the diffuse layer. The ion coverage difference between the hot and cold electrodes and the open circuit voltage are obtained by solving self-consistent equations using the adsorption isotherm. The results are compared with experimental results using a metal electrode and a conductive polymer-based electrode. We show the possible origin of the high ionic Seebeck effect caused by the asymmetry in the coverages of adsorbed ions in terms of the various types of interface capacitance factor at the hot and cold electrodes.
Collapse
Affiliation(s)
- Shohei Horike
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Kobe 657-8501, Japan
- Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Kobe 657-8501, Japan
- Center for Environmental Management, Kobe University, 1-1 Rokkodai-cho, Kobe 657-8501, Japan
| | - Vikas Nandal
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Qingshuo Wei
- Department of Materials and Chemistry, Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Seki
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
4
|
Guruge AG, Makki H, Troisi A. Structural properties of conductive polymer blends interfaced with water: computational insights from PEDOT:PSS. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:19245-19257. [PMID: 39465130 PMCID: PMC11497116 DOI: 10.1039/d4tc03066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
In various bioelectronic applications, conductive polymers come into contact with biological tissues, where water is the major component. In this study, we investigated the interface between the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and water, focusing on how the morphology of the PEDOT:PSS is altered by water permeation. We constructed well-equilibrated PEDOT:PSS-water systems in both PEDOT- and PSS-rich phases. Our findings show that water permeates into the polymer through a complex network of water channels, which exhibit a similar pore size distribution in both PEDOT- and PSS-rich phases, leading to similar water intake in these phases. Compared to the dry state of the polymer, water permeation leads to the formation of smaller, less ordered, and distantly located lamella crystallites, potentially resulting in reduced conductivity. Therefore, we argue that these structural changes from the dry state of the polymer to the wet state may be the origin of the significant conductivity reduction observed experimentally in PEDOT:PSS in water or PEDOT:PSS hydrogels.
Collapse
Affiliation(s)
- Amali G Guruge
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Hesam Makki
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
5
|
Liu C, Wang Y, Shi S, Zheng Y, Ye Z, Liao J, Sun Q, Dang B, Shen X. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. ACS NANO 2024; 18:27420-27432. [PMID: 39331416 DOI: 10.1021/acsnano.4c07677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
Collapse
Affiliation(s)
- Chencong Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yubo Zheng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiaqi Liao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Baokang Dang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Kassaun BB, Khodavandegar S, Fatehi P. Layer-by-Layer Deposition of Kraft Lignin and PEDOT:PSS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21199-21210. [PMID: 39344126 DOI: 10.1021/acs.langmuir.4c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Kraft lignin (KL) is a sustainable carbon-based substance with a potential use in photovoltaic materials. However, its conductivity is low, but it can be improved via incorporation with a conductive polymer, such as poly(3,4-ethylene dioxythiophene) (PEDOT): poly(styrenesulfonate) (PSS). This study examines the factors affecting the interaction of KL and PEDOT:PSS (PS) in a solution state using a quartz crystal microbalance with dissipation (QCM-D) and a stagnation point refractometer (SPAR). The results confirmed that aqueous environments, e.g., pH and ionic strengths, considerably affected particle size and zeta potential of KL and PS due to protonation, deprotonation, particle aggregation, and charge screening. The polymers exhibited the largest adsorbed mass and thickness at pH 6 and 10 mM NaCl on a solid surface, which was attributed to the relatively linear structure of PEDOT chains, exposing more adsorptive sites for interaction with KL. A 10 mM NaCl concentration facilitated the screening of charges on PS and KL surfaces, diminishing repulsive forces and enabling hydrophobic and cationic-π interaction, which led to increased adsorption. Contact angle and SEM investigations of the adsorbed layer revealed the water contact angle increasing and the morphology changing from a smoother layer to a porous surface, providing further evidence of adsorption. Furthermore, the conductivity was improved by the introduction of a PS adlayer on ITO glass when it was sandwiched between KL adsorbed layers. These findings provide insight into KL and PS interaction and suggest that KL can be used with PS for conductive materials, such as photovoltaics, imparting the waterproofness of the films.
Collapse
Affiliation(s)
- Banchamlak Bemerw Kassaun
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1, Canada
| | - Saba Khodavandegar
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1, Canada
| |
Collapse
|
7
|
Xu YT, Yu SY, Li Z, Kou BH, Pang JX, Zhao WW, Chen HY, Xu JJ. A nanofluidic spiking synapse. Proc Natl Acad Sci U S A 2024; 121:e2403143121. [PMID: 38959041 PMCID: PMC11252921 DOI: 10.1073/pnas.2403143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jian-Xiang Pang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
8
|
Resina L, Garrudo FFF, Alemán C, Esteves T, Ferreira FC. Wireless electrostimulation for cancer treatment: An integrated nanoparticle/coaxial fiber mesh platform. BIOMATERIALS ADVANCES 2024; 160:213830. [PMID: 38552500 DOI: 10.1016/j.bioadv.2024.213830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024]
Abstract
Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.
Collapse
Affiliation(s)
- Leonor Resina
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Department of Chemical Engineering, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain
| | - Fábio F F Garrudo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Instituto de Telecomunicações and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Carlos Alemán
- Department of Chemical Engineering, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain
| | - Teresa Esteves
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
9
|
Saha A, Ohori D, Sasaki T, Itoh K, Oshima R, Samukawa S. Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:95. [PMID: 38202550 PMCID: PMC10780969 DOI: 10.3390/nano14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F HC Solar, a formulation of PEDOT:PSS produced by Heraeus, GmbH, achieves over 500 S/cm without these secondary dopants. This work studies whether secondary dopants such as DMSO have any additional effect on this type of PEDOT:PSS. The temperature dependencies of the conductivity of F HC Solar spin-coated thin films measured using a four-probe method seem to exhibit different charge transport properties compared with secondary doped PH1000. Observations made using atomic force microscopy (AFM) show that different concentrations of DMSO affect the orientation of the PEDOT domains in the thin film. These morphological changes cause room temperature conductivity to reduce from 640 S/cm in pristine films to as low as 555 S/cm after adding 7 wt% of DMSO along the film. Such tuning may prove useful in future applications of PEDOT:PSS, such as nanoprobes, transistors and hybrid solar cells.
Collapse
Affiliation(s)
- Aditya Saha
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan; (A.S.)
| | - Daisuke Ohori
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan; (A.S.)
| | - Takahiko Sasaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan;
| | - Keisuke Itoh
- Industrial Technology Institute, Miyagi Prefectural Government, Sendai 980-0014, Japan;
| | - Ryuji Oshima
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan;
| | - Seiji Samukawa
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan; (A.S.)
- Institute of Communications Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| |
Collapse
|
10
|
Plog J, Wang X, Lichade KM, Pan Y, Yarin AL. Extremely-fast electrostatically-assisted direct ink writing of 2D, 2.5D and 3D functional traces of conducting polymer Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate- polyethylene oxide (PEDOT:PSS-PEO). J Colloid Interface Sci 2023; 651:1043-1053. [PMID: 37598624 DOI: 10.1016/j.jcis.2023.07.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
HYPOTHESIS Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an attractive conducting polymer, albeit its rheological properties are inappropriate for direct ink writing (DIW). Here it is hypothesized that a suspension of PEDOT:PSS with a non-conducting highly spinnable viscoelastic polymer, e.g., polyethylene oxide (PEO), will significantly facilitate printability and enhance the electrical conductivity (EC) of PEDOT:PSS-PEO. It is also hypothesized that high-humidity post-treatment will enhance the EC even further, and the application of the electric field can facilitate the DIW speed beyond the capabilities of current commercial 3D printers. EXPERIMENTS The rheological behavior of PEDOT:PSS suspensions with several non-conducting polymers was explored in the experiments. The EC of the suspensions was measured, including the effect of high-humidity post-treatment. High-speed DIW of the optimal suspension was experimentally demonstrated with the applied electric field. FINDINGS The findings revealed that PEO serves as a secondary dopant, and the suspension of 4.33 wt% PEDOT:PSS-52 wt% PEO possesses the EC > 15 times higher than that of PEDOT:PSS. Many 2D, 2.5D and 3D functional traces were printed at high resolution at the DIW speed up to 8.64 m/s (>10 times faster than current commercial printers), facilitated by the applied electric field. Post-treatment at 80-90% relative humidity enhanced the EC more than twice.
Collapse
Affiliation(s)
- J Plog
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA
| | - X Wang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA
| | - K M Lichade
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA
| | - Y Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA.
| | - A L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA; School of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
11
|
Oechsle AL, Schöner T, Deville L, Xiao T, Tian T, Vagias A, Bernstorff S, Müller-Buschbaum P. Ionic Liquid-Induced Inversion of the Humidity-Dependent Conductivity of Thin PEDOT:PSS Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47682-47691. [PMID: 37756141 DOI: 10.1021/acsami.3c08208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The humidity influence on the electronic and ionic resistance properties of thin post-treated poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films is investigated. In particular, the resistance of these PEDOT:PSS films post-treated with three different concentrations (0, 0.05, and 0.35 M) of ethyl-3-methylimidazolium dicyanamide (EMIM DCA) is measured while being exposed to a defined humidity protocol. A resistance increase upon elevated humidity is observed for the 0 M reference sample, while the EMIM DCA post-treated samples demonstrate a reverse behavior. Simultaneously performed in situ grazing-incidence small-angle X-ray scattering (GISAXS) measurements evidence changes in the film morphology upon varying the humidity, namely, an increase in the PEDOT domain distances. This leads to a detriment in the interdomain hole transport, which causes a rise in the resistance, as observed for the 0 M reference sample. Finally, electrochemical impedance spectroscopy (EIS) measurements at different humidities reveal additional contributions of ionic charge carriers in the EMIM DCA post-treated PEDOT:PSS films. Therefrom, a model is proposed, which describes the hole and cation transport in different post-treated PEDOT:PSS films dependent on the ambient humidity.
Collapse
Affiliation(s)
- Anna Lena Oechsle
- TUM School of Natural Science, Department of Physics, Chair for Functional Materials, Technical University of Munich, James Franck-Str. 1, 85748 Garching, Germany
| | - Tobias Schöner
- TUM School of Natural Science, Department of Physics, Chair for Functional Materials, Technical University of Munich, James Franck-Str. 1, 85748 Garching, Germany
| | - Lewin Deville
- TUM School of Natural Science, Department of Physics, Chair for Functional Materials, Technical University of Munich, James Franck-Str. 1, 85748 Garching, Germany
| | - Tianxiao Xiao
- TUM School of Natural Science, Department of Physics, Chair for Functional Materials, Technical University of Munich, James Franck-Str. 1, 85748 Garching, Germany
| | - Ting Tian
- TUM School of Natural Science, Department of Physics, Chair for Functional Materials, Technical University of Munich, James Franck-Str. 1, 85748 Garching, Germany
| | - Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 Km 163.5, AREA Science Park, Basovizza 34149, Trieste, Italy
| | - Peter Müller-Buschbaum
- TUM School of Natural Science, Department of Physics, Chair for Functional Materials, Technical University of Munich, James Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
12
|
Xie X, Xu Z, Yu X, Jiang H, Li H, Feng W. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat Commun 2023; 14:4289. [PMID: 37463898 DOI: 10.1038/s41467-023-40004-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Conductive hydrogels require tunable mechanical properties, high conductivity and complicated 3D structures for advanced functionality in (bio)applications. Here, we report a straightforward strategy to construct 3D conductive hydrogels by programable printing of aqueous inks rich in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inside of oil. In this liquid-in-liquid printing method, assemblies of PEDOT:PSS colloidal particles originating from the aqueous phase and polydimethylsiloxane surfactants from the other form an elastic film at the liquid-liquid interface, allowing trapping of the hydrogel precursor inks in the designed 3D nonequilibrium shapes for subsequent gelation and/or chemical cross-linking. Conductivities up to 301 S m-1 are achieved for a low PEDOT:PSS content of 9 mg mL-1 in two interpenetrating hydrogel networks. The effortless printability enables us to tune the hydrogels' components and mechanical properties, thus facilitating the use of these conductive hydrogels as electromicrofluidic devices and to customize near-field communication (NFC) implantable biochips in the future.
Collapse
Affiliation(s)
- Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Zhonggang Xu
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Xin Yu
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hong Jiang
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hongjiao Li
- College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
13
|
El Haitami A, Resmerita AM, Ursu LE, Asandulesa M, Cantin S, Farcas A. Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air-Water Interface. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4757. [PMID: 37445070 DOI: 10.3390/ma16134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Two poly(3,4-ethylenedioxythiophene) polyrotaxanes (PEDOT∙TMe-βCD and PEDOT∙TMe-γCD) end-capped by pyrene (Py) were synthesized by oxidative polymerization of EDOT encapsulated into TMe-βCD or TMe-γCD cavities with iron (III) chloride (FeCl3) in water and chemically characterized. The effect of TMe-βCD or TMe-γCD encapsulation of PEDOT backbones on the molecular weight, thermal stability, and solubility were investigated in depth. UV-vis absorption, fluorescence (FL), phosphorescence (PH), quantum efficiencies, and lifetimes in water and acetonitrile were also explored, together with their surface morphology and electrical properties. Furthermore, dynamic light scattering was used to study the hydrodynamic diameter (DH) and z-potential (ZP-ζ) of the water soluble fractions of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD. PEDOT∙TMe-βCD and PEDOT∙TMe-γCD exhibited a sharp monodisperse peak with a DH of 55 ± 15 nm and 122 ± 32 nm, respectively. The ZP-ζ value decreased from -31.23 mV for PEDOT∙TMe-βCD to -20.38 mV for PEDOT∙TMe-γCD, indicating that a negatively charged layer covers their surfaces. Surface pressure-area isotherms and Brewster angle microscopy (BAM) studies revealed the capability of the investigated compounds to organize into sizeable and homogeneous 2D supramolecular assemblies at the air-water interface. The control of the 2D monolayer organization through the thermodynamic parameters of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD suggests potential for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Alae El Haitami
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Ana-Maria Resmerita
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Mihai Asandulesa
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Sophie Cantin
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Aurica Farcas
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
14
|
Farcas A, Damoc M, Asandulesa M, Aubert PH, Ionut Tigoianu R, Laura Ursu E. The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
15
|
Lee I, Park S, Lee YS, Kim Y, Kang MH, Yun C. Gradual Morphological Change in PEDOT:PSS Thin Films Immersed in an Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1600-1610. [PMID: 36637867 DOI: 10.1021/acs.langmuir.2c03038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film is a promising material for electrodes, biomolecular sensor channels, and probes for physiological signals because the electrical conduction of PEDOT:PSS is tuned simply through the electrochemical reaction with the target analyte. However, forming a specific morphology or nanostructure on PEDOT:PSS thin films immersed in an aqueous solution is still a challenge. Herein, we report the mechanism for the stepwise morphological change in the highly conductive PEDOT:PSS layer that successfully explains the electrical and structural modulations that occur after a soaking test in various pH conditions. The change in PEDOT:PSS begins with the rapid swelling and dissolution of PSS-rich domains and the simultaneous structural rearrangement of the remaining PEDOT chains within 1 s of dipping. Analysis confirms that the pH conditions of an aqueous solution govern the oxidation state and the form of the PEDOT chains. After removing the water molecules, additional PEDOT-rich grains were generated and accumulated on the surface of the film, which exhibited hydrophobic barrier characteristics. With the help of this intrinsic barrier on the PEDOT:PSS surface, the sheet resistance slightly increased from 72 to 144 Ω/sq even after dipping in a water bath for 350 h. We also demonstrate the usability of the proposed approach on a sensor to detect vitamin C in an aqueous medium. Utilizing the electrochemical reaction of PEDOT:PSS films, the simple resistor sensor showed a response time of less than 150 s, which is 10 times faster than that observed in a previous report. The soaked samples also showed a more reliable linear correlation between the current change and the amount of ascorbic acid compared with pristine PEDOT:PSS. Both the proposed mechanism and the role of accumulated PEDOT-rich regions illustrate the versatile potential of highly conductive PEDOT:PSS films in the field of bioelectronic applications, owing to the increased design architecture.
Collapse
Affiliation(s)
- Inwoo Lee
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Sejung Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Yu Seong Lee
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Yejin Kim
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Moon Hee Kang
- School of Electronics Engineering, Chungbuk National University, Cheongju28644, Republic of Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| |
Collapse
|
16
|
Khan P, Kaushik R, Jayaraj A. Approaches and Perspective of Coarse-Grained Modeling and Simulation for Polymer-Nanoparticle Hybrid Systems. ACS OMEGA 2022; 7:47567-47586. [PMID: 36591142 PMCID: PMC9798744 DOI: 10.1021/acsomega.2c06248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Molecular modeling and simulations have emerged as effective and indispensable tools to characterize polymeric systems. They provide fundamental and essential insights to design a product of the required properties and to improve the understanding of a phenomenon at the molecular level for a particular system. The polymer-nanoparticle hybrids are materials with outstanding properties and correspondingly large applications whose study has benefited from this new paradigm. However, despite the significant expansion of modern day computational powers, investigation of the long time and large length scale phenomenon in polymeric and polymer-nanoparticle systems is still a challenging task to complete through all-atom molecular dynamics (AA-MD) simulations. To circumvent this problem, a variety of coarse-grained (CG) models have been proposed, ranging from the generic CG models for qualitative properties predictions to more realistic chemically specific CG models for quantitative properties predictions. These CG models have already delivered some success stories in the study of several spatial and temporal evolutions of many processes. Some of these studies were beyond the feasibility of traditional atomistic resolution models due to either the size or the time constraints. This review captures the different types of popular CG approaches that are utilized in the investigation of the microscopic behavior of polymer-nanoparticle hybrid systems. The rationale of this article is to furnish an overview of the popular CG approaches and their applications, to review several important and most recent developments, and to delineate the perspectives on future directions in the field.
Collapse
Affiliation(s)
- Parvez Khan
- Department
of Chemical Engineering, Aligarh Muslim
University, Aligarh202002, India
| | - Rahul Kaushik
- Laboratory
for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa230-0045, Japan
| | - Abhilash Jayaraj
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
17
|
Shvydkiy V, Dolgov S, Dubovik A, Kozlov M, Povkh A, Shishkina L, Duca G. New Aspects for the Estimation of the State of the Natural Water. CHEMISTRY JOURNAL OF MOLDOVA 2022. [DOI: 10.19261/cjm.2022.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
This paper presents a study of the hydrochemical composition and physicochemical properties of natural water samples from various sources in the Voronezh and Moscow regions. Two model systems are proposed for assessing the state of the aquatic environment: UV spectroscopy with spectrum decomposition by the Gauss method and spontaneous aggregation of lecithin in a polar medium. Based on the performed investigation, it was determined that the size of lecithin aggregates decreases, and the value of their zeta potential increases with an increase in the content of hydrophobic compounds in natural water.
Collapse
Affiliation(s)
- Viacheslav Shvydkiy
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygin str., Moscow 119334, Russia
| | - Sergey Dolgov
- Institute of Geography, Russian Academy of Sciences, 29, p.4, Staromonetny lane, Moscow 119017, Russia
| | - Alexander Dubovik
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygin str., Moscow 119334, Russia
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, Vavilov str., Moscow 119991, Russia
| | - Mikhail Kozlov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygin str., Moscow 119334, Russia
| | - Alisa Povkh
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygin str., Moscow 119334, Russia
| | - Lyudmila Shishkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygin str., Moscow 119334, Russia
| | - Gheorghe Duca
- Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova
| |
Collapse
|
18
|
Makki H, Troisi A. Morphology of conducting polymer blends at the interface of conducting and insulating phases: insight from PEDOT:PSS atomistic simulations. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:16126-16137. [PMID: 36387833 PMCID: PMC9632246 DOI: 10.1039/d2tc03158b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 06/12/2023]
Abstract
Having phase-separated conductive and less-conductive domains is a common morphology in semiconducting polymer blends as it exists in the case of PEDOT:PSS, which is a representative example with a wide range of applications. In this paper, we constructed atomistic models for the interface between the PEDOT-rich (conductive) grains and the PSS-rich (less-conductive) phase through molecular dynamics simulations. Our models are obtained from experimentally relevant compositions, based on precise force field parameters, and through a robust relaxation procedure. We show that both PEDOT-rich and PSS-rich phases consist of PEDOT lamellae embedded in PSS chains. The size of these lamellae depends on the PEDOT concentration in each phase and our model predictions are in quantitative agreement with the experimental data. Furthermore, our models suggest that neither the phases nor the interfaces are entirely connected by π-π stacking. Thus, inter-lamellae tunnelling is essential for both intra- and inter-grain charge transport. We also show that a small increase (≈8 wt%) in the PEDOT concentration results in rather larger lamellae sizes, considerably more oriented lamellae, and slightly better inter-lamellae connectivity, which result in enhanced intra-grain conductivity. Moreover, we show how enhancing phase separation between PEDOT-rich and PSS-rich domains (similar to the effect of polar co-solvents), i.e., pulling out PEDOT from the PSS-rich phase and adding it in the PEDOT-rich phase, highly enhances the intra-grain connectivity but decreases the inter-grain conduction paths through the interface. Our results explain how the marginal extra degree of phase separation (based on experimentally obtained values) could result in a great enhancement in the overall film conductivity.
Collapse
Affiliation(s)
- Hesam Makki
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
19
|
Liu Z, Li X, Zou R, Zhou Z, Ma Q, Zhang P. Deciphering the quaternary structure of PEDOT:PSS aqueous dispersion with small-angle scattering. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Pteroyl-γ-l-glutamate/Pluronic® F68 modified polymeric micelles loaded with docetaxel for targeted delivery and reduced toxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Oechsle AL, Heger JE, Li N, Yin S, Bernstorff S, Müller-Buschbaum P. In Situ Observation of Morphological and Oxidation Level Degradation Processes within Ionic Liquid Post-treated PEDOT:PSS Thin Films upon Operation at High Temperatures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30802-30811. [PMID: 35759690 DOI: 10.1021/acsami.2c05745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic thermoelectric thin films are investigated in terms of their stability at elevated operating temperatures. Therefore, the electrical conductivity of ethyl-3-methylimidazolium dicyanamide (EMIM DCA) post-treated poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin films is measured over 4.5 h of heating at 50 or 100 °C for different EMIM DCA concentrations. The changes in the electrical performance are correlated with changes in the film morphology, as evidenced with in situ grazing-incidence small-angle X-ray scattering (GISAXS). Due to the overall increased PEDOT domain distances, the resulting impairment of the interdomain charge carrier transport directly correlates with the observed electrical conductivity decay. With in situ ultraviolet-visible (UV-Vis) measurements, a simultaneously occurring reduction of the PEDOT oxidation level is found to have an additional electrical conductivity lowering contribution due to the decrease of the charge carrier density. Finally, the observed morphology and oxidation level degradation is associated with the deterioration of the thermoelectric properties and hence a favorable operating temperature range is suggested for EMIM DCA post-treated PEDOT:PSS-based thermoelectrics.
Collapse
Affiliation(s)
- Anna Lena Oechsle
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, 85748 Garching, Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, 85748 Garching, Germany
| | - Nian Li
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, 85748 Garching, Germany
| | - Shanshan Yin
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, 85748 Garching, Germany
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 km 163.5, AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
22
|
Zhuang A, Huang X, Fan S, Yao X, Zhu B, Zhang Y. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:123-137. [PMID: 34935351 DOI: 10.1021/acsami.1c16855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silk fibroin (SF)-based electroactive biomaterials with favorable electroconductive property and transparency have great potential applications for cell culture and tissue engineering. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an excellent candidate as a conductive component, which has been widely used in the field of bioelectronics; however, it is hard to be directly coated onto the surface of regenerated SF (RSF) materials with good stability under a cell culture environment. In this study, a one-step facile PEDOT:PSS modification approach for RSF films based on a suitable post-treatment process of RSF was developed. PEDOT:PSS was successfully embedded and fixed into the shallow surface of an RSF film, forming a tightly conjunct conductive layer on the film surface based on the conformation transition of RSF during the post-treatment process. The conductive layer demonstrated a PSS-rich surface and a PEDOT-rich bulk structure and showed excellent stability under a cell culture environment. More specifically, the robust RSF/PEDOT:PSS film achieved in the post-treatment formula with 70% ethanol proportion possessed best comprehensive properties such as a sheet resistance of 3.833 × 103 Ω/square, a conductivity of 1.003 S/cm, and transmittance over 80% at maximum in the visible range. This kind of electroactive biomaterial also showed good electrochemical stability and degradable properties. Moreover, pheochromocytoma-derived cell line (PC12) cells were cultured on the RSF/PEDOT:PSS film, and an effective electrical stimulation cell response was demonstrated. The facile preparation strategy and the good electroconductive property and transparency make this RSF/PEDOT:PSS film an ideal candidate for neuronal tissue engineering and further for biomedical applications.
Collapse
Affiliation(s)
- Ao Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Modarresi M, Zozoulenko IV. Why does solvent treatment increase conductivity of PEDOT:PSS? Insight from molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:22073-22082. [DOI: 10.1039/d2cp02655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) is one of the most important conducting polymers. In its pristine form its electrical conductivity is low, but it can be enhanced by several orders of magnitude by...
Collapse
|
24
|
Arumughan V, Nypelö T, Hasani M, Larsson A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv Colloid Interface Sci 2021; 298:102529. [PMID: 34773888 DOI: 10.1016/j.cis.2021.102529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The increasing need for new material applications based on cellulose demands increased functional diversity and thus new functionalisation/modification approaches. The non-covalent modification of cellulose fibres via the adsorption of functional polymers has emerged as a promising route for tailoring the properties of material. This review focuses on fundamental aspects of polymer adsorption on cellulose surfaces, where the adsorption of polyelectrolytes and non-polyelectrolytes are treated separately. Adsorption studies on model surfaces as well as cellulose macro-fibres are reviewed. A correlation of the adsorption findings with the Scheutjens-Fleer polymer adsorption theory is provided, allowing the fundamentals behind the polymer adsorption phenomenon and its context in utilization of cellulose fibres to be understood.
Collapse
|
25
|
Oechsle AL, Heger JE, Li N, Yin S, Bernstorff S, Müller-Buschbaum P. Correlation of Thermoelectric Performance, Domain Morphology and Doping Level in PEDOT:PSS Thin Films Post-Treated with Ionic Liquids. Macromol Rapid Commun 2021; 42:e2100397. [PMID: 34491602 DOI: 10.1002/marc.202100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Indexed: 12/25/2022]
Abstract
Ionic liquid (IL) post-treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin films with ethyl-3-methylimidazolium dicyanamide (EMIM DCA), allyl-3-methylimidazolium dicyanamide (AMIM DCA), and 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM TCB) is compared. Doping level modifications of PEDOT are characterized using UV-Vis spectroscopy and directly correlate with the observed Seebeck coefficient enhancement. With conductive atomic force microscopy (c-AFM) the authors investigate changes in the topographic-current features of the PEDOT:PSS thin film surface due to IL treatment. Grazing incidence small-angle X-ray scattering (GISAXS) demonstrates the morphological rearrangement towards an optimized PEDOT domain distribution upon IL post-treatment, directly facilitating the interconductivity and causing an increased film conductivity. Based on these improvements in Seebeck coefficient and conductivity, the power factor is increased up to 236 µW m-1 K- 2 . Subsequently, a model is developed indicating that ILs, which contain small, sterically unhindered ions with a strong localized charge, appear beneficial to boost the thermoelectric performance of post-treated PEDOT:PSS films.
Collapse
Affiliation(s)
- Anna Lena Oechsle
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, Garching, 85748, Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, Garching, 85748, Germany
| | - Nian Li
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, Garching, 85748, Germany
| | - Shanshan Yin
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, Garching, 85748, Germany
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 km 163.5, AREA Science Park, Basovizza, 34149, Italy
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James Franck-Str. 1, Garching, 85748, Germany.,Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, Garching, 85748, Germany
| |
Collapse
|
26
|
Zozoulenko I, Franco-Gonzalez JF, Gueskine V, Mehandzhiyski A, Modarresi M, Rolland N, Tybrandt K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Viktor Gueskine
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1436, Iran
| | - Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
27
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
28
|
On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors. Carbohydr Polym 2021; 260:117818. [PMID: 33712162 DOI: 10.1016/j.carbpol.2021.117818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conducting polymer frequently used with cellulose, to develop advanced electronic materials. To understand the fundamental interactions between cellulose and PEDOT:PSS, a quartz crystal microbalance with dissipation (QCM-D) was used to study the adsorption of PEDOT:PSS onto model films of cellulose-nanofibrils (CNFs) and regenerated cellulose. The results show that PEDOT:PSS adsorbs spontaneously onto anionically charged cellulose wherein the adsorbed amount can be tuned by altering solution parameters such as pH, ionic strength and counterion to the charges on the CNF. Temperature-dependent QCM-D studies indicate that an entropy gain is the driving force for adsorption, as the adsorbed amount of PEDOT:PSS increased with increasing temperature. Colloidal probe AFM, in accordance with QCM-D results, also showed an increased adhesion between cellulose and PEDOT:PSS at low pH. AFM images show bead-like PEDOT:PSS particles on CNF surfaces, while no such organization was observed on the regenerated cellulose surfaces. This work provides insight into the interaction of PEDOT:PSS/cellulose that will aid in the design of sustainable electronic devices.
Collapse
|