1
|
Sun S, Tan Y, Cheng Q, Cai Y, Zheng J, Wang W, Xu L, Li G, Wang D, Zhang L, Wang Y. Thermoplastic PHB-Reinforced Chitosan Piezoelectric Films for Biodegradable Pressure Sensors. ACS APPLIED BIO MATERIALS 2024; 7:6823-6831. [PMID: 39302705 DOI: 10.1021/acsabm.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Flexible and wearable pressure sensors have attracted significant attention in the fields of smart medicine and human health monitoring. Nevertheless, the design and fabrication of degradable disposable pressure sensors still face urgent challenges. Herein, we fabricated poly(3-hydroxybutyrate) (PHB)-reinforced chitosan (CS) piezoelectric films for intelligent sensors through a simple, low-cost, and environmentally friendly roll-forming method. The results show that PHB doping successfully increased the effective piezoelectric coefficient of the chitosan-based film from 40.12 to 49.38 pm/V (a 23% increase). Simultaneously, the pressure sensor based on the CS/PHB film exhibited excellent response sensitivity (484 mV/kPa) and a wide linear response range (0-130 kPa), which could be used as haptic sensors and motion monitoring sensors for the fast response to human motion signals. Additionally, the CS/PHB film could be completely degraded within 18 days in a natural soil environment, demonstrating outstanding degradability. Therefore, chitosan-based piezoelectric films with excellent biodegradability and piezoelectric characteristics have been successfully fabricated in this work, which will promote the innovative development of green chitosan-based electronic devices and disposable pressure sensors.
Collapse
Affiliation(s)
- Shuang Sun
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qikuan Cheng
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuchen Cai
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jiaqi Zheng
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dong Wang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Lu Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yunming Wang
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
Cetinkaya A, Kaya SI, Ozcelikay G, Budak F, Ozkan SA. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Crit Rev Anal Chem 2024; 54:1227-1242. [PMID: 35943520 DOI: 10.1080/10408347.2022.2109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Rahmani Khalili N, Banitalebi Dehkordi A, Amiri A, Mohammadi Ziarani G, Badiei A, Cool P. Tailored Covalent Organic Framework Platform: From Multistimuli, Targeted Dual Drug Delivery by Architecturally Engineering to Enhance Photothermal Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28245-28262. [PMID: 38770930 DOI: 10.1021/acsami.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-β-cyclodextrin (β-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.
Collapse
Affiliation(s)
| | - Ali Banitalebi Dehkordi
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
5
|
Karthik R, Sukanya R, Chavan PR, Hasan M, Kamaraj E, Breslin CB, Lee J, Shim JJ. Temperature-Induced Conversion of 2D Vanadium-Doped MoSe 2 Nanosheets to 1D V 2MoO 8 Rods: Enhanced Performance in Electrochemical Antibiotic Detection in Biological and Environmental Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29374-29389. [PMID: 38781311 DOI: 10.1021/acsami.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, new strategies were developed to prepare 1D-V2MoO8 (VMO) rods from 2D V-doped MoSe2 nanosheets (VMoSe2) with good control over morphology and crystallinity by a facile hydrothermal and calcination process. The morphological changes from 2D to 1D rods were controlled by changing the calcination temperature from 300 to 600 °C. The elimination of Se and the incorporation of O into the V-Mo structure were evaluated by TGA, p-XRD, Raman, FE-SEM, EDAX, FE-TEM, and XPS analyses. These results prove that the optimization of the physical parameters leads to changes in the crystal phase and textural properties of the prepared material. The VMoSe2 and its calcined products were investigated as electrochemical sensors for the detection of the antibacterial drug nitrofurantoin (NFT). At a calcination temperature of 500 °C, the modified screen-printed carbon electrodes (SPCE) proved to be an excellent electrochemical sensor for the detection of NFT in neutral media. Under the optimized conditions, VMO-500 °C/SPCE exhibits low detection limit (LOD) (0.015 μM), wide linear ranges (0.1-31, 47-1802 μM), good sensitivity, and selectivity. The proposed sensor was successfully used for the analysis of NFT in real samples with good recovery results. Moreover, the reduction potential of NFT agreed well with the theoretical analysis using quantum chemical calculations, with the B3LYP with 6-31G(d,p) basis set predicting an E0 value of -0.45 V. The interaction between the electrode surface and NFT via the LUMO diagram and the electrostatic potential surface is also discussed.
Collapse
Affiliation(s)
- Raj Karthik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, India
| | - Ramaraj Sukanya
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Prajakta R Chavan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Mahmudul Hasan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Eswaran Kamaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Carmel B Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| |
Collapse
|
6
|
Liu P, Dong Y, Li X, Zhang Y, Liu Z, Lu Y, Peng X, Zhai R, Chen Y. Multilayered Fe 3O 4@(ZIF-8) 3 combined with a computer-vision-enhanced immunosensor for chloramphenicol enrichment and detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134150. [PMID: 38552394 DOI: 10.1016/j.jhazmat.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The misuse and overuse of chloramphenicol poses severe threats to food safety and human health. In this work, we developed a magnetic solid-phase extraction (MSPE) pretreatment material coated with a multilayered metal-organic framework (MOF), Fe3O4 @ (ZIF-8)3, for the separation and enrichment of chloramphenicol from fish. Furthermore, we designed an artificial-intelligence-enhanced single microsphere immunosensor. The inherent ultra-high porosity of the MOF and the multilayer assembly strategy allowed for efficient chloramphenicol enrichment (4.51 mg/g within 20 min). Notably, Fe3O4 @ (ZIF-8)3 exhibits a 39.20% increase in adsorption capacity compared to Fe3O4 @ZIF-8. Leveraging the remarkable decoding abilities of artificial intelligence, we achieved the highly sensitive detection of chloramphenicol using a straightforward procedure without the need for specialized equipment, obtaining a notably low detection limit of 46.42 pM. Furthermore, the assay was successfully employed to detect chloramphenicol in fish samples with high accuracy. The developed immunosensor offers a robust point-of-care testing tool for safeguarding food safety and public health.
Collapse
Affiliation(s)
- Puyue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiming Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhi Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yingying Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xuewen Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ruifang Zhai
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yiping Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
7
|
Zhang Z, Zheng H, Liu Y, Ma S, Feng Q, Qu J, Zhu X. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. ENVIRONMENTAL RESEARCH 2024; 249:118466. [PMID: 38354882 DOI: 10.1016/j.envres.2024.118466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 μM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Ying Liu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Shuang Ma
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Qi Feng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
8
|
U Din M, Batool A, Ashraf RS, Yaqub A, Rashid A, U Din NM. Green Synthesis and Characterization of Biologically Synthesized and Antibiotic-Conjugated Silver Nanoparticles followed by Post-Synthesis Assessment for Antibacterial and Antioxidant Applications. ACS OMEGA 2024; 9:18909-18921. [PMID: 38708285 PMCID: PMC11064210 DOI: 10.1021/acsomega.3c08927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
The paper presents the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) when conjugated with two antibiotics levofloxacin and ciprofloxacin as well as biologically synthesized nanoparticles from Moringa oleifera and Curcuma longa. Leaves of Moringa and powder of Curcuma were used in the green synthesis of silver nanoparticles. Ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used for the characterization of the synthesized silver nanoparticles. Comparison of levofloxacin and ciprofloxacin and their conjugated AgNPs was also studied for antibacterial and antioxidant activity. The synthesis of Moringa-AgNPs, turmeric-AgNPs, levofloxacin-AgNPs, and ciprofloxacin-AgNPs was confirmed by UV spectroscopy. An absorption peak value of 400-450 nm was observed, and light to dark brown color indicated the synthesis of AgNPs. Moringa-AgNPs revealed high antioxidant activity (80.3 ± 3.14) among all of the synthesized AgNPs. Lev-AgNPs displayed the highest zone of inhibition for Staphylococcus aureus, while in Escherichia coli, Cip-AgNPs showed high antibacterial activity. Furthermore, AgNPs synthesized using green methods exhibit high and efficient antimicrobial activities against two food-borne pathogens. Biologically synthesized nanoparticles exhibited antibacterial activity against E. coli (13.73 ± 0.46 with Tur-AgNPs and 13.53 ± 0.32 with Mor-AgNPs) and S. aureus (14.16 ± 0.24 with Tur-AgNPs and 13.36 ± 0.77 with Mor-AgNPs) by using a well diffusion method with significant shrinkage and damage of the bacterial cell wall, whereas antibiotic-conjugated nanoparticles showed high antibacterial activity compared to biologically synthesized nanoparticles with 14.4 ± 0.37 for Cip-AgNPs and 13.93 ± 0.2 for Lev-AgNPs for E. coli and 13.3 ± 0.43 for Cip-AgNPs and 14.33 ± 0.12 for Lev-AgNPs for S. aureus. The enhanced efficiency of conjugated silver nanoparticles is attributed to their increased surface area compared to larger particles. Conjugation of different functional groups contributes to improved reactivity, creating active sites for catalytic reactions. Additionally, the precise control over the size and shape of green-synthesized nanoparticles further augments their catalytic and antibiotic activities.
Collapse
Affiliation(s)
- Mehwish
Mohy U Din
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Andleeb Batool
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Raja Shahid Ashraf
- Department
of Chemistry, Institute of Chemical Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Atif Yaqub
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Aneeba Rashid
- Department
of Botany, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Nazish Mohy U Din
- Sustainable
Development Study Center, Government College
University, Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
9
|
Doğan K, Ünal Taş D, Persil Çetinkol Ö, Forough M. Fluorometric and colorimetric platforms for rapid and sensitive hydroxychloroquine detection in aqueous samples. Talanta 2024; 270:125523. [PMID: 38101033 DOI: 10.1016/j.talanta.2023.125523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The detection of pharmaceuticals has been an active area of research with numerous application areas ranging from therapeutic and environmental monitoring to pharmaceutical manufacturing and diagnostics. And, the emergence of COVID-19 pandemic has increased the demand for detection of certain active pharmaceutical ingredients such as Hydroxychloroquine (HCQ) mainly due to their increased manufacturing and usage. In this study, we present two optical, fluorometric and colorimetric, detection platforms for the rapid and sensitive detection of HCQ. These platforms take advantage of the interactions between the highly fluorescent dye Thioflavin T (ThT) and Tel24 G-quadruplex (G4) DNA structure, as well as the salt-induced aggregation behavior of negatively charged citrate-capped silver nanoparticles (Cit-AgNPs) in the presence of HCQ. In the fluorometric method, the addition of HCQ led to a significant and rapid decrease in the fluorescence signal of the ThT + Tel24 probe. In the colorimetric method, HCQ induced the aggregation of Cit-AgNPs in the presence of NaCl, resulting in a noticeable color change from yellowish-gray to colorless. Under the optimized conditions, the colorimetric platform exhibited a linear range of 18.0-240.0 nM and a detection limit of 9.2 nM, while the fluorometric platform showed a linear range of 0.24-5.17 μM and a detection limit of 120 nM. The selectivity of the proposed optical methods towards the target analyte was demonstrated by evaluating the response to other structurally similar small molecules. Finally, the practical applicability of both detection systems was confirmed by analyzing HCQ-spiked human urine samples that yielded average recoveries ranging from 75.4 to 110.2 % for the fluorometric platform and 86.9-98.2 % for the colorimetric platform. These results indicate the potential of the developed methods for HCQ detection in complex matrices.
Collapse
Affiliation(s)
- Kübra Doğan
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Dilek Ünal Taş
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
10
|
Zhao Z, Qi X, He Y, Li N, Lai H, Liu B, Chen Y, Jin T. Oxygen vacancy-rich Fe 2(MoO 4) 3 combined with MWCNTs for electrochemical sensors of fentanyl and its analogs. Mikrochim Acta 2024; 191:159. [PMID: 38411763 DOI: 10.1007/s00604-024-06222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Hundreds of thousands of people dying from the abuse of fentanyl and its analogs. Hence, the development of an efficient and highly accurate detection method is extremely relevant and challenging. Therefore, we proposed the introduction of oxygen defects into Fe2(MoO4)3 nanoparticles for improving the catalyst performance and combining it with multi-walled carbon nanotubes (MWCNTs) for electrochemical detection of fentanyl and its analogs. Oxygen vacancy-rich Fe2(MoO4)3 (called r-Fe2(MoO4)3) nanoparticles were successfully synthesized and characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectra, BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) and investigated by comparison with oxygen vacancy-poor Fe2(MoO4)3 (called p-Fe2(MoO4)3). The obtained oxygen vacancy-rich Fe2(MoO4)3 was ultrasonically composited with MWCNTs for modification of glassy carbon electrodes (GCEs) used for the electrochemical detection of fentanyl and its analogs. The modified MWCNT-GCE showed ultrasensitivity to fentanyl, sufentanil, alfentanil, and acetylfentanyl with limits of detection (LOD) of 0.006 µmol·L-1, 0.008 µmol·L-1, 0.018 µmol·L-1, and 0.024 µmol·L-1, respectively, and could distinguish among the four drugs based on their peak voltages. Besides, the obtained r-Fe2(MoO4)3/MWCNT composite also exhibited high repeatability, selectivity, and stability. It showed satisfactory detection performance on real samples, with recoveries of 70.53 ~ 94.85% and 50.98 ~ 82.54% in serum and urine for the four drugs in a concentration range 0.2 ~ 1 µM, respectively. The experimental results confirm that the introduction of oxygen vacancies effectively improves the sensitivity of fentanyl electrochemical detection, and this work provides some inspiration for the development of catalytic materials for electrochemical sensors with higher sensitivity.
Collapse
Affiliation(s)
- Zhidong Zhao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China
- Guizhou Police College, 550005, Guiyang, People's Republic of China
| | - Xingrui Qi
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China
| | - Yuan He
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- CAS Testing Technical Services (Guangzhou) Co. Ltd, 510650, Guangzhou, People's Republic of China
- Guangdong Industry Polytechnic, 510300, Guangzhou, People's Republic of China
| | - Nian Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China
| | - Huajie Lai
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China
- CAS Testing Technical Services (Guangzhou) Co. Ltd, 510650, Guangzhou, People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, People's Republic of China
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Bo Liu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China
- CAS Testing Technical Services (Guangzhou) Co. Ltd, 510650, Guangzhou, People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, People's Republic of China
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Yufang Chen
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China
- CAS Testing Technical Services (Guangzhou) Co. Ltd, 510650, Guangzhou, People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, People's Republic of China
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Tao Jin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650, Guangzhou, People's Republic of China.
- University of Chinese Academy of Sciences, 100000, Beijing, People's Republic of China.
- CAS Testing Technical Services (Guangzhou) Co. Ltd, 510650, Guangzhou, People's Republic of China.
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, People's Republic of China.
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China.
| |
Collapse
|
11
|
Wang T, Ji H, Koppala S, Zhang Y, Song D, Yan Y, Phan D, Le T, Zhang L. Efficient and eco-friendly cadmium ion recycling: Ultrasonic enhancement of aluminum powder replacement for low-temperature industrial applications. ULTRASONICS SONOCHEMISTRY 2024; 102:106764. [PMID: 38219549 PMCID: PMC10825664 DOI: 10.1016/j.ultsonch.2024.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Replacing cadmium ions in cadmium-containing solutions with aluminum powder is beneficial for cadmium resource recycling and environmental protection. However, the conventional aluminum powder replacement method requires harsh temperatures and prolonged conditions. In this study, the effect and mechanism of ultrasound on the replacement of cadmium with aluminum powder were investigated at low temperatures. Ultrasound has been proven to promote the etching of alumina films through the use of TEM and XPS, providing mechanistic support for the superiority of the new process. A degree of Cd replacement as high as 95.08 % is achieved at a low temperature (60 ℃) and in a short time (20 min) when using ultrasonicated aluminum powder replacement, which is 42.17 % higher than that of conventional aluminum powder. Compared with conventional aluminum powder replacement conditions with the same effect, the introduction of ultrasound can reduce the temperature by 30℃ and shorten the replacement time by 2/3, which has significant advantages in reaction efficiency and safety. The strengthening mechanism of ultrasound on the replacement effect of aluminum powder at low temperatures is revealed through detailed discussions on the corrosion of alumina films, agglomeration of aluminum powder, and adhesion of replacement products to the surface of aluminum powder, dissolved oxygen in the solution, and redissolution of cadmium. Therefore, a new approach for replacing aluminum powder in solutions with high Cd2+ concentrations at low temperatures is proposed in this work, which is expected to solve the existing harsh and dangerous problems of industrial aluminum powder replacement.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hongtu Ji
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Sivasankar Koppala
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Yimin Zhang
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Deyang Song
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Yongzhou Yan
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Duclenh Phan
- Science and Technology Center, MienTrung Industry and Trade College, Phu Yen 56000, Viet Nam
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
12
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Eslamieh-Ei FM, Sharifimoghaddammood N, Poustchi Tousi SA, Basharkhah S, Mottaghipisheh J, Es-Haghi A, Taghavizadeh Yazdi ME, Iriti M. Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Nat Prod Res 2023:1-9. [PMID: 37708315 DOI: 10.1080/14786419.2023.2256023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Liver cancer is one of the most common lethal malignancy in the world. To treat liver cancer, new cure options are crucial. The use of natural substances along nanosciences may provide healing with lower toxicity and a smaller amount of side properties. In this research, The three-component selenium-silver-chitosan nanocomposite (Se-Ag-CS NCs) were synthesised with the help of ultrasound in a stepwise manner. The as-synthesised Se-Ag-CS NCs were characterised accordingly by applying powder X-Ray diffraction (PXRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS) and potential. The PXRD demonstrated that the NCs were synthesised successfully and the grain sizes of 27.3 were obtained. The FESEM and TEM analyses have shown the NCs have a nano-sized structure with spherical and rod-like morphologies in a coating of CS. The DLS analysis also revealed that NCs were synthesised in nanoscale particles. The NCs' surface charge was also positive due to the presence of chitosan. Different concentrations of NCs (0, 0.125, 0.250, 0.500, and 1 mg/ml) were tested at different times (24, 48, and 72 h) to measure cytotoxicity against liver cancer cells. The results showed at a concentration of 1 mg/mL in 72 h, the most toxicity effects were applied to liver cancer cells. Moreover, the results indicated NCs can inhibit the growth of cancer cells in a dose-dependent manner, while the toxicity of nanocomposite on normal cells was less. It is important to create nanocomposites derived from natural polymers as a new strategy in cancer treatment that can fight cancer cells while having low toxicity for normal cells. Therefore, the present results can be considered in improving cancer-fighting methods.
Collapse
Affiliation(s)
| | | | | | - Samira Basharkhah
- Department of Biochemistry, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Firenze, Italy
| |
Collapse
|
14
|
Zheng X, Gao M, Wu L, Lu X, Lin Q, Zhong H, Lu Y, Zhang Y, Zhang X. Ceftazidime-assisted synthesis of ultrasmall chitosan nanoparticles for biofilm penetration and eradication of Pseudomonas aeruginosa. Sci Rep 2023; 13:13481. [PMID: 37596397 PMCID: PMC10439121 DOI: 10.1038/s41598-023-40653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infections present a grave threat to immunocompromised individuals, particularly those with cystic fibrosis due to the development of bacterial biofilms. In this study, we engineered self-assembling chitosan-ceftazidime nanoparticles (CSCE) capable of effectively penetrating biofilms and eradicating P. aeruginosa. The CSCE nanoparticles were synthesized through ionic cross-linking, combining negatively charged ceftazidime with positively charged chitosan, resulting in uniform nanoparticles measuring approximately 40 nm in diameter, exhibiting high dispersity and excellent biocompatibility. Remarkably, these nanoparticles exhibited significant inhibition of P. aeruginosa growth, reduced pyocyanin production, and diminished biofilm formation, achieving a maximum inhibition rate of 22.44%. Furthermore, in vivo investigations demonstrated enhanced survival in mice with abdominal P. aeruginosa infection following treatment with CSCE nanoparticles, accompanied by reduced levels of inflammatory cytokines Interleukin-6 (125.79 ± 18.63 pg/mL), Interleukin-17 (125.67 ± 5.94 pg/mL), and Tumor Necrosis Factor-α (135.4 ± 11.77 pg/mL). Critically, mice treated with CSCE nanoparticles showed no presence of bacteria in the bloodstream following intraperitoneal P. aeruginosa infection. Collectively, our findings highlight the potential of these synthesized nanoparticles as effective agents against P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaoran Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Hai Zhong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211100, China.
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
15
|
Mahmood A, Munir T, Rasul A, Ghfar AA, Mumtaz S. Polyethylene glycol and chitosan functionalized manganese oxide nanoparticles for antimicrobial and anticancer activities. J Colloid Interface Sci 2023; 648:907-915. [PMID: 37329602 DOI: 10.1016/j.jcis.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Biocompatible polymer-functionalized magnetic nanoparticles could offer promising applications in biomedical sciences. We fabricated polymer functionalized tri-manganese tetra oxide (Mn3O4) nanoparticles with the co-precipitation method and an octahedral crystal structure having a crystallite size of 10-17 nm was identified via XRD analyses. The SEM graph depicted the non-uniform and smooth surface of PEG-functionalized Mn3O4 NPs as compared to Mn3O4 and chitosan-coated Mn3O4 NPs. Elemental composition in the prepared sample was examined by EDX analysis. Various modes such as MnO, MnOH, OH, symmetric, and anti-symmetric of CH2 attached to the spectrum of Mn3O4 NPs were observed with FTIR analysis. The magnetization factor decreased and increase the coreacivity and retentivity of surface functionalized Mn3O4-NPs was calculated via VSM analysis. In-vitro bioassay, antibacterial activity was tested against Escherichiacoli, Bacillus cereus, and anti-fungal activities against two Fusarium strains indicated clear antimicrobial activities. The MTT assay to examine the anticancer activity against the MCF-7 cancer cell line was performed and the T1 MRI contrast agent demonstrated that PEG-coated Mn3O4 NPs exhibited anti-cancer activities. We propose that surface-functionalized magnetic NPs used for the treatment of cancer by using a remote controlled process of hyperthermia therapy.
Collapse
Affiliation(s)
- Arslan Mahmood
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan.
| | - Tariq Munir
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sohail Mumtaz
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
16
|
Aghaei A, Shaterian M, Danafar H, Likozar B, Šuligoj A, Gyergyek S. Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation. Mikrochim Acta 2023; 190:184. [PMID: 37069457 DOI: 10.1007/s00604-023-05761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023]
Abstract
In recent years, various types of radiosensitizers have been developed to address the challenges of cancer radiotherapy. Here, platinum-functionalized oxygenated single-walled carbon nanotubes (O-SWCNTs-Pt) coated with folic acid (FA) and bovine serum albumin (BSA) (O-SWCNTs-Pt-BSA-FA) were synthesized, characterized, and used as radiosensitizers to improve the therapeutic efficacy of X-rays in a mouse model of breast cancer (4T1) in vitro. The nanosensitizer was characterized by different techniques, such as transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet-visible (UV-visible), and Fourier transform infrared (FTIR) spectrometry. The evaluation of cell viability with nanocarriers O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA is reported at the concentrations of 10, 30, and 90 μg/mL by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence and absence of X-rays at 4 and 8 Gy. The results showed that administration of O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA + 8 Gy at a concentration of 90 μg/mL reduced survival by 75.31, 65.32, 67.35, and 60.35%, respectively. O-SWCNTs-Pt-BSA-FA has a hydrodynamic size of 88.57 nm and a surface charge of -29 mV, which indicates special stability. Compared with O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, and Pt-BSA-FA, it has very strong cell-killing activity in the 4T1 cell line. It is also noteworthy that SWCNTs can act as a controlled release and delivery system for PtNPs due to their unique properties and easy penetration into biological membranes. As a result, the new nanosensitizer may play a role in cancer treatment in conjunction with radiotherapy technology. Graphical abstract.
Collapse
Affiliation(s)
- Afsoon Aghaei
- Department of Chemistry, Faculty of Science, University of Zanjan, 451561319, Zanjan, 45371-38791, Iran.
| | - Maryam Shaterian
- Department of Chemistry, Faculty of Science, University of Zanjan, 451561319, Zanjan, 45371-38791, Iran.
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Andraž Šuligoj
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Sašo Gyergyek
- Department for Materials Synthesis, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Wu H, Zheng L, Lin L, Guo H, Yang F. "Turn-on" fluorescent sensor for oleanolic acid based on o-phenyl-bridged bis-tetraphenylimidazole. Food Chem 2023; 419:136033. [PMID: 37011574 DOI: 10.1016/j.foodchem.2023.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Fluorescent sensors had been extensively applied on sensing various biomolecules effectively, but no fluorescent sensor for oleanolic acid was presented up to now. In this work, the first fluorescent sensor for oleanolic acid was designed and synthesized based on o-phenyl-bridged bis-tetraphenylimidazole (PTPI). PTPI was prepared by bridging two tetraphenylimidazole units and o-phenylenediamine via Schiff-base condensation in yield of 86%. PTPI showed high sensing selectivity for oleanolic acid among 26 biomolecules and ions. The blue fluorescence at 482 nm was enhanced by 4.5 times after sensing oleanolic acid in aqueous media. The fluorescence sensing ability of PTPI for oleanolic acid maintained stable in pH = 5-9. The detecting limitation was as low as 0.032 μM. The detecting mechanism was clarified as 1:1 binding stoichiometry by fluorescence Job's plot, mass spectrometry, 1H nuclear magnetic resonance and fourier transform infrared spectroscopy. The detecting ability of PTPI for oleanolic acid was successfully used for paper test and real samples of grapes and Kuding tea with recoveries in the range of 96.0%-106.0%, indicating the good application potential for on-site detecting oleanolic acid in real samples of fruits and food.
Collapse
Affiliation(s)
- Hanqing Wu
- College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Green Energy and Environment Catalysis (Ningde Normal University), Fujian Province University, Ningde 352100, PR China
| | - Linlu Zheng
- College of Medical Sciences, Ningde Normal University, Ningde 352100, PR China
| | - Liangbin Lin
- College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China.
| | - Fafu Yang
- College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
18
|
Duan G, Wei G, Li Q, Zhu Y, Zhang L, Liang L, Huang Z, He S, Li B. Insight into catalytic activation of bisulfite for lomefloxacin degradation by simple composite of calcinated red mud. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29125-29142. [PMID: 36409411 DOI: 10.1007/s11356-022-23706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic was detected in many environments, and it had posed a serious threat to human health. The advanced oxidation process has been considered an effective way to treat antibiotics. In this work, using industrial waste red mud (RM) as raw material, a series of modified RM (MRM-T; T donates the calcination temperature) was obtained via a facile calcination method and applied to activate sodium bisulfite (NaHSO3) for the lomefloxacin (LOM) degradation. Among all MRM-T, MRM-700 exhibited superior catalytic activity, and approximately 89% of LOM (10 mg/L) was degraded at 30 min through the activation of NaHSO3 ([NaHSO3] = 0.5 g/L) by MRM-700 ([MRM-700] = 0.9 g/L). Moreover, the kinetic constant of LOM removal in the MRM-700/NaHSO3 system (0.082 min-1) was 16.4 times higher than that of the RM-raw/NaHSO3 system (0.005 min-1). The as-synthesized product of MRM-700 was characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The result indicated that the catalyst possessed excellent pore structure, high specific area, and abundant Fe3+ sites, and the lattice of Fe2O3 was doped after calcination, both of which were favorable for the activation of NaHSO3. The quenching experiment proved that •SO4- and •OH- active species were produced in MRM-700/NaHSO3 system, and •SO4- played a dominant role in LOM removal. In addition, the potential LOM degradation pathway was analyzed via UPLC-MS technology and density functional theory (DFT) calculation, and the toxicity of the treated LOM solution was tested by the culture of mung bean sprouts. This study not only provided a feasible strategy for the valuable use of RM to activate NaHSO3 but also offered a cost-effective catalyst for the efficient removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Guangxiang Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China.
| | - Qingyong Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Youlian Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory of Bio-Refinery, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
| | - Lulu Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zhenjing Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuo He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Baiying Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
19
|
Saputra E, Prawiranegara BA, Nugraha MW, Sambudi NS, Sugesti H, Awaluddin A, Utama PS, Manawan M. Fabrication of hybrid covalent triazine framework-zinc ferrite spinel to uplift visible light-driven photocatalytic organic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39961-39977. [PMID: 36602743 DOI: 10.1007/s11356-022-25021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The tunability of porous covalent triazine frameworks (CTFs) can mitigate poor photostability and rapid hole-electron recombination. Herein, an excellent improvement of visible light-driven photocatalytic pollutant degradation was achieved using a hybrid semiconductor of covalent triazine framework-zinc ferrite spinel catalysts (CTF-ZnFe2O4). The as-prepared CTF-ZnFe2O4 composites were fabricated using a facile one-pot ionothermal method. The hybrid photocatalysts were identified using X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), X-ray photoelectron spectrometer (XPS), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), and UV-visible diffuse reflection spectroscopy (UV-vis DRS) characterizations. The analysis reveals that hybridization successfully ensued and altered the crystallinity structure, morphology, surface area, and bandgap energy of hybrid material. It was found that CTF-ZnFe2O4 90:10 is very effective for the degradation of MB in a UV-vis light photocatalytic process with the efficiency of 95.4% and kobs of 0.421 min-1 for degradation of 50 mg/L MB with 0.5 g/L dosages for 120 min. Additionally, the scavenger study, effect of additional oxidants, and stability were performed for the practical application of a hybrid photocatalyst. CTF-ZnFe2O4 90:10 shows outstanding pollutant degradation in sunlight irradiation and high stability with only a 5.2% reduction after a five-times sequential recycling process. Moreover, the photocatalytic mechanism of as-prepared CTF-ZnFe2O4 was mainly influenced by [Formula: see text] radical compared to [Formula: see text] and [Formula: see text] radicals. Overall, The as-prepared CTF-ZnFe2O4 shows significant potential to be utilized for photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Edy Saputra
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia.
| | - Barata Aditya Prawiranegara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Muhammad Wahyu Nugraha
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Nonni Soraya Sambudi
- Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta, 12220, Indonesia
| | - Heni Sugesti
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Amir Awaluddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Panca Setia Utama
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Maykel Manawan
- Teknologi Daya Gerak, Universitas Pertahan Indonesia, Bogor, 16810, Indonesia
| |
Collapse
|
20
|
Wu J, Ma X, Gnanasekar P, Wang F, Zhu J, Yan N, Chen J. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO 2 nanoparticles for efficient oil adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160276. [PMID: 36403829 DOI: 10.1016/j.scitotenv.2022.160276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Superhydrophobic polyurethane foam is one of the most promising materials for oil-water separation. However, there are only limited studies prepared matrix superhydrophobic foams as adsorbents. In this paper, SiO2 modified by 1H, 1H, 2H, 2H-perfluorododecyl trichlorosilane (F-SiO2) was added into the lignin-based foam matrix by a one-step foaming technique. The average diameter of F-SiO2 was about 480 nm with an water contact angle (WCA) of 160.3°. The lignin-based polyurethane foam with F-SiO2 had a superhydrophobic water contact angle of 151.3°. There is no obvious change in contact angle after 100 cycles of compression or after cutting and abrasion. Scanning electron microscopy (SEM) analysis showed that F-SiO2 was distributed both on the surface and inside of the foam. The efficiency for oil-water separation reached 99 %. Under the light intensity of 1 kW/m2, the surface temperature of the lignin-based foam rose to 77.6 °C. In addition, the foam exhibited self-cleaning properties and degraded within 2 h in an alcoholic alkali solution. Thus, in this study, we developed a novel matrix superhydrophobic lignin-based polyurethane foam with an excellent promise to be used as oil water separation adsorbents in industrial wastewater treatment and oil spill clean-up processes.
Collapse
Affiliation(s)
- Jialong Wu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Fan Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College street, ON M5S 3E5, Canada.
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
21
|
Sarkar D, Mottakin M, Mahmud Hasan A, Selvanathan V, Sobayel K, Khan M, Masum Rabbani A, Shahinuzzaman M, Aminuzzaman M, Anuar FH, Suemasu T, Sopian K, Akhtaruzzaman M. A Comprehensive Study on RbGeI3 based Inorganic Perovskite Solar Cell using Green Synthesized CuCrO2 as Hole Conductor. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
22
|
Sun B, Wang Z, Zhao B, Jin Y, Li Y, Yang S. Preparation of biotin-labeled graphene film for detecting nerve growth factor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Zoubir J, Bakas I, Qourzal S, Tamimi M, Assabbane A. Electrochemical sensor based on a ZnO-doped graphitized carbon for the electrocatalytic detection of the antibiotic hydroxychloroquine. Application: tap water and human urine. J APPL ELECTROCHEM 2023; 53:1279-1294. [PMID: 36644408 PMCID: PMC9825087 DOI: 10.1007/s10800-022-01835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Abstract In December 2019, the world experienced a new coronavirus, SARS-CoV-2, causing coronavirus disease 2019 originating from Wuhan.The virus has crossed national borders and now affects more than 200 countries and territories. Hydroxychloroquine has been considered as a drug capable of treating COVID-19. The objective of this work is to establish a simple platform for electrocatalytic detection of hydroxychloroquine in human urine samples and pharmaceutical samples (tablets) using a ZnO@CPE sensor constructed by simple and inexpensive hydrothermal methods using a square wave voltammetry method. The best results are obtained in a PBS electrolyte with irreversible behavior of the hydroxychloroquine complement and controlled by diffusion coupled with absorption phenomena. The ZnO@CPE shifts the oxidation potential of hydroxychloroquine with the formation of a single very intense peak at the position of Epa = 0.5 V/(vs Ag/AgCl) with a shift is ΔEp = 0.1 V(vs Ag/AgCl) compared to the unmodified electrode. The obtained ZnO@CPE hybrid nanocomposite was characterized by different techniques and showed excellent electrocatalytic activity and higher active surface area compared to the bare carbon paste electrode. Under the optimized experimental conditions, the ZnO@CPE sensor showed good analytical performance for the determination of trace amounts of hydroxychloroquine, a wide linearity range from 10-3 M to 0.8 × 10-6 M with a very low detection limit in the range of 1.33 × 10-7 M, satisfactory selectivity, acceptable repeatability and reproducibility. The calculated recovery and coefficient of variation for the two samples analyzed are very satisfactory, ranging from 97.6 to 102% and 1.2 to 2.3% respectively. The proposed applied method and the fabricated sensor offer the possibility to analyze traces of hydroxychloroquine in real human urine and water samples. Graphical abstract Strategy for the electro-oxidation reaction of hydroxychloroquine on the electro-catalytic surface of the ZnO@Carbon graphite electrode and real-time detection of hydroxychloroquine.
Collapse
Affiliation(s)
- Jallal Zoubir
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Idriss Bakas
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Samir Qourzal
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Malika Tamimi
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Ali Assabbane
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| |
Collapse
|
24
|
Kokulnathan T, Wang TJ, Murugesan T, Anthuvan AJ, Kumar RR, Ahmed F, Arshi N. Structural growth of zinc oxide nanograins on carbon cloth as flexible electrochemical platform for hydroxychloroquine detection. CHEMOSPHERE 2023; 312:137186. [PMID: 36368534 DOI: 10.1016/j.chemosphere.2022.137186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical pollution that imposes a health threat worldwide is making accurate and rapid detection crucial to prevent adverse effects. Herein, binder-free zinc oxide nanograins on carbon cloth (ZnO NGs@CC) have been synthesized hydrothermally and employed to fabricate a flexible electrochemical sensor for the quantification of hydroxychloroquine (HCQ) that is typical pharmaceutical pollution. The characteristics of ZnO NGs@CC were investigated by various in-depth electron microscopic, spectroscopic and electroanalytical approaches. Compared with the pristine CC platform, the ZnO NGs@CC platform exhibits superior electrochemical performance in detecting HCQ with a large oxidation current at a low over-potential of +0.92 V with respect to the Ag/AgCl (Sat. KCl) reference electrode. With the support of desirable characteristics, the fabricated ZnO NGs@CC-based electrochemical sensor for HCQ detection displays good performances in terms of wide sensing range (0.5-116 μM), low detection limit (0.09 μM), high sensitivity (0.279 μA μM-1 cm-2), and strong selectivity. By the resulting 3D hierarchical nanoarchitecture, ZnO NGs@CC has progressive structural advantages that led to its excellent electrochemical performance in sensing applications. Furthermore, the electrochemical sensor is employed to detect HCQ in biological and environmental samples and also achieves good recovery rates. Thus, the designed ZnO NGs@CC demonstrates admirable electrochemical activity toward HCQ real-time monitoring and would be an excellent electrochemical platform for HCQ sensing.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Thangapandian Murugesan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Allen Joseph Anthuvan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Nanotech Division, Accubits Invent Pvt. Ltd, Trivandrum 695 592, Kerala, India
| | - Rishi Ranjan Kumar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
25
|
Engineering approaches for CO2 converting to biomass coupled with nanobiomaterials as biomediated towards circular bioeconomy. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Venci X, George A, Rahul S, Dhayal Raj A, Albert Irudayaraj A, Josephine R, John Sundaram S, Kaviyarasu K. Investigation on the formation of self-assembled CdSe dendrite structures and their photocatalytic efficiency. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Sherlin V A, Baby JN, Sriram B, Hsu YF, Wang SF, George M. Construction of ANbO 3 (A= Na, K)/f-carbon nanofiber composite: Rapid and real-time electrochemical detection of hydroxychloroquine in environmental samples. ENVIRONMENTAL RESEARCH 2022; 215:114232. [PMID: 36057336 DOI: 10.1016/j.envres.2022.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hydroxychloroquine (HCQ) is a significant viral resistant drug widely acknowledged for its immunomodulatory and anti-inflammatory activities. To minimize the impact of HCQ residues on environmental pathways, exploring control measures is vital. In this regard, electrochemical sensing of HCQ using well-structured functional materials is advantageous. This work aims to provide an economical and sustainable route for the synthesis of ANbO3 (A = Na,K) perovskites via a thymol-menthol-based natural deep eutectic solvent. The as-synthesized NaNbO3 and KNbO3 are pinned to functionalized carbon nanofibers (f-CNF) via an ultrasonication approach. Benefitting from the synergistic effect of rapid electron transfer and improved surface area, enhanced electrochemical activity for NaNbO3@f-CNF/GCE is achieved. The fabricated NaNbO3@f-CNF displays a LOD (DPV = 0.01 μM, i-t = 0.007 μM), wide dynamic range (DPV = 0.09-22.5 μM, i-t = 0.006-35 μM), outstanding selectivity, and reproducibility, proving feasible in real-time analysis with good recovery rates (±97.67-99.81%). The NADES-mediated preparation of perovskites evades the incorporation of traditional toxic solvents and yields atom-efficient ANbO3 (A = Na,K) associated with green solvent templates. This validates the sustainable fabrication of electrode materials with reduced energy stipulations for detecting hazardous drug pollutants in the ecosystem.
Collapse
Affiliation(s)
- Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India; Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala, 673592, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India.
| |
Collapse
|
28
|
In-situ polymerization of polycarbazole-zinc oxide nanocomposite: An in silico docking model and in vitro antibacterial biomaterial. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Palaniraj S, Murugesan R, Narayan S. Aprotinin – Conjugated biocompatible porous nanocomposite for dentine remineralization and biofilm degradation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Cui J, Li Y, Li H, Liu D, Xu J, Ma H, Han Y, Qu H, Wang L. Synthesis of Tb3+ doped SrMoO4/SiO2 nanophosphor and its sensing properties for inorganic ions and tyrosine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Matrouf M, Loudiki A, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi MA. Synthesis of Reduced Graphene Oxide by Ethyl Acetate and Its Utilization in Determining Hydroxychloroquine in Wastewater and Pharmaceutical Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202201056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mustapha Matrouf
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Abdelwahed Loudiki
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
- Chouaib Doukkali University Organic Micropollutants Analysis Team Faculty of Sciences Morocco
| | - Ouafa Tahiri Alaoui
- Moulay Ismail University Laboratory of Physical Chemistry Materials and Environment Sciences and Technologies Faculty Errachidia Morocco
| | - Fathellah Laghrib
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
- Sidi Mohamed Ben Abdellah University Engineering Laboratory of Organometallic Molecular Materials, and Environment, City of Innovation Immouzer Road, Box 2626 Fes Morocco
| | - Abdelfettah Farahi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Mina Bakasse
- Chouaib Doukkali University Organic Micropollutants Analysis Team Faculty of Sciences Morocco
| | - Sana Saqrane
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Sara Lahrich
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Moulay Abderrahim El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| |
Collapse
|
33
|
Musuvadhi Babulal S, Anupriya J, Chen SM. Self assembled three dimensional β-Cu 2V 2O 7 hierarchical flower decorated porous carbon: An efficient electrocatalyst for flutamide detection in biological and environmental samples. CHEMOSPHERE 2022; 303:135203. [PMID: 35667499 DOI: 10.1016/j.chemosphere.2022.135203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The serious situation mandates the use of anticancer drugs, which protect people all over the world from the growth of prostate cancer. In particular, excessive dosage and erroneous discharge of flutamide concentration cause make environmental pollution on the surface of the wastewater. In this study, the highly sensitive and selective electrochemical approach based on copper vanadium oxide decorated porous carbon (denoted as β-Cu2V2O7/PC) composite modified glassy carbon electrode (GCE) has been developed and it was applied for sensitive detection of anticancer drug flutamide (FTM). Moreover, using the co-precipitation method, the flower-like β-Cu2V2O7 hierarchical microstructure was synthesized, and through the wet chemical process, the β-Cu2V2O7/PC composite was obtained. The resultant product was characterized by XRD, FTIR, RAMAN, XPS and structural morphology established by FESEM analysis. Besides that, the electrochemical characterization and properties were analyzed by cyclic voltammetry (CV) and amperometric (i-t) techniques. The β-Cu2V2O7/PC/RDGCE had two linear ranges at 0.01-2.11 μM and 2.31-30.81 μM. The lower limits of detection and sensitivity were found at 0.62 nM (S/N = 3), and 24.33 μA μM-1 cm-2 respectively. The practicability test was applied for the determination of FTM in urine, blood serum and environmental aquatic fluid with satisfactory recovery obtained.
Collapse
Affiliation(s)
- Sivakumar Musuvadhi Babulal
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Jeyaraman Anupriya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
34
|
Abramczyk N, Drewing S, Panasiuk K, Żuk D. Application of Statistical Methods to Accurately Assess the Effect of Gamma Aluminum Oxide Nanopowder on the Hardness of Composite Materials with Polyester-Glass Recyclate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5957. [PMID: 36079339 PMCID: PMC9456694 DOI: 10.3390/ma15175957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Polymer composites are materials that are used in many industries. Their wide application has a direct impact on the amount of post-production and post-consumer waste. The global problem with recycling, especially of fiber-reinforced polymeric materials, has prompted research into methods of their use. Previous research on composite materials with polyester-glass recyclate showed a decrease in mechanical properties. The construction material should have the highest mechanical properties. Based on the literature, it was found that the use of nanoadditives may have a positive effect on the parameters of the materials. The use of gamma aluminum nanopowder, in a small amount can significantly increase the mechanical properties of composites with polyester-glass recyclate, and thus can affect the application of these materials to structural elements. The article is devoted to the research on the hardness of composite materials with polyester-glass recyclate and gamma aluminum nanopowder. The main goal is to investigate the possibility of using a nanoadditive as a material, increasing the mechanical properties of composites with polyester-glass recyclate, so as to create a recycled material with the highest possible strength parameters. Hardness tests were performed using the Barcol method. For each composite material, 30 measurements were made in order to subject the results to a statistical analysis. Using parametric statistical tests it was shown that the obtained hardness values at the assumed level of statistical significance pv = 0.05 for comparisons for the samples of the reference material (B0) do not differ by chance, while for the comparisons in the configurations of the reference material (B0) with the modified materials, (R10, A2, R10A2) they do not differ by accident. Studies have shown that the addition of 2% gamma aluminum nanopowder slightly lowers the hardness of a pure polyester-glass composite, but the same additive allows the hardness of composite materials to be increased with the addition of glass recyclate. This is of particular importance for the development of the optimal composition of polyester-glass composites with the addition of recyclate, which will have good strength properties and at the same time enable the reuse of composite waste.
Collapse
|
35
|
Guleria A, Sachdeva H, Saini K, Gupta K, Mathur J. Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: A critical review. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anjali Guleria
- Department of Chemistry University of Rajasthan Jaipur India
| | | | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur India
| | - Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
36
|
K. Algethami F, Saidi I, Ben Jannet H, Khairy M, Abdulkhair BY, Al-Ghamdi YO, Abdelhamid HN. Chitosan-CdS Quantum Dots Biohybrid for Highly Selective Interaction with Copper(II) Ions. ACS OMEGA 2022; 7:21014-21024. [PMID: 35935289 PMCID: PMC9347964 DOI: 10.1021/acsomega.2c01793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 05/02/2023]
Abstract
Cadmium sulfide (CdS) quantum dots (QDs) were homogeneously embedded into chitosan (CTS), denoted as CdS@CTS, via an in situ hydrothermal method. The intact structure of the synthesized materials was preserved using freeze-drying. The materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM, scanning TEM, dispersive energy X-ray (EDX) for elemental analysis and mapping, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption isotherms, thermogravimetric analysis, UV-vis spectroscopy, and diffuse reflectance spectroscopy (DRS). The synthesis procedure offered CdS QDs of 1-7 nm (average particle size of 3.2 nm). The functional groups of CTS modulate the in situ growth of CdS QDs and prevent the agglomeration of CdS QDs, offering homogenous distribution inside CTS. CdS@CTS QDs can also be used for naked-eye detection of heavy metals with high selectivity toward copper (Cu2+) ions. The mechanism of interactions between Cu2+ ions and CdS@CTS QDs were further studied.
Collapse
Affiliation(s)
- Faisal K. Algethami
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Ilyes Saidi
- Laboratory
of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39),
Medicinal Chemistry and Natural Products Team, Faculty of Science
of Monastir, University of Monastir, Avenue
of Environment, Monastir 5019, Tunisia
| | - Hichem Ben Jannet
- Laboratory
of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39),
Medicinal Chemistry and Natural Products Team, Faculty of Science
of Monastir, University of Monastir, Avenue
of Environment, Monastir 5019, Tunisia
| | - M. Khairy
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Youssef O. Al-Ghamdi
- Department
of Chemistry, College of Science Al-zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Hani Nasser Abdelhamid
- Department
of Chemistry, Advanced Multifunctional Materials Laboratory, Faculty
of Science, Assiut University, Assiut 71575, Egypt
- Nanotechnology
Research Centre (NTRC), The British University
in Egypt (BUE), Suez
Desert Road, El-Sherouk City, Cairo, 11837, Egypt
| |
Collapse
|
37
|
Chen P, Jiang L, Xie X, Sun D, Liu J, Zhao Y, Li Y, Balbín Tamayo AI, Liu B, Miao Y, Ouyang R. Rapid electrochemical detection of MiRNA-21 facilitated by the excellent catalytic ability of Pt@CeO 2 nanospheres. RSC Adv 2022; 12:11867-11876. [PMID: 35481085 PMCID: PMC9016849 DOI: 10.1039/d2ra01047j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Pt@CeO2 nanospheres (NSs) were first synthesized by simply mixing Ce(NO3)3 and K2PtCl4 under the protection of pure argon at 70 °C for 1 h, which exhibited excellent catalytic ability toward hydrogen peroxide (H2O2). An electrochemical biosensor was successfully developed using Pt@CeO2 NSs as a capture probe for the ultra-sensitive and fast detection of miRNA-21, a new type of biomarker for disease diagnostics, especially for cancer. During the step-by-step construction process of the RNA sensor, Pt@CeO2 NSs were functionalized with streptavidin (SA) to obtain SA-Pt@CeO2 NSs through amide bonds. Gold nanoparticles (Au NPs) were electrodeposited on the surface of the glassy carbon electrode to improve the transmission capacity of electrons and provided Au atoms for fixing the thiolated capture probe (SH-CP) with a hairpin structure on the electrode via forming Au-S bonds. The target miRNA-21 specifically hybridized with SH-CP and opened the hairpin structure to form a rigid duplex so as to activate the biotin at the end of the capture probe. SA-Pt@CeO2 NSs were thus specially attached to the electrode surface through the biotin-streptavidin affinity interaction, finally leading to the significant signal amplification. The ultra-sensitive and rapid detection of miRNA-21 was finally realized as expected benefiting from the excellent catalytic ability of Pt@CeO2 NSs toward H2O2 in a wide linear concentration range from 10 fM to 1 nM with the detection limit as low as 1.41 fM. The results achieved with this new RNA sensor were quite satisfactory during the blood sample analysis.
Collapse
Affiliation(s)
- Peiwu Chen
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xianjin Xie
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Dong Sun
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Jinyao Liu
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | | | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
38
|
Morphology Effect of Bismuth Vanadate on Electrochemical Sensing for the Detection of Paracetamol. NANOMATERIALS 2022; 12:nano12071173. [PMID: 35407291 PMCID: PMC9000780 DOI: 10.3390/nano12071173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Morphology-control, as a promising and effective strategy, is widely implemented to change surface atomic active sites and thus enhance the intrinsic electrocatalytic activity and selectivity. As a typical n-type semiconductor, a series of bismuth vanadate samples with tunable morphologies of clavate, fusiform, flowered, bulky, and nanoparticles were prepared to investigate the morphology effect. Among all the synthesized samples, the clavate shaped BiVO4 with high index facets of (112), (301), and (200) exhibited reduced extrinsic pseudocapacitance and enhanced redox response, which is beneficial for tackling the sluggish voltammetric response of the traditional nanoparticle on the electrode surface. Benefiting from the large surface-active area and favorable ion diffusion channels, the clavate shaped BiVO4 exhibited the best electrochemical sensing performance for paracetamol with a linear response in the range of 0.5–100 µmol and a low detection limit of 0.2 µmol. The enhanced electrochemical detection of paracetamol by bismuth vanadate nanomaterials with controllable shapes indicates their potential for applications as electrochemical sensors.
Collapse
|