1
|
Wolter NA, Küttner H, Schmitz J, Karg M, Pich A. Asymmetric Microgels with Tunable Morphologies by Assembly-Guided Polymerization of Liquid Crystalline Monomers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410502. [PMID: 39757498 DOI: 10.1002/smll.202410502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Understanding and controlling the morphology of microgels is crucial for optimizing their properties and functions in diverse areas of application. The fabrication of microgels that exhibit both structural and chemical anisotropy using a template-free approach faces significant challenges. Existing approaches toward such microgels are typically limited to templating methods with low throughput. Here, an alternative bottom-up approach is developed for producing non-spherical N-vinylcaprolactam (VCL) based microgels through semi-batch precipitation polymerization, incorporating a functional comonomer with a liquid crystalline (LC) moiety. 4-methoxybenzoic acid 4-(6-acryloyloxy-hexyloxy)phenyl ester (LCM) is used as the LC comonomer. The resulting morphology of those microgels is tuned to multilobe-, dumbbell-, and raspberry-like shapes. The different morphologies are obtained by varying the addition time of LCM, temperature, solvent ratio, and monomer ratio. The microgel morphologies are characterized by (cryogenic) transmission and scanning electron microscopy. The thermoresponsiveness is investigated by dynamic light scattering (DLS), while the incorporation of LCM into the microgel structure is determined via 1H-NMR and Raman spectroscopy. The experimental data indicate that adjusting reaction conditions enables the fabrication of microgels with various morphologies. Finally, their capability to solubilize hydrophobic substances is demonstrated by successfully facilitating the uptake of the hydrophobic dye Nile Red (NR).
Collapse
Affiliation(s)
- Nadja A Wolter
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Hannah Küttner
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Jonas Schmitz
- Institute for Physical Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Matthias Karg
- Institute for Physical Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, Geleen, 6167 RD, The Netherlands
| |
Collapse
|
2
|
Rovers MM, Rogkoti T, Bakker BK, Bakal KJ, van Genderen MH, Salmeron‐Sanchez M, Dankers PY. Using a Supramolecular Monomer Formulation Approach to Engineer Modular, Dynamic Microgels, and Composite Macrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405868. [PMID: 39463044 PMCID: PMC11636168 DOI: 10.1002/adma.202405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides. Functionalization with a bioactive supramolecular cell-adhesive peptide induced selectivity of cells toward the bioactive microgels over non-active, non-functionalized versions. Importantly, the supramolecular microgels can also be applied as microscale building blocks into supramolecular bulk macrogels with tunable dynamic behavior: a robust and weak macrogel, where the micro- and macrogels are composed of similar molecular building blocks. In a robust macrogel, microgels act as modular micro-building blocks, introducing multi-compartmentalization, while in a weak macrogel, microgels reinforce and enhance mechanical properties. This work demonstrates the potential to modularly engineer higher-length-scale structures using small molecule supramolecular monomers, wherein microgels serve as versatile and modular micro-building units.
Collapse
Affiliation(s)
- Maritza M. Rovers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Theodora Rogkoti
- Centre for the Cellular MicroenvironmentUniversity of Glasgow, Advanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Bram K. Bakker
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Kalpit J. Bakal
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Mechanical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Marcel H.P. van Genderen
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Manuel Salmeron‐Sanchez
- Centre for the Cellular MicroenvironmentUniversity of Glasgow, Advanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona08010Spain
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| |
Collapse
|
3
|
Tomioka D, Jung SA, Pich A, Matsusaki M. Fabrication of oxygen-releasing dextran microgels by droplet-based microfluidic method. RSC Adv 2024; 14:26544-26555. [PMID: 39175690 PMCID: PMC11339778 DOI: 10.1039/d4ra04356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
In the tissue engineering field, the supply of oxygen to three-dimensional (3D) tissues is an important aspect to avoid necrosis due to hypoxia. Although oxygen-releasing bulk materials containing calcium peroxide (CaO2, CP) have attracted much attention, micrometer-sized oxygen-releasing soft materials would be advantageous because of their highly controllable structures, which can be applied for cell scaffolds, injectable materials, and bioink components in 3D bioprinting. In this study, oxygen-releasing microgels were fabricated via a droplet-based microfluidic system. Homogeneous, monodisperse and stable oxygen-releasing microgels were obtained by photo-crosslinking of droplets composed of biocompatible dextran modified with methacrylate groups and CP nanoparticles as an oxygen source. We also used our microfluidic system for the in situ amorphous calcium carbonate (CaCO3, ACC) formation on the surface of CP nanoparticles to achieve the controlled release of oxygen from the microgel. Oxygen release from an ACC-CP microgel in a neutral cell culture medium was suppressed because incorporation of CP in the ACC suppressed the reaction with water. Strikingly, stimuli to dissolve ACC such as a weak acidic conditions triggered the oxygen release from microgels loaded with ACC-CP, as the dissolution of CaCO3 allows CP to react. Taken together, applications of this new class of biomaterials for tissue engineering are greatly anticipated. In addition, the developed microfluidic system can be used for a variety of oxygen-releasing microgels by changing the substrates of the hydrogel network.
Collapse
Affiliation(s)
- Daisuke Tomioka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shannon Anna Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
4
|
Mathews HF, Çeper T, Speen T, Bastard C, Bulut S, Pieper MI, Schacher FH, De Laporte L, Pich A. Engineering poly(dehydroalanine)-based gels via droplet-based microfluidics: from bulk to microspheres. SOFT MATTER 2024; 20:6231-6246. [PMID: 39051502 DOI: 10.1039/d4sm00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Biomedical applications such as drug delivery, tissue engineering, and functional surface coating rely on switchable adsorption and desorption of specialized guest molecules. Poly(dehydroalanine), a polyzwitterion containing pH-dependent positive and negative charges, shows promise for such reversible loading, especially when integrated into a gel network. Herein, we present the fabrication of poly(dehydroalanine)-derived gels of different size scales and evaluate them with respect to their practical use in biomedicine. Already existing protocols for bulk gelation were remodeled to derive suitable reaction conditions for droplet-based microfluidic synthesis. Depending on the layout of the microfluidic chip, microgels with a size of approximately 30 μm or 200 μm were obtained, whose crosslinking density can be increased by implementing a multi-arm crosslinker. We analyzed the effects of the crosslinker species on composition, permeability, and softness and show that the microgels exhibit advantageous properties inherent to zwitterionic polymer systems, including high hydrophilicity as well as pH- and ionic strength-sensitivity. We demonstrate pH-regulated uptake and release of fluorescent model dyes before testing the adsorption of a small antimicrobial peptide, LL-37. Quantification of the peptide accommodated within the microgels reveals the impact of size and crosslinking density of the microgels. Biocompatibility of the microgels was validated by cell tests.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Tolga Çeper
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Tobias Speen
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Selin Bulut
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Maria I Pieper
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Grüne Aue, 07754 Jena, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Institute of Applied Medical Engineering (AME), Department of Advanced Materials for Biomedicine (AMB), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CMBS), Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightland Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| |
Collapse
|
5
|
Sommerfeld IK, Palm P, Hussnaetter KP, Pieper MI, Bulut S, Lile T, Wagner R, Walkowiak JJ, Elling L, Pich A. Microgels with Immobilized Glycosyltransferases for Enzymatic Glycan Synthesis. Biomacromolecules 2024; 25:3807-3822. [PMID: 38807305 DOI: 10.1021/acs.biomac.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining β4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of β4GalT and β3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Kai Philip Hussnaetter
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Maria Isabell Pieper
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Selin Bulut
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Tudor Lile
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Rebekka Wagner
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| |
Collapse
|
6
|
Xu X, Tang Q, Gao Y, Chen S, Yu Y, Qian H, McClements DJ, Cao C, Yuan B. Recent developments in the fabrication of food microparticles and nanoparticles using microfluidic systems. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38520155 DOI: 10.1080/10408398.2024.2329967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Microfluidics is revolutionizing the production of microparticles and nanoparticles, offering precise control over dimensions and internal structure. This technology facilitates the creation of colloidal delivery systems capable of encapsulating and releasing nutraceuticals. Nutraceuticals, often derived from food-grade ingredients, can be used for developing functional foods. This review focuses on the principles and applications of microfluidic systems in crafting colloidal delivery systems for nutraceuticals. It explores the foundational principles behind the development of microfluidic devices for nutraceutical encapsulation and delivery. Additionally, it examines the prospects and challenges with using microfluidics for functional food development. Microfluidic systems can be employed to form emulsions, liposomes, microgels and microspheres, by manipulating minute volumes of fluids flowing within microchannels. This versatility can enhance the dispersibility, stability, and bioavailability of nutraceuticals. However, challenges as scaling up production, fabrication complexity, and microchannel clogging hinder the widespread application of microfluidic technologies. In conclusion, this review highlights the potential role of microfluidics in design and fabrication of nutraceutical delivery systems. At present, this technology is most suitable for exploring the role of specific delivery system features (such as particle size, composition and morphology) on the stability and bioavailability of nutraceuticals, rather than for large-scale production of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Qi Tang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yating Gao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongliang Qian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
8
|
Mashiyama S, Hemmi R, Sato T, Kato A, Taniguchi T, Yamada M. Pushing the limits of microfluidic droplet production efficiency: engineering microchannels with seamlessly implemented 3D inverse colloidal crystals. LAB ON A CHIP 2024; 24:171-181. [PMID: 38050757 DOI: 10.1039/d3lc00913k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Although droplet microfluidics has been studied for the past two decades, its applications are still limited due to the low productivity of microdroplets resulting from the low integration of planar microchannel structures. In this study, a microfluidic system implementing inverse colloidal crystals (ICCs), a spongious matrix with regularly and densely formed three-dimensional (3D) interconnected micropores, was developed to significantly increase the throughput of microdroplet generation. A new bottom-up microfabrication technique was developed to seamlessly integrate the ICCs into planar microchannels by accumulating non-crosslinked spherical PMMA microparticles as sacrificial porogens in a selective area of a mold and later dissolving them. We have demonstrated that the densely arranged micropores on the spongious ICC of the microchannel function as massively parallel micronozzles, enabling droplet formation on the order of >10 kHz. Droplet size could be adjusted by flow conditions, fluid properties, and micropore size, and biopolymer particles composed of polysaccharides and proteins were produced. By further parallelization of the unit structures, droplet formation on the order of >100 kHz was achieved. The presented approach is an upgrade of the existing droplet microfluidics concept, not only in terms of its high throughput, but also in terms of ease of fabrication and operation.
Collapse
Affiliation(s)
- Shota Mashiyama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Runa Hemmi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Takeru Sato
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Atsuya Kato
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Tatsuo Taniguchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
9
|
Jung SH, Meyer F, Hörnig S, Bund M, Häßel B, Guerzoni LPB, De Laporte L, Ben Messaoud G, Centeno SP, Pich A. On-Chip Fabrication of Colloidal Suprastructures by Assembly and Supramolecular Interlinking of Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303444. [PMID: 37705132 DOI: 10.1002/smll.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Indexed: 09/15/2023]
Abstract
In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.
Collapse
Affiliation(s)
- Se-Hyeong Jung
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Fabian Meyer
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Sven Hörnig
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Michelle Bund
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | | | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ghazi Ben Messaoud
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Silvia P Centeno
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, The Netherlands
| |
Collapse
|
10
|
Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300840. [PMID: 37269168 DOI: 10.1002/adma.202300840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Bioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging. Designing antimicrobial bioadhesives with tunable physical, chemical, and biological properties will shed light on the path for future advancement of bioadhesives with antimicrobial properties. In this review, the requirements and commonly used strategies for developing bioadhesives with antimicrobial properties are discussed. In particular, different methods for their synthesis and their experimental and clinical applications on a variety of organs are reviewed. Advances in the design of bioadhesives with antimicrobial properties will pave the way for a better management of wounds to increase positive clinical outcomes.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bartin University, Bartin, 74000, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Bulut S, Jung SH, Bissing T, Schmitt F, Bund M, Braun S, Pich A. Tuning the Porosity of Dextran Microgels with Supramacromolecular Nanogels as Soft Sacrificial Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303783. [PMID: 37434076 DOI: 10.1002/smll.202303783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Hydrogels, as well as colloidal hydrogels (microgels), are important materials for a large variety of applications in the biomedical field. Microgels with a controlled pore size (meso- and macropores) are required for efficient nutrient support, modulation of cell adhesion, removal of metabolic products in cell cultures, and probiotic loading. Common microgel fabrication techniques do not provide sufficient control over pore sizes and geometry. In this work, the natural polysaccharide dextran modified with methacrylate groups is used to synthesize highly monodisperse meso- and macroporous microgels in a size range of 100-150 µm via photo cross-linking in microfluidic droplets. The size of mesopores is varied by the concentration of dextran methacrylate chains in the droplets (50-200 g L-1 ) and the size of macropores is regulated by the integration of pH-degradable supramacromolecular nanogels with diameters of 300 and 700 nm as sacrificial templates. Using permeability assays combined with confocal laser scanning microscopy, it is demonstrated that functional dextran-based microgels with uniform and defined pores could be obtained.
Collapse
Affiliation(s)
- Selin Bulut
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Se-Hyeong Jung
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Thomas Bissing
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Florian Schmitt
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Michelle Bund
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Susanne Braun
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials e. V. RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC) RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| |
Collapse
|
12
|
Wang M, Fan R, Yu Q, Wang JX, Le Y, Chen JF. Degradable PDA@PNIPAM-TA Nanocomposites for Temperature- and NIR light-Controlled Pesticide Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13109-13120. [PMID: 37672621 DOI: 10.1021/acs.langmuir.3c01515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Controlled pesticide delivery systems offer many distinctive advantages over conventional pesticide formulations. In this work, degradable poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels and multifunctional PDA@PNIPAM-TA nanocomposites were prepared in a high-gravity rotating packed bed reactor (RPB) for smart pesticide delivery and release. The as-prepared microgels and nanocomposites showed reversible temperature-dependent swelling/deswelling behavior and irreversible pH-induced degradation. A dynamic contact angle test suggested that the introduction of TA and PDA into the PNIPAM matrix could enhance foliar adhesion and deposition efficiency. The nanocomposites were further used for the encapsulation and delivery of imidacloprid (IMI) to protect it from rapid photolysis and improve its pest-control efficiency. Their thermoresponsive behavior as well as pesticide loading capacity could be tuned by tailoring the PNIPAM-TA shell thickness, which could be varied by the NIPAM amount. The release rate of IMI from the core/shell nanocomposites was positively correlated with environmental temperature and near-infrared (NIR) light, which was adaptive to the positive temperature-dependent toxicity correlation of IMI and the increasing trend of pests under high temperature. The cumulative release of IMI was 23.5% at 25 °C, while it was 81.2% at 40 °C after 24 h of incubation, and the release rate was greatly enhanced under NIR irradiation. The results indicated that the facile control of pesticide release could be realized by regulating environmental conditions. This work also provides an idea for using high-gravity technology to conveniently construct a smart, effective, and environmentally friendly pesticide delivery system for sustainable crop protection.
Collapse
Affiliation(s)
- Manting Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Rongrong Fan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qingjian Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
14
|
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel) 2023; 16:937. [PMID: 37513850 PMCID: PMC10385691 DOI: 10.3390/ph16070937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Droplet-based microfluidics offer great opportunities for applications in various fields, such as diagnostics, food sciences, and drug discovery. A droplet provides an isolated environment for performing a single reaction within a microscale-volume sample, allowing for a fast reaction with a high sensitivity, high throughput, and low risk of cross-contamination. Owing to several remarkable features, droplet-based microfluidic techniques have been intensively studied. In this review, we discuss the impact of droplet microfluidics, particularly focusing on drug screening and development. In addition, we surveyed various methods of device fabrication and droplet generation/manipulation. We further highlight some promising studies covering drug synthesis and delivery that were updated within the last 5 years. This review provides researchers with a quick guide that includes the most up-to-date and relevant information on the latest scientific findings on the development of droplet-based microfluidics in the pharmaceutical field.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thach Thi Dan
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
15
|
Su YY, Pan DW, Deng CF, Yang SH, Faraj Y, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yousef Faraj
- Department of Chemical Engineering, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
16
|
Farooqi ZH, Vladisavljević GT, Pamme N, Fatima A, Begum R, Irfan A, Chen M. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels. Crit Rev Anal Chem 2023; 54:2435-2449. [PMID: 36757081 DOI: 10.1080/10408347.2023.2177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | | | - Nicole Pamme
- Department for Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biochemistry, University of Hull, Hull, United Kingdom
| | - Arooj Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Minjun Chen
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
17
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
18
|
Jia W, Zhou L, Li L, Zhou P, Shen Z. Nano-Based Drug Delivery of Polyphenolic Compounds for Cancer Treatment: Progress, Opportunities, and Challenges. Pharmaceuticals (Basel) 2023; 16:ph16010101. [PMID: 36678599 PMCID: PMC9865384 DOI: 10.3390/ph16010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Polyphenols and their derivates, a kind of natural product distributed in herb plants, vegetables, and fruits, are the most abundant antioxidants in the human diet and have been found to display cancer-preventative effects in several epidemiological studies. The scientific community has also validated the anti-cancer bioactivities and low toxicities of polyphenolic compounds, including flavones, tannins, phenolic acids, and anthocyanins, through in vitro and in vivo studies. However, the low stability, weak targeting ability, poor solubility, and low bioavailability of pure polyphenolic agents have significantly impaired their treatment efficacy. Nowadays, nano-based technology has been applied to surmount these restrictions and maximize the treatment efficacy of polyphenols. In this review, we summarize the advantages and related mechanisms of polyphenols in cancer treatment. Moreover, aiming at the poor solubility and low bioavailability of pure polyphenols in vivo, the advantages of nano-based delivery systems and recent research developments are highlighted. Herein, particular emphasis is mainly placed on the most widely used nanomaterials in the delivery of natural products, including liposomes, micelles, and nanogels. Finally, we present an overview and the challenges of future implementations of nano-based delivery systems of polyphenolic compounds in the cancer therapeutic field.
Collapse
Affiliation(s)
- Wenhui Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
- Correspondence: (P.Z.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- Correspondence: (P.Z.); (Z.S.)
| |
Collapse
|
19
|
Grabowski F, Petrovskii VS, Fink F, Demco DE, Herres‐Pawlis S, Potemkin II, Pich A. Anisotropic Microgels by Supramolecular Assembly and Precipitation Polymerization of Pyrazole-Modified Monomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204853. [PMID: 36310110 PMCID: PMC9798967 DOI: 10.1002/advs.202204853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Soft colloidal macromolecular structures with programmable chemical functionalities, size, and shape are important building blocks for the fabrication of catalyst systems and adaptive biomaterials for tissue engineering. However, the development of the easy upscalable and template-free synthesis methods to obtain such colloids lack in understanding of molecular interactions that occur in the formation mechanisms of polymer colloids. Herein, a computer simulation-driven experimental synthesis approach based on the supramolecular self-assembly followed by polymerization of tailored pyrazole-modified monomers is developed. Simulations for a series of pyrazole-modified monomers with different numbers of pyrazole groups, different length and polarity of spacers between pyrazole groups and the polymerizable group are first performed. Based on simulations, monomers able to undergo π-π stacking and guide the formation of supramolecular bonds between polymer segments are synthesized and these are used in precipitation polymerization to synthesize anisotropic microgels. This study demonstrates that microgel morphologies can be tuned from spherical, raspberry-like to dumbbell-like by the increase of the pyrazole-modified monomer loading, which is concentrated at periphery of growing microgels. Combining experimental and simulation results, this work provides a quantitative and predictive approach for guiding microgel design that can be further extended to a diversity of colloidal systems and soft materials with superior properties.
Collapse
Affiliation(s)
- Frédéric Grabowski
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
| | | | - Fabian Fink
- Institute for Inorganic ChemistryRWTH Aachen University52074AachenGermany
| | - Dan Eugen Demco
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
| | | | - Igor I. Potemkin
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
| | - Andrij Pich
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
- DWI – Leibniz Institute for Interactive Materials52074AachenGermany
| |
Collapse
|
20
|
Effects of surface wettability and flow rates on the interface evolution and droplet pinch-off mechanism in the cross-flow microfluidic systems. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Wu L, Guo Z, Liu W. Surface behaviors of droplet manipulation in microfluidics devices. Adv Colloid Interface Sci 2022; 308:102770. [PMID: 36113310 DOI: 10.1016/j.cis.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/01/2022]
Abstract
In recent years, the rapid development of microfluidic technology has caused a revolutionary impact in the fields of chemistry, medicine, and life sciences. Also, droplet control is one of the most important technologies in the field of microfluidics. In order to achieve different degrees of droplet transport, the dynamic balance of the competing processes of droplet driving force and fluid resistance should be controlled to achieve good selectivity of droplet transport. Here, we focus on the principles of droplet transport in microfluidic devices, including the driving forces for droplet transport in fluids and the effects of transport properties on droplet transport. After that, the effects of external fields on the directional transport of droplets and the advantages and disadvantages of each external field in droplet transport are discussed in detail. Finally, the applications and challenges of droplet microfluidics in chemical, biomedical, and mechanical systems are comprehensively introduced.
Collapse
Affiliation(s)
- Linshan Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|