1
|
Wang J, Hou Z, Wang W, Bai L, Chen H, Yang L, Yin K, Yang H, Wei D. Design of self-healing nanocomposite hydrogels and the application to the detection of human exercise and ascorbic acid in sweat. Biosens Bioelectron 2025; 267:116767. [PMID: 39270360 DOI: 10.1016/j.bios.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Hydrogel sensors have broad application prospects in human motion monitoring and sweat composition detection. However, hydrogel-based sensors are faced with challenges such as low accuracy and poor mechanical properties of analytes detection. Based on mussel-inspired chemistry, we synthesized mesoporous silica@polydopamine-Au (MPS@PDA-Au) nanomaterials and designed a self-healing nanocomposite hydrogel to monitor human movement and ascorbic acid detection in sweat. Mesoporous silica (MPS) possess orderly mesoporous structure. Dopamine (DA) polymerized on the surface of MPS to generate polydopamine (PDA), forming the composite material MPS@PDA-Au. This composite was then embedded into polyvinyl alcohol (PVA) hydrogels through a simple freeze-thaw cycle process. The hydrogels have achieved excellent deformable ability (508.6%), self-healing property (90.5%) and mechanical strength (2.9 MPa). The PVA/MPS@PDA-Au hydrogel sensors had the characteristics of fast response time (123.2 ms), wide strain sensing range (0-500%), excellent fatigue resistance and stability in human detection. The detection range of ascorbic acid (AA) in sweat was wide (8.0 μmol/L-100.0 μmol/L) and the detection limit was low (3.3 μmol/L). Therefore, these hydrogel sensors have outstanding application prospects in human motion monitoring and sweat composition detection.
Collapse
Affiliation(s)
- Jingyang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China; Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Kun Yin
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| |
Collapse
|
2
|
Wang D, Chen H, Han H, Yang W, Sun Q, Cao C, Ning K, Huang Z, Wu T. Interaction of biochar with extracellular polymers of resistant bacteria restrains Pb(II) adsorption onto their composite: Macro and micro scale investigations. BIORESOURCE TECHNOLOGY 2024; 414:131602. [PMID: 39393646 DOI: 10.1016/j.biortech.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Pb(II) sequestration in extracellular polymers-biochar composites (EPS-BC) was explored using macroscopic models and microscopic technology. The results showed that the actual adsorption capacity of EPS-BC was 52.2% lower than the calculated capacity based on adsorption onto pure components due to the interaction of polysaccharide and amide group in extracellular polymers with biochar, which masked the reactive sites related to Pb(II) in EPS-BC. The bond of Pb-O (40.8%) and Pb-OOC (31.5%) mainly contributed to Pb(II) speciation on the EPS-BC surfaces. Furthermore, each Pb atom coordinated with 6O atoms in the first shell and with 0.5C atoms in the second shell, indicating that the carboxyl group in composite was complexed with Pb(II) as a monodentate inner-sphere structure. The findings provide an in-depth understanding of the adsorption mechanism of heavy metals by extracellular polymers coupled with biochar at molecular scale, guiding bioremediation with respect to heavy metal contamination.
Collapse
Affiliation(s)
- Di Wang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
| | - Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenwen Yang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Qi Sun
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Churong Cao
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Kai Ning
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510630, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuochun Huang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Ting Wu
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| |
Collapse
|
3
|
Wu D, Xing Y, Liu L, Dong Q, Wang M, Zhang R. Structural design of "straw and clay" based on cellulose nanofiber/polydopamine and its interfacial stress dissipation mechanisms. Int J Biol Macromol 2024; 283:138040. [PMID: 39586442 DOI: 10.1016/j.ijbiomac.2024.138040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Cellulose nanofiber (CNF) is often incorporated as reinforcements into various matrices to optimize the mechanical properties of composites. However, the role of CNF in structural design interface components has been mostly neglected. Inspired by the architectural structure of "straw and clay", CNF and polydopamine (PDA) were used as the "straw phase" and "clay phase", respectively, to construct PDA/CNF self-assembled coatings on the carbon fiber (CF) surface via covalent bonding and non-covalent self-assembly. The organic coatings endowed the CF with high specific surface area, roughness and polarity, as well as a broad and gentle interfacial layer of the CF/epoxy resin composites. After self-assembly, the monofilament tensile strength (TS) of the fiber and the interlaminar shear strength (ILSS) of the CF/epoxy resin composites were increased by 13.44 % and 31.88 %, respectively. This investigation furnishes ideas for improving the mechanical performances of composites from the viewpoint of surface structure design and interface modulation.
Collapse
Affiliation(s)
- Dongliang Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Yuxuan Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Lei Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Qi Dong
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China.
| | - Maoju Wang
- Qingdao Huashijie Environment Technology Co., Ltd., 266510 Qingdao, China
| | - Ruliang Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China.
| |
Collapse
|
4
|
Ayoup MS, Eltaweil AS, Omer AM, Abd El-Monaem EM. Zwitterionic MOF-embedded alginate beads with polydopamine surface functionalization for efficient doxycycline removal: Optimization and mechanistic study. Int J Biol Macromol 2024; 281:136288. [PMID: 39368583 DOI: 10.1016/j.ijbiomac.2024.136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The adsorptive removal of amphoteric antibiotics like doxycycline (DOX) is a difficult task because of the electrostatic repulsion between these amphoteric molecules and adsorbents. For this purpose, a zwitter adsorbent was fabricated by incorporating zwitter ZIF-67/MIL-88A binary MOF into the matrix of alginate (Alg); in addition, the surface of the beads was modified by polydopamine (PDA). The batch experiments implied the super-high adsorption efficacy of ZIF-67/MIL-88A@Alg@PDA toward DOX attained 384.61 ± 5.08 mg/g at a neutral pH medium, 25 °C, and using 0.02 g. The isotherm analysis implied the physisorption of DOX onto ZIF-67/MIL-88A@Alg@PDA, while the kinetic analysis denoted the chemisorption of DOX. The results of XPS, Zeta potential, and Lab experiments identified the types of physical and chemical interactions between ZIF-67/MIL-88A@Alg@PDA and DOX. The durability of the ZIF-67/MIL-88A@Alg@PDA beads was inspected by the recycling test, clarifying that the DOX adsorption aptitude declined by 12.22 mg/g. In addition, the measured leaching concentrations of cobalt and iron from the leaching test were 0.008 and 0.098 mg/L. The ionic strength of ZIF-67/MIL-88A@Alg@PDA, implying an enhancement in the DOX removal (%) from 83.51 to 93.50 % by raising the NaCl concentration from 0.2 to 1.0 mol/L. Therefore, our study could provide a simple procedure to overcome the electrostatic repulsion that retard the adsorption process of the amphoteric drugs onto charged adsorbents with positive or negative charges. Additionally, this procedure could also generate an electrostatic interaction between the zwitter adsorbents and the amphoteric drugs at specific pH media when they are in a zwitterionic nature.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Ibra, Sultanate of Oman; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Ahmed M Omer
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | | |
Collapse
|
5
|
Eltaweil AS, Galal AM, Abd El-Monaem EM, Al Harby N, Batouti ME. Enhanced Fenton Degradation of Tetracycline over Cerium-Doped MIL88-A/g-C 3N 4: Catalytic Performance and Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1282. [PMID: 39120389 PMCID: PMC11313986 DOI: 10.3390/nano14151282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Since enormous amounts of antibiotics are consumed daily by millions of patients all over the world, tons of pharmaceutical residuals reach aquatic bodies. Accordingly, our study adopted the Fenton catalytic degradation approach to conquer such detrimental pollutants. (Ce0.33Fe) MIL-88A was fabricated by the hydrothermal method; then, it was supported on the surface of g-C3N4 sheets using the post-synthetic approach to yield a heterogeneous Fenton-like (Ce0.33Fe) MIL-88A/10%g-C3N4 catalyst for degrading the tetracycline hydrochloride drug. The physicochemical characteristics of the catalyst were analyzed using FT-IR, SEM-EDX, XRD, BET, SEM, and XPS. The pH level, the H2O2 concentration, the reaction temperature, the catalyst dose, and the initial TC concentration were all examined as influencing factors of TC degradation efficiency. Approximately 92.44% of the TC was degraded within 100 min under optimal conditions: pH = 7, catalyst dosage = 0.01 g, H2O2 concentration = 100 mg/L, temperature = 25 °C, and TC concentration = 50 mg/L. It is noteworthy that the practical outcomes revealed how the Fenton-like process and adsorption work together. The degradation data were well-inspected by first-order and second-order models to define the reaction rate. The synergistic interaction between the (Ce0.33Fe) MIL-88A/10%g-C3N4 components produces a continuous redox cycle of two active metal species and the electron-rich source of g-C3N4. The quenching test demonstrates that •OH is the primary active species for degrading TC in the H2O2-(Ce0.33Fe) MIL-88A/10%g-C3N4 system. The GC-MS spectrum elucidates the yielded intermediates from degrading the TC molecules.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Ibra 400, Oman;
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21934, Egypt; (A.M.G.); (E.M.A.E.-M.); (M.E.B.)
| | - Amira M. Galal
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21934, Egypt; (A.M.G.); (E.M.A.E.-M.); (M.E.B.)
| | - Eman M. Abd El-Monaem
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21934, Egypt; (A.M.G.); (E.M.A.E.-M.); (M.E.B.)
| | - Nouf Al Harby
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mervette El Batouti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21934, Egypt; (A.M.G.); (E.M.A.E.-M.); (M.E.B.)
| |
Collapse
|
6
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Tian S, Shi X, Wang S, He Y, Zheng B, Deng X, Zhou Z, Wu W, Xin K, Tang L. Recyclable Fe 3O 4@UiO-66-PDA core-shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J Colloid Interface Sci 2024; 665:465-476. [PMID: 38537592 DOI: 10.1016/j.jcis.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.
Collapse
Affiliation(s)
- Shuangqin Tian
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China; Honghe Prefecture Nationality Senior High School, Honghe 661200, Yunnan Province, PR China.
| | - Shujie Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Yi He
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Bifang Zheng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| |
Collapse
|
8
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
9
|
El-Monaem EMA, Gomaa H, Omer AM, El-Subruiti GM, Eltaweil AS. Sequestration of Pb(II) using channel-like porous spheres of carboxylated graphene oxide-incorporated cellulose acetate@iminodiacetic acid: optimization and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32664-32679. [PMID: 38658512 PMCID: PMC11133213 DOI: 10.1007/s11356-024-33185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
The adsorption property of the costless green cellulose acetate (CA) was boosted by the dual modifications: inner modification by incorporating carboxylated graphene oxide (COOH-GO) into the CA spheres and outer modification by the surface modification of the COOH-GO@CA spheres by iminodiacetic acid (IDA) for removing Pb(II). The adsorption experiments of the Pb(II) proceeded in a batch mode to evaluate the adsorption property of the COOH-GO@CA@IDA spheres. The maximal Pb(II) adsorption capacity attained 613.30 mg/g within 90 min at pH = 5. The removal of Pb(II) reached its equilibrium within 20 min, and the removal % was almost 100% after 30 min at the low Pb(II) concentration. The Pb(II) adsorption mechanism was proposed according to the kinetics and isotherms studies; in addition, the zeta potential (ZP) measurements and X-ray Photoelectron Spectroscopy (XPS) analysis defined the adsorption pathways. By comparing the XPS spectra of the authentic and used COOH-GO@CA@IDA, it was deduced that the contributed chemical adsorption pathways are Lewis acid-base, precipitation, and complexation. The zeta potential (ZP) measurements demonstrated the electrostatic interaction participation in adsorbing the cationic Pb(II) species onto the negatively charged spheres (ZP = 14.2 mV at pH = 5). The unique channel-like pores of the COOH-GO@CA@IDA spheres suggested the pore-filling mechanism of Pb(II). The promising adsorption results and the superb recyclability character of COOH-GO@CA@IDA enable it to extend of the bench scale to the industrial scale.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelazeem S Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Ibra, Sultanate of Oman
| |
Collapse
|
10
|
Eze E, Omer AM, Hassanin AH, Eltaweil AS, El-Khouly ME. Cellulose acetate nanofiber modified with polydopamine polymerized MOFs for efficient removal of noxious organic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29992-30008. [PMID: 38598154 DOI: 10.1007/s11356-024-33050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The need to effectively remove toxic organic dyes from aquatic systems has become an increasingly critical issue in the recent years. In pursuit of this objective, polydopamine (PDA)-binary ZIF-8/UiO-66 (MOFs) was synthesized and incorporated into cellulose acetate (CA), producing ZIF-8/UiO-66/PDA@CA composite nanofibers under meticulously optimized conditions. The potential of fabricated nanofibers to remove cationic methylene blue (MB) dye was investigated. Various analysis tools including FTIR, XRD, SEM, zeta potential, BET, tensile strength testing, and XPS were employed. Results revealed a substantial leap in tensile strength, with ZIF-8/UiO-66/PDA@CA registering an impressive 2.8 MPa, as a marked improvement over the neat CA nanofibers (1.1 MPa). ZIF-8/UiO-66/PDA@CA nanofibers exhibit an outstanding adsorption capacity of 82 mg/g, notably outperforming the 22.4 mg/g capacity of neat CA nanofibers. In binary dye systems, these nanofibers exhibit a striking maximum adsorption capacity of 108 mg/g, establishing their eminence in addressing the complexities of wastewater treatment. Furthermore, the adsorption data fitted to the Langmuir isotherm, and the pseudo-second-order kinetic model. The fabricated nanofiber demonstrates good reproducibility and durability, consistently upholding its performance over five cycles. This suite of remarkable attributes collectively underscores its potential as a robust, durable, and highly promising solution for the effective and efficient removal of pernicious MB dye, in the context of both water quality improvement and environmental preservation.
Collapse
Affiliation(s)
- Esther Eze
- Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed H Hassanin
- Department of Textile, Faculty of Engineering, Alexandria University, Alexandria, Egypt
- Wilson College Textile, North Carolina State University, Raleigh, NC, USA
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21934, Egypt
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Muscat, Oman
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
11
|
He X, Chang C. Construction of SU-102 for adsorption and photocatalytic synergistic removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24446-24460. [PMID: 38438646 DOI: 10.1007/s11356-024-32737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Tetracycline (TC) is a significant group of broad-spectrum antibiotics that are frequently employed in medical health and animal husbandry. However, the problem of TC residues has been increasing globally with the large-scale production and widespread use, posing a serious threat to the human health and ecological environment. In this paper, a green plant-based MOF SU-102 was prepared, and the adsorption characteristics of SU-102 on TC were investigated. SU-102 was columnar crystal with considerable specific surface area and pore structure, and it could adsorb TC quickly and effectively. And compared to SU-102-a, the adsorption rate of TC by SU-102-b has increased by nearly four times. The adsorption reaction was a spontaneous, entropy-gaining, heat-absorbing process. The adsorption mechanisms between SU-102 and TC were π-π interaction and hydrogen bonding. In addition, SU-102 also had considerable photocatalytic properties, and its application in adsorbent desorption treatment effectively solved the problem of secondary pollution.
Collapse
Affiliation(s)
- Xiaohui He
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
12
|
Xie H, Yang M, He X, Zhan Z, Jiang H, Ma Y, Hu C. Polydopamine-Modified 2D Iron (II) Immobilized MnPS 3 Nanosheets for Multimodal Imaging-Guided Cancer Synergistic Photothermal-Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306494. [PMID: 38083977 PMCID: PMC10870060 DOI: 10.1002/advs.202306494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Indexed: 02/17/2024]
Abstract
Manganese phosphosulphide (MnPS3 ), a newly emerged and promising member of the 2D metal phosphorus trichalcogenides (MPX3 ) family, has aroused abundant interest due to its unique physicochemical properties and applications in energy storage and conversion. However, its potential in the field of biomedicine, particularly as a nanotherapeutic platform for cancer therapy, has remained largely unexplored. Herein, a 2D "all-in-one" theranostic nanoplatform based on MnPS3 is designed and applied for imaging-guided synergistic photothermal-chemodynamic therapy. (Iron) Fe (II) ions are immobilized on the surface of MnPS3 nanosheets to facilitate effective chemodynamic therapy (CDT). Upon surface modification with polydopamine (PDA) and polyethylene glycol (PEG), the obtained Fe-MnPS3 /PDA-PEG nanosheets exhibit exceptional photothermal conversion efficiency (η = 40.7%) and proficient pH/NIR-responsive Fenton catalytic activity, enabling efficient photothermal therapy (PTT) and CDT. Importantly, such nanoplatform can also serve as an efficient theranostic agent for multimodal imaging, facilitating real-time monitoring and guidance of the therapeutic process. After fulfilling the therapeutic functions, the Fe-MnPS3 /PDA-PEG nanosheets can be efficiently excreted from the body, alleviating the concerns of long-term retention and potential toxicity. This work presents an effective, precise, and safe 2D "all-in-one" theranostic nanoplatform based on MnPS3 for high-efficiency tumor-specific theranostics.
Collapse
Affiliation(s)
- Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
13
|
Zhao Y, Li Y, Chang L, He W, Liu K, Cui M, Wang S, Zhao Y, Tan X. Bimetal doped Cu-Fe-ZIF-8/g-C 3N 4 nanocomposites for the adsorption of tetracycline hydrochloride from water. RSC Adv 2024; 14:4861-4870. [PMID: 38323017 PMCID: PMC10844844 DOI: 10.1039/d3ra08225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetal doped Cu-Fe-zeolitic imidazole framework-8 (ZIF-8)/graphitic carbon nitride (GCN) (Cu-Fe-ZIF-8/GCN) nanocomposites were prepared via one-pot and ion-exchange methods. The main influencing factors, such as adsorbent concentration, TC concentration, initial pH, and coexisting ions, were evaluated in detail. Due to the suitable pore structures and the presence of multiple interactions on the surface, the nanocomposite showed a high adsorption capacity up to 932 mg g-1 for tetracycline hydrochloride (TC), outperforming ZIF-8 by 4.8 times. The adsorption kinetics and adsorption isotherm were depicted in good detail using pseudo-second-order kinetic and Langmuir models, respectively. Thermodynamic calculation revealed that the adsorption of the nanocomposite under experimental conditions was a spontaneous heat absorption process, and was primarily driven by chemisorption. After four cycles of use, the nanocomposite retained 87.2% of its initial adsorption capacity, confirming its high reusability and broad application prospects in removing tetracycline-type pollutants from wastewater.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development Jiangsu 222005 China
| | - Yueyang Li
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Jiangsu 222005 China
| | - Lu Chang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Wenjing He
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Keling Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Minjie Cui
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Shengnan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Yujia Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Xinyu Tan
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| |
Collapse
|
14
|
Sun X, Li F, Yuan L, Bing Z, Li X, Yang K. pH-responsive resveratrol-loaded ZIF-8 nanoparticles modified with tannic acid for promoting colon cancer cell apoptosis. J Biomed Mater Res B Appl Biomater 2024; 112:e35320. [PMID: 37702969 DOI: 10.1002/jbm.b.35320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023]
Abstract
Resveratrol (Res) is known for its potential in treating various types of cancers, with a particular advantage of causing minimal toxic side effects. However, its clinical application is constrained by challenges such as poor bioavailability, low water solubility, and chemical instability in neutral and alkaline environments. In light of these limitations, we have developed a pH-responsive drug delivery nanoplatform, Res@ZIF-8/TA NPs, which exhibits good biocompatibility and shows promise for in vitro cancer therapy. Benefiting from the mild reaction conditions provided by zeolitic imidazolate frameworks (ZIFs), a "one-pot method" was used for drug synthesis and loading, resulting in a satisfactory loading capacity. Notably, Res@ZIF-8/TA NPs respond to acidic environments, leading to an improved drug release profile with a controlled release effect. Our cell-based experiments indicated that tannic acid (TA) modification enhances the biocompatibility of ZIFs. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT assay), Hoechst 33342/PI staining, cell scratch assay, Transwell and Reverse Transcription quantitative PCR (RT-qPCR) assays further demonstrated that Res@ZIF-8/TA NPs inhibited colon cancer cell migration and invasion, and promoted apoptosis of colon cancer cells, suggesting a therapeutic potential and demonstrating anti-cancer properties. In conclusion, the Res@ZIF-8/TA NPs pH-responsive drug delivery systems we developed may offer a promising avenue for cancer therapy. By addressing some of the challenges associated with Res-based treatments, this system could contribute to advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Xueqiang Sun
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Fuxin Li
- The People's Hospital of Hezhou Hepatobiliary, Pancreatic and Spleen Surgery, Hezhou, China
| | - Lingyan Yuan
- Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhitong Bing
- Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Kehu Yang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Institution of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, China
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Laddha H, Sharma P, Jadhav NB, Abedeen MZ, Gupta R. Batch Experimental Studies and Statistical Modeling for the Effective Removal of Tetracycline from Wastewater Using Bimetallic Zn-Cu-Metal-Organic Framework@Hydrogel Composite Beads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38036945 DOI: 10.1021/acs.langmuir.3c02385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Antimicrobial resistance (AMR) is on an upsurge as more and more broad-spectrum antibiotics are being used haphazardly, resulting in imbalances in the ecosystem and disrupting common/systematic clinical protocols. To combat this issue, metal-organic framework embedded zinc-copper-benzenedicarboxylate@calcium alginate composite beads (Zn-Cu-BDC@CA CBs) were synthesized and utilized for the adsorption of tetracycline (TC) from water. The surface morphology, presence of functional groups, surface area, and thermal stability of Zn-Cu-BDC@CA CBs were evaluated by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and thermal gravimetric analysis (TGA), respectively. Batch adsorption experiments were also carried out to optimize the adsorption performance of Zn-Cu-BDC@CA CBs for TC by adjusting the key parameters, including pH of the solution, contact time, adsorbent dosage, temperature, and initial concentration of TC. From the RSM model, 96.8% removal of TC takes place under the optimum conditions (pH = 7.3, mass = 17.2 mg, concentration = 21.3 ppm, time = 3.4 h, and temperature = 31.8 °C), which aligns closely with the experimental batch study, where the addition of 20 mg of adsorbent to a 20 mL TC solution (20 mg/L) at a pH of 7 and a temperature of 27 °C yielded an impressive TC removal efficiency of 96.55% within 180 min. Zn-Cu-BDC@CA CBs possess homogeneous adsorption surfaces, and TC is adsorbed via monolayer chemisorption, according to the results derived from the Langmuir isotherm model and pseudo-second-order kinetic model. The thermodynamic analysis indicated that the adsorption process is both endothermic and spontaneous. In their entirety, the synthesized Zn-Cu-BDC@CA CBs exhibit certain operational advantages, such as simple separation, satisfactory adsorption performance, and decent recyclability, indicating their viability for industrial application of elimination of TC residues from aquatic environments.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Neha Balaji Jadhav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Md Zainul Abedeen
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
16
|
Zhang Z, Luo Y, Li Y, Ding S, Liu K, Luo B. Flexible Hybrid Wearable Sensors for Pressure and Thermal Sensing Based on a Double-Network Hydrogel. ACS APPLIED BIO MATERIALS 2023; 6:5114-5123. [PMID: 37941091 DOI: 10.1021/acsabm.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Flexible sensors have attracted great attention due to their wide applications in various fields such as motion monitoring and medical health. It is reasonable to develop a sensor with good flexibility, sensitivity, and biocompatibility for wearable device applications. In this study, a double-network hydrogel was obtained by blending poly(vinyl alcohol) (PVA) with poly(ethylene glycol) diacrylate (PEGDA), which combines the flexibility of the PVA network and the fast photocuring ability of PEGDA. Subsequently, polydopamine-coated carbon nanotubes were used as conductive fillers of the PVA-PEG hydrogel matrix to prepare a flexible sensor that exhibits an effective mechanical response and significant stability in mechanics and conductivity. More importantly, the resistance of the sensor is very sensitive to pressure and thermal changes due to the optimized conductive network in the hydrogel. A motion monitoring test showed that the flexible sensor not only responds quickly to the motion of different joints but also keeps the output signal stable after many cycles. In addition, the excellent cell affinity of the hybrid hydrogel also encourages its application in health monitoring and motion sensors.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yiting Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| |
Collapse
|
17
|
Jia H, Xu H, Shi M, Lu K, Tao Y, Xia M, Wang F. Construction of ACNF/Polypyrrole/MIL-100-Fe composites with exceptional removal performance for ceftriaxone and indomethacin inspired by "Ecological Infiltration System". J Colloid Interface Sci 2023; 650:1152-1163. [PMID: 37473475 DOI: 10.1016/j.jcis.2023.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Developing advanced adsorbents for removing the alarming level of pharmaceuticals active compounds (PhACs) pollution is an urgent task for environmental treatment. Herein, a novel acid-treated carbon nanofiber/polypyrrole/MIL-100-Fe (ACNF/PPy/MIL-100-Fe) with stable 3D-supporting skeleton and hierarchical porous structure had been fabricated to erasure ceftriaxone (CEF) and indomethacin (IDM) from aqueous solution. ACNF as scaffold achieved the highly uniform growth of MIL-100-Fe and PPy. Viewing the large BET surface area (SBET, 999.7 m2/g), highly exposed accessible active sites and copious functional groups, ACNF/PPy/MIL-100-Fe separately showed an excellent adsorption capacity for CEF (294.7 mg/g) and IDM (751.8 mg/g), outstripping the most previously reported adsorbents. Moreover, ACNF/PPy/MIL-100-Fe reached rapid adsorption kinetics and standout reusability property. Further, the redesigned easy-to-recyclable ACF/PPy/MIL-100-Fe inspired by the electrode formation craft achieved prominent adsorption capacity and good reusability property. The adsorption mechanism was evaluated via Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The outcomes revealed that the splendid adsorption capability mainly depended on the electrostatic interactions, hydrogen bonding and π-π interactions. This work sheds light on one facile practical strategy to exploit advanced materials in water environmental remediation.
Collapse
Affiliation(s)
- Huijuan Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haihua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Tao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
18
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Yuan N, Zhang X, Chen T, Xu H, Wang Q. Fabricating Materials of Institute Lavoisier-53(Fe)/zeolite imidazolate framework-8 hybrid materials as high-efficiency and reproducible adsorbents for removing organic pollutants. J Colloid Interface Sci 2023; 646:438-451. [PMID: 37207425 DOI: 10.1016/j.jcis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Environmental pollution by emerging contaminants has become an urgent problem. Herein, novel binary metal-organic framework hybrids were constructed from Materials of Institute Lavoisier-53(Fe) (MIL-53(Fe)) and zeolite imidazolate framework-8 (ZIF-8) for the first time. A battery of characterizations were employed to determine the MIL/ZIF hybrids' properties and morphology. Furthermore, the MIL/ZIF towards toxic antibiotics (tetracycline, ciprofloxacin and ofloxacin) were studied to explore their adsorption abilities. The present work disclosed that the obtained MIL-53(Fe)/ZIF-8 = 2:3 possessed an eminent specific surface area with an admirable removal efficiency of tetracycline (97.4%), ciprofloxacin (97.1%) and ofloxacin (92.4%), respectively. The tetracycline adsorption process conformed to the pseudo-second-order kinetic model and this process was more compatible with the Langmuir isotherm model with the highest adsorption capacity of 215.0 mg g-1. Moreover, the process of removing tetracycline was proved to be spontaneous and exothermic by the thermodynamic results. Furthermore, the MIL-53(Fe)/ZIF-8 = 2:3 towards tetracycline exhibited significant regeneration ability. The effects of pH, dosage, interfering ions and oscillation frequency on tetracycline adsorption capacity and removal efficiency were also investigated. The primary factors contributing to the decent adsorption ability between MIL-53(Fe)/ZIF-8 = 2:3 and tetracycline included electrostatic, π-π stacking, hydrogen bonding and weak coordination interactions. Additionally, we also investigated the adsorption ability in real wastewater. Thus, the proposed binary metal-organic framework hybrid materials can be deemed a promising adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Hao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
20
|
Tao Y, Du J, Cheng Y, Lu J, Min D, Wang H. Advances in Application of Cellulose-MOF Composites in Aquatic Environmental Treatment: Remediation and Regeneration. Int J Mol Sci 2023; 24:ijms24097744. [PMID: 37175452 PMCID: PMC10177928 DOI: 10.3390/ijms24097744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Metal organic frameworks (MOFs) have gained remarkable interest in water treatment due to their fascinating characteristics, such as tunable functionality, large specific surface area, customizable pore size and porosity, and good chemical and thermal stability. However, MOF particles tend to easily agglomerate in nanoscale, thus decreasing their activity and processing convenience. It is necessary to shape MOF nanocrystals into maneuverable structures. The in situ growth or ex situ incorporation of MOFs into inexpensive and abundant cellulose-family materials can be effective strategies for the stabilization of these MOF species, and therefore can make available a range of enhanced properties that expand the industrial application possibilities of cellulose and MOFs. This paper provides a review of studies on recent advances in the application of multi-dimensional MOF-cellulose composites (e.g., aerogels, membranes, and bulk materials) in wastewater remediation (e.g., metals, dyes, drugs, antibiotics, pesticides, and oils) and water regeneration by adsorption, photo- or chemocatalysis, and membrane separation strategies. The advantages brought about by combining MOFs and cellulose are described, and the performance of MOF-cellulose is described and compared to its counterparts. The mechanisms of relative MOF-cellulose materials in processing aquatic pollutants are included. Existing challenges and perspectives for future research are proposed.
Collapse
Affiliation(s)
- Yehan Tao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haisong Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
21
|
Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Ali BM, Abd El-Latif MM, Omer AM. Graphene oxide incorporated cellulose acetate beads for efficient removal of methylene blue dye; isotherms, kinetic, mechanism and co-existing ions studies. JOURNAL OF POROUS MATERIALS 2023; 30:607-618. [DOI: 10.1007/s10934-022-01347-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 09/01/2023]
Abstract
AbstractIn this investigation, new porous adsorbent beads were formulated via the incorporation of graphene oxide (GO) into cellulose acetate beads (CA) for the adsorptive removal of methylene blue (MB) dye. The experimental results signified that the adsorption of MB dye increased with the increase in the GO ratio from 10 to 25%. In addition, the adsorption process obeyed PSO kinetic model and Langmuir isotherm model with a maximum adsorption capacity reaching 369.85 mg/g. More importantly, it was proposed that the adsorption mechanism of MB dye onto GO@CA proceeded via electrostatic interactions, H-bonding, van der Waals forces, n-π and π -π interactions. Besides, the fabricated beads exhibited an excellent ability to recycle and reuse after five successive cycles. In addition, there was a high selectivity of GO@CA beads towards MB molecules in the presence of co-existing cations such as Fe2+, Zn2+, Cu2+ and Ni2+.
Collapse
|
22
|
Abd El-Monaem EM, Eltaweil AS, El-Subruiti GM, Mohy-Eldin MS, Omer AM. Adsorption of nitrophenol onto a novel Fe 3O 4-κ-carrageenan/MIL-125(Ti) composite: process optimization, isotherms, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49301-49313. [PMID: 36773266 PMCID: PMC10104928 DOI: 10.1007/s11356-023-25678-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Water pollution is a dreadful affair that has incessantly aggravated, exposing our planet to danger. In particular, the persistent nitro aromatic compound like nitrophenols causes anxiety to the researchers due to their hazardous impacts, excessive usage, and removal difficulty. For this purpose, a novel multi-featured composite was constructed based on κ-Carrageenan (κ-Carr), MOF (MIL-125(Ti)), and magnetic Fe3O4 for efficient adsorptive removal of o-nitrophenol (o-NP). Interestingly, BET measurements revealed the high surface area of Fe3O4-κ-Carr/MIL-125(Ti) of about 163.27 m2/g, while VSM showed its excellent magnetic property (20.34 emu/g). The comparison study pointed out the synergistic effect between Fe3O4, κ-Carr, and MIL-125(Ti), forming a composite with an excellent adsorption performance toward o-NP. The adsorption data obeyed pseudo-second-order kinetic model, and Freundlich isotherm model was better fitted than Langmuir and Temkin. Furthermore, Langmuir verified the supreme adsorption capacity of o-NP onto Fe3O4-κ-Carr/MIL-125(Ti) since the computed qmax reached 320.26 mg/g at pH 6 and 25 °C. Furthermore, the XPS results postulated that the adsorption mechanism pf o-NP proceeded via H-bonding, π-π interaction, and electron donor-acceptor interactions. Interestingly, Fe3O4-κ-Carr/MIL-125(Ti) composite retained good adsorption characteristics after reusing for five cycles, suggesting its viable applicability as an efficient, renewable, and easy-separable adsorbent for removing nitro aromatic pollutants.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
23
|
Construction of efficient Ni-FeLDH@MWCNT@Cellulose acetate floatable microbeads for Cr(VI) removal: Performance and mechanism. Carbohydr Polym 2023; 311:120771. [PMID: 37028881 DOI: 10.1016/j.carbpol.2023.120771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Water pollution is an aggravating dilemma that is extending around the world, threatening human survival. Strikingly, the notorious heavy metals like hexavalent chromium ions (Cr6+) cause environmental problems raising awareness of the essentials for finding feasible solutions. For this purpose, the self-floating Ni-FeLDH@MWCNT@CA microbeads were prepared for removing Cr6+. The morphological, thermal, and composition characteristics of Ni-FeLDH@MWCNT@CA microbeads were analyzed using XRD, FTIR, TGA, SEM, XPS, and zeta potential. Notably, the adsorption aptitude of Cr6+ was enhanced by raising the MWCNTs proportion to 5 wt% in microbeads. The Cr6+ adsorption onto Ni-FeLDH@MWCNT@CA fitted Langmuir and Freundlich isotherm models with qm of 384.62 mg/g at pH 3 and 298 K. The adsorption process was described kinetically by the pseudo-2nd order model. More importantly, the adsorption of Cr6+ onto Ni-FeLDH@MWCNT@CA occurred via electrostatic interactions, inner/outer sphere complexations, ion exchange, and reduction mechanisms. Besides, the cycling test showed the remarkable reusability of Ni-FeLDH@MWCNT@CA floatable microbeads for five subsequent cycles. The self-floating Ni-FeLDH@MWCNT@CA microbeads in this work provide essential support for the potential applications for the remediation of heavy metals-containing wastewater.
Collapse
|
24
|
Zhang X, Zhu D, Wang S, Zhang J, Zhou S, Wang W. Efficient adsorption and degradation of dyes from water using magnetic covalent organic frameworks with a pyridinic structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34669-34683. [PMID: 36515876 DOI: 10.1007/s11356-022-24688-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3 h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shiyi Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Jinwen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China.
| |
Collapse
|
25
|
Valizadeh K, Bateni A, Sojoodi N, Rafiei R, Behroozi AH, Maleki A. Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water. Int J Biol Macromol 2023; 235:123826. [PMID: 36828094 DOI: 10.1016/j.ijbiomac.2023.123826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Tetracycline (TC) antibiotic-related water pollution directly threatens human health and ecosystems. Here, a zinc ferrite/chitosan-curdlan (ZNF/CHT-CRD) magnetic composite was prepared via a co-precipitation method to be used as a novel, green adsorbent for TC removal from water. Benefiting from a multitude of functional groups, CRD was first crosslinked with CHT and then magnetized with ZNF to provide an easy separation from the solution with an external magnetic force. The successful synthesis and magnetization of the composite were verified with different characterization techniques. The effect of solution pH and composite dosage was carefully evaluated. The optimum solution pH and composite dosage were 6 and 0.65 g/L, respectively, with complete TC removal. The adsorption process by the magnetic composite followed the pseudo-first-order kinetics and Langmuir isotherm models. The maximum adsorption capacity determined from the Langmuir model was 371.42 mg/g at 328 K. Thermodynamic parameters indicated endothermic and spontaneous adsorption. Meanwhile, the composite could be readily separated from the aqueous solution thanks to its magnetic property. Then, it was regenerated with acetone and ethanol to be reused for five more successive cycles. Interestingly, the prepared adsorbent was highly stable and performant in removing TC, maintaining approximately 90 % of its first-cycle adsorption capacity. The adsorption mechanism was primarily attributed to electrostatic and hydrogen bonding attractions. Overall, the currently developed adsorbent could be a more favorable, efficient, and cost-effective candidate than other magnetic chitosan-based composites. These features make it applicable for treating water contaminated with various pharmaceutical pollutants with high separation efficiency and easy recovery under successive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Kamran Valizadeh
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Bateni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Sojoodi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rana Rafiei
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
26
|
Xiong F, Hao Y, Xu H, Li X, Sun Y, Liu J, Chen X, Wei Z. High‐Affinity Adsorbent with Honeycomb Structure for Efficient Acteoside Separation. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Feng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Yanyan Hao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Helin Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Yu Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Jiaxing Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Xi Chen
- Kashi Product Quality Inspection Institute No. 5, Century Avenue North Road Xinjiang Kashgar 844000 China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| |
Collapse
|
27
|
Akpomie KG, Conradie J. Efficient adsorptive removal of paracetamol and thiazolyl blue from polluted water onto biosynthesized copper oxide nanoparticles. Sci Rep 2023; 13:859. [PMID: 36650260 PMCID: PMC9845337 DOI: 10.1038/s41598-023-28122-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) have received tremendous attention as efficient adsorbents owing to their low cost, desirable surface area, abundant active sites, potent textural characteristics and high adsorption capacities. However, CuONPs have not been employed to decontaminate water laden with increasing environmental contaminants such as thiazolyl blue and paracetamol. Herein, the adsorption of thiazolyl blue and paracetamol onto green synthesized CuONPs prepared from the aqueous leaf extract of Platanus occidentalis was studied. The BET, SEM, FTIR, XRD, EDX and pH point of zero charge showed the successful synthesis of CuONPs having desirable surface properties with a surface area of 58.76 m2/g and an average size of 82.13 nm. The maximum monolayer adsorption capacities of 72.46 mg/g and 64.52 mg/g were obtained for thiazolyl blue and paracetamol, respectively. The Freundlich, pseudo-second-order and intraparticle diffusion models were well fitted to the adsorption of both pollutants. The pH studies suggested the predominance of electrostatic and weaker intermolecular interactions in the adsorption of the thiazolyl blue and paracetamol, respectively. Spontaneous, physical, endothermic and random adsorption of the pollutants on CuONPs was obtained from the thermodynamic consideration. The biosynthesized CuONPs were found to be highly reusable and efficient for the adsorption of thiazolyl blue and paracetamol from water.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa. .,Industrial/Physical Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Unit, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
28
|
Surface-passivated rGO@CuO/6A5N2TU colloidal heterostructures for efficient removal of ofloxacin from contaminated water through dual-mode complexation: insights into kinetics and adsorption isotherm model study. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Photocatalytic Degradation of Tetracycline by Supramolecular Materials Constructed with Organic Cations and Silver Iodide. Catalysts 2022. [DOI: 10.3390/catal12121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Photocatalytic degradation, as a very significant advanced oxidation technology in the field of environmental purification, has attracted extensive attention in recent years. The design and synthesis of catalysts with high-intensity photocatalytic properties have been the focus of many researchers in recent years. In this contribution, two new supramolecular materials {[(L1)·(Ag4I7)]CH3CN} (1), {[(L2)·(Ag4I7)]CH3CN} (2) were synthesized by solution volatilization reaction of two cationic templates 1,3,5-Tris(4-aminopyridinylmethyl)-2,4,6-Trimethylphenyl bromide (L1) and 1,3,5-Tris(4-methyl pyridinyl methyl)-2,4,6-trimethylphenyl bromide (L2) with metal salt AgI at room temperature, respectively. The degradation effect of 1 and 2 as catalyst on tetracycline (TC) under visible light irradiation was studied. The results showed that the degradation of TC by 1 was better than that by 2 and both of them had good stability and cyclability. The effects of pH value, catalyst dosage, and anion in water on the photocatalytic performance were also investigated. The adsorption kinetics fit the quasi-first-order model best. After 180 min of irradiation with 1, the degradation rate of TC can reach 97.91%. In addition, the trapping experiments showed that ·OH was the main active substance in the photocatalytic degradation of TC compared with ·O2− and h+. Because of its simple synthesis and high removal efficiency, catalyst 1 has potential value for the treatment of wastewater containing organic matter.
Collapse
|
30
|
Alginate-based foam filled with nano-zeolite for effective adsorptive removal of methylene blue from water: performance and effect of operating conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Xie Y, Lyu S, Zhang Y, Cai C. Adsorption and Degradation of Volatile Organic Compounds by Metal-Organic Frameworks (MOFs): A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7727. [PMID: 36363319 PMCID: PMC9656840 DOI: 10.3390/ma15217727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) are a major threat to human life and health. The technologies currently used to remove VOCs mainly include adsorption and photocatalysis. Adsorption is the most straightforward strategy, but it cannot ultimately eliminate VOCs. Due to the limited binding surface, the formaldehyde adsorption on conventional photocatalysts is limited, and the photocatalytic degradation efficiency is not high enough. By developing novel metal-organic framework (MOF) materials that can catalytically degrade VOCs at room temperature, the organic combination of new MOF materials and traditional purification equipment can be achieved to optimize adsorption and degradation performance. In the present review, based on the research on the adsorption and removal of VOCs by MOF materials in the past 10 years, starting from the structure and characteristics of MOFs, the classification of which was described in detail, the influencing factors and mechanisms in the process of adsorption and removal of VOCs were summarized. In addition, the research progress of MOF materials was summarized, and its future development in this field was prospected.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sining Lyu
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Zhang
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Changhong Cai
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
32
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Wu M, Wu Q, Yang Y, He Z, Yang H. Regulating Lewis acidity and local electron density of iron-based metal organic frameworks via cerium doping for efficient photo-Fenton process. J Colloid Interface Sci 2022; 630:866-877. [DOI: 10.1016/j.jcis.2022.10.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
34
|
Study on the synthesis and properties of an environmentally friendly water treatment agent. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chem 2022; 405:134842. [DOI: 10.1016/j.foodchem.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
36
|
Liu Y, Fu J, He J, Wang B, He Y, Luo L, Wang L, Chen C, Shen F, Zhang Y. Synthesis of a superhydrophilic coral-like reduced graphene oxide aerogel and its application to pollutant capture in wastewater treatment. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Efficient removal of noxious methylene blue and crystal violet dyes at neutral conditions by reusable montmorillonite/NiFe2O4@amine-functionalized chitosan composite. Sci Rep 2022; 12:15499. [PMID: 36109538 PMCID: PMC9478098 DOI: 10.1038/s41598-022-19570-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
The jeopardy of the synthetic dyes effluents on human health and the environment has swiftly aggravated, threatening human survival. Hence, sustained studies have figured out the most acceptable way to eliminate this poisonous contaminant. Thereby, our investigation aimed to fabricate montmorillonite/magnetic NiFe2O4@amine-functionalized chitosan (MMT-mAmCs) composite as a promising green adsorbent to remove the cationic methylene blue (MB) and crystal violet (CV) dyes from the wastewater in neutral conditions. Interestingly, MMT-mAmCs composite carries high negative charges at a wide pH range from 4 to 11 as clarified from zeta potential measurements, asserting its suitability to adsorb the cationic contaminants. In addition, the experimental study confirmed that the optimum pH to adsorb both MB and CV was pH 7, inferring the ability of MMT-mAmCs to adsorb both cationic dyes in simple process conditions. Furthermore, the ferromagnetic behavior of the MMT-mAmCs composite is additional merit to our adsorbent that provides facile, fast, and flawless separation. Notably, the as-fabricated composite revealed an auspicious adsorbability towards the adsorptive removal of MB and CV, since the maximum adsorption capacity of MB and CV were 137 and 118 mg/g, respectively. Moreover, the isotherm and kinetic investigatins depicted that the adsorption of both cationic dyes fitted Langmuir and Pseudo 2nd order models, respectively. Besides, the advanced adsorbent preserved satisfactory adsorption characteristics with maximal removal efficacy exceeding 87% after reuse for ten consecutive cycles. More importantly, MMT-mAmCs efficiently adsorbed MB and CV from real agricultural water, Nile river water and wastewater samples at the neutral pH medium, reflecting its potentiality to be a superb reusable candidate for adsorptive removal cationic pollutants from their aquatic media.
Collapse
|
38
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
39
|
Rego RM, Kurkuri MD, Kigga M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. CHEMOSPHERE 2022; 302:134845. [PMID: 35525446 DOI: 10.1016/j.chemosphere.2022.134845] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are a versatile class of porous materials offering unprecedented scope for chemical and structural tunability. On account of their synthetic versatility, tunable and exceptional host-guest chemistry they are widely utilized in many prominent water remediation techniques. However, some of the MOFs present low structural stabilities specifically in aqueous and harsh chemical conditions which impedes their potential application in the field. Among the currently explored MOFs, UiO-66 exhibits structural robustness and has gained immense scientific popularity. Built with a zirconium-terephthalate framework, the strong Zr-O bond coordination contributes to its stability in aqueous, chemical, and thermal conditions. Moreover, other exceptional features such as high surface area and uniform pore size add to the grand arena of porous nanomaterials. As a result of its stable nature, UiO-66 offers relaxed admittance towards various functionalization, including synthetic and post-synthetic modifications. Consequently, the adsorptive properties of these highly stable frameworks have been modulated by the addition of various functionalities. Moreover, due to the presence of catalytically active sites, the use of UiO-66 has also been extended towards the degradation of pollutants. Furthermore, to solve the practical handling issues of the crystalline powdered forms, UiO-66 has been incorporated into various membrane supports. The incorporation of UiO-66 in various matrices has enhanced the rejection, permeate flux, and anti-fouling properties of membranes. The combination of such exceptional characteristics of UiO-66 MOF has expanded its scope in targeted purification techniques. Subsequently, this review highlights the role of UiO-66 in major water purification techniques such as adsorption, photocatalytic degradation, and membrane separation. This comprehensive review is expected to shed light on the existing developments and guide the inexhaustible futuristic scope of UiO-66 MOF.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
40
|
Chen B, Li Y, Du Q, Pi X, Wang Y, Sun Y, Wang M, Zhang Y, Chen K, Zhu J. Effective Removal of Tetracycline from Water Using Copper Alginate @ Graphene Oxide with In-Situ Grown MOF-525 Composite: Synthesis, Characterization and Adsorption Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172897. [PMID: 36079938 PMCID: PMC9458214 DOI: 10.3390/nano12172897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 05/19/2023]
Abstract
For nanomaterials, such as GO and MOF-525, aggregation is the main reason limiting their adsorption performance. In this research, Alg-Cu@GO@MOF-525 was successfully synthesized by in-situ growth of MOF-525 on Alg-Cu@GO. By dispersing graphene oxide (GO) with copper alginate (Alg-Cu) with three-dimensional structure, MOF-525 was in-situ grown to reduce aggregation. The measured specific surface area of Alg-Cu@GO@MOF-525 was as high as 807.30 m2·g-1, which is very favorable for adsorption. The synthesized material has affinity for a variety of pollutants, and its adsorption performance is significantly enhanced. In particular, tetracycline (TC) was selected as the target pollutant to study the adsorption behavior. The strong acid environment inhibited the adsorption, and the removal percentage reached 96.6% when pH was neutral. Temperature promoted the adsorption process, and 318 K adsorption performance was the best under experimental conditions. Meanwhile, 54.6% of TC could be removed in 38 min, and the maximum adsorption capacity reached 533 mg·g-1, far higher than that of conventional adsorption materials. Kinetics and isotherms analysis show that the adsorption process accords with Sips model and pseudo-second-order model. Thermodynamic study further shows that the chemisorption is spontaneous and exothermic. In addition, pore-filling, complexation, π-π stack, hydrogen bond and chemisorption are considered to be the causes of adsorption.
Collapse
Affiliation(s)
- Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory of Bio-Polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-8595-1842
| | - Qiuju Du
- State Key Laboratory of Bio-Polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jinke Zhu
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
41
|
Synthesis of boron carbon nitride layers for the adsorption of hazardous basic dye from aqueous solutions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|