1
|
Piperis C, Marathonitis A, Anastasiou A, Theofilis P, Mourouzis K, Giannakodimos A, Tryfou E, Oikonomou E, Siasos G, Tousoulis D. Multifaceted Impact of SGLT2 Inhibitors in Heart Failure Patients: Exploring Diverse Mechanisms of Action. Biomedicines 2024; 12:2314. [PMID: 39457625 PMCID: PMC11504660 DOI: 10.3390/biomedicines12102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heart failure (HF) is a growing concern due to the aging population and increasing prevalence of comorbidities. Despite advances in treatment, HF remains a significant burden, necessitating novel therapeutic approaches. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have emerged as a promising treatment option, demonstrating benefits across the entire spectrum of HF, regardless of left ventricular ejection fraction (LVEF). This review explores the multifaceted mechanisms through which SGLT2is exert cardioprotective effects, including modulation of energy metabolism, reduction of oxidative stress, attenuation of inflammation, and promotion of autophagy. SGLT2is shift myocardial energy substrate utilization from carbohydrates to more efficient fatty acids and ketone bodies, enhancing mitochondrial function and reducing insulin resistance. These inhibitors also mitigate oxidative stress by improving mitochondrial biogenesis, reducing reactive oxygen species (ROS) production, and regulating calcium-signaling pathways. Inflammation, a key driver of HF progression, is alleviated through the suppression of proinflammatory cytokines and modulation of immune cell activity. Additionally, SGLT2is promote autophagy, facilitating the clearance of damaged cellular components and preserving myocardial structure and function. Beyond their glucose-lowering effects, SGLT2is provide significant benefits in patients with chronic kidney disease (CKD) and HF, reducing the progression of CKD and improving overall survival. The pleiotropic actions of SGLT2is highlight their potential as a cornerstone in HF management. Further research is needed to fully elucidate their mechanisms and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Christos Piperis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Anastasios Marathonitis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Mourouzis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Alexios Giannakodimos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Elsi Tryfou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
3
|
Pourafkari M, Connelly KA, Verma S, Mazer CD, Teoh H, Quan A, Goodman SG, Rai A, Ng MY, Deva DP, Triverio P, Jiminez-Juan L, Yan AT, Ge Y. Empagliflozin and left atrial function in patients with type 2 diabetes mellitus and coronary artery disease: insight from the EMPA-HEART CardioLink-6 randomized clinical trial. Cardiovasc Diabetol 2024; 23:319. [PMID: 39198860 PMCID: PMC11360285 DOI: 10.1186/s12933-024-02344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated reduction in heart failure outcomes in patients with type 2 diabetes mellitus, although the exact mechanism of benefit remains unclear. Alteration in left atrial (LA) function due to chronic pressure or volume overload is a hallmark of heart failure. OBJECTIVE To evaluate the effect of the SGLT2 inhibitor empagliflozin on LA volume and function. METHODS 90 patients with coronary artery disease and type 2 diabetes (T2DM) were randomized to empagliflozin (n = 44) or placebo (n = 46), and underwent cardiac magnetic resonance (CMR) imaging at baseline and after 6 months. The main outcome was change in LA volume; LA function, including active and passive components, was also measured by a blinded reader. RESULTS At baseline, there was no significant difference in LA volumes between the empagliflozin (indexed maximum LA volume 26.4 ± 8.4mL/m2, minimum LA volume 11.1 ± 5.7mL/m2) and placebo (indexed maximum LA volume 28.7 ± 8.2mL/m2, minimum LA volume 12.6 ± 5.0mL/m2) groups. After 6 months, changes in LA volumes did not differ with adjusted difference (empagliflozin minus placebo): 0.99 mL/m2 (95% CI: -1.7 to 3.7 mL/m2; p = 0.47) for indexed maximum LA volume, and 0.87 mL/m2 (95% CI: -0.9 to 2.6 mL/m2; p = 0.32) for indexed minimum LA volume. Changes in total LA emptying fraction were also similar, with between-group adjusted mean difference - 0.01 (95% CI: -0.05 to 0.03, p = 0.59). CONCLUSION SGLT2 inhibition with empagliflozin for 6 months did not have a significant impact on LA volume and function in patients with T2DM and coronary artery disease. (Effects of Empagliflozin on Cardiac Structure in Patients with Type 2 Diabetes [EMPA-HEART]; NCT02998970).
Collapse
Affiliation(s)
- Marina Pourafkari
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- University of Toronto, Toronto, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | - Subodh Verma
- University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- Division of Cardiac Surgery, St Michael's Hospital, Toronto, Canada
| | - C David Mazer
- University of Toronto, Toronto, Canada
- Department of Anesthesia, St Michael's Hospital, Toronto, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St Michael's Hospital, Toronto, Canada
- Division of Endocrinology and Metabolism, St Michael's Hospital, Toronto, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St Michael's Hospital, Toronto, Canada
| | - Shaun G Goodman
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Archana Rai
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
| | - Ming Yen Ng
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Djeven P Deva
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Piero Triverio
- Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Laura Jiminez-Juan
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Andrew T Yan
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada.
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- University of Toronto, Toronto, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | - Yin Ge
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Hassan A, Samaan K, Asfour A, Baghdady Y, Samaan AA. Ventricular remodeling and hemodynamic changes in heart failure patients with non-ischemic dilated cardiomyopathy following dapagliflozin initiation. Egypt Heart J 2024; 76:76. [PMID: 38888761 PMCID: PMC11189362 DOI: 10.1186/s43044-024-00508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In heart failure with reduced ejection fraction (HFrEF), sodium-glucose co-transporter inhibitors (SGLT-2i) have persistently shown cardiovascular benefits through different trials. However, their impact on ventricular remodeling and cardiac hemodynamics has not been sufficiently studied. This study aimed to study how SGLT-2i initiation affects invasive hemodynamics and cardiac magnetic resonance imaging (CMR)-derived ventricular volumes, function, and fraction of the extracellular volume (ECV) in HFrEF patients with non-ischemic dilated cardiomyopathy (NIDCM). RESULTS In this study, 23 patients with HFrEF and a mean age of 42, including 82.6% males, all have NIDCM and underwent right heart catheterization and CMR at the initiation of dapagliflozin and at 6-month follow-up. The addition of dapagliflozin resulted in significant reductions in the following invasive hemodynamic parameters compared to baseline: left ventricular end-diastolic pressure (23.4 vs 19.7 mmHg, p = 0.003), mean pulmonary artery pressure (31.3 vs 27.7 mmHg, p = 0.03), and systemic vascular resistance (18 vs 15 Wood units, p = 0.047). Among the studied CMR-derived measurements, only the percentage of extracellular volume fraction was significantly less at follow-up (33.7 vs 32.16%, p = 0.001). Additionally, functional class showed significant improvement with a notable reduction of the NT-proBNP level and a considerable decrease in diuretic dose (median: 40 vs 80 mg, p = 0.01). CONCLUSION Adding dapagliflozin to patients with HFrEF due to NIDCM improved invasively measured hemodynamics and significantly reduced left ventricular extracellular volume fraction measured by CMR, with no significant change in ventricular volumes or ejection fraction.
Collapse
Affiliation(s)
- Ahmed Hassan
- Department of Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Kerollos Samaan
- Department of Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Asfour
- Department of Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasser Baghdady
- Department of Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amir Anwar Samaan
- Department of Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Afshani MR, Torfi E, Akiash N, Jahanshahi A, Mohamadi A, Sherafat O. Effect of empagliflozin on left ventricular volumes in type 2 diabetes or prediabetes heart failure patients with reduced ejection fraction. Acta Cardiol 2024; 79:419-425. [PMID: 38511517 DOI: 10.1080/00015385.2023.2240130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as empagliflozin are antidiabetic drugs that have recently been reported to have cardio-protective action; however, their effect on cardiac structure and function in heart failure with reduced ejection fraction (HFrEF) has not yet been determined. This study evaluates the efficacy of empagliflozin on left ventricular (LV) volumes in type 2 diabetes or prediabetes patients with HFrEF. METHODS This randomised, double-blind, trial study was conducted on 104 patients with type 2 diabetes or prediabetes with HFrEF referred to Imam Khomeini and Golestan hospitals in Ahvaz, Iran. The patients were randomised to receive empagliflozin (10 mg once daily) in addition to standard treatments of HFrEF or receive only standard treatments (control group) for six months. During the six months of follow-up, changes in LV volumes, LVEF, hospitalisation for heart failure (HF) were evaluated. RESULTS Empagliflozin reduced LVEDVI and LVESVI by 10.0 and 8.0 mL/m2 (p < 0.0001). Furthermore, a significant increase in LVEF was observed in the empagliflozin group (p < 0.0001) without any significant change in the control group (p = 0.389). The hospitalisation rate was lower in the empagliflozin group than the control group (3.8% vs. 23.1%; p = 0.008). CONCLUSIONS Empagliflozin is effective in reducing LV volumes and hospitalisation rate in patients with type 2 diabetes and prediabetes and HFrEF. Therefore, treatment with empagliflozin for six months was associated with a significant reduction in adverse cardiovascular outcomes in these patients.
Collapse
Affiliation(s)
- Mohammad Reza Afshani
- Internal Cardiology, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ekhlas Torfi
- Internal Cardiology, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nehzat Akiash
- Echocardiography, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Jahanshahi
- Endocrinology and Metabolism, Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asghar Mohamadi
- Instructor of Nursing, Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Sherafat
- Department of Cardiology, Resident of Cardiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Yang B, Qiao Y, Yan D, Meng Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024; 13:764. [PMID: 38727300 PMCID: PMC11082988 DOI: 10.3390/cells13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/13/2024] Open
Abstract
Excessive extracellular matrix (ECM) deposition is a defining feature of cardiac fibrosis. Most notably, it is characterized by a significant change in the concentration and volume fraction of collagen I, a disproportionate deposition of collagen subtypes, and a disturbed ECM network arrangement, which directly affect the systolic and diastolic functions of the heart. Immune cells that reside within or infiltrate the myocardium, including macrophages, play important roles in fibroblast activation and consequent ECM remodeling. Through both direct and indirect connections to fibroblasts, monocyte-derived macrophages and resident cardiac macrophages play complex, bidirectional, regulatory roles in cardiac fibrosis. In this review, we discuss emerging interactions between fibroblasts and macrophages in physiology and pathologic conditions, providing insights for future research aimed at targeting macrophages to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Yang
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| | - Yan Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
| | - Qinghang Meng
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| |
Collapse
|
7
|
Hu J, Teng J, Hui S, Liang L. SGLT-2 inhibitors as novel treatments of multiple organ fibrosis. Heliyon 2024; 10:e29486. [PMID: 38644817 PMCID: PMC11031788 DOI: 10.1016/j.heliyon.2024.e29486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Fibrosis, a significant health issue linked to chronic inflammatory diseases, affects various organs and can lead to serious damage and loss of function. Despite the availability of some treatments, their limitations necessitate the development of new therapeutic options. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), known for their glucose-lowering ability, have shown promise in offering protective effects against fibrosis in multiple organs through glucose-independent mechanisms. This review explores the anti-fibrotic potential of SGLT2i across different tissues, providing insights into their underlying mechanisms and highlighting recent research advancements. The evidence positions SGLT2i as a potential future treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Junpei Hu
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Jianhui Teng
- Department of Geriatrics, Hunan Provincial People's Hospital, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| |
Collapse
|
8
|
Sattar N, Presslie C, Rutter MK, McGuire DK. Cardiovascular and Kidney Risks in Individuals With Type 2 Diabetes: Contemporary Understanding With Greater Emphasis on Excess Adiposity. Diabetes Care 2024; 47:531-543. [PMID: 38412040 DOI: 10.2337/dci23-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024]
Abstract
In high-income countries, rates of atherosclerotic complications in type 2 diabetes have declined markedly over time due to better management of traditional risk factors including lipids, blood pressure, and glycemia levels. Population-wide reductions in smoking have also helped lower atherosclerotic complications and so reduce premature mortality in type 2 diabetes. However, as excess adiposity is a stronger driver for heart failure (HF), and obesity levels have remained largely unchanged, HF risks have not declined as much and may even be rising in the increasing number of people developing type 2 diabetes at younger ages. Excess weight is also an underrecognized risk factor for chronic kidney disease (CKD). Based on evidence from a range of sources, we explain how excess adiposity must be influencing most risks well before diabetes develops, particularly in younger-onset diabetes, which is linked to greater excess adiposity. We also review potential mechanisms linking excess adiposity to HF and CKD and speculate on how some of the responsible pathways-e.g., hemodynamic, cellular overnutrition, and inflammatory-could be favorably influenced by intentional weight loss (via lifestyle or drugs). On the basis of available evidence, we suggest that the cardiorenal outcome benefits seen with sodium-glucose cotransporter 2 inhibitors may partially derive from their interference of some of these same pathways. We also note that many other complications common in diabetes (e.g., hepatic, joint disease, perhaps mental health) are also variably linked to excess adiposity, the aggregated exposure to which has now increased in type 2 diabetes. All such observations suggest a greater need to tackle excess adiposity earlier in type 2 diabetes.
Collapse
Affiliation(s)
- Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, U.K
| | - Calum Presslie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, U.K
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, U.K
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, U.K
| | - Darren K McGuire
- Division of Cardiology, University of Texas Southwestern Medical Center and Parkland Health, Dallas, TX
| |
Collapse
|
9
|
Lav Madsen P, Sejersen C, Nyberg M, Sørensen MH, Hellsten Y, Gaede P, Bojer AS. The cardiovascular changes underlying a low cardiac output with exercise in patients with type 2 diabetes mellitus. Front Physiol 2024; 15:1294369. [PMID: 38571722 PMCID: PMC10987967 DOI: 10.3389/fphys.2024.1294369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
The significant morbidity and premature mortality of type 2 diabetes mellitus (T2DM) is largely associated with its cardiovascular consequences. Focus has long been on the arterial atheromatosis of DM giving rise to early stroke and myocardial infarctions, whereas less attention has been given to its non-ischemic cardiovascular consequences. Irrespective of ischemic changes, T2DM is associated with heart failure (HF) most commonly with preserved ejection fraction (HFpEF). Largely due to increasing population ages, hypertension, obesity and T2DM, HFpEF is becoming the most prevalent form of heart failure. Unfortunately, randomized controlled trials of HFpEF have largely been futile, and it now seems logical to address the important different phenotypes of HFpEF to understand their underlying pathophysiology. In the early phases, HFpEF is associated with a significantly impaired ability to increase cardiac output with exercise. The lowered cardiac output with exercise results from both cardiac and peripheral causes. T2DM is associated with left ventricular (LV) diastolic dysfunction based on LV hypertrophy with myocardial disperse fibrosis and significantly impaired ability for myocardial blood flow increments with exercise. T2DM is also associated with impaired ability for skeletal muscle vasodilation during exercise, and as is the case in the myocardium, such changes may be related to vascular rarefaction. The present review discusses the underlying phenotypical changes of the heart and peripheral vascular system and their importance for an adequate increase in cardiac output. Since many of the described cardiovascular changes with T2DM must be considered difficult to change if fully developed, it is suggested that patients with T2DM are early evaluated with respect to their cardiovascular compromise.
Collapse
Affiliation(s)
- Per Lav Madsen
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Casper Sejersen
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
- Department of Anaesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department Kidney and Vascular Biology, Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | | | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Peter Gaede
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| | - Annemie Stege Bojer
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| |
Collapse
|
10
|
Cersosimo A, Salerno N, Sabatino J, Scatteia A, Bisaccia G, De Rosa S, Dellegrottaglie S, Bucciarelli-Ducci C, Torella D, Leo I. Underlying mechanisms and cardioprotective effects of SGLT2i and GLP-1Ra: insights from cardiovascular magnetic resonance. Cardiovasc Diabetol 2024; 23:94. [PMID: 38468245 PMCID: PMC10926589 DOI: 10.1186/s12933-024-02181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Originally designed as anti-hyperglycemic drugs, Glucagon-Like Peptide-1 receptor agonists (GLP-1Ra) and Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have demonstrated protective cardiovascular effects, with significant impact on cardiovascular morbidity and mortality. Despite several mechanisms have been proposed, the exact pathophysiology behind these effects is not yet fully understood. Cardiovascular imaging is key for the evaluation of diabetic patients, with an established role from the identification of early subclinical changes to long-term follow up and prognostic assessment. Among the different imaging modalities, CMR may have a key-role being the gold standard for volumes and function assessment and having the unique ability to provide tissue characterization. Novel techniques are also implementing the possibility to evaluate cardiac metabolism through CMR and thereby further increasing the potential role of the modality in this context. Aim of this paper is to provide a comprehensive review of changes in CMR parameters and novel CMR techniques applied in both pre-clinical and clinical studies evaluating the effects of SGLT2i and GLP-1Ra, and their potential role in better understanding the underlying CV mechanisms of these drugs.
Collapse
Affiliation(s)
- Angelica Cersosimo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Alessandra Scatteia
- Advanced Cardiovascular Imaging Unit, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Naples, Italy
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies "G. d'Annunzio", University of Chieti-Pescara, Chieti, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Santo Dellegrottaglie
- Advanced Cardiovascular Imaging Unit, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, Naples, Italy
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
11
|
Ostrominski JW, Vaduganathan M. Chapter 2: Clinical and Mechanistic Potential of Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors in Heart Failure with Preserved Ejection Fraction. Am J Med 2024; 137:S9-S24. [PMID: 37160196 DOI: 10.1016/j.amjmed.2023.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as an important approach for the treatment of heart failure in patients with or without diabetes. Although the precise mechanisms underpinning their clinical impact remain incompletely resolved, mechanistic studies and insights from major clinical trials have demonstrated the impact of SGLT2 inhibitors on numerous cardio-renal-metabolic pathways of relevance to heart failure with preserved ejection fraction (HFpEF), which, in the contemporary era, constitutes approximately half of all patients with heart failure. Despite rates of morbidity and mortality that are commensurate with those of heart failure with reduced ejection fraction, disease-modifying therapies have comparatively been severely lacking. As such, HFpEF remains among the greatest unmet needs in cardiovascular medicine. Within the past decade, HFpEF has been established as a highly integrated disorder, involving not only the cardiovascular system, but also the lungs, kidneys, skeletal muscle, and adipose tissue. Given their multisystem impact, SGLT2i offer unique promise in addressing the complex pathophysiology of HFpEF, and in recent randomized controlled trials, were shown to significantly reduce heart failure events and cardiovascular death in patients with HFpEF. Herein, we discuss several proposed mechanisms of clinical benefit of SGLT2i in HFpEF.
Collapse
Affiliation(s)
- John W Ostrominski
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, Mass
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
12
|
Connelly KA, Wu E, Visram A, Friedberg MK, Batchu SN, Yerra VG, Thai K, Nghiem L, Zhang Y, Kabir G, Desjardins JF, Advani A, Gilbert RE. The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding. Cardiovasc Drugs Ther 2024; 38:57-68. [PMID: 36173474 DOI: 10.1007/s10557-022-07377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored. HYPOTHESIS We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle. METHODS Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5 mg/kg/day) or vehicle by oral gavage. After 6 weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses. RESULTS PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content, and alteration in calcium handling protein expression (all p < 0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, phospho-AMPK and LC3I/II ratio expression (all p < 0.05). SIGNIFICANCE Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| | - Ellen Wu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Aylin Visram
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, ON, Canada
- Physiology and Experimental Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Veera Ganesh Yerra
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Kerri Thai
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Linda Nghiem
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Yanling Zhang
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - J F Desjardins
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Andrew Advani
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Richard E Gilbert
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| |
Collapse
|
13
|
Xue F, Zhao S, Tian H, Qin H, Li X, Jian Z, Du J, Li Y, Wang Y, Lin L, Liu C, Shang Y, He L, Xing M, Zeng W. Two way workable microchanneled hydrogel suture to diagnose, treat and monitor the infarcted heart. Nat Commun 2024; 15:864. [PMID: 38286997 PMCID: PMC10824767 DOI: 10.1038/s41467-024-45144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
During myocardial infarction, microcirculation disturbance in the ischemic area can cause necrosis and formation of fibrotic tissue, potentially leading to malignant arrhythmia and myocardial remodeling. Here, we report a microchanneled hydrogel suture for two-way signal communication, pumping drugs on demand, and cardiac repair. After myocardial infarction, our hydrogel suture monitors abnormal electrocardiogram through the mobile device and triggers nitric oxide on demand via the hydrogel sutures' microchannels, thereby inhibiting inflammation, promoting microvascular remodeling, and improving the left ventricular ejection fraction in rats and minipigs by more than 60% and 50%, respectively. This work proposes a suture for bidirectional communication that acts as a cardio-patch to repair myocardial infarction, that remotely monitors the heart, and can deliver drugs on demand.
Collapse
Affiliation(s)
- Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Shanlan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Hao Tian
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Xiaochen Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiahui Du
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yanzhao Li
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Yanhong Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Lin Lin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest hospital, Third Military Medical University, Chongqing, China
| | - Yongning Shang
- Department of Ultrasound, Southwest hospital, Third Military Medical University, Chongqing, China
| | - Lang He
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Malcolm Xing
- Department of Mechanical Engineering University of Manitoba, Winnipeg, Canada.
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
- Jinfeng Laboratory, Chongqing, People's Republic of China.
| |
Collapse
|
14
|
Bakbak E, Verma S, Krishnaraj A, Quan A, Wang CH, Pan Y, Puar P, Mason T, Verma R, Terenzi DC, Rotstein OD, Yan AT, Connelly KA, Teoh H, Mazer CD, Hess DA. Empagliflozin improves circulating vascular regenerative cell content in people without diabetes with risk factors for adverse cardiac remodeling. Am J Physiol Heart Circ Physiol 2023; 325:H1210-H1222. [PMID: 37773589 DOI: 10.1152/ajpheart.00141.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Sodium glucose-cotransporter 2 (SGLT2) inhibitors have been reported to reduce cardiovascular events and heart failure in people with and without diabetes. These medications have been shown to counter regenerative cell exhaustion in the context of prevalent diabetes. This study sought to determine if empagliflozin attenuates regenerative cell exhaustion in people without diabetes. Peripheral blood mononuclear cells were collected at the baseline and 6-mo visits from individuals randomized to receive empagliflozin (10 mg/day) or placebo who were participating in the EMPA-HEART 2 CardioLink-7 trial. Precursor cell phenotypes were characterized by flow cytometry for cell-surface markers combined with high aldehyde dehydrogenase activity to identify precursor cell subsets with progenitor (ALDHhi) versus mature effector (ALDHlow) cell attributes. Samples from individuals assigned to empagliflozin (n = 25) and placebo (n = 21) were analyzed. At baseline, overall frequencies of primitive progenitor cells (ALDHhiSSClow), monocyte (ALDHhiSSCmid), and granulocyte (ALDHhiSSChi) precursor cells in both groups were similar. At 6 mo, participants randomized to empagliflozin demonstrated increased ALDHhiSSClowCD133+CD34+ proangiogenic cells (P = 0.048), elevated ALDHhiSSCmidCD163+ regenerative monocyte precursors (P = 0.012), and decreased ALDHhiSSCmidCD86 + CD163- proinflammatory monocyte (P = 0.011) polarization compared with placebo. Empagliflozin promoted the recovery of multiple circulating provascular cell subsets in people without diabetes suggesting that the cardiovascular benefits of SGLT2 inhibitors may be attributed in part to the attenuation of vascular regenerative cell exhaustion that is independent of diabetes status.NEW & NOTEWORTHY Using an aldehyde dehydrogenase (ALDH) activity-based flow cytometry assay, we found that empagliflozin treatment for 6 mo was associated with parallel increases in circulating vascular regenerative ALDHhi-CD34/CD133-coexpressing progenitors and decreased proinflammatory ALDHhi-CD14/CD86-coexpressing monocyte precursors in individuals without diabetes but with cardiovascular risk factors. The rejuvenation of the vascular regenerative cell reservoir may represent a mechanism via which sodium glucose-cotransporter 2 (SGLT2) inhibitors limit maladaptive repair and delay the development and progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Ehab Bakbak
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Subodh Verma
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Pankaj Puar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamique Mason
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
| | - Raj Verma
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Andrew T Yan
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Division of Cardiology, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Division of Cardiology, St Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
15
|
Peppa M, Manta A, Mavroeidi I, Asimakopoulou A, Syrigos A, Nastos C, Pikoulis E, Kollias A. Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus. Pharmaceutics 2023; 15:2526. [PMID: 38004506 PMCID: PMC10675228 DOI: 10.3390/pharmaceutics15112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Type 2 diabetes mellitus is a major health problem worldwide with a steadily increasing prevalence reaching epidemic proportions. The major concern is the increased morbidity and mortality due to diabetic complications. Traditional but also nontraditional risk factors have been proposed to explain the pathogenesis of type 2 diabetes mellitus and its complications. Hyperglycemia has been considered an important risk factor, and the strict glycemic control can have a positive impact on microangiopathy but not macroangiopathy and its related morbidity and mortality. Thus, the therapeutic algorithm has shifted focus from a glucose-centered approach to a strategy that now emphasizes target-organ protection. Sodium-glucose transporter 2 inhibitors is an extremely important class of antidiabetic medications that, in addition to their glucose lowering effect, also exhibit cardio- and renoprotective effects. Various established and novel biomarkers have been described, reflecting kidney and cardiovascular function. In this review, we investigated the changes in established but also novel biomarkers of kidney, heart and vascular function associated with sodium-glucose transporter 2 inhibitors treatment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Aspasia Manta
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Athina Asimakopoulou
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Alexandros Syrigos
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Constantinos Nastos
- 3rd Department of Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Emmanouil Pikoulis
- 3rd Department of Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Anastasios Kollias
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| |
Collapse
|
16
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
17
|
Chai K, Luo Y, Zhang M, Liu Y, Li Y, Cheng Y, Zhu W, Meng C, Yang J, Wang H. Effects of empagliflozin on cardiac structure, function and biomarkers in patients with heart failure with preserved ejection fraction: study protocol for a randomised, placebo-controlled prospective trial. BMJ Open 2023; 13:e070766. [PMID: 37648394 PMCID: PMC10471868 DOI: 10.1136/bmjopen-2022-070766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION Heart failure (HF) with preserved ejection fraction (HFpEF) has become the main type of HF worldwide. Although large randomised controlled studies have demonstrated the beneficial effects of sodium-glucose cotransporter 2 inhibitors among patients with HFpEF, the mechanisms remain unclear. Basic research suggests that empagliflozin inhibits myocardial fibrosis. Myocardial extracellular volume (ECV) can be calculated using cardiac MRI (CMRI), which can reflect the degree of diffuse myocardial fibrosis. Studies show that empagliflozin can reduce ECV and left ventricular mass (LVM) assessed by CMRI in patients with diabetes with coronary heart disease and patients without diabetes with HF with reduced ejection fraction. However, whether empagliflozin reduces ECV and LVM among patients with HFpEF is unclear. This study intends to use CMRI to evaluate ECV and LVM, combined with echocardiography and an assessment of related biomarkers, to determine whether empagliflozin can improve myocardial fibrosis and left ventricular remodelling in patients with HFpEF. METHODS AND ANALYSIS This report describes the study design of a prospective, multicentre, randomised, double-blind, placebo-controlled and parallel-group clinical study. A total of 180 participants with HFpEF aged 40-80 years old who meet the inclusion and exclusion criteria will be randomly divided into an empagliflozin treatment group or a placebo control group. The empagliflozin treatment group will receive 10 mg of empagliflozin per day for 6 months in addition to guideline-directed medical treatment, while the control group will receive placebo oral administration with guideline-directed medical therapy for 6 months. The primary outcomes are ECV and LVM changes measured by CMRI after 6 months of treatment. ETHICS AND DISSEMINATION The study design is approved by the ethical committee of Beijing Hospital (2022BJYYEC-070-02). The trial is registered at the Chinese Clinical Trial Registry (http://www.chictr.org.cn). The trial results will be published in peer-reviewed journals and conferences. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry (ChiCTR2200060862).
Collapse
Affiliation(s)
- Ke Chai
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yao Luo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujia Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingying Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yalin Cheng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanrong Zhu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiefu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Cao MJ, Shi FH, Yu BB, Ma XC, Zhang C, Xu L, Jiang YH, Ge H, Shen L, Pu J. Influence and mechanism of sodium-glucose cotransporter-2 inhibitors on the cardiac function: study protocol for a prospective cohort study. Front Endocrinol (Lausanne) 2023; 14:1199960. [PMID: 37538793 PMCID: PMC10395085 DOI: 10.3389/fendo.2023.1199960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Background Acute myocardial infarction (AMI) poses a significant threat to cardiovascular diseases (CVDs), leading to a high risk of heart failure (HF) and cardiovascular death. Growing evidence has unveiled the potential of sodium-glucose cotransporter-2 (SGLT2) inhibitors to improve cardiovascular outcomes in patients with CVD regardless of diabetes, but there is limited evidence in AMI patients. Furthermore, it is controversial whether the effects can be ascribed to the amelioration of left ventricular (LV) function, which further complicates the understanding of their underlying mechanism. Methods This study is a prospective, phase IV, open-label, parallel group, single-center trial conducted in a large tertiary teaching hospital in China. A total of 120 patients with AMI and type 2 diabetes mellitus (T2DM) will be included. Those who received SGLT2 inhibitors are considered as the experimental group, and those taking other antidiabetic agents are considered as the control group. The primary outcome is change in LV end-systolic volume index (LVESVi) measured by cardiac magnetic resonance (CMR) imaging from baseline during 1-year follow-up period. Secondary outcomes include other LV parameters such as LV mass, LV volume, and LV ejection fraction (EF); quality of life and functional capacity such as Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OS) and EuroQol-5 dimension (EQ-5D); biomarkers associated with diagnostic parameters of AMI and possible mechanisms on cardiovascular protection, such as creatine kinase, troponin T (TnT) level, troponin I (TnI) level, soluble suppression of tumorigenicity-2 (sST2), galectin-3 (Gal-3), fibroblast growth factor 21 (FGF21), and microRNA (miRNA) level. Discussion This study aims to investigate whether SGLT2 inhibitors could improve LV function by measuring CMR, quality of life, and functional capacity in patients with AMI in real-world settings, providing evidence on the underlying mechanism of SGLT2 inhibitors on cardioprotection. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=173672, identifier ChiCTR2200065792.
Collapse
Affiliation(s)
- Min-Jia Cao
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Hong Shi
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-Bin Yu
- Department of Pharmacy, Huangyan Hospital of Wenzhou Medical University, Taizhou First People’s Hospital, Zhejiang, China
| | - Xue-Chen Ma
- Department of Pharmacy, The Third People’s Hospital of Xining, Xining, China
| | - Chen Zhang
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hong Jiang
- Department of Endocrinology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Ge
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Shen
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Shin SH, Kim SM, Cho SJ, Choe YH. Longitudinal Changes in the Myocardial T1 Relaxation Time, Extracellular Volume Fraction, and Left Ventricular Function in Asymptomatic Men. J Cardiovasc Dev Dis 2023; 10:252. [PMID: 37367417 DOI: 10.3390/jcdd10060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
(1) Background: Longitudinal changes in myocardial T1 relaxation time are unknown. We aimed to assess the longitudinal changes in the left ventricular (LV) myocardial T1 relaxation time and LV function. (2) Methods: Fifty asymptomatic men (mean age, 52.0 years) who underwent 1.5 T cardiac magnetic resonance imaging twice at an interval of 54 ± 21 months were included in this study. The LV myocardial T1 times and extracellular volume fractions (ECVFs) were calculated using the MOLLI technique (before and 15 min after gadolinium contrast injection). The 10-year Atherosclerotic Cardiovascular Disease (ASCVD) risk score was calculated. (3) Results: No significant differences in the following parameters were noted between the initial and follow-up assessments: LV ejection fraction (65.0 ± 6.7% vs. 63.6 ± 6.3%, p = 0.12), LV mass/end-diastolic volume ratio (0.82 ± 0.12 vs. 0.80 ± 0.14, p = 0.16), native T1 relaxation time (982 ± 36 vs. 977 ± 37 ms, p = 0.46), and ECVF (24.97 ± 2.38% vs. 25.02 ± 2.41%, p = 0.89). The following parameters decreased significantly from the initial assessment to follow-up: stroke volume (87.2 ± 13.7 mL vs. 82.6 ± 15.3 mL, p = 0.01), cardiac output (5.79 ± 1.17 vs. 5.50 ± 1.04 L/min, p = 0.01), and LV mass index (110.16 ± 22.38 vs. 104.32 ± 18.26 g/m2, p = 0.01). The 10-year ASCVD risk score also remained unchanged between the two timepoints (4.71 ± 0.19% vs. 5.16 ± 0.24%, p = 0.14). (4) Conclusion: Myocardial T1 values and ECVFs were stable over time in the same middle-aged men.
Collapse
Affiliation(s)
- Sang Hwa Shin
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sung Mok Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soo-Jin Cho
- Health Promotion Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
20
|
Raven LM, Muir CA, Macdonald PS, Hayward CS, Jabbour A, Greenfield JR. Diabetes medication following heart transplantation: a focus on novel cardioprotective therapies-a joint review from endocrinologists and cardiologists. Acta Diabetol 2023; 60:471-480. [PMID: 36538088 DOI: 10.1007/s00592-022-02018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
There is accumulating evidence that novel glucose-lowering agents infer potent cardiovascular and renal benefits. Therefore, it is imperative to reassess the management of post-transplant diabetes mellitus and consider the role of newer agents. With improved transplant-related survival and high prevalence of post-transplant diabetes, management of long-term complications such as diabetes are increasingly important. There are limited guidelines to assist in choice of appropriate agents after solid organ transplantation. Traditional therapies including insulin and sulfonylureas may still have a role; however, other agents should be considered prior. The evidence of novel glucose-lowering agents in post-transplant care is limited, and most studies have focused on kidney transplant recipients. While there are some parallels between renal and cardiac transplant recipients, the potential cardiovascular benefits, particularly on cardiac fibrosis are unique to cardiac transplantation. The treatment of diabetes, with a focus on additional cardiac and renal benefits, needs to be brought to the forefront of post-transplant care with incorporation of recent evidence outside of transplantation. The role for novel glucose-lowering agents in cardiac transplant recipients will be explored, with a summary of available evidence.
Collapse
Affiliation(s)
- Lisa M Raven
- Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, Australia.
- Clinical Diabetes, Appetite and Metabolism Laboratory, Garvan Institute of Medical Research, Sydney, Australia.
- School of Clinical Medicine, St Vincent's Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| | - Christopher A Muir
- Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, St Vincent's Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Peter S Macdonald
- School of Clinical Medicine, St Vincent's Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Department of Heart and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Christopher S Hayward
- School of Clinical Medicine, St Vincent's Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Department of Heart and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Andrew Jabbour
- School of Clinical Medicine, St Vincent's Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Department of Heart and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Jerry R Greenfield
- Department of Diabetes and Endocrinology, St Vincent's Hospital, Sydney, Australia
- Clinical Diabetes, Appetite and Metabolism Laboratory, Garvan Institute of Medical Research, Sydney, Australia
- School of Clinical Medicine, St Vincent's Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Liga R, Colli A, Taggart DP, Boden WE, De Caterina R. Myocardial Revascularization in Patients With Ischemic Cardiomyopathy: For Whom and How. J Am Heart Assoc 2023; 12:e026943. [PMID: 36892041 PMCID: PMC10111551 DOI: 10.1161/jaha.122.026943] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 03/10/2023]
Abstract
Background Myocardial revascularization has been advocated to improve myocardial function and prognosis in ischemic cardiomyopathy (ICM). We discuss the evidence for revascularization in patients with ICM and the role of ischemia and viability detection in guiding treatment. Methods and Results We searched for randomized controlled trials evaluating the prognostic impact of revascularization in ICM and the value of viability imaging for patient management. Out of 1397 publications, 4 randomized controlled trials were included, enrolling 2480 patients. Three trials (HEART [Heart Failure Revascularisation Trial], STICH [Surgical Treatment for Ischemic Heart Failure], and REVIVED [REVascularization for Ischemic VEntricular Dysfunction]-BCIS2) randomized patients to revascularization or optimal medical therapy. HEART was stopped prematurely without showing any significant difference between treatment strategies. STICH showed a 16% lower mortality with bypass surgery compared with optimal medical therapy at a median follow-up of 9.8 years. However, neither the presence/extent of left ventricle viability nor ischemia interacted with treatment outcomes. REVIVED-BCIS2 showed no difference in the primary end point between percutaneous revascularization or optimal medical therapy. PARR-2 (Positron Emission Tomography and Recovery Following Revascularization) randomized patients to imaging-guided revascularization versus standard care, with neutral results overall. Information regarding the consistency of patient management with viability testing results was available in ≈65% of patients (n=1623). No difference in survival was revealed according to adherence or no adherence to viability imaging. Conclusions In ICM, the largest randomized controlled trial, STICH, suggests that surgical revascularization improves patients' prognosis at long-term follow-up, whereas evidence supports no benefit of percutaneous coronary intervention. Data from randomized controlled trials do not support myocardial ischemia or viability testing for treatment guidance. We propose an algorithm for the workup of patients with ICM considering clinical presentation, imaging results, and surgical risk.
Collapse
Affiliation(s)
- Riccardo Liga
- Cardiology Division, Pisa University Hospital and Chair of CardiologyUniversity of PisaItaly
| | - Andrea Colli
- Cardiology Division, Pisa University Hospital and Chair of CardiologyUniversity of PisaItaly
| | - David P. Taggart
- Nuffield Department of Surgical SciencesOxford University John Radcliffe HospitalOxfordUnited Kingdom
| | - William E. Boden
- VA Boston Healthcare SystemBoston University School of MedicineBostonMA
| | - Raffaele De Caterina
- Cardiology Division, Pisa University Hospital and Chair of CardiologyUniversity of PisaItaly
- Fondazione VillaSerena per la Ricerca, Città Sant'AngeloItaly
| |
Collapse
|
22
|
Taylor AJ, Warren J. Diastolic Function and Fibrosis Burden: Improving Prognostication in Heart Failure. JACC Cardiovasc Imaging 2023:S1936-878X(23)00107-9. [PMID: 37052563 DOI: 10.1016/j.jcmg.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Andrew J Taylor
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia; Baker Heart Research Institute, Melbourne, Victoria, Australia.
| | - Josephine Warren
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Diabetes Mellitus and Heart Failure: Epidemiology, Pathophysiologic Mechanisms, and the Role of SGLT2 Inhibitors. Life (Basel) 2023; 13:life13020497. [PMID: 36836854 PMCID: PMC9968235 DOI: 10.3390/life13020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Diabetes mellitus (DM) and heart failure (HF) are frequently encountered afflictions that are linked by a common pathophysiologic background. According to landmark studies, those conditions frequently coexist, and this interaction represents a poor prognostic indicator. Based on mechanistic studies, HF can be propagated by multiple pathophysiologic pathways, such as inflammation, oxidative stress, endothelial dysfunction, fibrosis, cardiac autonomic neuropathy, and alterations in substrate utilization. In this regard, DM may augment myocardial inflammation, fibrosis, autonomic dysfunction, and lipotoxicity. As the interaction between DM and HF appears critical, the new cornerstone in DM and HF treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i), may be able to revert the pathophysiology of those conditions and lead to beneficial HF outcomes. In this review, we aim to highlight the deleterious pathophysiologic interaction between DM and HF, as well as demonstrate the beneficial role of SGLT2i in this field.
Collapse
|
24
|
Dobner S, Bernhard B, Asatryan B, Windecker S, Stortecky S, Pilgrim T, Gräni C, Hunziker L. SGLT2 inhibitor therapy for transthyretin amyloid cardiomyopathy: early tolerance and clinical response to dapagliflozin. ESC Heart Fail 2023; 10:397-404. [PMID: 36259276 PMCID: PMC9871707 DOI: 10.1002/ehf2.14188] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve clinical outcomes in heart failure patients with reduced and preserved left ventricular ejection fraction (LVEF), but have not yet been investigated in transthyretin amyloid cardiomyopathy (ATTR-CM). This study aimed to evaluate tolerability, clinical outcomes, and changes in NT-proBNP levels and glomerular filtration rate (GFR) in ATTR-CM patients treated with dapagliflozin. METHODS AND RESULTS Patients with stable, tafamidis-treated ATTR-CM were retrospectively evaluated at the initiation of dapagliflozin and 3 months thereafter. Tafamidis-treated ATTR-CM patients without SGLT2i served as a reference cohort. Overall, SLGT2i therapy was initiated in 34 patients. Seventeen patients with stable disease on tafamidis, who were subsequently started on dapagliflozin, were included in the analysis. Patients selected for SGLT2i presented with signs of advanced disease, evidenced by higher Gillmore disease stage (stage ≥2: 53% vs. 27.5%; P = 0.041), baseline median NT-proBNP [median (IQR) 2668 pg/mL (1314-3451) vs. 1424 (810-2059); P = 0.038] and loop diuretic demand (76.5% vs. 45% of patients; P = 0.044), and lower LVEF (46.6 ± 12.9 vs. 53.7 ± 8.7%; P = 0.019) and GFR (51.8 ± 16.5 vs. 68.5 ± 18.6 mL/min; P = 0.037) compared with the reference cohort. At 3-month follow-up, a numerical decrease in NT-proBNP levels was observed in 13/17 (76.5%) patients in the dapagliflozin (-190 pg/mL, IQR: -1,028-71, P = 0.557) and 27/40 (67.5%) of patients in the control cohort (-115 pg/mL, IQR: -357-105, P = 0.551). Other disease parameters remained stable and no adverse events occurred. CONCLUSIONS In tafamidis-treated ATTR-CM patients, initiation of dapagliflozin was well tolerated. The efficacy of SGLT2i therapy in patients with ATTR-CM needs to be studied in randomized controlled trials.
Collapse
Affiliation(s)
- Stephan Dobner
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
25
|
Connelly KA, Mazer CD, Puar P, Teoh H, Wang CH, Mason T, Akhavein F, Chang CW, Liu MH, Yang NI, Chen WS, Juan YH, Opingari E, Salyani Y, Barbour W, Pasricha A, Ahmed S, Kosmopoulos A, Verma R, Moroney M, Bakbak E, Krishnaraj A, Bhatt DL, Butler J, Kosiborod MN, Lam CSP, Hess DA, Rizzi Coelho-Filho O, Lafreniere-Roula M, Thorpe KE, Quan A, Leiter LA, Yan AT, Verma S. Empagliflozin and Left Ventricular Remodeling in People Without Diabetes: Primary Results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation 2023; 147:284-295. [PMID: 36335517 DOI: 10.1161/circulationaha.122.062769] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors have been demonstrated to promote reverse cardiac remodeling in people with diabetes or heart failure. Although it has been theorized that sodium-glucose cotransporter 2 inhibitors might afford similar benefits in people without diabetes or prevalent heart failure, this has not been evaluated. We sought to determine whether sodium-glucose cotransporter 2 inhibition with empagliflozin leads to a decrease in left ventricular (LV) mass in people without type 2 diabetes or significant heart failure. METHODS Between April 2021 and January 2022, 169 individuals, 40 to 80 years of age, without diabetes but with risk factors for adverse cardiac remodeling were randomly assigned to empagliflozin (10 mg/d; n=85) or placebo (n=84) for 6 months. The primary outcome was the 6-month change in LV mass indexed (LVMi) to baseline body surface area as measured by cardiac magnetic resonance imaging. Other measures included 6-month changes in LV end-diastolic and LV end-systolic volumes indexed to baseline body surface area and LV ejection fraction. RESULTS Among the 169 participants (141 men [83%]; mean age, 59.3±10.5 years), baseline LVMi was 63.2±17.9 g/m2 and 63.8±14.0 g/m2 for the empagliflozin- and placebo-assigned groups, respectively. The difference (95% CI) in LVMi at 6 months in the empagliflozin group versus placebo group adjusted for baseline LVMi was -0.30 g/m2 (-2.1 to 1.5 g/m2; P=0.74). Median baseline (interquartile range) NT-proBNP (N-terminal-pro B-type natriuretic peptide) was 51 pg/mL (20-105 pg/mL) and 55 pg/mL (21-132 pg/mL) for the empagliflozin- and placebo-assigned groups, respectively. The 6-month treatment effect of empagliflozin versus placebo (95% CI) on blood pressure and NT-proBNP (adjusted for baseline values) were -1.3 mm Hg (-5.2 to 2.6 mm Hg; P=0.52), 0.69 mm Hg (-1.9 to 3.3 mm Hg; P=0.60), and -6.1 pg/mL (-37.0 to 24.8 pg/mL; P=0.70) for systolic blood pressure, diastolic blood pressure, and NT-proBNP, respectively. No clinically meaningful between-group differences in LV volumes (diastolic and systolic indexed to baseline body surface area) or ejection fraction were observed. No difference in adverse events was noted between the groups. CONCLUSIONS Among people with neither diabetes nor significant heart failure but with risk factors for adverse cardiac remodeling, sodium-glucose cotransporter 2 inhibition with empagliflozin did not result in a meaningful reduction in LVMi after 6 months. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04461041.
Collapse
Affiliation(s)
- Kim A Connelly
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada.,Department of Physiology (K.A.C., C.D.M.), University of Toronto, ON, Canada
| | - C David Mazer
- Department of Anesthesia (C.D.M.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Physiology (K.A.C., C.D.M.), University of Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine (C.D.M.), University of Toronto, ON, Canada
| | - Pankaj Puar
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, Canada (P.P., S.A.)
| | - Hwee Teoh
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Division of Endocrinology and Metabolism (H.T., L.A.L.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Tamique Mason
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Farhad Akhavein
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Ching-Wen Chang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Department of Diagnostic Radiology (C.-W.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Min-Hui Liu
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan (M.-H.L.)
| | - Ning-I Yang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Wei-Siang Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Intensive Care Unit, Division of Cardiology, Department of Internal Medicine (W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan
| | - Yu-Hsiang Juan
- School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan.,Institute for Radiological Research (Y.-H.J.), Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan (Y.-H.J.)
| | - Erika Opingari
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Temerty Faculty of Medicine (E.O., A. Kosmopoulos), University of Toronto, ON, Canada
| | - Yaseen Salyani
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - William Barbour
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada (W.B., D.A.H.)
| | - Aryan Pasricha
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Health & Exercise Science, Wake Forest University, Winston-Salem, NC (A.P.)
| | - Shamon Ahmed
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, Canada (P.P., S.A.)
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Temerty Faculty of Medicine (E.O., A. Kosmopoulos), University of Toronto, ON, Canada
| | - Raj Verma
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - Michael Moroney
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - Ehab Bakbak
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada
| | - Deepak L Bhatt
- Division of Cardiovascular Medicine, Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, MA (D.L.B.)
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX (J.B.).,Department of Medicine, University of Mississippi, Jackson (J.B.)
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City (M.N.K.)
| | - Carolyn S P Lam
- National Heart Centre Singapore (C.S.P.L.).,Division of Cardiology, Duke-National University of Singapore (C.S.P.L.).,Division of Cardiology, Department of Medicine, State University of Campinas (UNICAMP), São Paulo, Brazil (C.S.P.L.)
| | - David A Hess
- Division of Vascular Surgery (D.A.H.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada (W.B., D.A.H.).,Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada (D.A.H.)
| | | | - Myriam Lafreniere-Roula
- Applied Health Research Centre (M.L.-R., K.E.T.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Kevin E Thorpe
- Applied Health Research Centre (M.L.-R., K.E.T.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Dana Lana School of Public Health (K.E.T.), University of Toronto, ON, Canada
| | - Adrian Quan
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Lawrence A Leiter
- Division of Endocrinology and Metabolism (H.T., L.A.L.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada.,Department of Nutritional Sciences (L.A.L.), University of Toronto, ON, Canada
| | - Andrew T Yan
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada.,Department of Surgery (S.V.), University of Toronto, ON, Canada
| |
Collapse
|
26
|
Kolwelter J, Kannenkeril D, Linz P, Jung S, Nagel AM, Bosch A, Ott C, Bramlage P, Nöh L, Schiffer M, Uder M, Achenbach S, Schmieder RE. The SGLT2 inhibitor empagliflozin reduces tissue sodium content in patients with chronic heart failure: results from a placebo-controlled randomised trial. Clin Res Cardiol 2023; 112:134-144. [PMID: 36289063 PMCID: PMC9849317 DOI: 10.1007/s00392-022-02119-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Sodium-glucose co-transporter 2 (SGLT2) inhibitors have cardiovascular protective properties in addition to the metabolic effects and represent a cornerstone of treating patients with chronic heart failure (CHF). We hypothesised that empagliflozin reduces tissue sodium content in patients with CHF. METHODS In a double-blind, randomised (2:1), placebo-controlled, parallel-group, clinical trial, 74 patients with NYHA class II-III CHF and an ejection fraction of 49% or less received empagliflozin 10 mg once daily or placebo for 3 months. In each patient, tissue sodium content of the lower leg was assessed non-invasively by sodium-MRI (23Na-MRI) at baseline, after 1 and 3 months of treatment. RESULTS After 1 and 3 months treatment with empagliflozin (n = 48), a significant decrease in skin sodium content was observed (1 month: 22.8 ± 6.1 vs. 21.6 ± 6.0 AU, p = 0.039; 3 months: 22.9 ± 6.1 vs. 21.6 ± 6.1 AU, p = 0.013), while there was no change in muscle sodium and muscle water content. In direct comparison, the change in skin sodium content between baseline and 3 months was - 1.3 ± 3.5 AU in the empagliflozin group versus 0.6 ± 3.5 AU in the placebo group (p for between-group difference = 0.022). No significant difference regarding change in muscle sodium and in muscle water content was observed after 3 months treatment between the two groups. CONCLUSION This trial showed a significant decrease in skin sodium content after 1 and 3 months of treatment with empagliflozin. The decrease in skin sodium content may reflect a decrease in subclinical micro-oedema or/and in non-osmotic bound tissue sodium, both reported to impair left ventricular function. TRIAL REGISTRATION NUMBER NCT03128528 ( http://www. CLINICALTRIALS gov ). TRIAL REGISTRATION DATE 25th April 2017.
Collapse
Affiliation(s)
- Julie Kolwelter
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany ,grid.5330.50000 0001 2107 3311Department of Cardiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Dennis Kannenkeril
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Peter Linz
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany ,grid.5330.50000 0001 2107 3311Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Susanne Jung
- grid.5330.50000 0001 2107 3311Department of Cardiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Armin M. Nagel
- grid.5330.50000 0001 2107 3311Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany ,grid.7497.d0000 0004 0492 0584Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Bosch
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Christian Ott
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany ,grid.511981.5Department of Nephrology and Hypertension, Paracelsus Medical University, Nuremberg, Germany
| | - Peter Bramlage
- grid.476473.50000 0004 8389 0378Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Lisa Nöh
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Mario Schiffer
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Uder
- grid.5330.50000 0001 2107 3311Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Stephan Achenbach
- grid.5330.50000 0001 2107 3311Department of Cardiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Roland E. Schmieder
- grid.5330.50000 0001 2107 3311Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Wang Y, Gao T, Meng C, Li S, Bi L, Geng Y, Zhang P. Sodium-glucose co-transporter 2 inhibitors in heart failure with mildly reduced or preserved ejection fraction: an updated systematic review and meta-analysis. Eur J Med Res 2022; 27:314. [PMID: 36581880 PMCID: PMC9798580 DOI: 10.1186/s40001-022-00945-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Heart failure with mildly reduced ejection fraction (HFmrEF) or heart failure with preserved ejection fraction (HFpEF) are associated with significant morbidity and mortality, as well as growing health and economic burden. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are very promising for the outcome improvement of patients with HFpEF or HFmrEF. The meta-analysis was performed to investigate the effects of SGLT2 inhibitors in HFpEF or HFmrEF, by pooling data from all clinically randomized controlled trials (RCTs) available to increase power to testify. METHODS Studies were searched in electronic databases from inception to November, 2022. We performed a meta-analysis to estimate the effect of SGLT2 inhibitors on clinical endpoints in patients with HFpEF or HFmrEF, using trial-level data with consistent endpoint definitions. The primary outcome was the composite of heart failure (HF) hospitalization or cardiovascular death. Hazard ratio (HR) was pooled with 95% confidence interval (CI) for dichotomous data. This study was registered with INPLASY 2022110095. RESULTS Six studies involving 15,989 participants were included into the final analysis. Pooled analyses revealed that SGLT2 inhibitors significantly reduced the composite of HF hospitalization or cardiovascular death [HR: 0.79 (0.72-0.85); I2 = 0%; P < 0.00001] and HF hospitalizations [HR: 0.74 (0.67-0.82); I2 = 0%; P < 0.00001]. This finding was seen in both HFmrEF trials [HR: 0.76 (0.67-0.87); I2 = 49%; P < 0.0001] and HFpEF subgroup studies [HR: 0.70 (0.53-0.93); I2 = 0%; P = 0.01]. The incidence of any serious adverse events [OR: 0.89 (0.83-0.96); I2 = 0%; P = 0.002] was significantly lower in the SGLT2 inhibitor arm. No significant differences were observed between the two groups with regard to cardiovascular death and all-cause death. CONCLUSIONS This meta-analysis of patients with heart failure of left ventricular ejection fraction (LVEF) > 40% showed that SGLT2 inhibitors significantly reduce the risk of the composite of cardiovascular death and hospitalization for heart failure, but not cardiovascular death and all-cause death. Nevertheless, given that SGLT2 inhibitors may reduce the risk of hospitalization for heart failure, they should be considered the fundamental treatment for all patients with HFpEF or HFmrEF.
Collapse
Affiliation(s)
- Yintang Wang
- grid.12527.330000 0001 0662 3178Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, NO. 168 Litang Road, Changping District, Beijing, 102218 People’s Republic of China
| | - Tong Gao
- grid.12527.330000 0001 0662 3178Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, NO. 168 Litang Road, Changping District, Beijing, 102218 People’s Republic of China
| | - Chang Meng
- grid.414252.40000 0004 1761 8894Department of Emergency, Emergency General Hospital, Beijing, People’s Republic of China
| | - Siyuan Li
- grid.12527.330000 0001 0662 3178Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, NO. 168 Litang Road, Changping District, Beijing, 102218 People’s Republic of China
| | - Lei Bi
- grid.12527.330000 0001 0662 3178Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, NO. 168 Litang Road, Changping District, Beijing, 102218 People’s Republic of China
| | - Yu Geng
- grid.12527.330000 0001 0662 3178Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, NO. 168 Litang Road, Changping District, Beijing, 102218 People’s Republic of China
| | - Ping Zhang
- grid.12527.330000 0001 0662 3178Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, NO. 168 Litang Road, Changping District, Beijing, 102218 People’s Republic of China
| |
Collapse
|
28
|
Bojer AS, Sørensen MH, Gæde P, Madsen PL. Myocardial Extracellular Volume Expansion in Type 2 Diabetes Is Associated With Ischemic Heart Disease, Autonomic Neuropathy, and Active Smoking. Diabetes Care 2022; 45:3032-3039. [PMID: 36215704 DOI: 10.2337/dc22-0942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/19/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Myocardial interstitial fibrosis expands the extracellular volume (ECV) and in patients with type 2 diabetes is implicated in development of heart failure. ECV can be determined with gadolinium contrast MRI. We investigated which known risk factors for cardiovascular disease were associated with increased ECV in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 296 patients with type 2 diabetes and 25 sex and age-matched control subjects were included in a cross-sectional MRI study. The influence of risk factors on ECV was investigated with multiple regression analysis. RESULTS Control subjects and patients with type 2 diabetes without complications had similar ECV (mean ± SD 27.4 ± 2.1% vs. 27.9 ± 2.6%, P = 0.4). Compared with patients without, ECV was significantly increased in patients with one or more complications (29.0 ± 3.3%, P = 0.02). Both in univariable analysis and after multivariable adjustment, ischemic heart disease, autonomic neuropathy, and active smoking were associated with increased levels of ECV. Active smoking exhibited the largest effect size (β = 2.0 percentage points, 95% CI 0.7-3.3). Former smokers ECV similar to that of never smokers. Albuminuria and systolic blood pressure were inversely associated with ECV in multivariable analysis, but after adjustment for medication suspected to affect ECV, the association with albuminuria was no longer significant (P = 0.1). Sodium-glucose cotransporter 2 inhibitor treatment was not significantly associated with reduced ECV (-0.8%, 95% CI -1.7 to 0.06, P = 0.067). CONCLUSIONS Patients with complications of diabetes have increased ECV, not seen in patients without complications. Ischemic heart disease, autonomic neuropathy, and active but not former smoking were highly associated with increased ECV.
Collapse
Affiliation(s)
- Annemie Stege Bojer
- Department of Cardiology and Endocrinology, Slagelse Hospital, Slagelse, Denmark
| | - Martin Heyn Sørensen
- Department of Cardiology and Endocrinology, Slagelse Hospital, Slagelse, Denmark
| | - Peter Gæde
- Department of Cardiology and Endocrinology, Slagelse Hospital, Slagelse, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Per Lav Madsen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Ortega‐Paz L, Cristóbal H, Ortiz‐Perez JT, García de Frutos P, Mendieta G, Sandoval E, Rodriguez JJ, Ortega E, García‐Álvarez A, Brugaletta S, Sabaté M, Dantas AP. Direct actions of dapagliflozin and interactions with LCZ696 and spironolactone on cardiac fibroblasts of patients with heart failure and reduced ejection fraction. ESC Heart Fail 2022; 10:453-464. [PMID: 36303443 PMCID: PMC9871706 DOI: 10.1002/ehf2.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Inhibitors of SGLT2 (SGLT2i) have shown a positive impact in patients with chronic heart failure and reduced ejection fraction (HFrEF). Nonetheless, the direct effects of SGLT2i on cardiac cells and how their association with main drugs used for HFrEF affect the behaviour and signalling pathways of myocardial fibroblasts are still unknown. We aimed to determine the effects of dapagliflozin alone and in combination with sacubitril/valsartan (LCZ696) or spironolactone on the function of myocardial fibroblasts of patients with heart failure and reduced ejection fraction (HFrEF). METHODS AND RESULTS Myocardial fibroblasts isolated from HFrEF patients (n = 5) were treated with dapagliflozin alone (1 nM-1 μM) or combined with LCZ696 (100 nM) or spironolactone (100 nM). The migratory rate was determined by wound-healing scratch assay. Expression of heart failure (HF) markers and signalling pathways activation were analysed with multiplexed protein array. Commercially available cardiac fibroblasts from healthy donors were used as Control (n = 4). Fibroblasts from HFrEF show higher migratory rate compared with control (P = 0.0036), and increased expression of HF markers [fold-change (Log2): COL1A1-1.3; IL-1b-1.9; IL-6-1.7; FN1-2.9 (P < 0.05)]. Dapagliflozin slowed the migration rate of HFrEF fibroblasts in a dose-dependent manner and markedly decreased the expression of IL-1β, IL-6, MMP3, MMP9, GAL3, and FN1. SGLT2i had no effect on control fibroblasts. These effects were associated with decreased phosphorylation of AKT/GSK3 and PYK2 kinases and the signal transducer and activator of transcription (STAT). A combination of dapagliflozin + LCZ696 further decreased fibroblast migration, although it did not have a significant effect on the regulation of signalling pathways and the expression of biomarkers induced by SGLT2 inhibition alone. In contrast, the combination of dapagliflozin + spironolactone did not change the migration rate of fibroblast but significantly altered SGLT2i responses on MMP9, GAL3, and IL-1b expression, in association with increased phosphorylation of the kinases AKT/GSK3 and ERK1/2. CONCLUSIONS SGLT2i, LCZ696, and spironolactone modulate the function of isolated myocardial fibroblasts from HFrEF patients through the activation of different signalling pathways. The combination of SGLT2i + LCZ696 shows an additive effect on migration, while spironolactone modifies the signalling pathways activated by SGLT2i and its beneficial effects of biomarkers of heart failure.
Collapse
Affiliation(s)
- Luis Ortega‐Paz
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain,Division of CardiologyUniversity of Florida College of MedicineFloridaUSA
| | - Helena Cristóbal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain,Institute for Biomedical Research of Barcelona, IIBB‐CSICBarcelonaSpain
| | - José Tomás Ortiz‐Perez
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Pablo García de Frutos
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institute for Biomedical Research of Barcelona, IIBB‐CSICBarcelonaSpain,CIBER de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos IIIMadridSpain
| | - Guiomar Mendieta
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institute for Biomedical Research of Barcelona, IIBB‐CSICBarcelonaSpain,CIBER de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos IIIMadridSpain
| | - Elena Sandoval
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain
| | - Juan José Rodriguez
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain
| | - Emilio Ortega
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Ana García‐Álvarez
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain,CIBER de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos IIIMadridSpain
| | - Salvatore Brugaletta
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Manel Sabaté
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain,CIBER de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos IIIMadridSpain
| | - Ana Paula Dantas
- Institut Clinic Cardiovascular (ICCV)Hospital Clinic i Provincial de Barcelona (HCPB)BarcelonaSpain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain,Department of BiomedicineUniversitat de Barcelona Medical SchoolBarcelonaSpain
| |
Collapse
|
30
|
Bilal H, Sharif A, Malik MNH, Zubair HM. Aqueous Ethanolic Extract of Adiantum incisum Forssk. Protects against Type 2 Diabetes Mellitus via Attenuation of α-Amylase and Oxidative Stress. ACS OMEGA 2022; 7:37724-37735. [PMID: 36312418 PMCID: PMC9607679 DOI: 10.1021/acsomega.2c04673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Purpose : This study was designed to investigate the antidiabetic effects of the aqueous ethanolic extract of Adiantum incisum Forssk. whole plant (AE-AI) in order to validate the folkloric claim. Methods : Streptozotocin (STZ) was used to induce type 2 diabetes mellitus (TII DM) in male Sprague-Dawley rats. STZ-induced diabetic rats were later treated orally with either AE-AI (125, 250, and 500 mg/kg) or glibenclamide for 35 days. Blood glucose levels were measured weekly and on day 35, animals were sacrificed, and blood samples and tissues were harvested for subsequent antioxidant and histopathological analyses. AE-AI was also analyzed in vitro for phytochemical, antioxidant, and α-amylase inhibitory assays. Results : The phytochemical screening of AE-AI confirmed the presence of essential bioactive compounds like cardiac glycosides, flavonoids, phenolic compounds, saponins, and fixed oils. AE-AI demonstrated abundant amounts of total phenolic and flavonoid contents and displayed prominent antioxidant activity as assessed via DPPH, phosphomolybdate, and nitric oxide scavenging assays. AE-AI treatment also showed α-amylase inhibitory activity comparable to acarbose. In addition, AE-AI treatment exhibited a wide margin of safety in rats and dose-dependently reduced STZ-induced blood glucose levels. Moreover, AE-AI increased the levels of GSH, SOD, catalase, and reduced MDA, and therefore prevented pathological effects of STZ on the kidney, liver, and pancreas. The blood glucose regulatory effect and antioxidant activity of AE-AI also aided in normalizing TII DM-mediated dyslipidemias. GC-MS analysis also demonstrated several potential antidiabetic phytoconstituents in AE-AI. Conclusion : These findings reveal that AE-AI possesses certain pharmacologically active compounds that can effectively treat STZ-induced TII DM owing to its antioxidant and α-amylase inhibitory potentials.
Collapse
Affiliation(s)
| | - Ali Sharif
- Faculty
of Pharmacy, University of Lahore, Lahore54000, Pakistan
| | | | | |
Collapse
|
31
|
Arcari L, Scardovi AB. Diabetic cardiomyopathy as a diffuse myocardial disease: Is it just fibrosis? Int J Cardiol 2022; 365:58-59. [PMID: 35868356 DOI: 10.1016/j.ijcard.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Luca Arcari
- Cardiology Unit, Madre Giuseppina Vannini Hospital, Rome, Italy.
| | | |
Collapse
|
32
|
Younes AM, Salem M, Maraey A, Nomigolzar S, Sewell K, Khalil M, Elzanaty A, Saeyeldin A, Dar M. Safety outcomes of SGLT2i in the heart failure trials: A systematic review and Meta-analysis. Int J Cardiol 2022; 366:51-56. [PMID: 35777490 DOI: 10.1016/j.ijcard.2022.06.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS Sodium-glucose co-transporter inhibitors (SGLT2i) are emerging as a new treatment for heart failure (HF) after demonstrating favorable clinical outcomes in several randomized controlled trials (RCTs). In this meta-analysis, we assessed the safety of SGLT2i in the trials that prespecified heart failure in their inclusion criteria. MATERIALS AND METHODS We searched the databases for RCTs comparing SGLT2i to placebo in heart failure patients. The primary outcome was the incidence of serious adverse events (SAEs). A sensitivity analysis according to the class of HF was also performed. RESULTS The incidence of SAEs was significantly lower in the SGLT2i group (OR, 0.85; 95% CI, 0.77-0.92; P, 0.0002) and SAEs remained significantly lower after performing the sensitivity analysis (OR, 0.82; 95% CI, 0.75-0.89; P, <0.00001). Genital infections, urinary tract infections (UTIs), and hypotension were significantly higher in the SGLT2i group. CONCLUSIONS SGLT2i remain a safe option for patients with HF with a lower incidence of SAEs. However, since they increase the risk of genital infection, UTIs and hypotension, the risks vs benefits in each patient should be weighed when making a prescribing decision.
Collapse
Affiliation(s)
- Ahmed M Younes
- Department of Internal Medicine, East Carolina University, Greenville, NC, USA.
| | - Mahmoud Salem
- Center for Advanced Heart and Lung Diseases, Baylor University Medical Center, Dallas, TX, USA
| | | | - Soroush Nomigolzar
- Department of Internal Medicine, East Carolina University, Greenville, NC, USA
| | - Kerry Sewell
- Laupus Library of Health Sciences, East Carolina University, Greenville, NC, USA
| | - Mahmoud Khalil
- Department of Medicine, Lincoln Medical Center, Bronx, NY, USA
| | - Ahmed Elzanaty
- Cardiovascular Department, University of Toledo, OH, USA
| | - Ayman Saeyeldin
- Department of Internal Medicine, Saint Mary's Hospital, Waterbury, CT, USA
| | - Moahad Dar
- Department of Internal Medicine, Division of Endocrinology & Metabolism, East Carolina University, Greenville, NC, USA; Dept of Veteran Affairs, Greenville VA Health Care Center, Greenville, NC, USA
| |
Collapse
|
33
|
Xu B, Li S, Kang B, Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc Diabetol 2022; 21:83. [PMID: 35614469 PMCID: PMC9134641 DOI: 10.1186/s12933-022-01512-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic, complex metabolic disease characterized by chronic hyperglycemia causing from insufficient insulin signaling because of insulin resistance or defective insulin secretion, and may induce severe complications and premature death. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are oral drugs used to reduce hyperglycemia in patients with T2DM, including empagliflozin, ertugliflozin, dapagliflozin and canagliflozin. The primary objective of this article is to examine the clinical benefit, safety, and tolerability of the four SGLT2 inhibitors approved by the US FDA. SGLT2 inhibitors increase urinary glucose excretion via inhibiting SGLT2 to decrease renal reabsorption of filtered glucose and reduce the renal threshold for glucose. Rather than stimulating insulin release, SGLT2 inhibitors improve β-cell function by improving glucotoxicity, as well as reduce insulin resistance and increase insulin sensitivity. Early clinical trials have confirmed the beneficial effects of SGLT2 in T2DM with acceptable safety and excellent tolerability. In recent years, SGLT2 inhibitors has been successively approved by the FDA to decrease cardiovascular death and decrease the risk of stroke and cardiac attack in T2DM adults who have been diagnosed with cardiovascular disease, treating heart failure (HF) with reduced ejection fraction and HF with preserved ejection fraction, and treat diabetic kidney disease (DKD), decrease the risk of hospitalization for HF in T2DM and DKD patients. SGLT2 inhibitors are expected to be an effective treatment for T2DM patients with non alcoholic fatty liver disease. SGLT2 inhibitors have a similar safety profile to placebo or other active control groups, with major adverse events such as Ketoacidosis or hypotension and genital or urinary tract infections.
Collapse
Affiliation(s)
- Bo Xu
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shaoqian Li
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
34
|
Diabetes and Myocardial Fibrosis: A Systematic Review and Meta-Analysis. JACC. CARDIOVASCULAR IMAGING 2022; 15:796-808. [PMID: 35512952 DOI: 10.1016/j.jcmg.2021.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis investigated the association of diabetes and glycemic control with myocardial fibrosis (MF). BACKGROUND MF is associated with an increased risk of heart failure, coronary artery disease, arrhythmias, and death. Diabetes may influence the development of MF, but evidence is inconsistent. METHODS The authors searched EMBASE, Medline Ovid, Cochrane CENTRAL, Web of Science, and Google Scholar for observational and interventional studies investigating the association of diabetes, glycemic control, and antidiabetic medication with MF assessed by histology and cardiac magnetic resonance (ie, extracellular volume fraction [ECV%] and T1 time). RESULTS A total of 32 studies (88% exclusively on type 2 diabetes) involving 5,053 participants were included in the systematic review. Meta-analyses showed that diabetes was associated with a higher degree of MF assessed by histological collagen volume fraction (n = 6 studies; mean difference: 5.80; 95% CI: 2.00-9.59) and ECV% (13 studies; mean difference: 2.09; 95% CI: 0.92-3.27), but not by native or postcontrast T1 time. Higher glycosylated hemoglobin levels were associated with higher degrees of MF. CONCLUSIONS Diabetes is associated with higher degree of MF assessed by histology and ECV% but not by T1 time. In patients with diabetes, worse glycemic control was associated with higher MF degrees. These findings mostly apply to type 2 diabetes and warrant further investigation into whether these associations are causal and which medications could attenuate MF in patients with diabetes.
Collapse
|
35
|
Connelly KA, Sarak B. Diabetes and Myocardial Fibrosis: Is CMR the Force Leading to the Rise of "Scar Wars"? JACC Cardiovasc Imaging 2022; 15:809-811. [PMID: 35512953 DOI: 10.1016/j.jcmg.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Kim A Connelly
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Bradley Sarak
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Zhang B, Zhang J, Liu G, Guo X, Liu X, Chen J. KDM3A Inhibition Ameliorates Hyperglycemia-Mediated Myocardial Injury by Epigenetic Modulation of Nuclear Factor Kappa-B/P65. Front Cardiovasc Med 2022; 9:870999. [PMID: 35571189 PMCID: PMC9106140 DOI: 10.3389/fcvm.2022.870999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives Even after the glucose level returns to normal, hyperglycemia-induced cardiac dysfunction as well as reactive oxygen species (ROS) generation, inflammatory responses, and apoptosis continued deterioration, showing a long-lasting adverse effect on cardiac function and structure. We aimed to unveil the molecular and cellular mechanisms underlying hyperglycemia-induced persistent myocardial injury and cardiac dysfunction. Methods and Results Recently, the accumulated evidence indicated epigenetic regulation act as a determining factor in hyperglycemia-induced continuous cardiovascular dysfunction. As an important histone demethylase, the expression of lysine-specific demethylase 3A (KDM3A) was continually increased, accompanied by a sustained decline of H3K9me2 levels in diabetic myocardium even if received hypoglycemic therapy. Besides, by utilizing gain- and loss-of-functional approaches, we identified KDM3A as a novel regulator that accelerates hyperglycemia-mediated myocardial injury by promoting ROS generation, aggregating inflammatory reaction, and facilitating cell apoptosis in vitro and in vivo. The KDM3A inhibition could significantly ameliorate the adverse effect of hyperglycemia in both diabetes model and diabetic intensive glycemic control model. Mechanically, our data uncovered that KDM3A could promote the expression and transcriptional activity of nuclear factor kappa-B (NF-κB/P65), and the succedent rescue experiments further verified that KDM3A regulates hyperglycemia-induced myocardial injury in an NF-κB/P65 dependent manner. Conclusion This study revealed histone-modifying enzymes KDM3A drives persistent oxidative stress, inflammation, apoptosis, and subsequent myocardial injury in the diabetic heart by regulating the transcription of NF-κB/P65.
Collapse
Affiliation(s)
- Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, China Three Gorges University, Yichang, China
| | - Gen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xiaopei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Jing Chen, , orcid.org/0000-0002-4037-7158
| |
Collapse
|
37
|
Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. J Cardiovasc Transl Res 2022; 15:944-956. [PMID: 35290593 DOI: 10.1007/s12265-022-10220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have evident cardiovascular benefits in patients with type 2 diabetes with or at high risk for atherosclerotic cardiovascular disease, heart failure with reduced ejection fraction, heart failure with preserved ejection fraction (only empagliflozin and dapagliflozin have been investigated in this group so far), and chronic kidney disease. Prevention and reversal of adverse cardiac remodeling is one of the mechanisms by which SGLT2 inhibitors may exert cardiovascular benefits, especially heart failure-related outcomes. Cardiac remodeling encompasses molecular, cellular, and interstitial changes that result in favorable changes in the mass, geometry, size, and function of the heart. The pathophysiological mechanisms of adverse cardiac remodeling are related to increased apoptosis and necrosis, decreased autophagy, impairments of myocardial oxygen supply and demand, and altered energy metabolism. Herein, the accumulating evidence from animal and human studies is reviewed investigating the effects of SGLT2 inhibitors on these mechanisms of cardiac remodeling.
Collapse
|
38
|
Gamble FN, Aufan MR, Sharifov OF, Williams LJ, Reighard S, Calhoun DA, Gupta H, Dell'Italia LJ, Denney TS, Lloyd SG. Diastolic function: modeling left ventricular untwisting as a damped harmonic oscillator. Physiol Meas 2022; 43:10.1088/1361-6579/ac4e6e. [PMID: 35073533 PMCID: PMC9066283 DOI: 10.1088/1361-6579/ac4e6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Objective.We developed a method using cardiovascular magnetic resonance imaging to model the untwisting of the left ventricle (LV) as a damped torsional harmonic oscillator to estimate shear modulus (intrinsic myocardial stiffness) and frictional damping, then applied this method to evaluate the torsional stiffness of patients with resistant hypertension (RHTN) compared to a control group.Approach.The angular displacement of the LV during diastole was measured. Myocardial shear modulus and damping constant were determined by solving a system of equations modeling the diastolic untwisting as a damped, unforced harmonic oscillator, in 100 subjects with RHTN and 36 control subjects.Main Results.Though overall torsional stiffness was increased in RHTN (41.7 (27.1-60.7) versus 29.6 (17.3-35.7) kdyn*cm;p = 0.001), myocardial shear modulus was not different between RHTN and control subjects (0.34 (0.23-0.50) versus 0.33 (0.22-0.46) kPa;p= 0.758). RHTN demonstrated an increase in overall diastolic frictional damping (6.13 ± 3.77 versus 3.35 ± 1.70 kdyn*cm*s;p< 0.001), but no difference in damping when corrected for the overlap factor (74.3 ± 25.9 versus 68.0 ± 24.0 dyn*s/cm3;p = 0.201). There was an increase in the polar moment (geometric component of stiffness; 11.47 ± 6.95 versus 7.58 ± 3.28 cm4;p<0.001).Significance.We have developed a phenomenological method, estimating the intrinsic stiffness and relaxation properties of the LV based on restorative diastolic untwisting. This model finds increased overall stiffness in RHTN and points to hypertrophy, rather than tissue- level changes, as the major factor leading to increased stiffness.
Collapse
Affiliation(s)
- Forrest N Gamble
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - M Rifqi Aufan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Oleg F Sharifov
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Lamario J Williams
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shane Reighard
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - David A Calhoun
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Himanshu Gupta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Valley Medical Group, Paramus, New Jersey
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States of America
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States of America
| | - Steven G Lloyd
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States of America
| |
Collapse
|
39
|
Čertíková Chábová V, Zakiyanov O. Sodium Glucose Cotransporter-2 Inhibitors: Spotlight on Favorable Effects on Clinical Outcomes beyond Diabetes. Int J Mol Sci 2022; 23:2812. [PMID: 35269954 PMCID: PMC8911473 DOI: 10.3390/ijms23052812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Sodium glucose transporter type 2 (SGLT2) molecules are found in proximal tubules of the kidney, and perhaps in the brain or intestine, but rarely in any other tissue. However, their inhibitors, intended to improve diabetes compensation, have many more beneficial effects. They improve kidney and cardiovascular outcomes and decrease mortality. These benefits are not limited to diabetics but were also found in non-diabetic individuals. The pathophysiological pathways underlying the treatment success have been investigated in both clinical and experimental studies. There have been numerous excellent reviews, but these were mostly restricted to limited aspects of the knowledge. The aim of this review is to summarize the known experimental and clinical evidence of SGLT2 inhibitors' effects on individual organs (kidney, heart, liver, etc.), as well as the systemic changes that lead to an improvement in clinical outcomes.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 12800 Prague 2, Czech Republic;
| | | |
Collapse
|
40
|
Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules 2022; 12:biom12020176. [PMID: 35204677 PMCID: PMC8961672 DOI: 10.3390/biom12020176] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular (CV) disease and heart failure (HF) are the leading cause of mortality in type 2 diabetes (T2DM), a metabolic disease which represents a fast-growing health challenge worldwide. Specifically, T2DM induces a cluster of systemic metabolic and non-metabolic signaling which may promote myocardium derangements such as inflammation, fibrosis, and myocyte stiffness, which represent the hallmarks of heart failure with preserved ejection fraction (HFpEF). On the other hand, several observational studies have reported that patients with T2DM have an abnormally enlarged and biologically transformed epicardial adipose tissue (EAT) compared with non-diabetic controls. This expanded EAT not only causes a mechanical constriction of the diastolic filling but is also a source of pro-inflammatory mediators capable of causing inflammation, microcirculatory dysfunction and fibrosis of the underlying myocardium, thus impairing the relaxability of the left ventricle and increasing its filling pressure. In addition to representing a potential CV risk factor, emerging evidence shows that EAT may guide the therapeutic decision in diabetic patients as drugs such as metformin, glucagon-like peptide‑1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 inhibitors (SGLT2-Is), have been associated with attenuation of EAT enlargement.
Collapse
|
41
|
Korosoglou G, Giusca S, Kelle S. SGLT2 Inhibition in HFpEF. Do We Need More Quantitative and Load Independent Metrics to Understand the Results of the EMPEROR-Preserved Trial? Front Cardiovasc Med 2022; 8:822968. [PMID: 35097034 PMCID: PMC8795365 DOI: 10.3389/fcvm.2021.822968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Grigorios Korosoglou
- Department of Cardiology, Vascular Medicine and Pneumology, Gesundheitszentrum Rhein-Neckar Hospital Weinheim, Weinheim, Germany
- Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany
- *Correspondence: Grigorios Korosoglou
| | - Sorin Giusca
- Department of Cardiology, Vascular Medicine and Pneumology, Gesundheitszentrum Rhein-Neckar Hospital Weinheim, Weinheim, Germany
- Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
42
|
Wang H, Ding L, Tian L, Tian Y, Liao L, Zhao J. Empagliflozin reduces diffuse myocardial fibrosis by extracellular volume mapping: A meta-analysis of clinical studies. Front Endocrinol (Lausanne) 2022; 13:917761. [PMID: 36034443 PMCID: PMC9404239 DOI: 10.3389/fendo.2022.917761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of the study was to evaluate the effect of empagliflozin on diffuse myocardial fibrosis by cardiac magnetic resonance (CMR) T1 mapping. RESEARCH METHODS AND PROCEDURES Databases including PubMed, Cochrane library, Embase, and Sinomed for clinical studies of empagliflozin on myocardial fibrosis were searched. Two authors extracted the data and evaluated study quality independently. Weighted mean difference (WMD) and 95% confidence intervals (CI) were used for continuous variables. Review Manager 5.3 was used to performed the analysis. RESULTS Six studies were included in this meta-analysis. One of the six studies was assessed as poor quality by the assessment of methodological quality; however, the remaining five studies were considered good. The WMD value of △extracellular volume (ECV) was merged by the fixed-effect model, and the pooled effect size was -1.48 (95% CI -1.76 to -1.21, P < 0.00001), which means in favor of empagliflozin. Heterogeneity analysis did not find any heterogeneity (chi2 = 0.39, P = 0.82, I 2 = 0%). In addition, empagliflozin had a tendency to reduce ECV compared to treatment before with no statistical significance (WMD = -0.29, 95% CI -1.26 to 0.67, P = 0.55; heterozygosity test, chi2 = 2.66, P = 0.45, I 2 = 0%). The WMD value of △native T1 was also merged by the fixed-effect model, but the pooled effect size showed neither statistical difference between empagliflozin and placebo treatment (WMD = -5.40, 95% CI -21.63 to 10.83, P = 0.51) nor heterogeneity (chi2 = 0.05, P = 0.83, I 2 = 0%). CONCLUSIONS Empagliflozin has cardiovascular benefits by reducing diffuse myocardial fibrosis. ECV could act as a non-invasive imaging tool to assess diffuse myocardial fibrosis and monitor disease progression. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=324804, identifier: CRD42022324804.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, China
| | - Lin Ding
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liwen Tian
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Ji’nan, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Junyu Zhao,
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Junyu Zhao,
| |
Collapse
|
43
|
Wang Y, Zhong Y, Zhang Z, Yang S, Zhang Q, Chu B, Hu X. Effect of sodium-glucose cotransporter protein-2 inhibitors on left ventricular hypertrophy in patients with type 2 diabetes: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1088820. [PMID: 36699027 PMCID: PMC9868415 DOI: 10.3389/fendo.2022.1088820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This systematic review and meta-analysis was performed to compare the effect of sodium-glucose cotransporter protein-2 inhibitors (SGLT-2i) and placebo on left ventricular hypertrophy (LVH) in patients with type 2 diabetes. METHOD Randomized controlled trials (RCTs) comparing the LVH parameters of SGLT-2i to placebo in patients with type 2 diabetes were included. Our primary outcomes were the changes in left ventricular mass (LVM) and left ventricular mass index (LVMI) from baseline to the study endpoint. Secondary outcomes were the changes in left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), left ventricular ejection fraction (LVEF), and the ratio of early mitral inflow velocity to atrial inflow velocity (E/A). Summary odds ratios were estimated using a fixed-effect or random-effect model. RESULTS A total of 11 articles were included. Data were extracted from 11 original studies matching our inclusion criteria. In our meta-analysis, there were significant improvement in LVM (SMD -0.23, 95% CI -0.44 to -0.02, I 2 = 22.6%, p = 0.034), LVMI (SMD -0.25, 95% CI -0.38 to -0.12, I 2 = 0.0%, p = 0.000), LVEDV (SMD -0.19, 95% CI -0.36 to -0.01, I 2 = 62.3%, p = 0.035), and LVESV (SMD -0.21, 95% CI -0.39 to -0.04, I 2 = 32.9%, p = 0.017) in the SGLT-2i group compared with the placebo group. Furthermore, no significant differences were found in LVEF (SMD 0.13, 95% CI 0.00 to 0.26, I 2 = 0.0%, p = 0.050) and E/A (SMD -0.01, 95% CI -0.22 to 0.20, I 2 = 0%, p = 0.908) between the two groups. CONCLUSIONS This meta-analysis confirmed the beneficial effects of SGLT-2i on reversal of left ventricular remodeling. The LVH regression was more pronounced in studies of type 2 diabetes patients receiving SGLT-2i than placebo.
Collapse
Affiliation(s)
- Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Yujie Zhong
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Zhehao Zhang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Shuhao Yang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Qianying Zhang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Bingyang Chu, ; Xulin Hu,
| | - Xulin Hu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
- *Correspondence: Bingyang Chu, ; Xulin Hu,
| |
Collapse
|
44
|
Wei W, Liu J, Chen S, Xu X, Guo D, He Y, Huang Z, Wang B, Huang H, Li Q, Chen J, Chen H, Tan N, Liu Y. Sodium Glucose Cotransporter Type 2 Inhibitors Improve Cardiorenal Outcome of Patients With Coronary Artery Disease: A Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:850836. [PMID: 35330914 PMCID: PMC8940298 DOI: 10.3389/fendo.2022.850836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Sodium glucose cotransporter type 2 inhibitors (SGLT-2i) are beneficial for cardiorenal outcomes in patients with type 2 diabetes mellitus (T2DM), heart failure (HF) or chronic kidney disease (CKD). However, whether or not the patients with coronary artery disease (CAD) have prognostic benefit from SGLT-2i treatment has not been fully studied. The purpose of this meta-analysis is to determine the prognostic benefit of SGLT-2i administration in CAD patients. METHODS We searched the PubMed, Embase and Cochrane Library from inception until October 15, 2021. We included randomized controlled trials (RCTs) reporting the effect of SGLT-2i on major adverse cardiovascular event (MACE), hospitalization for heart failure (HHF), cardiovascular (CV) death and cardiorenal parameters in CAD patients. Hazard ratio (HR) with 95% confidence interval (CI) and mean difference (MD) from trials were meta-analyzed using fixed-effects models. RESULTS Nine trials enrolling 15,301 patients with CAD were included in the analyses. Overall, SGLT2i were associated with a reduced risk of MACE (HR: 0.84; 95% CI 0.74-0.95; I2 = 0%), HHF (HR: 0.69; 95% CI 0.58-0.83; I2 = 0%) and a composite of CV death or HHF (HR: 0.78; 95% CI 0.71-0.86; I2 = 37%) in CAD patients. Compared with control group, estimated glomerular filtration rate (eGFR) level decreased less in SGLT-2i group (mean difference [MD] = -3.60, 95% CI, -5.90 to -1.30, p = 0.002; I2 = 0%). CONCLUSIONS SGLT-2i can improve cardiorenal outcomes in CAD patients. Further RCTs and real world studies are need to investigate the effect of SGLT2i on CAD patients. SYSTEMATIC REVIEW REGISTRATION PROSPERO, CRD42021258237.
Collapse
Affiliation(s)
- Wen Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Endocrinology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinghao Xu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dachuan Guo
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yibo He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhidong Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haozhang Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yong Liu, ; Ning Tan, ; Hong Chen,
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yong Liu, ; Ning Tan, ; Hong Chen,
| | - Yong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yong Liu, ; Ning Tan, ; Hong Chen,
| |
Collapse
|
45
|
Shang Y, Zhang Y, Leng W, Lei X, Chen L, Zhou X, Liang Z, Wang J. Sex Differences in Type 2 Diabetes Mellitus-Related Left Ventricular Remodeling: A Cardiovascular Magnetic Resonance Study. J Diabetes Res 2022; 2022:1427864. [PMID: 35663435 PMCID: PMC9159887 DOI: 10.1155/2022/1427864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/17/2022] [Accepted: 04/26/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the sex differences in myocardial structure, tissue characteristics, and myocardial function in type 2 diabetes mellitus (T2DM) patients. METHODS A total of 62 T2DM patients and 40 controls were prospectively recruited for the study. All the participants were scanned using cardiovascular magnetic resonance (CMR) cine and underwent native and postcontrast T1 mapping to obtain left ventricular (LV) structure, function, and tissue characteristics. The differences between the control and T2DM patients were compared in males and females, respectively. RESULTS For myocardial structure, T2DM was associated with a larger ratio of myocardial mass to end-diastolic volume (MVR, T2DM: 0.87 ± 0.20 vs. controls: 0.73 ± 0.14, p = 0.008) and thicker wall thickness (WT, T2DM: 6.5 ± 1.1 mm vs. controls: 5.6 ± 1.0 mm, p = 0.002) in females. For tissue characteristics, T2DM was associated with a similar T1 value, elevated extracellular volume fraction (ECV, T2DM: 27.8 ± 3.6% vs. controls: 25.1 ± 2.5%, p = 0.002), and increased extracellular matrix volume index (ECMVi, T2DM: 15.8 ± 3.8 ml/m2 vs. controls: 13.4 ± 2.7 ml/m2, p = 0.008) in males. For myocardial function, in male, compared with control, T2DM was associated with decreased peak longitudinal diastolic strain rate (PLDSR, T2DM: 0.97 ± 0.19 1/s vs. control: 1.13 ± 0.29 1/s, p = 0.030). CONCLUSIONS There might be sex differences in myocardial remodeling induced by T2DM, including LV structural concentric remodeling in female patients and extracellular matrix remodeling and subclinical diastolic dysfunction in male patients.
Collapse
Affiliation(s)
- Yongning Shang
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yulin Zhang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiling Leng
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaotian Lei
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Chen
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | | | - Ziwen Liang
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
46
|
Marketou M, Kontaraki J, Maragkoudakis S, Danelatos C, Papadaki S, Zervakis S, Plevritaki A, Vardas P, Parthenakis F, Kochiadakis G. Effects of sodium-glucose cotransporter-2 inhibitors on cardiac structural and electrical remodeling: from myocardial cytology to cardiodiabetology. Curr Vasc Pharmacol 2021; 20:178-188. [PMID: 34961447 DOI: 10.2174/1570161120666211227125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have changed the clinical landscape of diabetes mellitus (DM) therapy through their favourable effects on cardiovascular outcomes. Notably, the use of SGLT2i has been linked to cardiovascular benefits regardless of DM status, while their pleiotropic actions remain to be fully elucidated. What we do know is that SGLT2i exert beneficial effects even at the level of the myocardial cell, and that these are linked to an improvement in the energy substrate, resulting in less inflammation and fibrosis. SGLT2i ameliorate myocardial extracellular matrix remodeling, cardiomyocyte stiffness and concentric hypertrophy, achieving beneficial remodeling of the left ventricle with significant implications for the pathogenesis and outcome of heart failure. Most studies show a significant improvement in markers of diastolic dysfunction along with a reduction in left ventricular hypertrophy. In addition to these effects there is electrophysiological remodeling, which explains initial data suggesting that SGLT2i have an antiarrhythmic action against both atrial and ventricular arrhythmias. However, future studies need to clarify not only the exact mechanisms of this beneficial functional, structural, and electrophysiological cardiac remodeling, but also its magnitude, and to determine whether this is a class or a drug effect.
Collapse
Affiliation(s)
- Maria Marketou
- Cardiology Department, Heraklion University Hospital, Crete Greece
| | - Joanna Kontaraki
- Laboratory of Molecular Cardiology, University of Crete, School of Medicine, Crete, Greece
| | | | | | - Sofia Papadaki
- Cardiology Department, Heraklion University Hospital, Crete Greece
| | - Stelios Zervakis
- Cardiology Department, Heraklion University Hospital, Crete Greece
| | | | - Panos Vardas
- Cardiovascular Section, Mitera Hospital, Hygeia Group, Athens Greece
| | | | | |
Collapse
|
47
|
Passantino A, Rizzo C, Scrutinio D, Palazzuoli A. Diabetes and SGLT2-iss inhibitors in patients with heart failure with preserved or mid-range left ventricular ejection fractions. Heart Fail Rev 2021; 28:683-695. [PMID: 34725782 DOI: 10.1007/s10741-021-10186-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Diabetic patients frequently develop heart failure with preserved (HFpEF) or mid-range (HFmEF) cardiac ejection fractions. This condition may be secondary to diabetic cardiomyopathy or one of several relevant comorbidities, mainly hypertension. Several mechanisms link diabetes to HFpEF or HFmEF. Among these, non-enzymatic glycation of interstitial proteins, lipotoxicity, and endothelial dysfunction may promote structural damage and ultimate lead to heart failure. Findings from several large-scale trials indicated that treatment with sodium/glucose cotransporter 2 inhibitors (SGLT2-iss) resulted in significant improvements in cardiovascular outcomes in diabetic patients with high cardiovascular risk. However, there is currently some evidence that suggests a clinical advantage of using SGLT2-iss specifically in cases of HFpEF or HFmEF. Preclinical and clinical studies revealed that SGLT2-iss treatment results in a reduction in left ventricular mass and improved diastolic function. While some of the beneficial effects of SGLT2-iss have already been characterized (e.g., increased natriuresis and diuresis as well as reduced blood pressure, plasma volume, and arterial stiffness, and nephron-protective activities), there is increasing evidence suggesting that SGLT2-iss may have direct actions on the heart. These findings include SGLT2-iss-mediated reductions in the expression of hypertrophic foetal genes and diastolic myofilaments stiffness, increases in global phosphorylation of myofilament regulatory proteins (in HFpEF), inhibition of cardiac late sodium channel current and Na+/H+ exchanger activity, metabolic shifts, and effects on calcium cycling. Preliminary data from previously published studies suggest that SGLT2-iss could be useful for the treatment of HFpEF and HFmEF. Several large ongoing trials, including DELIVER AND EMPEROR -preserved have been designed to evalute the efficacy of SGLT2-iss in improving clinical outcomes in patients diagnosed with HFpEF. The goal of this manuscript is to review the use of SGLT2-iss inhibitors for HFpEF or HFmEF associated with diabetes.
Collapse
Affiliation(s)
- Andrea Passantino
- Istituti Clinici Scientifici Maugeri, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Bari, Italy.
| | - Caterina Rizzo
- Istituti Clinici Scientifici Maugeri, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Bari, Italy
| | - Domenico Scrutinio
- Istituti Clinici Scientifici Maugeri, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Bari, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Medical Sciences, Le Scotte Hospital, University of Siena, Siena, Italy
| |
Collapse
|
48
|
Aykac I, Podesser BK, Kiss A. Reverse remodelling in diabetic cardiomyopathy: the role of extracellular matrix. Minerva Cardiol Angiol 2021; 70:385-392. [PMID: 34713679 DOI: 10.23736/s2724-5683.21.05794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetic patients are prone to suffer from cardiovascular disease, specifically from ischemic heart disease and diabetic cardiomyopathy, which have a huge impact on morbidity and mortality worldwide. Cardiac fibrosis due to alteration of the extracellular matrix (ECM) remodelling is often observed in diabetes and myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. At single-cell level, the ECM govern, metabolism, motility, orientation and proliferation. However, in pathological condition such as diabetes, changes in ECM lead to fibrosis and subsequently cardiac stiffness and cardiomyocytes dysfunction. Anti-diabetic drugs, particularly sodium-glucose cotransporter-2 (SGLT2) inhibitors have anti-fibrotic effects, and may promote ECM reverse remodelling. In this mini-review, the mechanisms and the role of ECM remodelling and reverse remodelling as a potential therapeutic targets for diabetic cardiomyopathy are discussed.
Collapse
Affiliation(s)
- Ibrahim Aykac
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria -
| |
Collapse
|
49
|
Effect of empagliflozin on myocardial structure and function in patients with type 2 diabetes at high cardiovascular risk: the SIMPLE randomized clinical trial. Int J Cardiovasc Imaging 2021; 38:579-587. [PMID: 34669059 DOI: 10.1007/s10554-021-02443-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022]
Abstract
To investigate the effects of 13 weeks treatment with empagliflozin in patients with high-risk type-2 diabetes mellitus on echocardiographic measures of left ventricular (LV) structure and function compared to placebo. A total of 91 patients were randomized to treatment with empagliflozin (25 mg/day, n = 45) or matching placebo (n = 45) for 13 weeks. Left ventricular (LV) mass, volumes and geometry as well as measures of LV systolic and diastolic function were measured using echocardiography at baseline and follow up. Mean LV mass index (LVMi) was reduced by - 11.5 g/m2 (95% CI - 56.4; 33.4, p = 0.03) with empagliflozin compared to - 1.4 g/m2 (95% CI - 36.5; 33.8, p = 0.63) for placebo. The proportion of patients with LV hypertrophy was reduced by 16.3% (p = 0.04) in the empagliflozin group compared to 1.1% in the placebo group (p = 1.00). The proportion of patients with left atrial volume index > 34 mL/m2 was reduced by 20.0% (p = 0.02) with empagliflozin compared to 9.5% for placebo (p = 0.45) and the E/e' ratio decreased (∆-0.8 (1.9) vs. ∆0.5 (2.0), p < 0.01). 13 weeks empagliflozin treatment in patients with type-2 diabetes at high CV risk significantly reduced LV mass, improved LV geometry and improved diastolic function compared to placebo.
Collapse
|
50
|
Impact of empagliflozin on right ventricular parameters and function among patients with type 2 diabetes. Cardiovasc Diabetol 2021; 20:200. [PMID: 34607574 PMCID: PMC8491405 DOI: 10.1186/s12933-021-01390-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Sodium-glucose cotransporter 2 (SGLT2) inhibition reduces cardiovascular events in type 2 diabetes (T2DM) and is associated with a reduction in left ventricular (LV) mass index. However, the impact on right ventricular (RV) remodeling is unknown. Accordingly, the objective of this study was to assess the impact of SGLT2 inhibition on RV parameters and function in T2DM and coronary artery disease (CAD). Methods In EMPA-HEART CardioLink-6, 97 patients with T2DM and CAD were randomly assigned to empagliflozin 10 mg (n = 49) once daily or placebo (n = 48). Cardiac magnetic resonance imaging was performed at baseline and after 6 months. RV mass index (RVMi), RV end-diastolic and end-systolic volume index (RVEDVi, RVESVi) and RV ejection fraction (RVEF) were assessed in blinded fashion. Results At baseline, mean RVMi (± SD) (11.8 ± 2.4 g/m2), RVEF (53.5 ± 4.8%), RVEDVi (64.3 ± 13.2 mL/m2) and RVESVi (29.9 ± 6.9 mL/m2) were within normal limits and were similar between the empagliflozin and placebo groups. Over 6 months, there were no significant differences in RVMi (− 0.11 g/m2, [95% CI − 0.81 to 0.60], p = 0.76), RVEF (0.54%, [95% CI − 1.4 to 2.4], p = 0.58), RVEDVi (− 1.2 mL/m2, [95% CI − 4.1 to 1.7], p = 0.41) and RVESVi (− 0.81 mL/m2, [95% CI − 2.5 to 0.90], p = 0.35) in the empaglifozin group as compared with the placebo group. In both groups, there was no significant correlation between RVMi and LVMi changes from baseline to 6 months. Conclusions In this post-hoc analysis, SGLT2 inhibition with empagliflozin had no impact on RVMi and RV volumes in patients with T2DM and CAD. The potentially differential effect of empagliflozin on the LV and RV warrants further investigation. Clinical Trial Registration: URL: https://www.clinicaltrials.gov/ct2/show/NCT02998970?cond=NCT02998970&draw=2&rank=1. Unique identifier: NCT02998970.
Collapse
|