1
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
2
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
3
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Qiu ZX, Huang LX, Wang XX, Wang ZL, Li XH, Feng B. Exploring the Pathogenesis of Autoimmune Liver Diseases from the Heterogeneity of Target Cells. J Clin Transl Hepatol 2024; 12:659-666. [PMID: 38993508 PMCID: PMC11233981 DOI: 10.14218/jcth.2023.00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 07/13/2024] Open
Abstract
The incidence of autoimmune liver diseases (ALDs) and research on their pathogenesis are increasing annually. However, except for autoimmune hepatitis, which responds well to immunosuppression, primary biliary cholangitis and primary sclerosing cholangitis are insensitive to immunosuppressive therapy. Besides the known effects of the environment, genetics, and immunity on ALDs, the heterogeneity of target cells provides new insights into their pathogenesis. This review started by exploring the heterogeneity in the development, structures, and functions of hepatocytes and epithelial cells of the small and large bile ducts. For example, cytokeratin (CK) 8 and CK18 are primarily expressed in hepatocytes, while CK7 and CK19 are primarily expressed in intrahepatic cholangiocytes. Additionally, emerging technologies of single-cell RNA sequencing and spatial transcriptomic are being applied to study ALDs. This review offered a new perspective on understanding the pathogenic mechanisms and potential treatment strategies for ALDs.
Collapse
Affiliation(s)
| | | | - Xiao-Xiao Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Zi-Long Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiao-He Li
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Bo Feng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
5
|
Wang Z, Ye S, van der Laan LJW, Schneeberger K, Masereeuw R, Spee B. Chemically Defined Organoid Culture System for Cholangiocyte Differentiation. Adv Healthc Mater 2024:e2401511. [PMID: 39044566 DOI: 10.1002/adhm.202401511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cholangiocyte organoids provide a powerful platform for applications ranging from in vitro modeling to tissue engineering for regenerative medicine. However, their expansion and differentiation are typically conducted in animal-derived hydrogels, which impede the full maturation of organoids into functional cholangiocytes. In addition, these hydrogels are poorly defined and complex, limiting the clinical applicability of organoids. In this study, a novel medium composition combined with synthetic polyisocyanopeptide (PIC) hydrogels to enhance the maturation of intrahepatic cholangiocyte organoids (ICOs) into functional cholangiocytes is utilized. ICOs cultured in the presence of sodium butyrate and valproic acid, a histone deacetylase inhibitor, and a Notch signaling activator, respectively, in PIC hydrogel exhibit a more mature phenotype, as evidenced by increased expression of key cholangiocyte markers, crucial for biliary function. Notably, mature cholangiocyte organoids in PIC hydrogel display apical-out polarity, in contrast to the traditional basal-out polarization of ICOs cultured in Matrigel. Moreover, these mature cholangiocyte organoids effectively model the biliary pro-fibrotic response induced by transforming growth factor beta. Taken together, an animal-free, chemically defined culture system that promotes the ICOs into mature cholangiocytes with apical-out polarity, facilitating regenerative medicine applications and in vitro studies that require access to the apical membrane, is developed.
Collapse
Affiliation(s)
- Zhenguo Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Shicheng Ye
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
6
|
de Jong IEM, Wells RG. In Utero Extrahepatic Bile Duct Damage and Repair: Implications for Biliary Atresia. Pediatr Dev Pathol 2024; 27:291-310. [PMID: 38762769 PMCID: PMC11340255 DOI: 10.1177/10935266241247479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Biliary atresia (BA) is a cholangiopathy affecting the extrahepatic bile duct (EHBD) of newborns. The etiology and pathophysiology of BA are not fully understood; however, multiple causes of damage and obstruction of the neonatal EHBD have been identified. Initial damage to the EHBD likely occurs before birth. We discuss how different developmental stages in utero and birth itself could influence the susceptibility of the fetal EHBD to damage and a damaging wound-healing response. We propose that a damage-repair response of the fetal and neonatal EHBD involving redox stress and a program of fetal wound healing could-regardless of the cause of the initial damage-lead to either obstruction and BA or repair of the duct and recovery. This overarching concept should guide future research targeted toward identification of factors that contribute to recovery as opposed to progression of injury and fibrosis. Viewing BA through the lens of an in utero damage-repair response could open up new avenues for research and suggests exciting new therapeutic targets.
Collapse
Affiliation(s)
- Iris E. M. de Jong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca G. Wells
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Hellen DJ, Fay ME, Lee DH, Klindt-Morgan C, Bennett A, Pachura KJ, Grakoui A, Huppert SS, Dawson PA, Lam WA, Karpen SJ. BiliQML: a supervised machine-learning model to quantify biliary forms from digitized whole slide liver histopathological images. Am J Physiol Gastrointest Liver Physiol 2024; 327:G1-G15. [PMID: 38651949 PMCID: PMC11376979 DOI: 10.1152/ajpgi.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Meredith E Fay
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David H Lee
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Caroline Klindt-Morgan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ashley Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
8
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
9
|
Maki K, Katsumi T, Hanatani T, Uchiyama F, Suzuki F, Hoshikawa K, Haga H, Saito T, Ueno Y. Elucidation of pericholangitis and periductal fibrosis in cholestatic liver diseases via extracellular vesicles released by polarized biliary epithelial cells. Am J Physiol Cell Physiol 2024; 326:C1094-C1105. [PMID: 38344767 DOI: 10.1152/ajpcell.00655.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Cholestatic liver diseases causes inflammation and fibrosis around bile ducts. However, the pathological mechanism has not been elucidated. Extracellular vesicles (EVs) are released from both the basolateral and apical sides of polarized biliary epithelial cells. We aimed to investigate the possibility that EVs released from the basolateral sides of biliary epithelial cells by bile acid stimulation induce inflammatory cells and fibrosis around bile ducts, and they may be involved in the pathogenesis of cholestatic liver disease. Human biliary epithelial cells (H69) were grown on cell culture inserts and stimulated with chenodeoxycholic acid + IFN-γ. Human THP-1-derived M1-macrophages, LX-2 cells, and KMST-6 cells were treated with the extracted basolateral EVs, and inflammatory cytokines and fibrosis markers were detected by RT-PCR. Highly expressed proteins from stimulated EVs were identified, and M1-macrophages, LX-2, KMST-6 were treated with these recombinant proteins. Stimulated EVs increased the expression of TNF, IL-1β, and IL-6 in M1-macrophages, TGF-β in LX-2 and KMST-6 compared with the corresponding expression levels in unstimulated EVs. Nucleophosmin, nucleolin, and midkine levels were increased in EVs from stimulated cells compared with protein expression in EVs from unstimulated cells. Leukocyte cell-derived chemotaxin-2 (LECT2) is highly expressed only in EVs from stimulated cells. Stimulation of M1-macrophages with recombinant nucleophosmin, nucleolin, and midkine significantly increased the expression of inflammatory cytokines. Stimulation of LX-2 and KMST-6 with recombinant LECT2 significantly increased the expression of fibrotic markers. These results suggest that basolateral EVs are related to the development of pericholangitis and periductal fibrosis in cholestatic liver diseases.NEW & NOTEWORTHY Our research elucidated that the composition of basolateral EVs from the biliary epithelial cells changed under bile acid exposure and the basolateral EVs contained the novel inflammation-inducing proteins NPM, NCL, and MK and the fibrosis-inducing protein LECT2. We report that these new results are possible to lead to the potential therapeutic target of cholestatic liver diseases in the future.
Collapse
Affiliation(s)
- Keita Maki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takumi Hanatani
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumi Uchiyama
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
10
|
Rajak S. Dynamics of cellular plasticity in non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta Mol Basis Dis 2024; 1870:167102. [PMID: 38422712 DOI: 10.1016/j.bbadis.2024.167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
11
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
12
|
Elci BS, Nikolaev M, Rezakhani S, Lutolf MP. Bioengineered Tubular Biliary Organoids. Adv Healthc Mater 2024; 13:e2302912. [PMID: 38128045 DOI: 10.1002/adhm.202302912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Liver organoids have emerged as promising in vitro models for toxicology, drug discovery, and disease modeling. However, conventional 3D epithelial organoid culture systems suffer from significant drawbacks, including limited culture duration, a nonphysiological 3D cystic anatomy with an inaccessible apical surface, and lack of in vivo-like cellular organization. To address these limitations, herein a hydrogel-based organoid-on-a-chip model for the development functional tubular biliary organoids is reported. The resulting constructs demonstrate long-term stability for a minimum duration of 45 d, while retaining their biliary organoid identity and exhibiting key cholangiocyte characteristics including transport activities, formation of primary cilia, and protective glycocalyx. Additionally, tubular organoids are susceptible to physical and chemical injury, which cannot be applied in such resolution to classical organoids. To enhance tissue-level complexity, in vitro formation of a perfusable branching network is induced using a predetermined geometry that faithfully mimics the intricate structure of the intrahepatic biliary tree. Finally, cellular complexity is augmented through co-culturing with vascular endothelial cells and fibroblasts. The models described in this study offer valuable opportunities for investigating biliary morphogenesis and elucidating associated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Bilge Sen Elci
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mikhail Nikolaev
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Saba Rezakhani
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Matthias P Lutolf
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, 4070, Switzerland
| |
Collapse
|
13
|
Marakovits C, Francis H. Unraveling the complexities of fibrosis and ductular reaction in liver disease: pathogenesis, mechanisms, and therapeutic insights. Am J Physiol Cell Physiol 2024; 326:C698-C706. [PMID: 38105754 PMCID: PMC11193454 DOI: 10.1152/ajpcell.00486.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Ductular reaction and fibrosis are hallmarks of many liver diseases including primary sclerosing cholangitis, primary biliary cholangitis, biliary atresia, alcoholic liver disease, and metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Liver fibrosis is the accumulation of extracellular matrix often caused by excess collagen deposition by myofibroblasts. Ductular reaction is the proliferation of bile ducts (which are composed of cholangiocytes) during liver injury. Many other cells including hepatic stellate cells, hepatocytes, hepatic progenitor cells, mesenchymal stem cells, and immune cells contribute to ductular reaction and fibrosis by either directly or indirectly interacting with myofibroblasts and cholangiocytes. This review summarizes the recent findings in cellular links between ductular reaction and fibrosis in numerous liver diseases.
Collapse
Affiliation(s)
- Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
14
|
Salzmann RJ, Krötz C, Mocan T, Mocan LP, Grapa C, Rottmann S, Reichelt R, Keller CM, Langhans B, Schünemann F, Pohl A, Böhler T, Bersiner K, Krawczyk M, Milkiewicz P, Sparchez Z, Lammert F, Gehlert S, Gonzalez-Carmona MA, Willms A, Strassburg CP, Kornek MT, Dold L, Lukacs-Kornek V. Increased type-I interferon level is associated with liver damage and fibrosis in primary sclerosing cholangitis. Hepatol Commun 2024; 8:e0380. [PMID: 38358371 PMCID: PMC10871749 DOI: 10.1097/hc9.0000000000000380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/17/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The level of type-I interferons (IFNs) in primary sclerosing cholangitis (PSC) was investigated to evaluate its association with disease activity and progression. METHODS Bioactive type-I IFNs were evaluated in a murine model of PSC and human patients' sera using a cell-based reporter assay and ELISA techniques. In total, 57 healthy participants, 71 PSC, and 38 patients with primary biliary cholangitis were enrolled in this study. RESULTS Bioactive type-I IFNs were elevated in the liver and serum of multidrug resistance protein 2-deficient animals and showed a correlation with the presence of CD45+ immune cells and serum alanine transaminase levels. Concordantly, bioactive type-I IFNs were elevated in the sera of patients with PSC as compared to healthy controls (sensitivity of 84.51%, specificity of 63.16%, and AUROC value of 0.8267). Bioactive IFNs highly correlated with alkaline phosphatase (r=0.4179, p<0.001), alanine transaminase (r=0.4704, p<0.0001), and gamma-glutamyl transpeptidase activities (r=0.6629, p<0.0001) but not with serum bilirubin. In addition, patients with PSC with advanced fibrosis demonstrated significantly higher type-I IFN values. Among the type-I IFN subtypes IFNα, β and IFNω could be detected in patients with PSC with IFNω showing the highest concentration among the subtypes and being the most abundant among patients with PSC. CONCLUSIONS The selectively elevated bioactive type-I IFNs specifically the dominating IFNω could suggest a novel inflammatory pathway that might also have a hitherto unrecognized role in the pathomechanism of PSC.
Collapse
Affiliation(s)
- Rebekka J.S. Salzmann
- Department of Immunodynamic, Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Christina Krötz
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Tudor Mocan
- UBBMed Department, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Gastroenterology, Prof. Dr. Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lavinia P. Mocan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristiana Grapa
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sophia Rottmann
- Department of Immunodynamic, Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ramona Reichelt
- Department of Immunodynamic, Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Cindy M. Keller
- Department of Immunodynamic, Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Frederik Schünemann
- Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Alexander Pohl
- Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Thomas Böhler
- Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Käthe Bersiner
- Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Zeno Sparchez
- 3rd Medical Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Maria A. Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Arnulf Willms
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
- Department of General and Visceral Surgery, German Armed Forces Hospital, Hamburg, Germany
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Miroslaw T. Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Veronika Lukacs-Kornek
- Department of Immunodynamic, Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
15
|
Ye L, Ziesch A, Schneider JS, Ofner A, Nieß H, Denk G, Hohenester S, Mayr D, Mahajan UM, Munker S, Khaled NB, Wimmer R, Gerbes AL, Mayerle J, He Y, Geier A, Toni END, Zhang C, Reiter FP. The inhibition of YAP Signaling Prevents Chronic Biliary Fibrosis in the Abcb4 -/- Model by Modulation of Hepatic Stellate Cell and Bile Duct Epithelium Cell Pathophysiology. Aging Dis 2024; 15:338-356. [PMID: 37307826 PMCID: PMC10796084 DOI: 10.14336/ad.2023.0602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Andreas Ziesch
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Andrea Ofner
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Hanno Nieß
- Biobank of the Department of General, Visceral and Transplantion Surgery, University Hospital, LMU Munich, Germany.
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Florian P. Reiter
- Department of Medicine II, University Hospital, LMU Munich, Germany.
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
17
|
Jeong J, Tanaka M, Yang Y, Arefyev N, DiRito J, Tietjen G, Zhang X, McConnell MJ, Utsumi T, Iwakiri Y. An optimized visualization and quantitative protocol for in-depth evaluation of lymphatic vessel architecture in the liver. Am J Physiol Gastrointest Liver Physiol 2023; 325:G379-G390. [PMID: 37605828 PMCID: PMC10887843 DOI: 10.1152/ajpgi.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The liver lymphatic system is essential for maintaining tissue fluid balance and immune function. The detailed structure of lymphatic vessels (LVs) in the liver remains to be fully demonstrated. The aim of this study is to reveal LV structures in normal and diseased livers by developing a tissue-clearing and coimmunolabeling protocol optimized for the tissue size and the processing time for three-dimensional (3-D) visualization and quantification of LVs in the liver. We showed that our optimized protocol enables in-depth exploration of lymphatic networks in the liver, consisting of LVs along the portal tract (deep lymphatic system) and within the collagenous Glisson's capsule (superficial lymphatic system) in different species. With this protocol, we have shown 3-D LVs configurations in relation to blood vessels and bile ducts in cholestatic mouse livers, in which LVs were highly dilated and predominantly found around highly proliferating bile ducts and peribiliary vascular plexuses in the portal tract. We also established a quantification method using a 3-D volume-rendering approach. We observed a 1.6-fold (P < 0.05) increase in the average diameter of LVs and a 2.4-fold increase (P < 0.05) in the average branch number of LVs in cholestatic/fibrotic livers compared with control livers. Furthermore, cholestatic/fibrotic livers showed a 4.3-fold increase (P < 0.05) in total volume of LVs compared with control livers. Our optimized protocol and quantification method demonstrate an efficient and simple liver tissue-clearing procedure that allows the comprehensive analysis of liver lymphatic system.NEW & NOTEWORTHY This article showed a comprehensive 3-D-structural analysis of liver lymphatic vessel (LV) in normal and diseased livers in relation to blood vessels and bile ducts. In addition to the LVs highly localized at the portal tract, we revealed capsular LVs in mouse, rat, and human livers. In cholestatic livers, LVs are significantly increased and dilated compared with normal livers. Our optimized protocol provides detailed spatial information for LVs remodeling in normal and pathological conditions.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Masatake Tanaka
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
- Division of Pathophysiology, Medical Institute of Bioregulation and Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yilin Yang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nikolai Arefyev
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jenna DiRito
- Department of Surgery, Section of Organ Transplantation and Immunology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Gregory Tietjen
- Department of Surgery, Section of Organ Transplantation and Immunology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Matthew J McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
18
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyoung Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
19
|
Yin C. Endothelin Signaling Mediates Biliary-Endothelial Crosstalk in Primary Sclerosing Cholangitis. Cell Mol Gastroenterol Hepatol 2023; 16:643-645. [PMID: 37517802 PMCID: PMC10511926 DOI: 10.1016/j.jcmgh.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
20
|
Ceccherini E, Signore G, Tedeschi L, Vozzi F, Di Giorgi N, Michelucci E, Cecchettini A, Rocchiccioli S. Proteomic Modulation in TGF-β-Treated Cholangiocytes Induced by Curcumin Nanoparticles. Int J Mol Sci 2023; 24:10481. [PMID: 37445659 DOI: 10.3390/ijms241310481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-β (TGF-β)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-β. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-β-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Lorena Tedeschi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Nicoletta Di Giorgi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Institute of Chemistry of Organometallic Compounds, National Research Council, 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
21
|
Bragazzi MC, Venere R, Vignone A, Alvaro D, Cardinale V. Role of the Gut–Liver Axis in the Pathobiology of Cholangiopathies: Basic and Clinical Evidence. Int J Mol Sci 2023; 24:ijms24076660. [PMID: 37047635 PMCID: PMC10095354 DOI: 10.3390/ijms24076660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The “Gut–Liver Axis” refers to the physiological bidirectional interplay between the gut and its microbiota and the liver which, in health, occurs thanks to a condition of immune tolerance. In recent years, several studies have shown that, in case of a change in gut bacterial homeostasis or impairment of intestinal barrier functions, cholangiocytes, which are the epithelial cells lining the bile ducts, activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Intestinal dysbiosis or impaired intestinal barrier functions cause cholangiocytes to be exposed to an increasing amount of microorganisms that can reactivate inflammatory responses, thus inducing the onset of liver fibrosis. The present review focuses on the role of the gut–liver axis in the pathogenesis of cholangiopathies.
Collapse
Affiliation(s)
- Maria Consiglia Bragazzi
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, 04100 Roma, Italy
| | - Rosanna Venere
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, 04100 Roma, Italy
| | - Anthony Vignone
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| |
Collapse
|
22
|
Little A, Medford A, O'Brien A, Childs J, Pan S, Machado J, Chakraborty S, Glaser S. Recent Advances in Intrahepatic Biliary Epithelial Heterogeneity. Semin Liver Dis 2023; 43:1-12. [PMID: 36522162 DOI: 10.1055/s-0042-1758833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biliary epithelium (i.e., cholangiocytes) is a heterogeneous population of epithelial cells in the liver, which line small and large bile ducts and have individual responses and functions dependent on size and location in the biliary tract. We discuss the recent findings showing that the intrahepatic biliary tree is heterogeneous regarding (1) morphology and function, (2) hormone expression and signaling (3), response to injury, and (4) roles in liver regeneration. This review overviews the significant characteristics and differences of the small and large cholangiocytes. Briefly, it outlines the in vitro and in vivo models used in the heterogeneity evaluation. In conclusion, future studies addressing biliary heterogeneity's role in the pathogenesis of liver diseases characterized by ductular reaction may reveal novel therapeutic approaches.
Collapse
Affiliation(s)
- Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sharon Pan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jolaine Machado
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
23
|
Li B, Wang H, Zhang Y, Liu Y, Zhou T, Zhou B, Zhang Y, Chen R, Xing J, He L, Salinas JM, Koyama S, Meng F, Wan Y. Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis. Cells 2022; 11:cells11233783. [PMID: 36497043 PMCID: PMC9736734 DOI: 10.3390/cells11233783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Liver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Hui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yudian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingru Zhou
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Juan Xing
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Longfei He
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jennifer Mata Salinas
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Correspondence: (F.M.); (Y.W.)
| | - Ying Wan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Correspondence: (F.M.); (Y.W.)
| |
Collapse
|
24
|
Wesley BT, Ross ADB, Muraro D, Miao Z, Saxton S, Tomaz RA, Morell CM, Ridley K, Zacharis ED, Petrus-Reurer S, Kraiczy J, Mahbubani KT, Brown S, Garcia-Bernardo J, Alsinet C, Gaffney D, Horsfall D, Tysoe OC, Botting RA, Stephenson E, Popescu DM, MacParland S, Bader G, McGilvray ID, Ortmann D, Sampaziotis F, Saeb-Parsy K, Haniffa M, Stevens KR, Zilbauer M, Teichmann SA, Vallier L. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat Cell Biol 2022; 24:1487-1498. [PMID: 36109670 DOI: 10.1038/s41556-022-00989-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications.
Collapse
Affiliation(s)
- Brandon T Wesley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Alexander D B Ross
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Daniele Muraro
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Zhichao Miao
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Sarah Saxton
- Departments of Bioengineering and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Rute A Tomaz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Carola M Morell
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Katherine Ridley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ekaterini D Zacharis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Judith Kraiczy
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | | | - Stephanie Brown
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | | | - Dave Horsfall
- Digital Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Gary Bader
- University of Toronto, Toronto, Ontario, Canada
| | - Ian D McGilvray
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Daniel Ortmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kelly R Stevens
- Departments of Bioengineering and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Huang Y, Zhang S, Weng JF, Huang D, Gu WL. Recent discoveries in microbiota dysbiosis, cholangiocytic factors, and models for studying the pathogenesis of primary sclerosing cholangitis. Open Med (Wars) 2022; 17:915-929. [PMID: 35647306 PMCID: PMC9106112 DOI: 10.1515/med-2022-0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a cholangiopathy caused by genetic and microenvironmental changes, such as bile homeostasis disorders and microbiota dysbiosis. Therapeutic options are limited, and proven surveillance strategies are currently lacking. Clinically, PSC presents as alternating strictures and dilatations of biliary ducts, resulting in the typical “beaded” appearance seen on cholangiography. The pathogenesis of PSC is still unclear, but cholangiocytes play an essential role in disease development, wherein a reactive phenotype is caused by the secretion of neuroendocrine factors. The liver–gut axis is implicated in the pathogenesis of PSC owing to the dysbiosis of microbiota, but the underlying mechanism is still poorly understood. Alterations in cholangiocyte responses and related signalling pathways during PSC progression were elucidated by recent research, providing novel therapeutic targets. In this review, we summarise the currently known underlying mechanisms of PSC pathogenesis caused by the dysbiosis of microbiota and newly reported information regarding cholangiocytes in PSC. We also summarise recently reported in vitro and in vivo models for studying the pathogenesis of PSC.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
26
|
Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, Lee MS, Kim HS, Suk KT, Kim DJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022; 10:biomedicines10061288. [PMID: 35740310 PMCID: PMC9220082 DOI: 10.3390/biomedicines10061288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiopathies encompass various biliary diseases affecting the biliary epithelium, resulting in cholestasis, inflammation, fibrosis, and ultimately liver cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the most important progressive cholangiopathies in adults. Much research has broadened the scope of disease biology to genetic risk, epigenetic changes, dysregulated mucosal immunity, altered biliary epithelial cell function, and dysbiosis, all of which interact and arise in the context of ill-defined environmental triggers. An in-depth understanding of the molecular pathogenesis of these cholestatic diseases will help clinicians better prevent and treat diseases. In this review, we focus on the main underlying mechanisms of disease initiation and progression, and novel targeted therapeutics beyond currently approved treatments.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jung-Hee Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jang Han Jung
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sang-Hoon Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Myung-Seok Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Hyoung-Su Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
- Correspondence: ; Tel.: +82-33-240-5646
| |
Collapse
|
27
|
Roos FJM, van Tienderen GS, Wu H, Bordeu I, Vinke D, Albarinos LM, Monfils K, Niesten S, Smits R, Willemse J, Rosmark O, Westergren-Thorsson G, Kunz DJ, de Wit M, French PJ, Vallier L, IJzermans JNM, Bartfai R, Marks H, Simons BD, van Royen ME, Verstegen MMA, van der Laan LJW. Human branching cholangiocyte organoids recapitulate functional bile duct formation. Cell Stem Cell 2022; 29:776-794.e13. [PMID: 35523140 DOI: 10.1016/j.stem.2022.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Human cholangiocyte organoids show great promise for regenerative therapies and in vitro modeling of bile duct development and diseases. However, the cystic organoids lack the branching morphology of intrahepatic bile ducts (IHBDs). Here, we report establishing human branching cholangiocyte organoid (BRCO) cultures. BRCOs self-organize into complex tubular structures resembling the IHBD architecture. Single-cell transcriptomics and functional analysis showed high similarity to primary cholangiocytes, and importantly, the branching growth mimics aspects of tubular development and is dependent on JAG1/NOTCH2 signaling. When applied to cholangiocarcinoma tumor organoids, the morphology changes to an in vitro morphology like primary tumors. Moreover, these branching cholangiocarcinoma organoids (BRCCAOs) better match the transcriptomic profile of primary tumors and showed increased chemoresistance to gemcitabine and cisplatin. In conclusion, BRCOs recapitulate a complex process of branching morphogenesis in vitro. This provides an improved model to study tubular formation, bile duct functionality, and associated biliary diseases.
Collapse
Affiliation(s)
- Floris J M Roos
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Gilles S van Tienderen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Haoyu Wu
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Ignacio Bordeu
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Dina Vinke
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Laura Muñoz Albarinos
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Kathryn Monfils
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Sabrah Niesten
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Ron Smits
- Erasmus MC, University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - Jorke Willemse
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Daniel J Kunz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, University of Cambridge, Cambridge, UK
| | - Maurice de Wit
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Pim J French
- Erasmus MC, University Medical Center Rotterdam, Cancer Treatment Screening Facility, Department of Neurology, Rotterdam, the Netherlands
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jan N M IJzermans
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Richard Bartfai
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Hendrik Marks
- Radboud University, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Ben D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Martin E van Royen
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Rotterdam, the Netherlands.
| |
Collapse
|
28
|
Biological Effects of Transforming Growth Factor Beta in Human Cholangiocytes. BIOLOGY 2022; 11:biology11040566. [PMID: 35453765 PMCID: PMC9033039 DOI: 10.3390/biology11040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
TGF-β is a cytokine implicated in multiple cellular responses, including cell cycle regulation, fibrogenesis, angiogenesis and immune modulation. In response to pro-inflammatory and chemotactic cytokines and growth factors, cholangiocytes prime biliary damage, characteristic of cholangiopathies and pathologies that affect biliary tree. The effects and signaling related to TGF-β in cholangiocyte remains poorly investigated. In this study, the cellular response of human cholangiocytes to TGF-β was examined. Wound-healing assay, proliferation assay and cell cycle analyses were used to monitor the changes in cholangiocyte behavior following 24 and 48 h of TGF-β stimulation. Moreover, proteomic approach was used to identify proteins modulated by TGF-β treatment. Our study highlighted a reduction in cholangiocyte proliferation and a cell cycle arrest in G0/G1 phase following TGF-β treatment. Moreover, proteomic analysis allowed the identification of four downregulated proteins (CaM kinase II subunit delta, caveolin-1, NipSnap1 and calumin) involved in Ca2+ homeostasis. Accordingly, Gene Ontology analysis highlighted that the plasma membrane and endoplasmic reticulum are the cellular compartments most affected by TGF-β. These results suggested that the effects of TGF-β in human cholangiocytes could be related to an imbalance of intracellular calcium homeostasis. In addition, for the first time, we correlated calumin and NipSnap1 to TGF-β signaling.
Collapse
|
29
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Desplat A, Penalba V, Gros E, Parpaite T, Coste B, Delmas P. Piezo1-Pannexin1 complex couples force detection to ATP secretion in cholangiocytes. J Gen Physiol 2021; 153:212722. [PMID: 34694360 PMCID: PMC8548913 DOI: 10.1085/jgp.202112871] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023] Open
Abstract
Cholangiocytes actively contribute to the final composition of secreted bile. These cells are exposed to abnormal mechanical stimuli during obstructive cholestasis, which has a deep impact on their function. However, the effects of mechanical insults on cholangiocyte function are not understood. Combining gene silencing and pharmacological assays with live calcium imaging, we probed molecular candidates essential for coupling mechanical force to ATP secretion in mouse cholangiocytes. We show that Piezo1 and Pannexin1 are necessary for eliciting the downstream effects of mechanical stress. By mediating a rise in intracellular Ca2+, Piezo1 acts as a mechanosensor responsible for translating cell swelling into activation of Panx1, which triggers ATP release and subsequent signal amplification through P2X4R. Co-immunoprecipitation and pull-down assays indicated physical interaction between Piezo1 and Panx1, which leads to stable plasma membrane complexes. Piezo1–Panx1–P2X4R ATP release pathway could be reconstituted in HEK Piezo1 KO cells. Thus, our data suggest that Piezo1 and Panx1 can form a functional signaling complex that controls force-induced ATP secretion in cholangiocytes. These findings may foster the development of novel therapeutic strategies for biliary diseases.
Collapse
Affiliation(s)
- Angélique Desplat
- Aix-Marseille-Université, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, UMR 7291, CS80011, Marseille, France
| | - Virginie Penalba
- Aix-Marseille-Université, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, UMR 7291, CS80011, Marseille, France
| | - Emeline Gros
- Aix-Marseille-Université, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, UMR 7291, CS80011, Marseille, France
| | - Thibaud Parpaite
- Aix-Marseille-Université, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, UMR 7291, CS80011, Marseille, France
| | - Bertrand Coste
- Aix-Marseille-Université, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, UMR 7291, CS80011, Marseille, France
| | - Patrick Delmas
- Aix-Marseille-Université, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, UMR 7291, CS80011, Marseille, France
| |
Collapse
|
31
|
de Jong IEM, van den Heuvel MC, Wells RG, Porte RJ. The heterogeneity of the biliary tree. J Hepatol 2021; 75:1236-1238. [PMID: 34420805 PMCID: PMC9074105 DOI: 10.1016/j.jhep.2021.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Iris E M de Jong
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marius C van den Heuvel
- Department of Pathology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Rebecca G Wells
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
32
|
Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10082072. [PMID: 34440841 PMCID: PMC8391272 DOI: 10.3390/cells10082072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver diseases, such as non-alcoholic fatty liver disease (NAFLD), are global health disparities, particularly in the United States, as a result of cultural eating habits and lifestyle. Pathological studies on NAFLD have been mostly focused on hepatocytes and other inflammatory cell types; however, the impact of other biliary epithelial cells (i.e., cholangiocytes) in the promotion of NAFLD is growing. This review article will discuss how cholestatic injury and cholangiocyte activity/ductular reaction influence NAFLD progression. Furthermore, this review will provide informative details regarding the fundamental properties of cholangiocytes and bile acid signaling that can influence NAFLD. Lastly, studies relating to the pathogenesis of NAFLD, cholangiopathies, and ductular reaction will be analyzed to help gain insight for potential therapies.
Collapse
|
33
|
Pack M. Model Organisms Help Define the ABCs of Neonatal Cholestasis. Gastroenterology 2021; 161:35-37. [PMID: 33865839 DOI: 10.1053/j.gastro.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Michael Pack
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
Tulasi DY, Castaneda DM, Wager K, Hogan CB, Alcedo KP, Raab JR, Gracz AD. Sox9 EGFP Defines Biliary Epithelial Heterogeneity Downstream of Yap Activity. Cell Mol Gastroenterol Hepatol 2021; 11:1437-1462. [PMID: 33497866 PMCID: PMC8024983 DOI: 10.1016/j.jcmgh.2021.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Defining the genetic heterogeneity of intrahepatic biliary epithelial cells (BECs) is challenging, and tools for identifying BEC subpopulations are limited. Here, we characterize the expression of a Sox9EGFP transgene in the liver and demonstrate that green fluorescent protein (GFP) expression levels are associated with distinct cell types. METHODS Sox9EGFP BAC transgenic mice were assayed by immunofluorescence, flow cytometry, and gene expression profiling to characterize in vivo characteristics of GFP populations. Single BECs from distinct GFP populations were isolated by fluorescence-activated cell sorting, and functional analysis was conducted in organoid forming assays. Intrahepatic ductal epithelium was grown as organoids and treated with a Yes-associated protein (Yap) inhibitor or bile acids to determine upstream regulation of Sox9 in BECs. Sox9EGFP mice were subjected to bile duct ligation, and GFP expression was assessed by immunofluorescence. RESULTS BECs express low or high levels of GFP, whereas periportal hepatocytes express sublow GFP. Sox9EGFP+ BECs are differentially distributed by duct size and demonstrate distinct gene expression signatures, with enrichment of Cyr61 and Hes1 in GFPhigh BECs. Single Sox9EGFP+ cells form organoids that exhibit heterogeneous survival, growth, and HNF4A activation dependent on culture conditions, suggesting that exogenous signaling impacts BEC heterogeneity. Yap is required to maintain Sox9 expression in biliary organoids, but bile acids are insufficient to induce BEC Yap activity or Sox9 in vivo and in vitro. Sox9EGFP remains restricted to BECs and periportal hepatocytes after bile duct ligation. CONCLUSIONS Our data demonstrate that Sox9EGFP levels provide readout of Yap activity and delineate BEC heterogeneity, providing a tool for assaying subpopulation-specific cellular function in the liver.
Collapse
Affiliation(s)
- Deepthi Y. Tulasi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diego Martinez Castaneda
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kortney Wager
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Connor B. Hogan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Karel P. Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jesse R. Raab
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam D. Gracz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia,Correspondence Address correspondence to: Adam D. Gracz, PhD, 615 Michael Street NE, Suite 201A, Atlanta, Georgia 30322.fax: (404) 727-5767.
| |
Collapse
|
35
|
Helal M, Yan C, Gong Z. Stimulation of hepatocarcinogenesis by activated cholangiocytes via Il17a/f1 pathway in kras transgenic zebrafish model. Sci Rep 2021; 11:1372. [PMID: 33446803 PMCID: PMC7809472 DOI: 10.1038/s41598-020-80621-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
It has been well known that tumor progression is dependent on secreted factors not only from tumor cells but also from other surrounding non-tumor cells. In the current study, we investigated the role of cholangiocytes during hepatocarcinogenesis following induction of oncogenic krasV12 expression in hepatocytes using an inducible transgenic zebrafish model. Upon induction of carcinogenesis in hepatocytes, a progressive cell proliferation in cholangiocytes was observed. The proliferative response in cholangiocytes was induced by enhanced lipogenesis and bile acids secretion from hepatocytes through activation of Sphingosine 1 phosphate receptor 2 (S1pr2), a known cholangiocyte receptor involving in cholangiocyte proliferation. Enhancement and inhibition of S1pr2 could accelerate or inhibit cholangiocyte proliferation and hepatocarcinogenesis respectively. Gene expression analysis of hepatocytes and cholangiocytes showed that cholangiocytes stimulated carcinogenesis in hepatocytes via an inflammatory cytokine, Il17a/f1, which activated its receptor (Il17ra1a) on hepatocytes and enhanced hepatocarcinogenesis via an ERK dependent pathway. Thus, the enhancing effect of cholangiocytes on hepatocarcinogenesis is likely via an inflammatory loop.
Collapse
Affiliation(s)
- Mohamed Helal
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.419615.e0000 0004 0404 7762Marine Pollution Lab, Marine Environment Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Chuan Yan
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Verstegen MMA, Roos FJM, Burka K, Gehart H, Jager M, de Wolf M, Bijvelds MJC, de Jonge HR, Ardisasmita AI, van Huizen NA, Roest HP, de Jonge J, Koch M, Pampaloni F, Fuchs SA, Schene IF, Luider TM, van der Doef HPJ, Bodewes FAJA, de Kleine RHJ, Spee B, Kremers GJ, Clevers H, IJzermans JNM, Cuppen E, van der Laan LJW. Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease. Sci Rep 2020; 10:21900. [PMID: 33318612 PMCID: PMC7736890 DOI: 10.1038/s41598-020-79082-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.
Collapse
Affiliation(s)
- Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Floris J M Roos
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ksenia Burka
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Helmuth Gehart
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike de Wolf
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Arif I Ardisasmita
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nick A van Huizen
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Michael Koch
- Goethe-University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Francesco Pampaloni
- Goethe-University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hubert P J van der Doef
- Department of Pediatric Gastroenterology Hepatology and Nutrition, University Medical Center Groningen, University of Groningen, Utrecht, The Netherlands
| | - Frank A J A Bodewes
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ruben H J de Kleine
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University Utrecht, Utrecht, The Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Cox CR, Lynch S, Goldring C, Sharma P. Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:611913. [PMID: 35047893 PMCID: PMC8757888 DOI: 10.3389/fmedt.2020.611913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a leading cause for the withdrawal of approved drugs. This has significant financial implications for pharmaceutical companies, places increasing strain on global health services, and causes harm to patients. For these reasons, it is essential that in-vitro liver models are capable of detecting DILI-positive compounds and their underlying mechanisms, prior to their approval and administration to patients or volunteers in clinical trials. Metabolism-dependent DILI is an important mechanism of drug-induced toxicity, which often involves the CYP450 family of enzymes, and is associated with the production of a chemically reactive metabolite and/or inefficient removal and accumulation of potentially toxic compounds. Unfortunately, many of the traditional in-vitro liver models fall short of their in-vivo counterparts, failing to recapitulate the mature hepatocyte phenotype, becoming metabolically incompetent, and lacking the longevity to investigate and detect metabolism-dependent DILI and those associated with chronic and repeat dosing regimens. Nevertheless, evidence is gathering to indicate that growing cells in 3D formats can increase the complexity of these models, promoting a more mature-hepatocyte phenotype and increasing their longevity, in vitro. This review will discuss the use of 3D in vitro models, namely spheroids, organoids, and perfusion-based systems to establish suitable liver models to investigate metabolism-dependent DILI.
Collapse
Affiliation(s)
- Christopher R. Cox
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Christopher R. Cox
| | - Stephen Lynch
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Goldring
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Parveen Sharma
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
38
|
Ceci L, Francis H, Zhou T, Giang T, Yang Z, Meng F, Wu N, Kennedy L, Kyritsi K, Meadows V, Wu C, Liangpunsakul S, Franchitto A, Sybenga A, Ekser B, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Knockout of the Tachykinin Receptor 1 in the Mdr2 -/- (Abcb4 -/-) Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2251-2266. [PMID: 32712019 PMCID: PMC7592721 DOI: 10.1016/j.ajpath.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Activation of the substance P (SP)/neurokinin 1 receptor (NK1R) axis triggers biliary damage/senescence and liver fibrosis in bile duct ligated and Mdr2-/- (alias Abcb4-/-) mice through enhanced transforming growth factor-β1 (TGF-β1) biliary secretion. Recent evidence indicates a role for miR-31 (MIR31) in TGF-β1-induced liver fibrosis. We aimed to define the role of the SP/NK1R/TGF-β1/miR-31 axis in regulating biliary proliferation and liver fibrosis during cholestasis. Thus, we generated a novel model with double knockout of Mdr2-/- and NK1R-/ (alias Tacr1-/-) to further address the role of the SP/NK1R axis during chronic cholestasis. In vivo studies were performed in the following 12-week-old male mice: (i) NK1R-/-; (ii) Mdr2-/-; and (iii) NK1R-/-/Mdr2-/- (Tacr1-/-/Abcb4-/-) and their corresponding wild-type controls. Liver tissues and cholangiocytes were collected, and liver damage, changes in biliary mass/senescence, and inflammation as well as liver fibrosis were evaluated by both immunohistochemistry in liver sections and real-time PCR. miR-31 expression was measured by real-time PCR in isolated cholangiocytes. Decreased ductular reaction, liver fibrosis, biliary senescence, and biliary inflammation were observed in NK1R-/-/Mdr2-/- mice compared with Mdr2-/- mice. Elevated expression of miR-31 was observed in Mdr2-/- mice, which was reduced in NK1R-/-/Mdr2-/- mice. Targeting the SP/NK1R and/or miR-31 may be a potential approach in treating human cholangiopathies, including primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Heather Francis
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Thao Giang
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Zhihong Yang
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Fanyin Meng
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Nan Wu
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Vik Meadows
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Suthat Liangpunsakul
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | | | - Amelia Sybenga
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Gianfranco Alpini
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
39
|
Correlation between the Antimicrobial Activity and Metabolic Profiles of Cell Free Supernatants and Membrane Vesicles Produced by Lactobacillus reuteri DSM 17938. Microorganisms 2020; 8:microorganisms8111653. [PMID: 33114410 PMCID: PMC7692313 DOI: 10.3390/microorganisms8111653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of the work is to assess the antimicrobial activities of Cell Free Supernatants (CFS) and Membrane Vesicles (MVs), produced by Lactobacillus reuteri DSM 17938, versus Gram-positive and Gram-negative bacteria and investigate their metabolic profiles. The Minimum Inhibitory Concentration was determined through the broth microdilution method and cell proliferation assay while the Minimum Bactericidal Concentration was determined by Colony Forming Units counts. The characteristics of the antimicrobial compounds were evaluated by pH adjustments, proteinase treatment, and size fractionation of the CFS. The cytotoxicity of CFS was tested on two human cell lines. A detailed snapshot of the L. reuteri metabolism was attained through an untargeted metabolic profiling by means of high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) coupled with Electrospray Ionization Source (ESI). The results showed (i) a greater efficacy of CFS and its fractions towards Gram-negative compared to Gram-positive bacteria; (ii) an antimicrobial effect related to pH-dependent compounds but not to MVs; (iii) a molecular weight < 3 KDa as well as an a non-proteinaceous nature of the antimicrobial compounds; and (iv) more than 200 and 500 putative metabolites annotated in MVs and supernatants, covering several classes of metabolites, including amino acids, lipids, fatty and organic acids, polyalcohols, nucleotides, and vitamins. Some putative compounds were proposed not only as characteristic of specific fractions, but also possibly involved in antimicrobial activity.
Collapse
|
40
|
Brevini T, Tysoe OC, Sampaziotis F. Tissue engineering of the biliary tract and modelling of cholestatic disorders. J Hepatol 2020; 73:918-932. [PMID: 32535061 DOI: 10.1016/j.jhep.2020.05.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Our insight into the pathogenesis of cholestatic liver disease remains limited, partly owing to challenges in capturing the multitude of factors that contribute to disease pathogenesis in vitro. Tissue engineering could address this challenge by combining cells, materials and fabrication strategies into dynamic modelling platforms, recapitulating the multifaceted aetiology of cholangiopathies. Herein, we review the advantages and limitations of platforms for bioengineering the biliary tree, looking at how these can be applied to model biliary disorders, as well as exploring future directions for the field.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Olivia C Tysoe
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Ferrigno A, Palladini G, Di Pasqua LG, Berardo C, Richelmi P, Cadamuro M, Fabris L, Perlini S, Adorini L, Vairetti M. Obeticholic acid reduces biliary and hepatic matrix metalloproteinases activity in rat hepatic ischemia/reperfusion injury. PLoS One 2020; 15:e0238543. [PMID: 32911524 PMCID: PMC7482919 DOI: 10.1371/journal.pone.0238543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background We have previously shown that obeticholic acid (OCA) upregulates the biliary excretion of asymmetric dimethylarginine (ADMA), an inhibitor of iNOS regulating the activity of matrix metalloproteinases (MMPs). Here, the effects of OCA on MMP-2 and MMP-9 activity in liver, bile and serum were evaluated after hepatic ischemia/reperfusion (I/R) injury. Material and methods Male Wistar rats (n = 20) were orally administered 10 mg/kg/day of OCA (5 days) and subjected to a 60-min ischemia and 60-min reperfusion. Bile, serum and tissue were collected for MMP-2 and MMP-9 activity quantification. The MMP regulator tissue reversion-inducing cysteine rich protein with Kazal motifs (RECK), tissue inhibitor of metalloproteinases (TIMPs), iNOS and biliary levels of LDH, γGT, glucose and ADMA were quantified. Results In the I/R group, OCA administration reduced MMP-2 and MMP-9 in liver, bile and serum. A downregulation of tissue RECK and TIMPs, observed under I/R, were recovered by OCA. Immunohistochemical staining of hepatic tissue demonstrated that RECK expression is mainly localized in both cholangiocytes and hepatocytes. Hepatic iNOS positively correlated with tissue MMP-2 and MMP-9 activity. Biliary levels of LDH, γGT and glucose were lower in I/R rats treated with OCA; in bile, MMP levels positively correlated with LDH and γGT. Conclusion Thus, OCA administration confers protection to cholangiocytes via downregulation of biliary MMPs in livers submitted to I/R. This event is associated with hepatic RECK- and TIMP-mediated MMP decrease.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| | - Giuseppina Palladini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Clarissa Berardo
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Plinio Richelmi
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Dept. of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| | - Stefano Perlini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luciano Adorini
- Intecept Pharmaceuticals, San Diego, CA, United States of America
| | - Mariapia Vairetti
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| |
Collapse
|
42
|
Luce E, Dubart-Kupperschmitt A. Pluripotent stem cell-derived cholangiocytes and cholangiocyte organoids. Methods Cell Biol 2020; 159:69-93. [PMID: 32586450 DOI: 10.1016/bs.mcb.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of protocols for pluripotent stem cell (PSC) differentiation into cholangiocytes and cholangiocyte organoids in three-dimensional structures represent a huge advance in both research and medical fields because of the limited access to primary human cholangiocytes and the potential bias induced by animal models used to study cholangiopathies in vivo. PSC-derived cholangiocyte organoids consisting of either cysts with luminal space or branching tubular structures are composed of cells with apico-basal polarity that can fulfill cholangiocyte functions like the transport of bile salts. Several protocols of PSC differentiation have already been published but we added to the detailed protocol we describe here some notes or advice to facilitate its handling by new users. We also propose detailed protocols to carry out some of the characterization analyses using immunofluorescence to study the expression of specific markers and a functionality test to visualize bile acid transport using cholyl-lysyl-fluorescein (CLF).
Collapse
Affiliation(s)
- Eléanor Luce
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France.
| | - Anne Dubart-Kupperschmitt
- INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France
| |
Collapse
|
43
|
Fried S, Gilboa D, Har-Zahav A, Lavrut PM, Du Y, Karjoo S, Russo P, Shamir R, Wells RG, Waisbourd-Zinman O. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020; 10:7599. [PMID: 32371929 PMCID: PMC7200694 DOI: 10.1038/s41598-020-64503-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Gilboa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yu Du
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sara Karjoo
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
44
|
Theise ND, Crawford JM, Nakanuma Y, Quaglia A. Canal of Hering loss is an initiating step for primary biliary cholangitis (PBC): A hypothesis. Med Hypotheses 2020; 140:109680. [PMID: 32240960 DOI: 10.1016/j.mehy.2020.109680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
The origin and initiating features of PBC remain obscure despite decades of study. However, recent papers have demonstrated loss of canals of Hering (CoH) to be the earliest histologic change in liver biopsy specimens from patients with primary biliary cholangitis (PBC). We posit that CoH loss prior to significant inflammation or evidence of bile duct injury might be a very early, perhaps even an initiating lesion of PBC. As a potential target of inflammatory or toxic injury, CoH loss may initiate rather than follow the cascade of events leading to duct injury and loss and their sequelae. Toxins may be exogenous in origin, such as environmental toxins or drug exposures, or endogenous, resulting from genetic or epigenetic alterations in canalicular bile transporters upstream from the CoH. In turn, this hypothesis suggests that loss of CoH would lead to altered bile flow and composition injurious to downstream bile ducts, because bile composition has not been modulated by normal CoH physiologic functions or because, in the absence of CoH, canalicular fluid flow into the biliary tree is disrupted interfering with soluble trophic factors important for bile duct integrity. Regardless of the pathogenic mechanism causing CoH loss, only following such loss would the characteristic diagnostic findings of PBC become evident: damage to downstream interlobular and sub-lobular bile ducts. To the extent that the causal mechanisms for CoH loss can be identified, clinical identification (as through early identification of CoH loss) and intervention (depending on the inciting cause) may offer promise for treatment of this enigmatic disease.
Collapse
Affiliation(s)
- Neil D Theise
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| | - James M Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui 918-8503, Japan
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
45
|
Western diet induces severe nonalcoholic steatohepatitis, ductular reaction, and hepatic fibrosis in liver CGI-58 knockout mice. Sci Rep 2020; 10:4701. [PMID: 32170127 PMCID: PMC7070035 DOI: 10.1038/s41598-020-61473-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Humans and rodents with Comparative Gene Identification-58 (CGI-58) mutations manifest nonalcoholic fatty liver disease (NAFLD). Here we show that liver CGI-58 knockout (LivKO) mice fed a Western diet rapidly develop advanced NAFLD, including nonalcoholic steatohepatitis (NASH) and hepatic fibrosis. After 14 weeks of diet challenge, starting at 6 weeks of age, LivKO mice showed increased inflammatory cell infiltration and proinflammatory gene expression in the liver, which was associated with elevated plasma levels of aminotransferases. Hepatic ductular reactions, pericellular fibrosis, and bridging fibrosis were observed only in the LivKO mice. Consistently, the KO mice had a significant increase in hepatic mRNAs for fibrogenic genes. In addition, LivKO mice displayed massive accumulation of lipid droplets (LDs) in hepatocytes. LDs were also observed in the cholangiocytes of the LivKO mice, but not the floxed controls. Four of the five LD coat proteins, including perilipins 2, 3, 4, and 5, were increased in the CGI-58 KO liver. CRISPR/Cas9-mediated knockout of CGI-58 in Huh7 human hepatoma cells induced LD deposition and perilipin expression, suggesting a cell autonomous effect. Our findings establish the Western diet-fed LivKO mice as an animal model of NASH and hepatic fibrosis. These animals may facilitate preclinical screening of therapeutic agents that counter against NAFLD progression.
Collapse
|
46
|
Luo ZL, Cheng L, Wang T, Tang LJ, Tian FZ, Xiang K, Cui L. Bile Acid Transporters Are Expressed and Heterogeneously Distributed in Rat Bile Ducts. Gut Liver 2020; 13:569-575. [PMID: 30919600 PMCID: PMC6743800 DOI: 10.5009/gnl18265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Cholangiocytes are capable of reabsorbing bile salts from bile, but the pathophysiological significance of this process is unclear. To this end, we detected the expression and distribution of bile acid transport proteins in cholangiocytes from normal rat liver and analyzed the possible pathophysiological significance. Methods Bile duct tissues of Sprague-Dawley rats were isolated by enzymatic digestion and mechanical isolation, and then divided into large and small bile duct tissues. Immunohistochemistry, real-time polymerase chain reaction and Western blotting were used to determine the expression of the apical sodium-dependent bile acid transporter (ASBT), ileal bile acid binding protein (IBABP), and basolateral organic solute transporter α (Ostα) in the biliary tract system of rats. Differences in the expression and distribution of these proteins were analyzed. Results In cholangiocytes, ASBT and IBABP were mainly expressed in cholangiocytes of the large bile ducts, in which the expression of both was significantly higher than that in the small ducts (p<0.05). Ostα was simultaneously expressed in cholangiocytes of both the large and small bile ducts, showing no significant difference in expression between the two groups of bile ducts (p>0.05). Conclusions Bile acid transporters are expressed and heterogeneously distributed in rat bile ducts, indicating that bile acid reabsorption by cholangiocytes might mainly occur in the large bile ducts. These findings may help explore the physiology of bile ducts and the pathogenesis of various cholangiopathies.
Collapse
Affiliation(s)
- Zhu-Lin Luo
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Long Cheng
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Tao Wang
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Li-Jun Tang
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Fu-Zhou Tian
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Ke Xiang
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Lin Cui
- Departments of Orthopedics, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
47
|
Yan M, Shen G, Zhou Y, Meng X, Han X. The role of ERK-RSK signaling in the proliferation of intrahepatic biliary epithelial cells exposed to microcystin-leucine arginine. Biochem Biophys Res Commun 2019; 521:492-498. [PMID: 31677783 DOI: 10.1016/j.bbrc.2019.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a potent specific hepatotoxin produced by cyanobacteria in diverse water systems, and it has been documented to induce liver injury and hepatocarcinogenesis. However, its toxic effects on intrahepatic biliary epithelial cells have not been invested in detail. In this study, we aimed to investigate the effects of MC-LR exposure on the intrahepatic biliary epithelial cells in the liver. MC-LR was orally administered to mice at 1 μg/L, 7.5 μg/L, 15 μg/L, or 30 μg/L for 180 consecutive days for histopathological and immunoblot analysis. We observed that MC-LR can enter intrahepatic bile duct tissue and induce hyperplasia of mice. Human primary intrahepatic biliary epithelial cells (HiBECs) were cultured with various concentrations of MC-LR for 24 h, meanwhile the cell viability and proteins level were detected. Western blotting analysis revealed that MC-LR increased RSK phosphorylation via ERK signaling. RSK participated in cell proliferation and cell cycle progression. Taken together, after chronic exposure, MC-LR-treated mice exhibited abnormal bile duct hyperplasia and thickened bile duct morphology through activating the ERK-RSK signaling. These data support the potential toxic effects of MC-LR on bile duct tissue of the liver.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Gu Shen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
48
|
Clerbaux LA, Manco R, Van Hul N, Bouzin C, Sciarra A, Sempoux C, Theise ND, Leclercq IA. Invasive Ductular Reaction Operates Hepatobiliary Junctions upon Hepatocellular Injury in Rodents and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1569-1581. [PMID: 31108103 DOI: 10.1016/j.ajpath.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Ductular reaction (DR) is observed in virtually all liver diseases in both humans and rodents. Depending on the injury, DR is confined within the periportal area or invades the parenchyma. On severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation is at the most modest, unless replicative capacity of hepatocytes is abrogated. Herein, we proposed that invasive DR could contribute to operating hepatobiliary junctions on hepatocellular injury. The choline-deficient ethionine-supplemented mouse model of hepatocellular injury and human liver samples were used to evaluate the hepatobiliary junctional role of the invasive form of DR. Choline-deficient ethionine-supplemented-induced DR expanded as biliary epithelium into the lobule and established new junctions with the canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary obstructive injury exhibiting noninvasive DR. Similarly, in humans, an increased number of hepatobiliary junctions were observed in hepatocellular diseases (viral, drug induced, or metabolic) in which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes and ducts in disorders affecting hepatocytes.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Manco
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Caroline Bouzin
- Imaging Platform, Institute of clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium
| | - Amedeo Sciarra
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Neil D Theise
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Isabelle A Leclercq
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
49
|
Baiocchi L, Zhou T, Liangpunsakul S, Lenci I, Santopaolo F, Meng F, Kennedy L, Glaser S, Francis H, Alpini G. Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe? Int J Mol Sci 2019; 20:ijms20081869. [PMID: 31014010 PMCID: PMC6514722 DOI: 10.3390/ijms20081869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Bile acids are a family of amphipathic compounds predominantly known for their role in solubilizing and absorbing hydrophobic compounds (including liposoluble vitamins) in the intestine. Bile acids also are key signaling molecules and inflammatory agents that activate transcriptional factors and cell signaling pathways that regulate lipid, glucose, and energy metabolism in various human disorders, including chronic liver diseases. However, in the last decade increased awareness has been founded on the physiological and chemical heterogeneity of this category of compounds and their possible beneficial or injurious effects on the biliary tree. In this review, we provide an update on the current understanding of the molecular mechanism involving bile acid and biliary epithelium. The last achievements of the research in this field are summarized, focusing on the molecular aspects and the elements with relevance regarding human liver diseases.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Francesco Santopaolo
- Liver Unit, Department of Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine 702 SW HK Dodgen Loop, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center and Indiana University, Gastroenterology, Medicine 1481 W 10th street, Dedication Wing⁻Room C-7151, Indianapolis, IN 46202, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 1481 W 10th street, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Sato K, Meng F, Fava G, Glaser S, Alpini G. Functional roles of gut bacteria imbalance in cholangiopathies. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|