1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Breaking the cycle: Psychological and social dimensions of pediatric functional gastrointestinal disorders. World J Clin Pediatr 2025; 14:103323. [DOI: 10.5409/wjcp.v14.i2.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 01/02/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Functional gastrointestinal disorders (FGIDs) in children present with chronic symptoms like abdominal pain, diarrhea, and constipation without identifiable structural abnormalities. These disorders are closely linked to gut-brain axis dysfunction, altered gut microbiota, and psychosocial stress, leading to psychiatric comorbidities such as anxiety, depression, and behavioral issues. Understanding this bidirectional relationship is crucial for developing effective, holistic management strategies that address physical and mental health.
AIM To examine the psychiatric impacts of FGIDs in children, focusing on anxiety and depression and their association with other neurodevelopmental disorders of childhood, such as attention-deficit/hyperactivity disorder, emphasizing the role of the gut-brain axis, emotional dysregulation, and psychosocial stress. Key mechanisms explored include neurotransmitter dysregulation, microbiota imbalance, central sensitization, heightening stress reactivity, emotional dysregulation, and symptom perception. The review also evaluates the role of family dynamics and coping strategies in exacerbating FGID symptoms and contributing to psychiatric conditions.
METHODS A narrative review was conducted using 328 studies sourced from PubMed, Scopus, and Google Scholar, covering research published over the past 20 years. Inclusion criteria focused on studies examining FGID diagnosis, gut-brain mechanisms, psychiatric comorbidities, and psychosocial factors in pediatric populations. FGIDs commonly affecting children, including functional constipation, abdominal pain, irritable bowel syndrome, gastroesophageal reflux, and cyclic vomiting syndrome, were analyzed concerning their psychological impacts.
RESULTS The review highlights a strong connection between FGIDs and psychiatric symptoms, mediated by gut-brain axis dysfunction, dysregulated microbiota, and central sensitization. These physiological disruptions increase children’s vulnerability to anxiety and depression, while psychosocial factors - such as chronic stress, early-life trauma, maladaptive family dynamics, and ineffective coping strategies - intensify the cycle of gastrointestinal and emotional distress.
CONCLUSION Effective management of FGIDs requires a biopsychosocial approach integrating medical, psychological, and dietary interventions. Parental education, early intervention, and multidisciplinary care coordination are critical in mitigating long-term psychological impacts and improving both gastrointestinal and mental health outcomes in children with FGIDs.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Paediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin K Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 26671, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland - Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel S Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Song C, Zhou L, Xiong Y, Zhao L, Guo J, Zhang L, Han Y, Yang H, Xu Y, Zhao W, Shan S, Sun X, Zhang B, Guo J. Five-month real-ambient PM 2.5 exposure impairs learning in Brown Norway rats: Insights from multi omics-based analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118065. [PMID: 40147172 DOI: 10.1016/j.ecoenv.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
PM2.5, recognized as a potential pathogenic factor for nervous system diseases, remains an area with many unknowns, particularly regarding its effects on human health. After five-month real-ambient PM2.5 exposure, we observed no significant pathological damage to the lung, liver, spleen, or kidney tissues. However, PM2.5 exposure led to neuronal degeneration in the hippocampal CA1 region of Brown Norway (BN) rats. The level of IL-6, IL-13, IL-1β, IL-12, IL-4, GRO/KC, MIP-1α, CM-CSF significantly increased in lung lavage fluid (P < 0.05 for all). Notably, we detected a slight impairment in spatial learning ability, as evidenced by the Barnes maze training outcomes. There were no significant changes in the bacterial community in lung lavage fluid (P = 0.621), but the bacterial community in the gut significantly changed (P < 0.001), with more species identified (P < 0.05). The metabolomic analysis revealed 147 and 149 significantly changed metabolites in the pulmonary system and serum, respectively (P < 0.05). PM2.5 exposure caused a decrease in Nervonic acid (NA) in both the lung and serum, which likely contributed to spatial learning impairment (P < 0.01). The correlation between lung metabolites, gut bacterial species, and serum metabolites indicated that PM2.5 exposure likely impaired spatial learning through the lung-gut-brain axis pathway. Lung and serum metabolic disorders and intestinal microbial imbalance occurred in BN rats post-five-month real-ambient PM2.5 exposure. There were two potential ways that PM2.5 exposure caused the decline of spatial learning ability in wild-type BN rats: (1) PM2.5 exposure led to a significant decrease of neuroprotective Nervonic acid in lung and serum metabolites. (2) PM2.5 exposure likely led to reduced spatial learning ability through the lung-gut-brain axis.
Collapse
Affiliation(s)
- Chenchen Song
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Li Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Lianlian Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China; Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China.
| | - Jindan Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Ling Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yunlin Han
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Hu Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yanfeng Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Wenjie Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Shan Shan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiuping Sun
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China.
| | - Jianguo Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
3
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Study on the comorbid mechanisms of sarcopenia and late-life depression. Behav Brain Res 2025; 485:115538. [PMID: 40122287 DOI: 10.1016/j.bbr.2025.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The increasing global aging population has brought greater focus to age-related diseases, particularly muscle-brain comorbidities such as sarcopenia and late-life depression. Sarcopenia, defined by the gradual loss of muscle mass and function, is notably prevalent among older individuals, while late-life depression profoundly affects their mental health and overall well-being. Epidemiological evidence suggests a high co-occurrence of these two conditions, although the precise biological mechanisms linking them remain inadequately understood. This review synthesizes the existing body of literature on sarcopenia and late-life depression, examining their definitions, prevalence, clinical presentations, and available treatments. The goal is to clarify the potential connections between these comorbidities and offer a theoretical framework for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jiale Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Jun Tang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Di Huang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yu Wang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Enyuan Zhou
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
4
|
Wagner CA, Frey-Wagner I, Ortiz A, Unwin R, Liabeuf S, Suzumoto Y, Iervolino A, Stasi A, Di Marzo V, Gesualdo L, Massy ZA. The role of the intestinal microbiome in cognitive decline in patients with kidney disease. Nephrol Dial Transplant 2025; 40:ii4-ii17. [PMID: 40080091 PMCID: PMC11905753 DOI: 10.1093/ndt/gfae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 03/15/2025] Open
Abstract
Cognitive decline is frequently seen in patients with chronic kidney disease (CKD). The causes of cognitive decline in these patients are likely to be multifactorial, including vascular disease, uraemic toxins, blood-brain barrier leakage, and metabolic and endocrine changes. Gut dysbiosis is common in patients with CKD and contributes to the increase in uraemic toxins. However, the gut microbiome modulates local and systemic levels of several metabolites such as short-chain fatty acids or derivatives of tryptophan metabolism, neurotransmitters, endocannabinoid-like mediators, bile acids, hormones such as glucagon-like peptide 1 (GLP1) or cholecystokinin (CCK). These factors can affect gut function, immunity, autonomic nervous system activity and various aspects of brain function. Key areas include blood-brain barrier integrity, nerve myelination and survival/proliferation, appetite, metabolism and thermoregulation, mood, anxiety and depression, stress and local inflammation. Alterations in the composition of the gut microbiota and the production of biologically active metabolites in patients with CKD are well documented and are favoured by low-fiber diets, elevated urea levels, sedentary lifestyles, slow stool transit times and polypharmacy. In turn, dysbiosis can modulate brain function and cognitive processes, as discussed in this review. Thus, the gut microbiome may contribute to alterations in cognition in patients with CKD and may be a target for therapeutic interventions using diet, prebiotics and probiotics.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology and Zurich Kidney Center, University of Zurich, Switzerland
| | | | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, RICORS2040, Madrid, Spain
| | - Robert Unwin
- Department of Renal Medicine, University College London, London, UK
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, Amiens, France
- MP3CV Laboratory, Jules Verne University of Picardie, Amiens, France
| | - Yoko Suzumoto
- Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Anna Iervolino
- Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
- University of Campania “L. Vanvitelli”, Naples, Italy
| | - Alessandra Stasi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Québec City, Canada
- Joint International Research Unit for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (JIRU-MicroMeNu) between Université Laval Québec, Canada and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Ziad A Massy
- INSERM Unit 1018, Team 5, CESP, Hôpital Paul Brousse, Paris-Saclay University and Versailles Saint-Quentin-en-Yvelines University (UVSQ), Villejuif, France
- Association pour l'Utilisation du Rein Artificiel dans la région parisienne (AURA) Paris, France and Ambroise Paré University Hospital, APHP, Department of Nephrology Boulogne-Billancourt, Paris, France
| |
Collapse
|
5
|
Zhou M, Niu B, Ma J, Ge Y, Han Y, Wu W, Yue C. Intervention and research progress of gut microbiota-immune-nervous system in autism spectrum disorders among students. Front Microbiol 2025; 16:1535455. [PMID: 40143866 PMCID: PMC11936958 DOI: 10.3389/fmicb.2025.1535455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social interaction and communication, repetitive and stereotyped behaviors, restricted interests, and sensory abnormalities. Its etiology is influenced by both genetic and environmental factors, with no definitive cause identified and no specific pharmacological treatments available, posing a significant burden on patients' families and society. In recent years, research has discovered that gut microbiota dysbiosis plays a crucial role in the pathogenesis of ASD. The gut microbiota can influence brain function and behavior through the gut-brain axis via the nervous system, immune system, and metabolic pathways. On the one hand, specific gut microbes such as Clostridium and Prevotella species are found to be abnormal in ASD patients, and their metabolic products, like short-chain fatty acids, serotonin, and GABA, are also involved in the pathological process of ASD. On the other hand, ASD patients exhibit immune system dysfunction, with gut immune cells and related cytokines affecting neural activities in the brain. Currently, intervention methods targeting the gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation, have shown some potential in improving ASD symptoms. However, more studies are needed to explore their long-term effects and optimal treatment protocols. This paper reviews the mechanisms and interrelationships among gut microbiota, immune system, and nervous system in ASD and discusses the challenges and future directions of existing research, aiming to provide new insights for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Baoming Niu
- School of Petroleum Engineering and Environmental Science, Yan’an University, Yan’an, China
| | - Jiarui Ma
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Yukang Ge
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Yanxin Han
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Wenrui Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
6
|
Xu M, Zhou EY, Shi H. Tryptophan and Its Metabolite Serotonin Impact Metabolic and Mental Disorders via the Brain-Gut-Microbiome Axis: A Focus on Sex Differences. Cells 2025; 14:384. [PMID: 40072112 PMCID: PMC11899299 DOI: 10.3390/cells14050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior. Emerging evidence suggests that the gut microbiome regulates brain function and behavior, particularly through microbial influences on tryptophan metabolism and the serotonergic system, both of which are essential for normal functioning. Additionally, sex differences exist in multiple aspects of serotonin-mediated modulation within the brain-gut-microbiome axis, affecting feeding and affective behaviors. This review summarizes the current knowledge from human and animal studies on the influence of tryptophan and its metabolite serotonin on metabolic and behavioral regulation involving the brain and gut microbiome, with a focus on sex differences and the role of sex hormones. We speculate that gut-derived tryptophan and serotonin play essential roles in the pathophysiology that modifies neural circuits, potentially contributing to eating and affective disorders. We propose the gut microbiome as an appealing therapeutic target for metabolic and affective disorders, emphasizing the importance of understanding sex differences in metabolic and behavioral regulation influenced by the brain-gut-microbiome axis. The therapeutic targeting of the gut microbiota and its metabolites may offer a viable strategy for treating serotonin-related disorders, such as eating and affective disorders, with potential differences in treatment efficacy between men and women. This review would promote research on sex differences in metabolic and behavioral regulation impacted by the brain-gut-microbiome axis.
Collapse
Affiliation(s)
- Mengyang Xu
- Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA
| | - Ethan Y. Zhou
- Institute for the Environment and Sustainability, Miami University, Oxford, OH 45056, USA
| | - Haifei Shi
- Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
7
|
Wang M, Liu Y, Zhong L, Wu F, Wang J. Advancements in the investigation of gut microbiota-based strategies for stroke prevention and treatment. Front Immunol 2025; 16:1533343. [PMID: 40103814 PMCID: PMC11914130 DOI: 10.3389/fimmu.2025.1533343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Stroke represents a predominant cause of mortality and disability on a global scale, impacting millions annually and exerting a considerable strain on healthcare systems. The incidence of stroke exhibits regional variability, with ischemic stroke accounting for the majority of occurrences. Post-stroke complications, such as cognitive impairment, motor dysfunction, and recurrent stroke, profoundly affect patients' quality of life. Recent advancements have elucidated the microbiota-gut-brain axis (MGBA), underscoring the complex interplay between gut health and brain function. Dysbiosis, characterized by an imbalance in gut microbiota, is significantly linked to an elevated risk of stroke and unfavorable outcomes. The MGBA plays a crucial role in modulating immune function, neurotransmitter levels, and metabolic byproducts, which may intensify neuroinflammation and impair cerebral health. This review elucidates the role of MGBA in stroke pathophysiology and explores potential gut-targeted therapeutic strategies to reduce stroke risk and promote recovery, including probiotics, prebiotics, pharmacological interventions, and dietary modifications. However, the current prevention and treatment strategies based on intestinal flora still face many problems, such as the large difference of individual intestinal flora, the stability of efficacy, and the long-term safety need to be considered. Further research needs to be strengthened to promote its better application in clinical practice.
Collapse
Affiliation(s)
- Min Wang
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yan Liu
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Li Zhong
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Fang Wu
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Jinjin Wang
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhang Z, Zhang Y, Peng H, Yu Q, Kang X, Liu Y, Zheng Y, Cheng F, Wang X, Li F. Decoding TGR5: A comprehensive review of its impact on cerebral diseases. Pharmacol Res 2025; 213:107671. [PMID: 39988005 DOI: 10.1016/j.phrs.2025.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Currently, unraveling the enigmatic realm of drug targets for cerebral disorders poses a formidable challenge. Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1, is a specific bile acid receptor. Widely distributed across various tissues, TGR5 orchestrates a myriad of biological functions encompassing inflammation, energy metabolism, fatty acid metabolism, immune responses, cellular proliferation, apoptosis, and beyond. Alongside its well-documented implications in liver diseases, obesity, type 2 diabetes, tumors, and cardiovascular diseases, a growing body of evidence accentuates the pivotal role of TGR5 in cerebral diseases. Thus, this comprehensive review aimed to scrutinize the current insights into the pathological mechanisms involving TGR5 in cerebral diseases, while contemplating its potential as a promising therapeutic target for cerebral diseases.
Collapse
Affiliation(s)
- Zehan Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yifei Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Hongye Peng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Qingqian Yu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xiangdong Kang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Ying Liu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Feng Li
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| |
Collapse
|
9
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
10
|
Gawey BJ, Mars RA, Kashyap PC. The role of the gut microbiome in disorders of gut-brain interaction. FEBS J 2025; 292:1357-1377. [PMID: 38922780 PMCID: PMC11664017 DOI: 10.1111/febs.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Disorders of Gut-Brain Interaction (DGBI) are widely prevalent and commonly encountered in gastroenterology practice. While several peripheral and central mechanisms have been implicated in the pathogenesis of DGBI, a recent body of work suggests an important role for the gut microbiome. In this review, we highlight how gut microbiota and their metabolites affect physiologic changes underlying symptoms in DGBI, with a particular focus on their mechanistic influence on GI transit, visceral sensitivity, intestinal barrier function and secretion, and CNS processing. This review emphasizes the complexity of local and distant effects of microbial metabolites on physiological function, influenced by factors such as metabolite concentration, duration of metabolite exposure, receptor location, host genetics, and underlying disease state. Large-scale in vitro work has elucidated interactions between host receptors and the microbial metabolome but there is a need for future research to integrate such preclinical findings with clinical studies. The development of novel, targeted therapeutic strategies for DGBI hinges on a deeper understanding of these metabolite-host interactions, offering exciting possibilities for the future of treatment of DGBI.
Collapse
Affiliation(s)
- Brent J Gawey
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben A Mars
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Greene KA, Gelfand AA, Larry Charleston. Evidence-based review and frontiers of migraine therapy. Neurogastroenterol Motil 2025; 37:e14899. [PMID: 39133210 PMCID: PMC11911302 DOI: 10.1111/nmo.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Cyclic vomiting syndrome (CVS) is identified as one of the "episodic syndromes that may be associated with migraine," along with benign paroxysmal torticollis, benign paroxysmal vertigo, and abdominal migraine. It has been proposed that CVS and migraine may share pathophysiologic mechanisms of hypothalamic activation and altered dopaminergic signaling, and impaired sensorimotor intrinsic connectivity. The past decade has brought groundbreaking advances in the treatment of migraine and other headache disorders. While many of these therapies have yet to be studied in episodic syndromes associated with migraine including CVS and abdominal migraine, the potential shared pathophysiology among these conditions suggests that use of migraine-specific treatments may have a beneficial role even in those for whom headache is not the primary symptom. PURPOSE This manuscript highlights newer therapies in migraine. Calcitonin gene-related peptide (CGRP) and its relation to migraine pathophysiology and the therapies that target the CGRP pathway, as well as a 5HT1F receptor agonist and neuromodulation devices used to treat migraine are briefly discussed as they may potentially prove to be useful in the future treatment of CVS.
Collapse
Affiliation(s)
- Kaitlin A Greene
- Division of Pediatric Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Amy A Gelfand
- Child and Adolescent Headache Program, University of California, San Francisco, California, USA
| | - Larry Charleston
- Department of Neurology and Ophthalmology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| |
Collapse
|
12
|
Yu RL, Weber HC. Irritable bowel syndrome, the gut microbiome, and diet. Curr Opin Endocrinol Diabetes Obes 2025:01266029-990000000-00121. [PMID: 39968682 DOI: 10.1097/med.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW To provide an update of recent studies exploring the role of the gut microbiota and diet in the pathogenesis and treatment of irritable bowel syndrome (IBS). RECENT FINDINGS The human gut microbiome has been recognized as an important, active source of signaling molecules that explain in part the disorder of the gut brain interaction (DGBI) in IBS. Subsequent changes in the metabolome such as the production of short-chain fatty acids (SCFA) and serotonin are associated with IBS symptoms. Dietary components are recognized as important triggers of IBS symptoms and a diet low in fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) has been shown effective and safe, even when used long-term. Fecal microbiota transplantation (FMT) in IBS has not shown sustained and effective IBS symptom reduction in controlled clinical trials. SUMMARY This update elucidates recent developments in IBS as it relates to clinical trial results targeting dietary and gut microbiota interventions. The gut microbiome is metabolically active and affects the bi-directional signaling of the gut-brain axis.
Collapse
Affiliation(s)
- Rosa Lu Yu
- Boston University Chobanian & Avedisian School of Medicine
| | - H Christian Weber
- Boston University Chobanian & Avedisian School of Medicine
- VA Boston Healthcare System, Section of Gastroenterology and Hepatology, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Orchanian SB, Hsiao EY. The microbiome as a modulator of neurological health across the maternal-offspring interface. J Clin Invest 2025; 135:e184314. [PMID: 39959974 PMCID: PMC11827852 DOI: 10.1172/jci184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The maternal microbiome is emerging as an important factor that influences the neurological health of mothers and their children. Recent studies highlight how microbial communities in the maternal gut can shape early-life development in ways that inform long-term health trajectories. Research on the neurodevelopmental effects of maternal microbiomes is expanding our understanding of the microbiome-gut-brain axis to include signaling across the maternal-offspring unit during the perinatal period. In this Review, we synthesize existing literature on how the maternal microbiome modulates brain function and behavior in both mothers and their developing offspring. We present evidence from human and animal studies showing that the maternal microbiome interacts with environmental factors to impact risk for neurodevelopmental abnormalities. We further discuss molecular and cellular mechanisms that facilitate maternal-offspring crosstalk for neuromodulation. Finally, we consider how advancing understanding of these complex interactions could lead to microbiome-based interventions for promoting maternal and offspring health.
Collapse
Affiliation(s)
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
14
|
Kyei-Baffour VO, Vijaya AK, Burokas A, Daliri EBM. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39907087 DOI: 10.1080/10408398.2025.2459341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.
Collapse
Affiliation(s)
- Vincent Owusu Kyei-Baffour
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Bosáková V, Papatheodorou I, Kafka F, Tomášiková Z, Kolovos P, Hortová Kohoutková M, Frič J. Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue. Exp Mol Med 2025; 57:364-378. [PMID: 39894823 PMCID: PMC11873120 DOI: 10.1038/s12276-025-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
The intestine hosts the largest immune system and peripheral nervous system in the human body. The gut‒brain axis orchestrates communication between the central and enteric nervous systems, playing a pivotal role in regulating overall body function and intestinal homeostasis. Here, using a human three-dimensional in vitro culture model, we investigated the effects of serotonin, a neuromodulator produced in the gut, on immune cell and intestinal tissue interactions. Serotonin attenuated the tumor necrosis factor-induced proinflammatory response, mostly by affecting the expression of chemokines. Serotonin affected the phenotype and distribution of tissue-migrating monocytes, without direct contact with the cells, by remodeling the intestinal tissue. Collectively, our results show that serotonin plays a crucial role in communication among gut-brain axis components and regulates monocyte migration and plasticity, thereby contributing to gut homeostasis and the progression of inflammation. In vivo studies focused on the role of neuromodulators in gut inflammation have shown controversial results, highlighting the importance of human experimental models. Moreover, our results emphasize the importance of human health research in human cell-based models and suggest that the serotonin signaling pathway is a new therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Kafka
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Tomášiková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marcela Hortová Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
16
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
17
|
Yu W, Xiao Y, Jayaraman A, Yen YC, Lee HU, Pettersson S, Je HS. Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors. EMBO Mol Med 2025; 17:249-264. [PMID: 39910348 PMCID: PMC11821874 DOI: 10.1038/s44321-024-00179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 02/07/2025] Open
Abstract
Changes in gut microbiota composition have been linked to anxiety behavior in rodents. However, the underlying neural circuitry linking microbiota and their metabolites to anxiety behavior remains unknown. Using male C57BL/6J germ-free (GF) mice, not exposed to live microbes, increased anxiety-related behavior was observed correlating with a significant increase in the immediate early c-Fos gene in the basolateral amygdala (BLA). This phenomenon coincided with increased intrinsic excitability and spontaneous synaptic activity of BLA pyramidal neurons associated with reduced small conductance calcium-activated potassium (SK) channel currents. Importantly, colonizing GF mice to live microbes or the microbial-derived metabolite indoles reverted SK channel activities in BLA pyramidal neurons and reduced the anxiety behavioral phenotype. These results are consistent with a molecular mechanism by which microbes and or microbial-derived indoles, regulate functional changes in the BLA neurons. Moreover, this microbe metabolite regulation of anxiety links these results to ancient evolutionarily conserved defense mechanisms associated with anxiety-related behaviors in mammals.
Collapse
Affiliation(s)
- Weonjin Yu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yixin Xiao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yi-Chun Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hae Ung Lee
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Karolinska Institutet, Department of Dental Medicine, Stockholm, Sweden.
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia.
- Department of Microbiology and Immunology, National University, Singapore, Singapore.
| | - H Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
18
|
Murayama R, Liu G, Zhao MM, Xu D, Zhu TT, Cai Y, Yue Y, Nakamura H, Hashimoto K. Microbiome depletion by broad-spectrum antibiotics does not influence demyelination and remyelination in cuprizone-treated mice. Pharmacol Biochem Behav 2025; 247:173946. [PMID: 39672388 DOI: 10.1016/j.pbb.2024.173946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination. This study aimed to evaluate the impact of microbiome depletion, induced by an antibiotic cocktail (ABX), on demyelination in CPZ-treated mice and the subsequent remyelination following CPZ withdrawal. Our findings indicate that a chronic 4-week oral ABX regimen, administered both during and after a 6-week CPZ exposure, does not affect demyelination or remyelination in the brains of CPZ-treated mice. Specifically, ABX treatment for 2 weeks before and 2 weeks after CPZ exposure, in the final 4 weeks before sacrifice, and for 4 weeks post-CPZ withdrawal, did not significantly alter these processes compared to control mice receiving water instead of ABX. These results indicate that despite effective microbiome depletion, a 4-week oral ABX regimen does not influence demyelination or remyelination in the CPZ model. Thus, it is unlikely that gut microbiota depletion by ABX plays a significant role in these processes. However, further research is needed to fully understand the role of the host microbiome on CPZ-induced demyelination.
Collapse
Affiliation(s)
- Rumi Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Cai
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
19
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
20
|
Grieves LA, Gloor GB. Uropygial gland microbiota of nearctic-neotropical migrants vary with season and migration distance. Anim Microbiome 2025; 7:11. [PMID: 39885562 PMCID: PMC11780944 DOI: 10.1186/s42523-024-00367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Symbiotic microbiota are important drivers of host behaviour, health, and fitness. While most studies focus on humans, model organisms, and domestic or economically important species, research investigating the role of host microbiota in wild populations is rapidly accumulating. Most studies focus on the gut microbiota; however, skin and other glandular microbiota also play an important role in shaping traits that may impact host fitness. The uropygial gland is an important source of chemical cues and harbours diverse microbes that could mediate chemical communication in birds, so determining the factors most important in shaping host microbiota should improve our understanding of microbially-mediated chemical communication. Hypothesizing that temporal, geographic, and taxonomic effects influence host microbiota, we evaluated the effects of season, migration distance, and taxonomy on the uropygial gland microbiota of 18 passerine species from 11 families. By sampling 473 birds at a single stopover location during spring and fall migration and using 16S rRNA sequencing, we demonstrate that season, followed by migration distance, had the strongest influence on uropygial gland microbial community composition. While statistically significant, taxonomic family and species had only weak effects on gland microbiota. Given that temporal effects on gland microbiota were nearly ubiquitous among the species we tested, determining the consequences of and mechanisms driving this seasonal variation are important next steps.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 3L8, Canada.
- Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA.
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5C1, Canada
| |
Collapse
|
21
|
Hwang YK, Oh JS. Interaction of the Vagus Nerve and Serotonin in the Gut-Brain Axis. Int J Mol Sci 2025; 26:1160. [PMID: 39940928 PMCID: PMC11818468 DOI: 10.3390/ijms26031160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The gut-brain axis represents an important bidirectional communication network, with the vagus nerve acting as a central conduit for peripheral signals from the various gut organs to the central nervous system. Among the molecular mediators involved, serotonin (5-HT), synthesized predominantly by enterochromaffin cells in the gut, plays a pivotal role. Gut-derived serotonin activates vagal afferent fibers, transmitting signals to the nucleus tractus solitarius (NTS) and modulating serotonergic neurons in the dorsal raphe nucleus (DRN) as well as the norepinephrinergic neurons in the locus coeruleus (LC). This interaction influences emotional regulation, stress responses, and immune modulation. Emerging evidence also highlights the role of microbial metabolites, particularly short-chain fatty acids (SCFAs), in enhancing serotonin synthesis and vagal activity, thereby shaping gut-brain communication. This review synthesizes the current knowledge on serotonin signaling, vagal nerve pathways, and central autonomic regulation, with an emphasis on their implications for neuropsychiatric and gastrointestinal disorders. By elucidating these pathways, novel therapeutic strategies targeting the gut-brain axis may be developed to improve mental and physical health outcomes.
Collapse
Affiliation(s)
- Young Keun Hwang
- Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jae Sang Oh
- Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
22
|
Iida A, Takahashi E, Kuranuki S, Shimamoto S, Nakamura T, Kitagaki H. Water-Soluble Cellulose Acetate Changes the Intestinal Microbiota in Mice with Non-Alcoholic Steatohepatitis. Nutrients 2025; 17:500. [PMID: 39940357 PMCID: PMC11820315 DOI: 10.3390/nu17030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic disorder of the liver and affects many people worldwide. Intestinal bacteria are thought to be involved in the pathological progression of NAFLD; therefore, improving the intestinal microbiota may be important in controlling NAFLD. In this study, we assessed the effects of water-soluble cellulose acetate (WSCA) on the intestinal microbiota in a non-alcoholic steatohepatitis (NASH) mouse model. Methods: NASH model (STAM mice) was created by streptozotocin injection and feeding the mice a high-fat diet. The serum biochemical parameters were analyzed. Intestinal bacterial populations were analyzed using paired-end sequencing of 16S rRNA, 18S rRNA, and internal transcribed spacer gene. Results: Our findings indicated that WSCA administration tends to improve the serum alanine aminotransferase and glucose levels in STAM mice and decreased the alpha diversity and altered the beta diversity of their intestinal microbiota. Additionally, WSCA intake resulted in an increase in the abundance of Coriobacteriaceae_UCG-002 and a decrease in the abundance of Enterobacter. Conclusions: WSCA intake can alter specific microbial compositions to improve blood glucose levels and liver functions and may improve the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Ayaka Iida
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Ena Takahashi
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Sachi Kuranuki
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Shu Shimamoto
- Daicel Corporation, Konan 2-18-1, Minatoku, Tokyo 108-8230, Japan;
| | - Tsuyoshi Nakamura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan;
| | - Hiroshi Kitagaki
- Faculty of Agriculture, Saga University, Honjo-cho, 1, Saga 840-8502, Japan;
| |
Collapse
|
23
|
Fang X, Wang X, Zheng W, Yin Y, Ge X. Effect of Acupuncture on Anxiety, Depression, and Quality of Life in Patients with Irritable Bowel Syndrome: A Meta-Analysis. Int J Behav Med 2025:10.1007/s12529-025-10348-z. [PMID: 39870963 DOI: 10.1007/s12529-025-10348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) has been effectively treated with acupuncture, but the significance of quality of life, depression, and anxiety in the assessment of IBS patients has received little consideration. This study examined the impact of acupuncture on depression, anxiety, and quality of life in IBS patients. METHOD PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), EMBASE, China Science and Technology Journal Database (VIP), Chinese Biological Medical (CBM, SinoMed) Database, and the Wan Fang Database were among the electronic databases from which relevant randomized controlled trials (RCTs) were systematically retrieved between their inception and July 2023. The outcomes included adverse events, total response rate, anxiety, and symptoms of depression, as well as quality of life. In this study, the heterogeneity, publication bias, standardized mean difference (SMD), and risk ratios (RR) with 95% confidence intervals (CI) were estimated. RESULTS In this study, 29 RCTs including 3114 participants for analysis (treatment group, 1730; control group, 1384) were included. Compared to other therapies, acupuncture significantly improved the quality of life (SMD = 0.61, 95% CI = [0.26, 0.96], P < 0.001) and alleviated anxiety (SMD = - 0.72, 95% CI = [- 1.76, 0.32], P = 0.18) and depression (SMD = - 0.74, 95% CI = [- 1.18, - 0.3], P < 0.001) in IBS patients. A statistically significant improvement was recorded in their quality of life, and they also displayed fewer symptoms of depression. The total response rate (RR = 1.18, 95% CI = [1.12, 1.25], P < 0.001) indicated that acupuncture significantly affected IBS treatment in comparison to other methods. Subgroup analysis of primary outcome indicators revealed that acupuncture demonstrated better results regardless of the duration of intervention and was more effective than Western medicine or sham acupuncture. In addition to the total response rate (I2 = 0%), the other three outcome indicators showed significant heterogeneity (I2 > 50%). No publication bias was noted in RR (P < 0.05); however, a significant publication bias was observed in quality of life (P > 0.05). CONCLUSION Acupuncture can enhance the quality of life and relieve anxiety and depression in patients with IBS with apparent safety; however, a large number of high-quality RCTs are still needed.
Collapse
Affiliation(s)
- Xue Fang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong Province, China
| | - XiaoYan Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, China
| | - WenJun Zheng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong Province, China
| | - XiaoBin Ge
- Qilu Hospital of Shandong University, No. 107 Wen Hua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
24
|
Fernández-Pinteño A, Pilla R, Suchodolski J, Apper E, Torre C, Salas-Mani A, Manteca X. Age-Related Changes in Gut Health and Behavioral Biomarkers in a Beagle Dog Population. Animals (Basel) 2025; 15:234. [PMID: 39858234 PMCID: PMC11758293 DOI: 10.3390/ani15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The gut and the gut microbiome communicate with the nervous system through the gut-brain axis via neuroimmune and neuroendocrine mechanisms. Despite existing research, studies exploring this link in aging dogs are limited. This study aims to examine multiple blood and fecal biomarkers of intestinal health, along with various behavioral indicators based on saliva, blood, observations, and activity, in different age populations (junior: <2 y.o.; adult: 2-7 y.o.; senior: >7 y.o.) of thirty-seven Beagle dogs. In our study, Bacteroides were significantly higher in senior dogs. The relative abundance of Faecalibacterium and Blautia showed age-related trends, higher in senior and junior dogs, respectively. Fecal short-chain fatty acid concentration, especially acetate, increased with age, while propionate was higher in junior dogs. For the behavioral indicators we considered, blood thyroxine concentration, playing, exploring, and total activity were higher in junior dogs. The differences observed between the biomarkers of gut health and behavior, particularly those significant for the age correlations, emphasize the importance of considering age-related factors when studying the gut microbiome and behavior. However, further research is needed to better understand the mechanisms and specific pathways involved in the relationship between the studied biomarkers and age.
Collapse
Affiliation(s)
- Anna Fernández-Pinteño
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.)
| | - Jan Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.)
| | - Emmanuelle Apper
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Celina Torre
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Anna Salas-Mani
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Xavier Manteca
- School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
25
|
Węsierska E, Micek P, Adamski MG, Gondek K, Lis M, Trela M, Wojtysiak D, Kowal J, Wyrobisz-Papiewska A, Kunstman G, Mosiołek S, Smoroń K. Changes in the intestinal microbiota of broiler chicken induced by dietary supplementation of the diatomite-bentonite mixture. BMC Vet Res 2025; 21:13. [PMID: 39799366 PMCID: PMC11724591 DOI: 10.1186/s12917-024-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Diatomite is a source of biologically available silicon but in feed industry its insecticide and anti-caking properties have been also widely recognized. The aim of the study was to evaluate the effect of dietary diatomite-bentonite mixture (DBM) supplementation on the quantitative and qualitative composition of the bacterial microbiome of the broiler chicken gut. The trial was carried out on 960 Ross 308 broiler chickens divided into 2 experimental groups throughout the entire rearing period lasting 6 weeks. The birds were fed complete granulated diets without (group C) or with DBM (group E) in an amount of 1% from the 11 day of life. Two nutritionally balanced diets were used, tailored to the age of the broilers: a grower diet (from day 11 to 34) and a finisher diet (from day 35 to 42 of life). RESULTS Diatomite used in a mixture with bentonite significantly altered the microbiome. Restricting the description to species that comprise a minimum of 1% of all analyzed sequences, 36 species in group E (with diatomite) and 30 species in group C (without diatomite) were selected. Several bacteria species were identified in intestinal contents of chickens for the first time. Thirteen species occurred only in group E: Agathobaculum butyriciproducens, Anaerobutyricum hallii, Anaerobutyricum soehngenii, Blautia producta ATCC 27,340 = DSM 2950, Gordonibacter pamelaeae 7-10-1-b, Helicobacter pullorum NCTC 12,824, Lactobacillus crispatus, L. helveticus DSM 20,075 = CGMCC 1.1877, Mucispirillum schaedleri, Phascolarctobacterium faecium, Phocaeicola coprocola DSM 17,136, P. massiliensis, and Ruthenibacterium lactatiformans. CONCLUSIONS The findings highlight the intricate and potentially consequential relationship between diet, specifically diatomite-bentonite mixture supplementation, and gut microbiota composition.
Collapse
Affiliation(s)
- E Węsierska
- Department of Infectious Diseases and Public Health, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland.
| | - P Micek
- Department of Nutrition, Animal Biotechnology, and Fisheries, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - M G Adamski
- SPARK-TECH, Sp. z o.o., Rynek Główny 28, Krakow, 31-010, Poland
| | - K Gondek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland
| | - M Lis
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - M Trela
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - D Wojtysiak
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - J Kowal
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - A Wyrobisz-Papiewska
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - G Kunstman
- SPARK-TECH, Sp. z o.o., Rynek Główny 28, Krakow, 31-010, Poland
| | - S Mosiołek
- SPARK-TECH, Sp. z o.o., Rynek Główny 28, Krakow, 31-010, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
| | - K Smoroń
- Specialized Mining Company "Górtech" Sp. z o.o, ul. Wielicka 50, Krakow, 30-552, Poland
| |
Collapse
|
26
|
Wijekoon N, Gonawala L, Ratnayake P, Sirisena D, Gunasekara H, Dissanayake A, Amaratunga D, Steinbusch HWM, Hathout Y, Hoffman EP, Dalal A, Mohan C, de Silva KRD. Serum metabolomic signatures of patients with rare neurogenetic diseases: an insight into potential biomarkers and treatment targets. Front Mol Neurosci 2025; 17:1482999. [PMID: 39866907 PMCID: PMC11759312 DOI: 10.3389/fnmol.2024.1482999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction To further advance our understanding of Muscular Dystrophies (MDs) and Spinocerebellar Ataxias (SCAs), it is necessary to identify the biological patterns associated with disease pathology. Although progress has been made in the fields of genetics and transcriptomics, there is a need for proteomics and metabolomics studies. The present study aimed to be the first to document serum metabolic signatures of MDs (DMD, BMD, and LGMD 2A) SCAs (SCA 1-3), from a South Asian perspective. Methods A total of 28 patients (SCA 1-10, SCA 2-2, SCA 3-2, DMD-10, BMD-2, LGMD-2) and eight controls (aged 8-65 years) were included. Metabolomic analysis was performed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS), with support from the Houston Omics Collaborative. Results and discussion Amino acid metabolism was the primary altered super pathway in DMD followed by carbohydrate metabolism and lipid metabolism. In contrast, BMD and LGMD 2A exhibited a more prominent alteration in lipid metabolism followed by amino acid metabolism. In SCAs, primarily lipid, amino acid, peptide, nucleotide, and xenobiotics pathways are affected. Our findings offer new insights into the variance of metabolite levels in MD and SCA, with substantial implications for pathology, drug development, therapeutic targets and clinical management. Intriguingly, this study identified two novel metabolites associated with SCA. This pilot cross-sectional study warrants further research involving larger groups of participants, to validate our findings.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | | | | | | | | | - Harry W. M. Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, United States
| | - Eric P. Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, United States
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX, United States
| | - K. Ranil D. de Silva
- Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
27
|
Valitutti F, Mennini M, Monacelli G, Fagiolari G, Piccirillo M, Di Nardo G, Di Cara G. Intestinal permeability, food antigens and the microbiome: a multifaceted perspective. FRONTIERS IN ALLERGY 2025; 5:1505834. [PMID: 39850945 PMCID: PMC11754301 DOI: 10.3389/falgy.2024.1505834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases. Several gaps of knowledge still exist as regards this multi-level interaction. In this review we aim to summarize current evidence linking food antigens, microbiota and gut permeability interference in diverse disease conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS), food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS). Specific food elimination diets are recommended for CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these conditions is very different and quite unique, albeit food antigens/compounds, intestinal permeability and specific microbiota signatures orchestrate immune response and decide clinical outcomes for all of them.
Collapse
Affiliation(s)
- Francesco Valitutti
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maurizio Mennini
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Gianluca Monacelli
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Giulia Fagiolari
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Marisa Piccirillo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Kuziak A, Heczko P, Pietrzyk A, Strus M. Iron Homeostasis Dysregulation, Oro-Gastrointestinal Microbial Inflammatory Factors, and Alzheimer's Disease: A Narrative Review. Microorganisms 2025; 13:122. [PMID: 39858890 PMCID: PMC11767265 DOI: 10.3390/microorganisms13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage. Additionally, inflammatory agents produced by pathogenic bacteria may enter the body via two primary pathways: directly through the gut or indirectly via the oral cavity, entering the bloodstream and reaching the brain. This infiltration disrupts cellular homeostasis, induces neuroinflammation, and exacerbates AD-related pathology. Addressing these mechanisms through personalized treatment strategies that target the underlying causes of AD could play a critical role in preventing its onset and progression.
Collapse
Affiliation(s)
- Agata Kuziak
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 Street, 31-008 Cracow, Poland;
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Piotr Heczko
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| |
Collapse
|
29
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025:10.1038/s41579-024-01136-9. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Fatoba A, Simpson C. Assessing the causal association between celiac disease and autism spectrum disorder: A two-sample Mendelian randomization approach. Autism Res 2025; 18:195-201. [PMID: 39587862 PMCID: PMC11849517 DOI: 10.1002/aur.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024]
Abstract
The association between celiac disease (CD) and autism spectrum disorder (ASD) remains inconclusive. Reports from different observational studies have become controversial, necessitating exploration of the causal relationship between CD and ASD. To assess true causality, this study used a two-sample Mendelian randomization (MR) analysis to determine the causal association between CD and ASD. Summary-level data from a genome-wide association study (GWAS) of the European population were used to select instrument variables (IVs) at genome-wide significance (p < 5 × 10-8). The strength of IVs was also evaluated with F-statistics. The inverse variance weighted method (IVW) was the primary MR analysis, supported by other MR tests such as the weighted median method and weighted mode. The presence of horizontal pleiotropy was tested with MR-Egger and MR-PRESSO while other sensitivity analyses such as heterogeneity, leave-one-out analysis, and scatterplot were used to assess the validity of our MR results. Our study did not show an association between CD and ASD (OR, 0.994; 95% CI, 0.935-1.057; p = 0.859). There was also no evidence of horizontal pleiotropy (MR-Egger intercept = 0.015; p-value = 0.223) and heterogeneity (Q = 14.029; p-value = 0.051). These results were also complemented by the leave-one-out analyses, forest plot, and scatter plot, which showed that none of the SNPs influenced the result. The result of this study shows that CD is not causally associated with ASD.
Collapse
Affiliation(s)
- Abiodun Fatoba
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Centers, Memphis, Tennessee, USA
| | - Claire Simpson
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Centers, Memphis, Tennessee, USA
| |
Collapse
|
31
|
Iqbal H, Kim Y, Jin M, Rhee DK. Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation. J Ginseng Res 2025; 49:12-21. [PMID: 39872288 PMCID: PMC11764131 DOI: 10.1016/j.jgr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 01/30/2025] Open
Abstract
The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health. Ginseng has shown potential to ameliorate conditions associated with dysbiosis, such as gut and CNS disorders by restoring microbial balance and enhancing gut barrier function. This comprehensive review provides valuable insights into the potential of ginseng as a herbal modulator of GBA as a therapeutic intervention for preventing and treating gut and neurological diseases via microbiota regulation to ultimately enhance overall health. Furthermore, we emphasize the therapeutic benefits of ginseng, its ability to enhance beneficial probiotics, such as Firmicutes, Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia while reducing pathogenic bacteria prevalence, such as Helicobacter, Clostridium, and Proteobacteria. Although the connection between ginseng regulation of microbial communities in response to the gut and neuropsychiatric disorders is lacking, additional investigations are warranted to elucidate the underlying mechanisms, optimize dosages, and explore the clinical relevance of ginseng in promoting GBA balance and ultimately overall health.
Collapse
Affiliation(s)
- Hamid Iqbal
- Department of Pharmacy, CECOS University, Hayatabad, Peshawar, Pakistan
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yihyo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Sun Y, Zhou D, Liu A, Zhou Y, Zhao Y, Yuan Y, Guo W, Li J. Liangxue Tongyu Prescription exerts neuroprotection by regulating the microbiota-gut-brain axis of rats with acute intracerebral hemorrhage. Brain Res Bull 2025; 220:111186. [PMID: 39746523 DOI: 10.1016/j.brainresbull.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Liangxue Tongyu Prescription (LTP) is a classic herbal formula for treating acute intracerebral hemorrhage (AICH) in China. Previous studies have shown that LTP significantly ameliorates neurological impairments and gastrointestinal dysfunction in patients with AICH. However, the underlying molecular mechanism remains unclear. The aim of this study is to investigate whether LTP exerts its neuroprotective effect on AICH rats through the microbiota-gut-brain axis and explore its potential underlying mechanism. In the current study, AICH models were established by injecting autologous whole blood into the right caudate nucleus of rats. Behavioural and pathological evaluations demonstrated that LTP ameliorated neuronal and intestinal damage in AICH rats. Analysis via western blot, quantitative real-time PCR, immunohistochemistry (IHC) and tunel staining indicated that LTP upregulated the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor(NGF) and reduced neuronal cell apoptosis. Additionally, 16S rDNA sequencing revealed that LTP mitigated dysbiosis of intestinal microbiota in AICH rats. LTP increased the levels of noradrenaline (NA), dopamine (DA), glutamate (GLU) and modulated brain-gut peptides such as gastrin (GAS), motilin (MTL), ghrelin in AICH rats. Furthermore, LTP enhanced vagus nerve discharge. In summary, this research provides evidence suggesting that LTP's influence on AICH may involve modulation of the microbiota-gut-brain axis, offering a potential scientific rationale for its therapeutic efficacy in improving outcomes of AICH.
Collapse
Affiliation(s)
- Yingying Sun
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Zhou
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Anlan Liu
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Zhou
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Zhao
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Yuan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Weifeng Guo
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jianxiang Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China.
| |
Collapse
|
33
|
Maridaki Z, Syrros G, Gianna Delichatsiou S, Warsh J, Konstantinou GN. Claudin-5 and occludin levels in patients with psychiatric disorders - A systematic review. Brain Behav Immun 2025; 123:865-875. [PMID: 39500414 DOI: 10.1016/j.bbi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Recent research has underscored the critical role of blood-brain barrier (BBB) integrity in psychiatric disorders, highlighting disruptions in tight junction (TJ) proteins, specifically claudin-5 and occludin. These proteins are pivotal in maintaining the BBB's selective permeability, which is essential forbrain homeostasis. Altered levels of the TJ proteins have been observed in various psychiatric conditions, suggesting potential as biomarkers for the pathophysiology of these disorders. This systematic review synthesizes existing research on the alterations of claudin-5 and occludin levels in the serum of individuals with psychiatric disorders, evaluating their correlation with BBB dysfunction and psychiatric pathophysiology. METHODS In adherence to the PRISMA guidelines, a comprehensive search strategy was employed, utilizing databases such as PubMed, Google Scholar, Web of Science, and Scopus. The review encompassed studies published between 2000 and 2024 that measured serum claudin-5 and occludin levels of psychiatric patients. Thorough data extraction and synthesis were conducted. RESULTS Seventeen studies met the inclusion criteria. Key findings include indications for increased claudin-5 levels in Schizophrenia, Bipolar Disorder, Depression, and Specific learning disorder, and increased occludin levels in ADHD and Autism Spectrum Disorder patients. No significant differences were found in studies of patients with Alcohol Use and Insomnia Disorder. CONCLUSIONS The review underscores the potential association between altered serum levels of claudin-5 and occludin and psychiatric disorders, supporting their utility as biomarkers for BBB integrity and psychiatric pathophysiology. Further research is essential to elucidate the mechanisms linking TJ protein alterations with pathophysiology and, potentially, neuroprogression in psychiatric disorders, which could lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zinovia Maridaki
- 1(st) Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Syrros
- 2(nd) Department of Psychiatry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | | | - Jerry Warsh
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Poul Hansen Family Centre for Depression, Centre of Mental Health, University Health Network, Toronto, Canada.
| |
Collapse
|
34
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
35
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2025; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
36
|
Singh A, Negi PS. Appraising the role of biotics and fermented foods in gut microbiota modulation and sleep regulation. J Food Sci 2025; 90:e17634. [PMID: 39750017 DOI: 10.1111/1750-3841.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality. Drawing from animal and human studies, we discuss neurobiological mechanisms by which biotics may influence sleep, including modulation of neurotransmitters, immune responses, and hormonal regulation. Key microbial metabolites, such as short-chain fatty acids, are highlighted for their role in supporting sleep-related neurochemical processes. Additionally, this review presents dietary strategies and food processing technologies, like fermentation, as innovative approaches for sleep enhancement. Although promising, the available research has limitations, including small sample sizes, variability in biotic strains and dosages, and reliance on subjective sleep assessments. This review underscores the need for standardized protocols, objective assessments such as polysomnography, and personalized biotic interventions. Emerging findings highlight the therapeutic potential of gut microbiota modulation for sleep improvement, though further large-scale human trials are essential to refine strain selection, dosage, and formulation. This interdisciplinary exploration seeks to advance food-based interventions and holistic strategies for managing sleep disorders and improving quality of life.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
37
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
38
|
Dhanawat M, Malik G, Wilson K, Gupta S, Gupta N, Sardana S. The Gut Microbiota-Brain Axis: A New Frontier in Alzheimer's Disease Pathology. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:7-20. [PMID: 38967078 DOI: 10.2174/0118715273302508240613114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the "two-way" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122413, India
| | - Garima Malik
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Kashish Wilson
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Sumeet Gupta
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nidhi Gupta
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
39
|
Liu Q, Liu X, Gao M, Yang B, Luo M, Yang B, Liang G. Investigation of causal associations between cerebral cortical structure and Barrett's esophagus: insights from Mendelian randomization and meta-analysis. J Thorac Dis 2024; 16:8582-8601. [PMID: 39831248 PMCID: PMC11740079 DOI: 10.21037/jtd-24-698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/25/2024] [Indexed: 01/22/2025]
Abstract
Background Barrett's esophagus (BE) is a precancerous condition often associated with esophageal adenocarcinoma, influenced by both genetic and environmental factors. However, there is controversy regarding the causal relationship between cerebral cortical structures and BE, with recent studies suggesting a potential neurobiological component to its multifactorial etiology. This study aims to clarify this relationship by utilizing Mendelian randomization (MR) analysis to investigate the potential causal effects of cortical structure variations on BE risk. Methods Comprehensive MR analyses was utilized to examine the potential causal associations between variations in cerebral cortical structure, specifically cortical thickness (TH) and surface area (SA), and the susceptibility to developing BE. Data were obtained from two genome-wide association study (GWAS) repositories. Instrumental variables were chosen using rigorous criteria, and the analysis was enhanced by employing inverse variance weighting and three additional methods, as well as conducting sensitivity analyses to evaluate the reliability of our results. In the validation stage, we used meta-analysis to combine the effect sizes to obtain robust causal relationships. Results Initial MR findings indicated significant associations between cortical structural features in several specific regions and BE. The meta-analysis confirmed a consistent negative correlation with BE for increased cortical TH in the supramarginal and pars orbitalis regions, and a positive correlation for increased SA in the middle temporal region. Additional initial positive findings did not maintain significance in the meta-analysis, suggesting the need for cautious interpretation and further validation. Conclusions Our study underscores the gastrointestinal-brain axis hypothesis, identifying cortical structure integrity as a potential modifier of BE risk, highlighting the importance of considering neurobiological factors in its pathogenesis. Understanding these associations could have significant clinical implications, particularly in developing targeted interventions to modify BE risk based on neurological pathways.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Xiaofang Liu
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Mengge Gao
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Bo Yang
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Miaoqing Luo
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Biying Yang
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Guojun Liang
- Surgical Department, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Lee MT, Tan X, Le HH, Besler K, Thompson S, Harris-Tryon T, Johnson EL. Gut bacterial sphingolipid production modulates dysregulated skin lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.629238. [PMID: 39803564 PMCID: PMC11722302 DOI: 10.1101/2024.12.29.629238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood. Sphingolipid synthesis by prominent gut microbes has been shown to affect intestinal, hepatic and immune functions with the potential for sphingolipid-producing bacteria to affect skin biology through altering skin sphingolipid levels. To address this question, we used bioorthogonal chemistry to label lipids from the sphingolipid-producing bacteria Bacteroides thetaiotaomicron and trace these lipids to the skin epidermis. Exposing mice to B. thetaiotaomicron strains mutant in the ability to produce sphingolipids resulted in significantly lower transfer of gut microbiome-derived lipids to the skin, while also altering skin biology and altering expression of skin barrier genes. Measurement of skin ceramide levels, a class of sphingolipids involved in skin barrier function, determined that skin sphingolipid levels were altered in the presence of gut sphingolipid-producing bacteria. Together this work demonstrates that gut bacterial lipids can transfer to the skin and provides a compelling avenue for modulating sphingolipid-dominant compartments of the skin using sphingolipid-producing bacteria of the gut microbiome.
Collapse
Affiliation(s)
- Min-Ting Lee
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiaoqing Tan
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Henry H. Le
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kevin Besler
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Sharon Thompson
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth L. Johnson
- Divison of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Piekara J, Piasecka-Kwiatkowska D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants (Basel) 2024; 13:1559. [PMID: 39765887 PMCID: PMC11674025 DOI: 10.3390/antiox13121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e., cancer and neurodegenerative diseases. The review aims to examine the antioxidant role of XN in disease prevention, with an emphasis on the benefits and risks associated with its supplementation. The regulation by XN of the Nrf2/NF-kB/mTOR/AKT (Nuclear factor erythroid 2-related factor 2/Nuclear factor kappa-light-chain-enhancer of activated B cells/Mammalian target of rapamycin/Protein Kinase B) pathways induce a strong antioxidant and anti-inflammatory effect, among others the acceleration of autophagy through increased synthesis of Bcl-2 (B-cell lymphoma 2) proteins, inhibition of the synthesis of VEGF (Vascular-endothelial growth factor) responsible for angiogenesis and phosphorylation of HKII (Hexokinase II). It is the key function of XN to ameliorate inflammation and to promote the healing process in organs. However, existing data also indicate that XN may have adverse effects in certain diseases, such as advanced prostate cancer, where it activates the AMPK (activated protein kinase) pathway responsible for restoring cellular energy balance. This potential risk may explain why XN has not been classified as a therapeutic drug so far and proves that further research is needed to determine the effectiveness of XN against selected disease entities at a given stage of the disease.
Collapse
Affiliation(s)
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland;
| |
Collapse
|
42
|
Escarrat V, Reato D, Blivet G, Touchon J, Rougon G, Bos R, Debarbieux F. Dorsoventral photobiomodulation therapy safely reduces inflammation and sensorimotor deficits in a mouse model of multiple sclerosis. J Neuroinflammation 2024; 21:321. [PMID: 39696356 DOI: 10.1186/s12974-024-03294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Non-invasive photobiomodulation therapy (PBMT), employing specific infrared light wavelengths to stimulate biological tissues, has recently gained attention for its application to treat neurological disorders. Here, we aimed to uncover the cellular targets of PBMT and assess its potential as a therapeutic intervention for multiple sclerosis (MS). METHODS We applied daily dorsoventral PBMT in an experimental autoimmune encephalomyelitis (EAE) mouse model, which recapitulates key features of MS, and revealed a strong positive impact of PBMT on the sensorimotor deficits. To understand the cellular mechanisms underlying these striking effects, we used state-of-the-art tools and methods ranging from two-photon longitudinal imaging of triple fluorescent reporter mice to histological investigations and patch-clamp electrophysiological recordings. RESULTS We found that PBMT induced anti-inflammatory and neuroprotective effects in the dorsal spinal cord. PBMT prevented peripheral immune cell infiltration, glial reactivity, as well as the EAE-induced hyperexcitability of spinal interneurons, both in dorsal and ventral areas, which likely underlies the behavioral effects of the treatment. Thus, aside from confirming the safety of PBMT in healthy mice, our preclinical investigation suggests that PBMT exerts a systemic and beneficial effect on the physiopathology of EAE, primarily resulting in the modulation of the inflammatory processes. CONCLUSION PBMT may therefore represent a new valuable therapeutic option to treat MS symptoms.
Collapse
Affiliation(s)
- Vincent Escarrat
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- REGEnLIFE, Paris, France
| | - Davide Reato
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
- Département BEL, Mines Saint-Etienne, Centre CMP, 13541, Gardanne, France
| | | | | | - Geneviève Rougon
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
| | - Rémi Bos
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France.
| | - Franck Debarbieux
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France.
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
43
|
Devraj K, Kulkarni O, Liebner S. Regulation of the blood-brain barrier function by peripheral cues in health and disease. Metab Brain Dis 2024; 40:61. [PMID: 39671124 PMCID: PMC11645320 DOI: 10.1007/s11011-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
The blood-brain barrier (BBB) is formed by microvascular endothelial cells which are ensembled with pericytes, astrocytes, microglia and neurons in the neurovascular unit (NVU) that is crucial for neuronal function. Given that the NVU and the BBB are highly dynamic and regulated structures, their integrity is continuously challenged by intrinsic and extrinsic factors. Herein, factors from peripheral organs such as gonadal and adrenal hormones may influence vascular function also in CNS endothelial cells in a sex- and age-dependent manner. The communication between the periphery and the CNS likely takes place in specific areas of the brain among which the circumventricular organs have a central position due to their neurosensory or neurosecretory function, owing to physiologically leaky blood vessels. In acute and chronic pathological conditions like liver, kidney, pulmonary disease, toxins and metabolites are generated that reach the brain via the circulation and may directly or indirectly affect BBB functionality via the activation of the immunes system. For example, chronic kidney disease (CKD) currently affects more than 840 million people worldwide and is likely to increase along with western world comorbidities of the cardio-vascular system in continuously ageing societies. Toxins leading to the uremic syndrome, may further lead to neurological complications such as cognitive impairment and uremic encephalopathy. Here we summarize the effects of hormones, toxins and inflammatory reactions on the brain vasculature, highlighting the urgent demand for mechanistically exploring the communication between the periphery and the CNS, focusing on the BBB as a last line of defense for brain protection.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India.
| | - Onkar Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
44
|
Liu C, Zhou S, Li Y, Yin X, Li P. Metabolomic disorders caused by an imbalance in the gut microbiota are associated with central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1481364. [PMID: 39687078 PMCID: PMC11646730 DOI: 10.3389/fendo.2024.1481364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background Central precocious puberty (CPP) is characterized by the premature activation of the hypothalamic-pituitary-gonadal axis, resulting in early onset of sexual development. The incidence of CPP has been rising in recent years, with approximately 90% of cases lacking a clearly identifiable etiology. While an association between precocious puberty and gut microbiota has been observed, the precise causal pathways and underlying mechanisms remain poorly understood. The study aims to investigate the potential mechanisms through which gut microbiota imbalances may contribute to CPP. Methods In this study, clinical information and fecal samples were collected from 50 CPP patients and 50 healthy control subjects. The fecal samples were analyzed by 16S rDNA sequencing and UPLC-MS/MS metabolic analysis. Spearman correlation analysis was used to identify the relationships between gut microbiota and metabolites. Results The gut microbiota composition in CPP patients was significantly different from that in healthy controls, characterized by an increased abundance of Faecalibacterium and a decreased abundance of Anaerotruncus. Additionally, significant differences were observed in metabolite composition between the CPP and control groups. A total of 51 differentially expressed metabolites were identified, with 32 showing significant upregulation and 19 showing significant downregulation in the CPP group. Furthermore, Spearman correlation analysis indicated that gut microbiota dysbiosis may contribute to altered metabolic patterns in CPP, given its involvement in the regulation of several metabolic pathways, including phenylalanine and tyrosine biosynthesis and metabolism, the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and tryptophan metabolism. Conclusions The study revealed the gut microbial and metabolite characteristics of CPP patients by integrating microbiome and metabolomics analyses. Moreover, several key metabolic pathways involved in the onset and progression of CPP were identified, which were regulated by gut microbiota. These findings broaden the current understanding of the complex interactions between gut microbial metabolites and CPP, and provide new insights into the pathogenesis and clinical management of CPP.
Collapse
Affiliation(s)
| | | | | | | | - Pin Li
- Department of Endocrinology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Pacheco AP, Cedernaes J, Benedict C. Insomnia, OSA, and Mood Disorders: The Gut Connection. Curr Psychiatry Rep 2024; 26:703-711. [PMID: 39400694 PMCID: PMC11706850 DOI: 10.1007/s11920-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW With the growing body of research examining the link between sleep disorders, including insomnia and obstructive sleep apnea (OSA), and the gut microbiome, this review seeks to offer a thorough overview of the most significant findings in this emerging field. RECENT FINDINGS Current evidence suggests a complex association between imbalances in the gut microbiome, insomnia, and OSA, with potential reciprocal interactions that may influence each other. Notably, specific gut microbiome species, whether over- or under-abundant, have been associated with variation in both sleep and mood in patients diagnosed with, e.g., major depressive disorder or bipolar disorder. Further studies are needed to explore the potential of targeting the gut microbiome as a therapeutic approach for insomnia and its possible effects on mood. The variability in current scientific literature highlights the importance of establishing standardized research methodologies.
Collapse
Affiliation(s)
- André P Pacheco
- Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, Oslo, 0372, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden.
| |
Collapse
|
46
|
Shi F, Peng J, Li H, Liu D, Han L, Wang Y, Liu Q, Liu Q. Probiotics as a targeted intervention in anti-ageing: a review. Biomarkers 2024; 29:577-585. [PMID: 39484861 DOI: 10.1080/1354750x.2024.2424388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT The age-induced disruption of gut flora, termed gut dysbiosis, is intimately tied to compromised immune function, augmented oxidative stress and a spectrum of age-linked disorders. OBJECTIVE This review examines the fundamental mechanisms employed by probiotic strains to modulate gut microbiota composition and metabolic profiles, mitigate cognitive decline via the gut-brain axis (GBA), modulate gene transcription and alleviate inflammatory responses and oxidative stress. CONCLUSION We elucidate the capacity of probiotics as a precision intervention to restore gut microbiome homeostasis and alleviate age-related conditions, thereby offering a theoretical framework for probiotics to decelerate ageing, manage age-related diseases, and elevate quality of life.
Collapse
Affiliation(s)
- Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Jingwen Peng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Haojin Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Denghai Liu
- Yuncheng County People's Hospital, Heze City, Shandong, China
| | - Li Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| |
Collapse
|
47
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
48
|
Raghani N, Postwala H, Shah Y, Chorawala M, Parekh P. From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke. Probiotics Antimicrob Proteins 2024; 16:2039-2053. [PMID: 38831225 DOI: 10.1007/s12602-024-10295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a neurological disorder, is intricately linked to the gut microbiota, influencing microbial composition and elevating the risk of ischemic stroke. The neuroprotective impact of short-chain fatty acids (SCFAs) derived from dietary fiber fermentation contrasts with the neuroinflammatory effects of lipopolysaccharide (LPS) from gut bacteria. The pivotal role of the gut-brain axis, facilitating bidirectional communication between the gut and the brain, is crucial in maintaining gastrointestinal equilibrium and influencing cognitive functions. An in-depth understanding of the interplay among the gut microbiota, immune system, and neurological outcomes in stroke is imperative for devising innovative preventive and therapeutic approaches. Strategies such as dietary adjustments, probiotics, prebiotics, antibiotics, or fecal transplantation offer promise in modulating stroke outcomes. Nevertheless, comprehensive research is essential to unravel the precise mechanisms governing the gut microbiota's involvement in stroke and to establish effective therapeutic interventions. The initiation of large-scale clinical trials is warranted to assess the safety and efficacy of interventions targeting the gut microbiota in stroke management. Tailored strategies that reinstate eubiosis and foster a healthy gut microbiota hold potential for both stroke prevention and treatment. This review underscores the gut microbiota as a promising therapeutic target in stroke and underscores the need for continued research to delineate its precise role and develop microbiome-based interventions effectively.
Collapse
Affiliation(s)
- Neha Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
49
|
Catassi G, Mateo SG, Occhionero AS, Esposito C, Giorgio V, Aloi M, Gasbarrini A, Cammarota G, Ianiro G. The importance of gut microbiome in the perinatal period. Eur J Pediatr 2024; 183:5085-5101. [PMID: 39358615 PMCID: PMC11527957 DOI: 10.1007/s00431-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant contact significantly shape microbial colonization, influencing the infant's immune system, metabolism, and neurodevelopment. By summarizing two decades of research, this review highlights the microbiome's role in disease predisposition and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence microbiome development. CONCLUSION The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly impacting long-term health outcomes. WHAT IS KNOWN • The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health. • The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants. WHAT IS NEW • Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period. • Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Sandra Garcia Mateo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009, Zaragossa, Spain
| | - Annamaria Sara Occhionero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Esposito
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
50
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|