1
|
Zhou Z, Su J, van Os BW, Plug LG, de Jonge-Muller ESM, Brands L, Janson SGT, van de Beek LM, van der Meulen-de Jong AE, Hawinkels LJAC, Barnhoorn MC. Stromal Cell Subsets Show Model-Dependent Changes in Experimental Colitis and Affect Epithelial Tissue Repair and Immune Cell Activation. Inflamm Bowel Dis 2025:izae255. [PMID: 40100003 DOI: 10.1093/ibd/izae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND Previous work on inflammatory bowel disease (IBD) revealed changes in the abundance of colonic stromal subsets during intestinal inflammation. However, it is currently unknown whether these stromal cell subset changes are also reflected in different IBD mouse models and how commonly used IBD therapies affect stromal cell subset composition. METHODS Stromal subset markers CD55, C-X-C motif chemokine 12 (CXCL12), podoplanin (PDPN), CD90, and CD73 were analyzed by flow cytometry in 3 mouse models for IBD, namely interleukin (IL)-10 knockout (KO), dextran sulfate sodium-induced, and T-cell transfer model for colitis. Next, the effects of IBD therapies on the stromal subset composition were studied. In vitro experiments were performed to study the interaction between stromal cell subsets and epithelial/immune cells. RESULTS The colitis-induced changes in the abundance of stromal cell subsets differed considerably between the 3 colitis mouse models. Interestingly, treatment with IBD medication affected specific stromal subsets in a therapy and model-specific manner. In vitro experiments showed that specific stromal subsets affected epithelial wound healing and/or T-cell activation. CONCLUSIONS The relative abundance changes of stromal cell subsets during experimental colitis differ between 3 established colitis models. Treatment with IBD therapies influences stromal subset abundance, indicating their importance in IBD pathogenesis, possibly through affecting epithelial migration, and T-cell activation.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jie Su
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bram W van Os
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Leonie G Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | | | - Stef G T Janson
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Andrea E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
2
|
Das S, Parigi SM, Luo X, Fransson J, Kern BC, Okhovat A, Diaz OE, Sorini C, Czarnewski P, Webb AT, Morales RA, Lebon S, Monasterio G, Castillo F, Tripathi KP, He N, Pelczar P, Schaltenberg N, De la Fuente M, López-Köstner F, Nylén S, Larsen HL, Kuiper R, Antonson P, Hermoso MA, Huber S, Biton M, Scharaw S, Gustafsson JÅ, Katajisto P, Villablanca EJ. Liver X receptor unlinks intestinal regeneration and tumorigenesis. Nature 2025; 637:1198-1206. [PMID: 39567700 PMCID: PMC11779645 DOI: 10.1038/s41586-024-08247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Uncontrolled regeneration leads to neoplastic transformation1-3. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models4,5 and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis. Using single-cell RNA sequencing, intestinal organoids, and gain- and loss-of-function experiments, we demonstrate that LXR activation in intestinal epithelial cells induces amphiregulin (Areg), enhancing regenerative responses. This response is coordinated by the LXR-ligand-producing enzyme CYP27A1, which was upregulated in damaged intestinal crypt niches. Deletion of Cyp27a1 impaired intestinal regeneration, which was rescued by exogenous LXR agonists. Notably, in tumour models, Cyp27a1 deficiency led to increased tumour growth, whereas LXR activation elicited anti-tumour responses dependent on adaptive immunity. Consistently, human colorectal cancer specimens exhibited reduced levels of CYP27A1, LXR target genes, and B and CD8 T cell gene signatures. We therefore identify an epithelial adaptation mechanism to damage, whereby LXR functions as a rheostat, promoting tissue repair while limiting tumorigenesis.
Collapse
Affiliation(s)
- Srustidhar Das
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| | - S Martina Parigi
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Xinxin Luo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Jennifer Fransson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Bianca C Kern
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ali Okhovat
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Oscar E Diaz
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Chiara Sorini
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Paulo Czarnewski
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Anna T Webb
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sacha Lebon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gustavo Monasterio
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Francisca Castillo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ning He
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Penelope Pelczar
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Schaltenberg
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marjorie De la Fuente
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clinica Las Condes, Universidad Finis Terrae, Santiago, Chile
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco López-Köstner
- Centro de Enfermedades Digestivas, Programa Enfermedad Inflamatoria Intestinal, Clínica Universidad de Los Andes, Universidad de Los Andes, Santiago, Chile
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hjalte List Larsen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Raoul Kuiper
- Section for Aquatic Biosecurity Research, Norwegian Veterinary Institute, Ås, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Huber
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Scharaw
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Pekka Katajisto
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Miura A, Kitayama T, Ouchi Y, Saga K, Shimbo T, Tamai K. Evaluation of the digestion protocol of mouse neonatal epidermis for single-cell RNA sequencing. Biochem Biophys Res Commun 2025; 743:151159. [PMID: 39681052 DOI: 10.1016/j.bbrc.2024.151159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
The skin is primarily composed of keratinocytes and forms an effective barrier between the organism and external environment. Neonatal skin analysis is essential for understanding developmental processes and rare skin diseases. However, efficient single-cell dissociation methods for the neonatal mouse epidermis remain underexplored. Here, three enzymes (Trypsin, TrypLE, and Liberase) used for tissue dissociation were compared to optimize single-cell RNA sequencing (scRNA-seq) of the mouse neonatal epidermis. scRNA-seq revealed distinct differences in cell recovery between the enzymes, with Liberase enriching suprabasal keratinocytes and Trypsin/TrypLE favoring basal keratinocytes. Although all enzymes produced comparable data quality, the observed bias in cell population recovery highlights the significant impact of dissociation protocols on the scRNA-seq results. These findings highlight the importance and optimal selection of enzymes for the analysis of unbiased neonatal epidermis.
Collapse
Affiliation(s)
- Asaka Miura
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | - Kotaro Saga
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan.
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc., Ibaraki, Osaka, Japan.
| |
Collapse
|
4
|
Holm M, Stepanauskaitė L, Bäckström A, Birgersson M, Socciarelli F, Archer A, Stadler C, Williams C. Spatial profiling of the mouse colonic immune landscape associated with colitis and sex. Commun Biol 2024; 7:1595. [PMID: 39613949 DOI: 10.1038/s42003-024-07276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Inflammatory intestinal conditions are a major disease burden. Numerous factors shape the distribution of immune cells in the colon, but a spatial characterization of the homeostatic and inflamed colonic immune microenvironment is lacking. Here, we use the COMET platform for multiplex immunofluorescence to profile the infiltration of nine immune cell populations in mice of both sexes (N = 16) with full spatial context, including in regions of squamous metaplasia. Unsupervised clustering, neighborhood analysis, and manual quantification along the proximal-distal axis characterized the colonic immune landscape, quantified cell-cell interactions, and revealed sex differences. The distal colon was the most affected region during colitis, which was pronounced in males, who exhibited a sex-dependent increase of B cells and reduction of M2-like macrophages. Regions of squamous metaplasia exhibited strong infiltration of numerous immune cell populations, especially in males. Females exhibited more helper T cells and neutrophils at homeostasis and increased M2-like macrophage infiltration in the mid-colon upon colitis. Sex differences were corroborated by plasma cytokine profiles. Our results provide a foundation for future studies of inflammatory intestinal conditions.
Collapse
Affiliation(s)
- Matilda Holm
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaitė
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Anna Bäckström
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Madeleine Birgersson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Charlotte Stadler
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
5
|
Duan KL, Wang TX, You JW, Wang HN, Wang ZQ, Huang ZX, Zhang JY, Sun YP, Xiong Y, Guan KL, Ye D, Chen L, Liu R, Yuan HX. PCK2 maintains intestinal homeostasis and prevents colitis by protecting antibody-secreting cells from oxidative stress. Immunology 2024; 173:339-359. [PMID: 38934051 DOI: 10.1111/imm.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.
Collapse
Affiliation(s)
- Kun-Long Duan
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tian-Xiang Wang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian-Wei You
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hai-Ning Wang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhi-Qiang Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zi-Xuan Huang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin-Ye Zhang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yue Xiong
- Cullgen Inc., San Diego, California, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital of Fudan University, Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai-Xin Yuan
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Deka A, Kumar N, Basu S, Chawla M, Bhattacharya N, Ali SA, Bhawna, Madan U, Kumar S, Das B, Sengupta D, Awasthi A, Basak S. Non-canonical NF-κB signaling limits the tolerogenic β-catenin-Raldh2 axis in gut dendritic cells to exacerbate intestinal pathologies. EMBO J 2024; 43:3895-3915. [PMID: 39060515 PMCID: PMC11405688 DOI: 10.1038/s44318-024-00182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) dysfunction is known to exacerbate intestinal pathologies, but the mechanisms compromising DC-mediated immune regulation in this context remain unclear. Here, we show that intestinal dendritic cells from a mouse model of experimental colitis exhibit significant levels of noncanonical NF-κB signaling, which activates the RelB:p52 heterodimer. Genetic inactivation of this pathway in DCs alleviates intestinal pathologies in mice suffering from colitis. Deficiency of RelB:p52 diminishes transcription of Axin1, a critical component of the β-catenin destruction complex, reinforcing β-catenin-dependent expression of Raldh2, which imparts tolerogenic DC attributes by promoting retinoic acid synthesis. DC-specific impairment of noncanonical NF-κB signaling leads to increased colonic numbers of Tregs and IgA+ B cells, which promote luminal IgA production and foster eubiosis. Experimentally introduced β-catenin haploinsufficiency in DCs with deficient noncanonical NF-κB signaling moderates Raldh2 activity, reinstating colitogenic sensitivity in mice. Finally, inflammatory bowel-disease patients also display a deleterious noncanonical NF-κB signaling signature in intestinal DCs. In sum, we establish how noncanonical NF-κB signaling in dendritic cells can subvert retinoic acid synthesis to fuel intestinal inflammation.
Collapse
Affiliation(s)
- Alvina Deka
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swapnava Basu
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namrata Bhattacharya
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Sk Asif Ali
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhawna
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Upasna Madan
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shakti Kumar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Debarka Sengupta
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Ishida K, Osakunor DNM, Rossi M, Lamanna OK, Mbanefo EC, Cody JJ, Le L, Hsieh MH. RNA-seq gene expression profiling of the bladder in a mouse model of urogenital schistosomiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601185. [PMID: 38979184 PMCID: PMC11230422 DOI: 10.1101/2024.06.29.601185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Parasitic flatworms of the Schistosoma genus cause schistosomiasis, which affects over 230 million people. Schistosoma haematobium causes the urogenital form of schistosomiasis (UGS), which can lead to hematuria, fibrosis, and increased risk of secondary infections by bacteria or viruses. UGS is also linked to bladder cancer. To understand the bladder pathology during S. haematobium infection, our group previously developed a mouse model that involves the injection of S. haematobium eggs into the bladder wall. Using this model, we studied changes in epigenetics profile, as well as changes in gene and protein expression in the host bladder tissues. In the current study, we expand upon this work by examining the expression level of both host and parasite genes using RNA sequencing (RNA-seq) in the mouse bladder wall injection model of S. haematobium infection. Methods We used a mouse model of S. haematobium infection in which parasite eggs or vehicle control were injected into the bladder walls of female BALB/c mice. RNA-seq was performed on the RNA isolated from the bladders four days after bladder wall injection. Results/Conclusions RNA-seq analysis of egg- and vehicle control-injected bladders revealed the differential expression of 1025 mouse genes in the egg-injected bladders, including genes associated with cellular infiltration, immune cell chemotaxis, cytokine signaling, and inflammation We also observed the upregulation of immune checkpoint-related genes, which suggests that while the infection causes an inflammatory response, it also dampens the response to avoid excessive inflammation-related damage to the host. Identifying these changes in host signaling and immune responses improves our understanding of the infection and how it may contribute to the development of bladder cancer. Analysis of the differential gene expression of the parasite eggs between bladder-injected versus uninjected eggs revealed 119 S. haematobium genes associated with transcription, intracellular signaling, and metabolism. The analysis of the parasite genes also revealed fewer transcript reads compared to that found in the analysis of mouse genes, highlighting the challenges of studying parasite egg biology in the mouse model of S. haematobium infection.
Collapse
Affiliation(s)
- Kenji Ishida
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Derick N M Osakunor
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Olivia K Lamanna
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Evaristus C Mbanefo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - James J Cody
- Charles River Laboratories, Rockville, Maryland, United States
| | - Loc Le
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael H Hsieh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
- Department of Urology, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
8
|
Kilian C, Ulrich H, Zouboulis VA, Sprezyna P, Schreiber J, Landsberger T, Büttner M, Biton M, Villablanca EJ, Huber S, Adlung L. Longitudinal single-cell data informs deterministic modelling of inflammatory bowel disease. NPJ Syst Biol Appl 2024; 10:69. [PMID: 38914538 PMCID: PMC11196733 DOI: 10.1038/s41540-024-00395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.
Collapse
Affiliation(s)
- Christoph Kilian
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Hanna Ulrich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Viktor A Zouboulis
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Paulina Sprezyna
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Jasmin Schreiber
- Leibniz Institute for the Analysis of Biodiversity Change, D-20146, Hamburg, Germany
| | - Tomer Landsberger
- Department of statistics and data science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maren Büttner
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Lorenz Adlung
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI) and Center for Biomedical AI (bAIome), University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany.
| |
Collapse
|
9
|
Borrelli C, Gurtner A, Arnold IC, Moor AE. Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils. Nat Protoc 2024; 19:1679-1709. [PMID: 38504138 DOI: 10.1038/s41596-024-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Eosinophils are a class of granulocytes with pleiotropic functions in homeostasis and various human diseases. Nevertheless, they are absent from conventional single-cell RNA sequencing atlases owing to technical difficulties preventing their transcriptomic interrogation. Consequently, eosinophil heterogeneity and the gene regulatory networks underpinning their diverse functions remain poorly understood. We have developed a stress-free protocol for single-cell RNA capture from murine tissue-resident eosinophils, which revealed distinct intestinal subsets and their roles in colitis. Here we describe in detail how to enrich eosinophils from multiple tissues of residence and how to capture high-quality single-cell transcriptomes by preventing transcript degradation. By combining magnetic eosinophil enrichment with microwell-based single-cell RNA capture (BD Rhapsody), our approach minimizes shear stress and processing time. Moreover, we report how to perform genome-wide CRISPR pooled genetic screening in ex vivo-conditioned bone marrow-derived eosinophils to functionally probe pathways required for their differentiation and intestinal maturation. These protocols can be performed by any researcher with basic skills in molecular biology and flow cytometry, and can be adapted to investigate other granulocytes, such as neutrophils and mast cells, thereby offering potential insights into their roles in both homeostasis and disease pathogenesis. Single-cell transcriptomics of eosinophils can be performed in 2-3 d, while functional genomics assays may require up to 1 month.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
10
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
11
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Mertens RT, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 2024; 187:2010-2028.e30. [PMID: 38569542 PMCID: PMC11017707 DOI: 10.1016/j.cell.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalind J Xu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Tooley
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030, USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Sanmarco
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Francisco J Quintana
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
13
|
Jamil K, Sherchand SP, Adhikari RP, Coosemans A. Editorial: Challenges associated with identifying preclinical animal models for the development of immune-based therapies. Front Immunol 2024; 15:1404085. [PMID: 38605971 PMCID: PMC11007156 DOI: 10.3389/fimmu.2024.1404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Affiliation(s)
- Kainat Jamil
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | | | - Rajan P. Adhikari
- Bacteriological Immunotherapy, AbVacc Inc., Rockville, MD, United States
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Abud HE, Amarasinghe SL, Micati D, Jardé T. Stromal Niche Signals That Orchestrate Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2024; 17:679-685. [PMID: 38342301 PMCID: PMC10957453 DOI: 10.1016/j.jcmgh.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Stromal cell populations have a central role in providing signals that support the maintenance, differentiation, and function of the intestinal epithelium. The behavior and fate of epithelial cells is directed by the spatial organization of stromal cells that either sustain stem and progenitor cell identity or drive differentiation. A combination of single-cell analyses, mouse models, and organoid coculture assays have provided insight into the diversity of signals delivered by stromal cells. Signaling gradients are established and fine-tuned by the expression of signaling agonists and antagonists along the crypt-villus axis. On epithelial injury, there are disruptions to the abundance and organization of stromal populations. There are also distinct changes in the signals originating from these cells that impact remodeling of the epithelium. How these signals coordinate to mediate epithelial repair or sustain tissue injury in inflammatory bowel diseases is beginning to emerge. Understanding of these processes may lead to opportunities to target stromal cell populations as a strategy to modify disease states.
Collapse
Affiliation(s)
- Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Shanika L Amarasinghe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Diana Micati
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Karmele EP, Moldoveanu AL, Kaymak I, Jugder BE, Ursin RL, Bednar KJ, Corridoni D, Ort T. Single cell RNA-sequencing profiling to improve the translation between human IBD and in vivo models. Front Immunol 2023; 14:1291990. [PMID: 38179052 PMCID: PMC10766350 DOI: 10.3389/fimmu.2023.1291990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.
Collapse
Affiliation(s)
- Erik P. Karmele
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ana Laura Moldoveanu
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Irem Kaymak
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bat-Erdene Jugder
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Rebecca L. Ursin
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Kyle J. Bednar
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tatiana Ort
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
16
|
Fang W, Song Q, Lv T, Lv J, Cai Z, Wang Z, Song X, Ji X, Huang J. Serpina3n/serpina3 alleviates cyclophosphamide-induced interstitial cystitis by activating the Wnt/β-catenin signal. Int Urol Nephrol 2023; 55:3065-3075. [PMID: 37594700 PMCID: PMC10611603 DOI: 10.1007/s11255-023-03726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND/OBJECTIVE Serpina3n/Serpina3 has been identified to be implicated in inflammatory diseases, but its role in interstitial cystitis/bladder pain syndrome (IC/BPS) remains unknown. Here, we aimed to reveal serpina3n/serpina3 role in IC/BPS in vivo and in vitro. METHODS The IC/BPS model in mice was induced by intraperitoneal injection of 150 mg/kg of cyclophosphamide (CYP). HE and toluidine blue staining were used for histology assessment. Serpina3n/serpina3 expression in the bladder tissues from IC/BPS patients and mouse models were determined by qPCR, immunohistochemistry and western blotting. XAV-939 treatment was applied to inhibit β-catenin activation. Serpina3 role in modulating the growth and apoptosis of HBlEpCs, a human primary bladder epithelial cell line, was assessed by CCK-8 and flow cytometry assays. RESULTS Serpina3n/serpina3 expression was decreased in both human and mice bladder tissues with IC/BPS. Upregulation of serpina3n significantly alleviated CYP-induced bladder injury, with decreased mast cells and pro-inflammatory factor levels, including IL-1β, IL-6, and TNF-α, while increased IL-10 level. In addition, serpina3 overexpression inhibited the apoptosis of HBlEpCs, and increased cell growth. In mechanism, we found that serpina3 overexpression promoted the activation of wnt/β-catenin signaling. And, the inhibition of wnt/β-catenin signaling with XAV-939 abolished serpina3n/serpina3 role in protecting bladder tissues from CYP-induced cystitis, as well as inhibiting HBlEpC apoptosis. CONCLUSION Serpina3n/serpina3 expression was decreased in IC/BPS. Overexpression of serpina3n could alleviate CYP-induced IC/BPS by activating the Wnt/β-catenin signal. This study may provide a new therapeutic strategy for IC/BPS.
Collapse
Affiliation(s)
- Weilin Fang
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Qixiang Song
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Tingting Lv
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Jianwei Lv
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China.
| | - Zhikang Cai
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Xin Song
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Xiang Ji
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| | - Jin Huang
- Department of Urology and Andrology, Shanghai Pudong New Area Gongli Hospital, No. 219, Miaopu Road, Pudong New District, Shanghai, 200135, China
| |
Collapse
|
17
|
Cao B, Gao J, Zhang Q, Xu X, Zhao R, Li H, Wei B. Melatonin supplementation protects against traumatic colon injury by regulating SERPINA3N protein expression. IMETA 2023; 2:e141. [PMID: 38868216 PMCID: PMC10989984 DOI: 10.1002/imt2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 06/14/2024]
Abstract
Traumatic colon injury (TCI) is a typical injury with high mortality. Prolongation of the intervention time window is a potentially useful approach to improving the outcomes of TCI casualties. This study aimed to identify the pathological mechanisms of TCI and to develop effective strategies to extend the survival time. A semicircular incision was made to prepare a TCI model using C57BL/6 mice. An overview of microbiota dysregulation was achieved by metagenome sequencing. Protein expression reprogramming in the intestinal epithelium was investigated using proteomics profiling. The mice that were subjected to TCI died within a short period of time when not treated. Gut symbiosis showed abrupt turbulence, and specific pathogenic bacteria rapidly proliferated. The protein expression in the intestinal epithelium was also reprogrammed. Among the differentially expressed proteins, SERPINA3N was overexpressed after TCI modeling. Deletion of Serpina3n prolonged the posttraumatic survival time of mice with TCI by improving gut homeostasis in vivo. To promote the translational application of this research, the effects of melatonin (MLT), an oral inhibitor of the SERPINA3N protein, were further investigated. MLT effectively downregulated SERPINA3N expression and mitigated TCI-induced death by suppressing the NF-κB signaling pathway. Our findings prove that preventive administration of MLT serves as an effective regimen to prolong the posttraumatic survival time by restoring gut homeostasis perturbed by TCI. It may become a novel strategy for improving the prognosis of patients suffering from TCI.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
| | - Jing‐Wang Gao
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Qing‐Peng Zhang
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
| | - Xing‐Ming Xu
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
| | - Rui‐Yang Zhao
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Hang‐Hang Li
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Bo Wei
- Department of General Surgery, First Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
18
|
Silveira AK, Gomes HM, Fröhlich NT, Possa L, Santos L, Kessler F, Martins A, Rodrigues MS, De Oliveira J, do Nascimento ND, Sirena D, Paz AH, Gelain DP, Moreira JCF. Sodium Butyrate Protects Against Intestinal Oxidative Damage and Neuroinflammation in the Prefrontal Cortex of Ulcerative Colitis Mice Model. Immunol Invest 2023; 52:796-814. [PMID: 37665564 DOI: 10.1080/08820139.2023.2244967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Inflammatory bowel diseases (IBD) cause increased inflammatory signalling and oxidative damage. IBDs are correlated with an increased incidence of brain-related disorders suggesting that the gut-brain-axis exerts a pivotal role in IBD. Butyrate is one of the main microbial metabolites in the colon, and it can cross the blood-brain barrier, directly affecting the brain. We induced ulcerative colitis (UC) in mice utilizing dextran sodium sulfate (DSS) in the drinking water for 7 days. Animals were divided into four groups, receiving water or DSS and treated with saline or 0,066 g/kg of Sodium Butyrate for 7 days. We also used an integrative approach, combining bioinformatics functional network and experimental strategies to understand how butyrate may affect UC. Butyrate was able to attenuate colitis severity and intestinal inflammation. Butyrate protected the colon against oxidative damage in UC and protected the prefrontal cortex from neuroinflammation observed in DSS group. Immunocontent of tight junction proteins Claudin-5 and Occludin were reduced in colon of DSS group mice and butyrate was able to restore to control levels. Occludin and Claudin-5 decrease in DSS group indicate that an intestinal barrier disruption may lead to the increased influx of gut-derived molecules, causing neuroinflammation in the prefrontal cortex, observed by increased IBA-1 marker. The probable protection mechanism of butyrate treatment occurs through NRF2 through Nrf2 and HIF-1α activation and consequent activation of catalase and superoxide dismutase. Our data suggest that systemic inflammation associated with intestinal barrier disruption in UC leads to neuroinflammation in the prefrontal cortex, which was atenuated by butyrate.
Collapse
Affiliation(s)
- Alexandre Kleber Silveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Henrique Mautone Gomes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Nicole Thais Fröhlich
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Luana Possa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Lucas Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Flávio Kessler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Alberto Martins
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Matheus Scarpatto Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Jade De Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Natália Duarte do Nascimento
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Dienifer Sirena
- Hospital de Clinicas de Porto Alegre (HCPA), Clinics Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Ana Helena Paz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande Do Sul (UFRGS) Avenida, Porto Alegre, Brazil
| |
Collapse
|
19
|
Kobayashi S, Sullivan C, Bialkowska AB, Saltz JH, Yang VW. Computational immunohistochemical mapping adds immune context to histological phenotypes in mouse models of colitis. Sci Rep 2023; 13:14386. [PMID: 37658187 PMCID: PMC10474139 DOI: 10.1038/s41598-023-41574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic, dysregulated inflammation in the gastrointestinal tract. The heterogeneity of IBD is reflected through two major subtypes, Crohn's Disease (CD) and Ulcerative Colitis (UC). CD and UC differ across symptomatic presentation, histology, immune responses, and treatment. While colitis mouse models have been influential in deciphering IBD pathogenesis, no single model captures the full heterogeneity of clinical disease. The translational capacity of mouse models may be augmented by shifting to multi-mouse model studies that aggregate analysis across various well-controlled phenotypes. Here, we evaluate the value of histology in multi-mouse model characterizations by building upon a previous pipeline that detects histological disease classes in hematoxylin and eosin (H&E)-stained murine colons. Specifically, we map immune marker positivity across serially-sectioned slides to H&E histological classes across the dextran sodium sulfate (DSS) chemical induction model and the intestinal epithelium-specific, inducible Villin-CreERT2;Klf5fl/fl (Klf5ΔIND) genetic model. In this study, we construct the beginning frameworks to define H&E-patch-based immunophenotypes based on IHC-H&E mappings.
Collapse
Affiliation(s)
- Soma Kobayashi
- Department of Biomedical Informatics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA
| | - Christopher Sullivan
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Joel H Saltz
- Department of Biomedical Informatics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Vincent W Yang
- Department of Biomedical Informatics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539701. [PMID: 37214800 PMCID: PMC10197602 DOI: 10.1101/2023.05.08.539701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- These authors contributed equally
| | - Kisha N. Sivanathan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- These authors contributed equally
| | - Aditya Misra
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Rosalind J. Xu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Joseph M. Rone
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Katherine Tooley
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030 USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Liliana Sanmarco
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Francisco J. Quintana
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Jeffrey R. Moffitt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
- Lead contact
| |
Collapse
|
21
|
Xie W, Zhang A, Huang X, Zhou H, Ying H, Ye C, Ren M, Qian M, Liu X, Mo Y. SILENCING M 6 A READER YTHDC1 REDUCES INFLAMMATORY RESPONSE IN SEPSIS-INDUCED CARDIOMYOPATHY BY INHIBITING SERPINA3N EXPRESSION. Shock 2023; 59:791-802. [PMID: 36877222 DOI: 10.1097/shk.0000000000002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
ABSTRACT Sepsis-induced cardiomyopathy (SIC) is one of the most common complications of infection-induced sepsis. An imbalance in inflammatory mediators is the main factor leading to SIC . N 6 -methyladenosine (m 6 A) is closely related to the occurrence and development of sepsis. N 6 -methyladenosine reader YTH domain containing 1 (YTHDC1) is an m 6 A N 6 -methyladenosine recognition protein. However, the role of YTHDC1 in SIC remains unclear. Herein, we demonstrated that YTHDC1-shRNA inhibits inflammation, reduces inflammatory mediators, and improves cardiac function in a LPS-induced SIC mouse model. Based on the Gene Expression Omnibus database analysis, serine protease inhibitor A3N is a differential gene of SIC. Furthermore, RNA immunoprecipitation indicated that serine protease inhibitor A3N (SERPINA3N) mRNA can bind to YTHDC1, which regulates the expression of SERPINA3N. Serine protease inhibitor A3N-siRNA reduced LPS-induced inflammation of cardiac myocytes. In conclusion, the m 6 A reader YTHDC1 regulates SERPINA3N mRNA expression to mediate the levels of inflammation in SIC. Such findings add to the relationship between m 6 A reader YTHDC1 and SIC, providing a new research avenue for the therapeutic mechanism of SIC.
Collapse
Affiliation(s)
- Wenjing Xie
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng D, Mohapatra G, Kern L, He Y, Shmueli MD, Valdés-Mas R, Kolodziejczyk AA, Próchnicki T, Vasconcelos MB, Schorr L, Hertel F, Lee YS, Rufino MC, Ceddaha E, Shimshy S, Hodgetts RJ, Dori-Bachash M, Kleimeyer C, Goldenberg K, Heinemann M, Stettner N, Harmelin A, Shapiro H, Puschhof J, Chen M, Flavell RA, Latz E, Merbl Y, Abdeen SK, Elinav E. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat Immunol 2023; 24:585-594. [PMID: 36941399 DOI: 10.1038/s41590-023-01450-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1β and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Kern
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Yiming He
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Merav D Shmueli
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tomasz Próchnicki
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Lena Schorr
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Franziska Hertel
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | - Ye Seul Lee
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | | | - Emmanuelle Ceddaha
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sandy Shimshy
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ryan James Hodgetts
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mally Dori-Bachash
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Kleimeyer
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kim Goldenberg
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Melina Heinemann
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yifat Merbl
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
23
|
Zhang P, Li Q, Zhang Y, Wang Q, Yan J, Shen A, Hu B. Identification of a Novel Gene Signature with DDR and EMT Difunctionalities for Predicting Prognosis, Immune Activity, and Drug Response in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1221. [PMID: 36673982 PMCID: PMC9859620 DOI: 10.3390/ijerph20021221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Breast cancer, with an overall poor clinical prognosis, is one of the most heterogeneous cancers. DNA damage repair (DDR) and epithelial-mesenchymal transition (EMT) have been identified to be associated with cancer's progression. Our study aimed to explore whether genes with both functions play a more crucial role in the prognosis, immune, and therapy response of breast cancer patients. Based on the Cancer Genome Atlas (TCGA) cancer database, we used LASSO regression analysis to identify the six prognostic-related genes with both DDR and EMT functions, including TP63, YWHAZ, BRCA1, CCND2, YWHAG, and HIPK2. Based on the six genes, we defined the risk scores of the patients and reasonably analyzed the overall survival rate between the patients with the different risk scores. We found that overall survival in higher-risk-score patients was lower than in lower-risk-score patients. Subsequently, further GO and KEGG analyses for patients revealed that the levels of immune infiltration varied for patients with high and low risk scores, and the high-risk-score patients had lower immune infiltration's levels and were insensitive to treatment with chemotherapeutic agents. Furthermore, the Gene Expression Omnibus (GEO) database validated our findings. Our data suggest that TP63, YWHAZ, BRCA1, CCND2, YWHAG, and HIPK2 can be potential genetic markers of prognostic assessment, immune infiltration and chemotherapeutic drug sensitivity in breast cancer patients.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Quan Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuni Zhang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Qianqian Wang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Junfang Yan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
24
|
Aubert A, Lane M, Jung K, Granville DJ. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets 2022; 26:979-993. [PMID: 36542784 DOI: 10.1080/14728222.2022.2161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Granzyme B is a serine protease extensively studied for its implication in cytotoxic lymphocyte-mediated apoptosis. In recent years, the paradigm that the role of granzyme B is restricted to immune cell-mediated killing has been challenged as extracellular roles for the protease have emerged. While mostly absent from healthy tissues, granzyme B levels are elevated in several autoimmune and/or chronic inflammatory conditions. In the skin, its accumulation significantly impairs proper wound healing. AREAS COVERED After an overview of the current knowledge on granzyme B, a description of newly identified functions will be presented, focussing on granzyme B ability to promote cell-cell and dermal-epidermal junction disruption, extracellular matrix degradation, vascular permeabilization, and epithelial barrier dysfunction. Progress in granzyme B inhibition, as well as the use of granzyme B inhibitors for the treatment of tissue damage, will be discussed. EXPERT OPINION The absence of endogenous extracellular inhibitors renders extracellular granzyme B accumulation deleterious for the proper healing of chronic wounds due to sustained proteolytic activity. Consequently, specific granzyme B inhibitors have been developed as new therapeutic approaches. Beyond applications in wound healing, other autoimmune and/or chronic inflammatory conditions related to exacerbated granzyme B activity may also benefit from the development of these inhibitors.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
25
|
Iwayama T, Iwashita M, Miyashita K, Sakashita H, Matsumoto S, Tomita K, Bhongsatiern P, Kitayama T, Ikegami K, Shimbo T, Tamai K, Murayama MA, Ogawa S, Iwakura Y, Yamada S, Olson LE, Takedachi M, Murakami S. Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development 2022; 149:277273. [DOI: 10.1242/dev.201203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
ABSTRACT
Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1−Ibsp+Sparcl1+ and Plap-1−Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Mizuho Iwashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | | | - Hiromi Sakashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
| | - Shuji Matsumoto
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Kiwako Tomita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Phan Bhongsatiern
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Tomomi Kitayama
- StemRIM Inc. 2 , Ibaraki, Osaka 567-0085 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | | | - Takashi Shimbo
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Katsuto Tamai
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Masanori A. Murayama
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Satoru Yamada
- Tohoku University Graduate School of Dentistry 6 Department of Periodontology and Endodontology , , Sendai, Miyagi 980-8575 , Japan
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation 7 , Oklahoma City, OK 73104 , USA
| | - Masahide Takedachi
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Shinya Murakami
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| |
Collapse
|
26
|
Ding Y, Wan S, Liu W, Lu Y, Xu Q, Gan Y, Yan L, Gu Y, Liu Z, Hu Y, Cao H, Shao F. Regulation Networks of Non-Coding RNA-Associated ceRNAs in Cisplatin-Induced Acute Kidney Injury. Cells 2022; 11:cells11192971. [PMID: 36230932 PMCID: PMC9563924 DOI: 10.3390/cells11192971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is widely used as a chemotherapeutic drug to treat various solid tumors. However, it often induces severe side effects, including nephrotoxicity, which limits its application in clinical settings. Furthermore, the underlying mechanisms of action are unclear. Here, we applied whole-transcriptome RNA sequencing to a cisplatin-induced acute kidney injury (CP-AKI) mouse model to evaluate competing endogenous RNA (ceRNA) networks. We found 4460 mRNAs, 1851 long non-coding RNAs, 101 circular RNAs, and 102 microRNAs significantly differentially expressed between CP-AKI and control mice. We performed gene set enrichment analysis to reveal the biological functions of the mRNAs and constructed non-coding RNA-associated ceRNA networks in CP-AKI mice. Two ceRNA regulatory pathways, Lhx1os-203/mmu-miR-21a-3p/Slc7a13 and circular RNA_3907/mmu-miR-185-3p/Ptprn, were validated using quantitative real-time PCR. The protein–protein interaction network indicated that Il6, Cxcl1, Cxcl2, and Plk1 serve as hub genes and are highly connected with the inflammatory response or DNA damage. Transcription factors, such as Stat3, Cebpb, and Foxm1, regulate gene expression levels in CP-AKI. Our study provides insight into non-coding RNA-associated ceRNA networks and mRNAs in CP-AKI and identifies potential treatment targets.
Collapse
Affiliation(s)
- Yun Ding
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Shengfeng Wan
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenna Liu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yanfang Lu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Qin Xu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yujin Gan
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Yan
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yue Gu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ziyang Liu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yifeng Hu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Huixia Cao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Correspondence: (H.C.); (F.S.)
| | - Fengmin Shao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Correspondence: (H.C.); (F.S.)
| |
Collapse
|
27
|
Deep learning-based approach to the characterization and quantification of histopathology in mouse models of colitis. PLoS One 2022; 17:e0268954. [PMID: 36037173 PMCID: PMC9423669 DOI: 10.1371/journal.pone.0268954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease of the gastrointestinal tract. While therapies exist, response can be limited within the patient population. Researchers have thus studied mouse models of colitis to further understand pathogenesis and identify new treatment targets. Flow cytometry and RNA-sequencing can phenotype immune populations with single-cell resolution but provide no spatial context. Spatial context may be particularly important in colitis mouse models, due to the simultaneous presence of colonic regions that are involved or uninvolved with disease. These regions can be identified on hematoxylin and eosin (H&E)-stained colonic tissue slides based on the presence of abnormal or normal histology. However, detection of such regions requires expert interpretation by pathologists. This can be a tedious process that may be difficult to perform consistently across experiments. To this end, we trained a deep learning model to detect ‘Involved’ and ‘Uninvolved’ regions from H&E-stained colonic tissue slides. Our model was trained on specimens from controls and three mouse models of colitis–the dextran sodium sulfate (DSS) chemical induction model, the recently established intestinal epithelium-specific, inducible Klf5ΔIND (Villin-CreERT2;Klf5fl/fl) genetic model, and one that combines both induction methods. Image patches predicted to be ‘Involved’ and ‘Uninvolved’ were extracted across mice to cluster and identify histological classes. We quantified the proportion of ‘Uninvolved’ patches and ‘Involved’ patch classes in murine swiss-rolled colons. Furthermore, we trained linear determinant analysis classifiers on these patch proportions to predict mouse model and clinical score bins in a prospectively treated cohort of mice. Such a pipeline has the potential to reveal histological links and improve synergy between various colitis mouse model studies to identify new therapeutic targets and pathophysiological mechanisms.
Collapse
|
28
|
Chalkidi N, Paraskeva C, Koliaraki V. Fibroblasts in intestinal homeostasis, damage, and repair. Front Immunol 2022; 13:924866. [PMID: 36032088 PMCID: PMC9399414 DOI: 10.3389/fimmu.2022.924866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The mammalian intestine is a self-renewing tissue that ensures nutrient absorption while acting as a barrier against environmental insults. This is achieved by mature intestinal epithelial cells, the renewing capacity of intestinal stem cells at the base of the crypts, the development of immune tolerance, and the regulatory functions of stromal cells. Upon intestinal injury or inflammation, this tightly regulated mucosal homeostasis is disrupted and is followed by a series of events that lead to tissue repair and the restoration of organ function. It is now well established that fibroblasts play significant roles both in the maintenance of epithelial and immune homeostasis in the intestine and the response to tissue damage mainly through the secretion of a variety of soluble mediators and ligands and the remodeling of the extracellular matrix. In addition, recent advances in single-cell transcriptomics have revealed an unexpected heterogeneity of fibroblasts that comprise distinct cell subsets in normal and inflammatory conditions, indicative of diverse functions. However, there is still little consensus on the number, terminology, and functional properties of these subsets. Moreover, it is still unclear how individual fibroblast subsets can regulate intestinal repair processes and what is their impact on the pathogenesis of inflammatory bowel disease. In this mini-review, we aim to provide a concise overview of recent advances in the field, that we believe will help clarify current concepts on fibroblast heterogeneity and functions and advance our understanding of the contribution of fibroblasts in intestinal damage and repair.
Collapse
|
29
|
Hasegawa K, Fujimoto T, Mita C, Furumoto H, Inoue M, Ikegami K, Kitayama T, Yamamoto Y, Shimbo T, Yamazaki T, Tamai K. Single-cell transcriptome analysis of fractional CO 2 laser efficiency in treating a mouse model of alopecia. Lasers Surg Med 2022; 54:1167-1176. [PMID: 35916125 DOI: 10.1002/lsm.23590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Hair loss, including alopecia, is a common dermatological issue worldwide. At present, the application of fractional carbon dioxide (CO2 ) laser in the treatment of alopecia has been documented; however, the results vary between reports. These varying results may be due to the limited knowledge of cellular action in laser-irradiated skin. The objective of this study was to investigate the molecular and cellular mechanisms of laser treatment under effective conditions for hair cycle initiation. METHODS A fractional CO2 laser was applied and optimized to initiate the hair cycle in a mouse model of alopecia. Several cellular markers were analyzed in the irradiated skin using immunofluorescence staining. Cellular populations and their comprehensive gene expression were analyzed using single-cell RNA sequencing and bioinformatics. RESULTS The effective irradiation condition for initiating the hair cycle was found to be 15 mJ energy/spot, which generates approximately 500 μm depth columns, but does not penetrate the dermis, only reaching approximately 1 spot/mm2 . The proportion of macrophage clusters significantly increased upon irradiation, whereas the proportion of fibroblast clusters decreased. The macrophages strongly expressed C-C chemokine receptor type 2 (Ccr2), which is known to be a key signal for injury-induced hair growth. CONCLUSIONS We found that fractional CO2 laser irradiation recruited Ccr2 positive macrophages, and induced hair regrowth in a mouse alopecia model. These findings may contribute to the development of stable and effective fractional laser irradiation conditions for human alopecia treatment.
Collapse
Affiliation(s)
- Kouichi Hasegawa
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | | | - Chihiro Mita
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | - Hidehiro Furumoto
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | - Masako Inoue
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | - Kentaro Ikegami
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | - Tomomi Kitayama
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan.,Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukari Yamamoto
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | - Takashi Shimbo
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan.,Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiko Yamazaki
- Drug Discovery Department, StemRIM Incorporation, Osaka, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan
| | - Katsuto Tamai
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Osaka, Japan.,Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Chen B, Ye B, Li M, Wang S, Li J, Lai Y, Yang N, Ke Z, Zhang H. TIGIT Deficiency Protects Mice From DSS-Induced Colitis by Regulating IL-17A–Producing CD4+ Tissue-Resident Memory T Cells. Front Immunol 2022; 13:931761. [PMID: 35844584 PMCID: PMC9283574 DOI: 10.3389/fimmu.2022.931761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) have been shown to play an instrumental role in providing local immune responses for pathogen clearance in barrier tissues. However, their contribution to inflammatory bowel diseases (IBDs) and the underlying regulation are less clear. Here, we identified a critical role of T-cell immunoreceptor with immunoglobulin and ITIM (TIGIT) in regulating CD4+ TRM cells in an experimental model of intestinal inflammation. We found that CD4+ TRM cells were increased and correlated with disease activities in mice with dextran sulfate sodium (DSS)-induced colitis. Phenotypically, these CD4+ TRM cells could be classified into CD69+CD103− and CD69+CD103+ subsets. Functionally, these CD4+ TRM cells were heterogeneous. CD69+CD103− CD4+ TRM cells were pro-inflammatory and produced interferon-γ (IFNγ) and interleukin-17A (IL-17A), which accounted for 68.7% and 62.9% of total IFNγ+ and IL-17A+ CD4+ T cells, respectively, whereas CD69+CD103+ CD4+ TRM cells accounted for 73.7% Foxp3+ regulatory T cells. TIGIT expression was increased in CD4+ T cells in the gut of mice with DSS-induced colitis. TIGIT deficiency impaired IL-17A expression in CD69+CD103− CD4+ TRM cells specifically, resulting in ameliorated gut inflammation and tissue injury. Together, this study provides new insights into the regulation of gut inflammation that TIGIT deficiency protects mice from DSS-induced colitis, which might have a potential therapeutic value in the treatment of IBDs.
Collapse
Affiliation(s)
- Binfeng Chen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baokui Ye
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengyuan Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimei Lai
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institue of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Hui Zhang,
| |
Collapse
|
31
|
Takaki S, Shimbo T, Ikegami K, Kitayama T, Yamamoto Y, Yamazaki S, Mori S, Tamai K. Generation of a recessive dystrophic epidermolysis bullosa mouse model with patient-derived compound heterozygous mutations. J Transl Med 2022; 102:574-580. [PMID: 35152273 DOI: 10.1038/s41374-022-00735-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an intractable genetic disease of the skin caused by mutations in the COL7A1 gene. The majority of patients with RDEB harbor compound heterozygous mutations-two distinct mutations on each chromosome-without any apparent hotspots in the COL7A1 mutation pattern. This situation has made it challenging to establish a reliable RDEB mouse model with mutations that accurately mimic the genomic background of patients. Here, we established an RDEB mouse model harboring patient-type mutations in a compound heterozygous manner, using the CRISPR-based genome-editing technology i-GONAD. We selected two mutations, c.5818delC and E2857X, that have frequently been identified in cohorts of Japanese patients with RDEB. These mutations were introduced into the mouse genome at locations corresponding to those identified in patients. Mice homozygous for the 5818delC mutation developed severe RDEB-like phenotypes and died immediately after birth, whereas E2857X homozygous mice did not have a shortened lifespan compared to wild-type mice. Adult E2857X homozygous mice showed hair abnormalities, syndactyly, and nail dystrophy; these findings indicate that E2857X is indeed pathogenic in mice. Mice with the c.5818delC/E2857X compound heterozygous mutation presented an intermediate phenotype between the c.5818delC and E2857X homozygous mice. Single-cell RNA sequencing further clarified that the intrafollicular keratinocytes in c.5818delC/E2857X compound heterozygous mice exhibited abnormalities in cell cycle regulation. The proposed strategy to produce compound heterozygous mice, in addition to the established mouse line, will facilitate research on RDEB pathogenesis to develop a cure for this devastating disease.
Collapse
Affiliation(s)
- Satoshi Takaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.,StemRIM Inc., Ibaraki, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan. .,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan.
| | | | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.,StemRIM Inc., Ibaraki, Osaka, Japan
| | | | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.,StemRIM Inc., Ibaraki, Osaka, Japan
| | - Shiho Mori
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
32
|
Ito G, Yui S, Okamoto R. A Cellular "Hub" Function to Resolve Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:789-790. [PMID: 33971162 PMCID: PMC8348527 DOI: 10.1016/j.jcmgh.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/10/2022]
Affiliation(s)
| | - Shiro Yui
- Department of Gastroenterology and Hepatology, Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|