1
|
Xin J, Song M, Liu X, Zou H, Wang J, Xiao L, Jia Y, Zhang G, Jiang W, Lei M, Yang Y, Jiang Y. A new strategy of using low-dose caffeic acid carbon nanodots for high resistance to poorly differentiated human papillary thyroid cancer. J Nanobiotechnology 2024; 22:571. [PMID: 39294724 PMCID: PMC11409714 DOI: 10.1186/s12951-024-02792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Thyroid cancer is one of the most common endocrine malignancies in clinical practice. Traditional surgery and radioactive iodine ablation have poor treatment results for poorly differentiated thyroid cancer, and there is a risk of metastasis and recurrence. In this study, caffeic acid, a natural herbal extract with certain biological activity, has been as precursor to prepare new caffeic acid carbon nanodots via a one-step hydrothermal method. The caffeic acid carbon nanodots retains part of the structure and biological activity of caffeic acid, and have good biocompatibility, water solubility and stability. The construction of the carbon nanodots could effectively improve their bio-absorption rate and the efficacy. In vitro cell experiments showed that low-dose caffeic acid carbon nanodots had a significant inhibitory effect on poorly differentiated papillary thyroid carcinoma BCPAP cells. At low concentrations of 16 µg/mL, the inhibition rate of human thyroid cancer cells BCPAP was ~ 79%. The anti-tumor mechanism was predicted and verified by transcriptome, real-time quantitative PCR and western blot experiments. The caffeic acid carbon nanodots showed to simultaneously downregulate the expression of KRAS, p-BRAF, p-MEK1 and p-ERK1/2, the four continuous key proteins in a MAPK classical signaling pathway. In vivo experiments further confirmed the caffeic acid carbon nanodots could significantly inhibit the tumorigenicity of xenografts in papillary thyroid carcinoma at quite low doses. This piece of work provides a new nanomedicine and therapeutic strategy for highly resistant poorly differentiated papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Jingwei Xin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Meiwei Song
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangling Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hongrui Zou
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jifeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunxiao Jia
- Department Gynecol & Obstet, Changchun Obstet Gynecol Hospital, Changchun Women and Children Health Hospital, Changchun, 130042, China.
| | - Guoqi Zhang
- Harvard Medical School, Bonston Children's Hospital, Bonston, 02111, US
| | - Wei Jiang
- Department Gynecol & Obstet, Changchun Obstet Gynecol Hospital, Changchun Women and Children Health Hospital, Changchun, 130042, China
| | - Ming Lei
- Department Gynecol & Obstet, Changchun Obstet Gynecol Hospital, Changchun Women and Children Health Hospital, Changchun, 130042, China
| | - Yanyan Yang
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Feng X, Brown CM, Wang H, Kashif S, Roberts S, Yan L, Munshi T, Hands PJW, Zhang W, Chen X. Carrier-free chemo-phototherapeutic nanomedicines with endo/lysosomal escape function enhance the therapeutic effect of drug molecules in tumors. J Mater Chem B 2024; 12:6703-6715. [PMID: 38895858 DOI: 10.1039/d4tb00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Carrier-free nanomedicines offer advantages of extremely high drug loading capacity (>80%), minimal non-drug constituent burden, and facile preparation processes. Numerous studies have proved that multimodal cancer therapy can enhance chemotherapy efficiency and mitigate multi-drug resistance (MDR) through synergistic therapeutic effects. Upon penetration into the tumor matrix, nanoparticles (NPs) are anticipated to be uptaken by cancer cells, primarily through clathrin-meditated endocytosis pathways, leading to their accumulation in endosomes/lysosomes within cells. However, endo/lysosomes exhibit a highly degradative environment for organic NPs and drug molecules, often resulting in treatment failure. Hence, this study designed a lysosomal escape mechanism with carrier-free nanomedicine, combining the chemotherapeutic drug, curcumin (Cur), and the photothermal/photodynamic therapeutic drug, indocyanine green (ICG), for synergistic cancer treatment (ICG-Cur NPs) via a facile preparation process. To facilitate endo/lysosomal escape, ICG-Cur NPs were modified with metal-phenolic networks (MPNs) of different thickness. The results indicate that a thick MPN coating promotes rapid endo/lysosomal escape of ICG-Cur NPs within 4 h and enhances the photothermal conversion efficiency of ICG-Cur NPs by 55.8%, significantly improving anticancer efficacy in both chemo- and photo-therapies within 3D solid tumor models. This finding underscores the critical role of endo/lysosomal escape capacity in carrier-free drug NPs for therapeutic outcomes and offers a facile solution to achieve it.
Collapse
Affiliation(s)
- Xue Feng
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Calum M Brown
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Hongdi Wang
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Saima Kashif
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Sam Roberts
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tasnim Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK
| | - Philip J W Hands
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| |
Collapse
|
3
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
4
|
Xu Y, Qian L, Fang M, Liu Y, Xu ZJ, Ge X, Zhang Z, Liu ZP, Lou H. Tumor selective self-assembled nanomicelles of carbohydrate-epothilone B conjugate for targeted chemotherapy. Eur J Med Chem 2023; 259:115693. [PMID: 37531745 DOI: 10.1016/j.ejmech.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Epothilone B (Epo B) is a potent antitumor natural product with sub-nanomolar anti-proliferation action against several human cancer cells. However, poor selectivity to tumor cells and unacceptable therapeutic windows of Epo B and its analogs are the major obstacles to their development into clinical drugs. Herein, we present self-assembled nanomicelles based on an amphiphilic carbohydrate-Epo B conjugate that is inactive until converted to active Epo B within the tumor. Four Epo B-Rhamnose conjugates linked via two linkers containing a disulfide bond that is sensitive to GSH were synthesized. Conjugate 34 can self-assemble into nanomicelles with a high concentration of Rha on the surface, allowing for better tumor targeting. After internalization by cancer cells, the disulfide bond can be cleaved in the presence of high levels of GSH to release active Epo B, thereby exhibiting significant anticancer efficiency and selectivity in vitro and in vivo.
Collapse
Affiliation(s)
- Yuliang Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China
| | - Lilin Qian
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Fang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yue Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoyan Ge
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhiyue Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhao-Peng Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel) 2022; 14:polym14224839. [PMID: 36432965 PMCID: PMC9696676 DOI: 10.3390/polym14224839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core-shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug's release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
| | | | - Jin-Ho Choy
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence:
| |
Collapse
|
6
|
Casellas NM, Dai G, Xue Y, Vicente-Arana MJ, Ng DKP, Torres T, García-Iglesias M. Porphyrin-based supramolecular nanofibres as a dynamic and activatable photosensitiser for photodynamic therapy. Biomater Sci 2022; 10:3259-3267. [DOI: 10.1039/d2bm00173j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) represents a promising treatment modality for a range of cancers and other non-malignant diseases due to its non-invasive nature arising from the light-dependent activation. However, PDT has...
Collapse
|
7
|
Xiang J, Liu X, Yuan G, Zhang R, Zhou Q, Xie T, Shen Y. Nanomedicine from amphiphilizedprodrugs: Concept and clinical translation. Adv Drug Deliv Rev 2021; 179:114027. [PMID: 34732344 DOI: 10.1016/j.addr.2021.114027] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Nanomedicines generally consisting of carrier materials with small fractions of active pharmaceutical ingredients (API) have long been used to improve the pharmacokinetics and biodistributions, augment the therapeutic efficacies and mitigate the side effects. Amphiphilizing hydrophobic/hydrophilic drugs to prodrugs capable of self-assembly into well-defined nanostructures has emerged as a facile approach to fabricating nanomedicines because this amphiphilized prodrug (APD) strategy presents many advantages, including minimized use of inert carrier materials, well-characterized prodrug structures, fixed and high drug loading contents, 100% loading efficiency, and burst-free but controlled drug release. This review comprehensively summarizes recent advances in APDs and their nanomedicines, from the rationale and the stimuli-responsive linker chemistry for on-demand drug release to their progress to the clinics, clinical performance of APDs, as well as the challenges and perspective on future development.
Collapse
|
8
|
Sarkar P, Ghosh S, Saha R, Sarkar K. RAFT polymerization mediated core-shell supramolecular assembly of PEGMA- co-stearic acid block co-polymer for efficient anticancer drug delivery. RSC Adv 2021; 11:16913-16923. [PMID: 35479720 PMCID: PMC9031514 DOI: 10.1039/d1ra01660a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, core-shell supramolecular assembly polymeric nano-architectures containing hydrophilic and hydrophobic segments were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Herein, polyethylene glycol methyl ether methacrylate (PEGMA), and stearic acid were used to synthesize the poly(PEGMA) homopolymer and stearyl ethyl methacrylate (SEMA), respectively. Then, PEGMA and SEMA were polymerized through controlled RAFT polymerization to obtain the final diblock copolymer, poly(PEGMA-co-SEMA) (BCP). Model anticancer drug, doxorubicin (DOX) was loaded on BCPs. Interestingly, efficient DOX release was observed at acidic pH, similar to the cancerous environment pH level. Significant cellular uptake of DOX loaded BCP50 (BCP50-DOX) was observed in MDA-MB-231 triple negative breast cancer cells and resulted in a 35 fold increase in anticancer activity against MDA MB-231 cells compared to free DOX. Scanning electron microscopy (SEM) imaging confirmed the apoptosis mediated cellular death. These core-shell supramolecular assembly polymeric nano-architectures may be an efficient anti-cancer drug delivery system in the future.
Collapse
Affiliation(s)
- Priyatosh Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
| | - Santanu Ghosh
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
- Department of Materials Engineering, Indian Institute of Science C. V. Raman Avenue Bangalore Karnataka 560012 India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
| |
Collapse
|
9
|
Mthimkhulu NP, Mosiane KS, Nweke EE, Balogun M, Fru P. Prospects of Delivering Natural Compounds by Polymer-Drug Conjugates in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:1699-1713. [PMID: 33874874 DOI: 10.2174/1871520621666210419094623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Synthetic chemotherapeutics have played a crucial role in minimizing mostly palliative symptoms associated with cancer; however, they have also created other problems such as system toxicity due to a lack of specificity. This has led to the development of polymer-drug conjugates amongst other novel drug delivery systems. Most of the formulations designed using delivery systems consist of synthetic drugs and face issues such as drug resistance, which has already rendered drugs such as antibiotics ineffective. This is further exacerbated by toxicity due to long term use. Given these problems and the fact that conjugation of synthetic compounds to polymers has been relatively slow with no formulation on the market after a decade of extensive studies, the focus has shifted to using this platform with medicinal plant extracts to improve solubility, specificity and increase drug release of medicinal and herbal bioactives. In recent years, various plant extracts such as flavonoids, tannins and terpenoids have been studied extensively using this approach. The success of formulations developed using novel drug-delivery systems is highly dependent on the tumour microenvironment especially on the enhanced permeability and retention effect. As a result, the compromised lymphatic network and 'leaky' vasculature exhibited by tumour cells act as a guiding principle in the delivering of these formulations. This review focuses on the state of the polymer-drug conjugates and their exploration with natural compounds, the progress and difficulties thus far, and future directions concerning cancer treatment.
Collapse
Affiliation(s)
- Nompumelelo P Mthimkhulu
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Karabo S Mosiane
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Ekene E Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Lab, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001. South Africa
| | - Pascaline Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193. South Africa
| |
Collapse
|
10
|
Gao J, Qiao Z, Liu S, Xu J, Wang S, Yang X, Wang X, Tang R. A small molecule nanodrug consisting of pH-sensitive ortho ester-dasatinib conjugate for cancer therapy. Eur J Pharm Biopharm 2021; 163:188-197. [PMID: 33864903 DOI: 10.1016/j.ejpb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
The main objective of this paper is to develop a self-delivered prodrug system with nanoscale characteristics to enhance the efficacy of tumor therapy. The pH-sensitive prodrug was composed of ortho ester-linked dasatinib (DAS-OE), which was further self-assembled with or without doxorubicin (DOX) to obtain two carrier-free nanoparticles (DOX/DAS-OE NPs or DAS-OE NPs). The prodrug-based nanoparticles united the superiorities of small molecules and nano-assemblies together and displayed well-defined structure, uniform spherical shape, high drug loading ratio and on-demand drug release behavior. The drug loading content of DAS and DOX was 61.6% and 21.9%, respectively, and more than 80.2% of DAS and 60.2% DOX were released from DOX/DAS-OE NPs within 20 h at pH 5.0. Both in vitro and in vivo studies demonstrated that the pH-sensitive ortho ester bonds in the prodrug underwent hydrolysis to release DAS and DOX simultaneously after cellular internalization, resulting in remarkable antitumor effect. Tumor growth inhibition rate was 19.9% (free DAS), 35.5% (free DOX), 66.3% (DAS-OE NPs) and 82.8% (DOX/DAS-OE NPs), respectively. Thus, the ortho ester-linked prodrug system shows great potentials in cancer therapy.
Collapse
Affiliation(s)
- Jialu Gao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Zhen Qiao
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Shuo Liu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Shi Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xia Yang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
11
|
Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2020; 268:120557. [PMID: 33260095 DOI: 10.1016/j.biomaterials.2020.120557] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Nanocarrier-based drug delivery systems hold impressive promise for biomedical application because of their excellent water dispersibility, prolonged blood circulation time, increased drug accumulation in tumors, and potential in combination therapeutics. However, most nanocarriers suffer from low drug-loading efficiency, poor therapeutic effectiveness, potential systematic toxicity, and unstable metabolism. As an alternative, carrier-free nanodrugs, completely formulated with one or more drugs, have attracted increasing attention in cancer therapy due to their advantage of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug-loading. In recent years, carrier-free nanodrugs have contributed to progress in a variety of therapeutic modalities. In this review, different common strategies for carrier-free nanodrugs preparation are first summarized, mainly including nanoprecipitation, template-assisted nanoprecipitation, thin-film hydration, spray-drying technique, supercritical fluid (SCF) technique, and wet media milling. Then we describe the recently reported carrier-free nanodrugs for cancer chemo-monotherapy or combination therapy. The advantages of anti-cancer drugs combined with other chemotherapeutic, photosensitizers, photothermal, immunotherapeutic or gene drugs have been demonstrated. Finally, a future perspective is introduced to highlight the existing challenges and possible solutions toward clinical application of currently developed carrier-free nanodrugs, which may be instructive to the design of effective carrier-free regimens in the future.
Collapse
Affiliation(s)
- Li Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
12
|
Salih M, Omolo CA, Devnarain N, Elrashedy AA, Mocktar C, Soliman MES, Govender T. Supramolecular self-assembled drug delivery system (SADDs) of vancomycin and tocopherol succinate as an antibacterial agent: in vitro, in silico and in vivo evaluations. Pharm Dev Technol 2020; 25:1090-1108. [PMID: 32684052 DOI: 10.1080/10837450.2020.1797786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study self-assembled drug delivery system (SADDs) composed of a hydrophobic d-α-tocopherol succinate (TS) and a hydrophilic vancomycin (VCM) were formulated, and its potential for enhancing the antibacterial activity of VCM against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) were explored. The SADDs were synthesized via supramolecular complexation, then characterized for in silico, in vitro and in vivo studies. In silico studies confirmed the self-assembly of VCM/TS into NPs. The size, surface charge and drug loading of the SADDs was ˂100 nm, -27 mV and 68%, respectively. The SADDs were non-hemolytic and biosafe. A sustained release of VCM from SADDs was noted, with 52.2% release after 48 hr. The in vitro antibacterial test showed a twofold decrease in Minimum inhibitory concentration (MIC) against SA and MRSA, and a significantly higher reduction in MRSA biofilms compared to bare VCM. Further, in silico studies confirmed strong and stable binding of TS to MRSA efflux pumps. The in vivo study using mice skin infection models showed a 9.5-fold reduction in bacterial load after treatment with SADDs, in comparison with bare VCM. These findings affirmed that VCM/TS NPs as a promising novel nano-delivery for treating bacterial infections.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Wang Y, Li B, Zhang M, Lu H, Chen H, Wang W, Ding Y, Hu A. Preparation and antitumor applications of asymmetric propargyl amide maleimide based enediyne antibiotics. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Xia X, Yang X, Huang P, Yan D. ROS-Responsive Nanoparticles Formed from RGD-Epothilone B Conjugate for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18301-18308. [PMID: 32242653 DOI: 10.1021/acsami.0c00650] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The targeted nanoagents have shown great potential clinically for cancer therapy. Traditional targeted nanodrugs are usually prepared through surface postmodification. Herein, a nanodrug is self-assembled from the amphiphilic precursor of targeting peptide RGD conjugated with cytotoxin epothilone B (Epo B) through a linker containing the thioketal (tk) group that is sensitive to reactive oxygen species (ROS). The obtained RGD-tk-Epo B conjugate nanoparticles (RECNs) are stable and uniform, which facilitates improving tumor-targeting capacity and accumulation of the drug because of the large number of RGD on the surface of the RECN. After internalization by cancer cells, the blood-inert tk group between RGD and Epo B can be cleaved in the presence of high level of ROS to release Epo B, exhibiting a markedly tumor selectivity and excellent anticancer efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Xuelin Xia
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Ling L, Ismail M, Shang Z, Hu Y, Li B. Vitamin E-based prodrug self-delivery for nanoformulated irinotecan with synergistic antitumor therapeutics. Int J Pharm 2020; 577:119049. [PMID: 31982558 DOI: 10.1016/j.ijpharm.2020.119049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Irinotecan (Ir) is a potent antitumor chemotherapeutics in clinic and used for the treatment of a various cancers, but the degree of its application is critically limited by toxic side-effects and marked heterogeneities. Nano-formulation of prodrugs, based on "all-in-one" carrier-free self-assemblies offers an effective approach to alter pharmacokinetics and safety profiles of cytotoxic agents. In this study, a novel vitamin E succinate-based formulation of Ir (VES-Ir) combined with nanoscaled characteristics and synergistic combination was constructed through esterification. The conjugation makes amphiphilic VES-Ir prodrug self-assemble into nanoparticles with a fine diameter (VES-Ir NPs, 75.4 nm) of spherical morphology. Furthermore, VES-Ir NPs with a 1:1 drug-to-drug ratio was demonstrated to possess respectable physiological stability within 72 h test, while can react to pH/esterase-sensitive drug release in lysosomes internalized into tumor cells, potentially highlighting their alleviating side effects. Compared with single and mixture drugs administration, the nanoformulated VES-Ir NPs codelivered both VES and Ir with different anticancer mechanisms to induce the highest suppress proliferation of MCF-7 (IC50 0.18 μM) and A549 (IC50 0.29 μM) cells in a synergistic way (CI < 1). More importantly, the formulating nanoparticulate Ir is to significantly enhance its bioavailability in vivo with long retention time in bloodstream and thereby, resulting the superior tumor inhibitory rate (TIR) of 85.2% versus controls. This simple nanoformulation of Ir drug deprived from VES conjugation, together with self-delivery and synergistic property, may provide an effective strategy for multiple chemotherapeutics delivery to treat cancers or other diseases.
Collapse
Affiliation(s)
- Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Muhammad Ismail
- Henan-Macquarie University Joint Center for Biomedical Innovation School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Zhihao Shang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yihui Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Benhong Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
16
|
Huang X, Wang M, You Q, Kong J, Zhang H, Yu C, Wang Y, Wang H, Huang R. Synthesis, mechanisms of action, and toxicity of novel aminophosphonates derivatives conjugated irinotecan in vitro and in vivo as potent antitumor agents. Eur J Med Chem 2020; 189:112067. [PMID: 31972391 DOI: 10.1016/j.ejmech.2020.112067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/17/2023]
Abstract
Twenty novel aminophosphonates derivatives (5a-5j and 6a-6j) conjugated irinotecan were synthesized through esterification reaction, and evaluated their anticancer activities using MTT assay. In vitro evaluation revealed that they displayed similar or superior cytotoxicity compared to the positive drug irinotecan against A549, MCF-7, SK-OV-3, MG-63, U2OS and multidrug-resistant (MDR) SK-OV-3/CDDP cancer cell lines. Among them, 9b displayed the most potent activity, with IC50 values of 0.92-3.23 μM against five human cancer cells, which exhibited a 5.4-19.1-fold increase in activity compared to the reference drug irinotecan, respectively. Moreover, cellular mechanism studies suggested that 9b arrested cell cycle at S stage and induced cell apoptosis along with the decrease of mitochondrial membrane potential (MMP). Interestingly, 9b significantly inhibited tumor growth in SK-OV-3 xenograft models in vivo without apparent toxicity, which was better than the positive drug irinotecan. Taken together, 9b possessed potent antitumor activity and may be a promising candidate for the potential treatment of human ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China; College of Biotechnology, Guilin Medical University, Guilin, 541004, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| | - Meng Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qinghong You
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jing Kong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Haijiang Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Chunhao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yanming Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| | - Rizhen Huang
- College of Biotechnology, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
17
|
Jain H, Chella N. Solubility Enhancement Techniques for Natural Product Delivery. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41838-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Munjal S, Deka SR, Yadav S, Goyal P, Sharma AK, Kumar P. Core/shell nanoassembly of amphiphilic naproxen-polyethylene glycol: synthesis, characterisation and evaluation as drug delivery system. IET Nanobiotechnol 2019; 12:814-821. [PMID: 30104456 DOI: 10.1049/iet-nbt.2017.0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small molecule-based amphiphiles self-assemble into nanostructures (micelles) in aqueous medium which are currently being explored as novel drug delivery systems. Here, naproxen-polyethylene glycol (N-PEG), a small molecule-derived amphiphile, has been synthesised, characterised and evaluated as hydrophobic drug carrier. 1H, 13C Nuclear magnetic resonance (NMR), mass spectrometry (MS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of N-PEG and dynamic light scattering (DLS) revealed the formation of nano-sized structures of ∼228 nm. Transmission electron microscope (TEM) analysis showed aggregation behaviour of the structures with average size of ∼230 nm. Biodegradability aspect of the micellar-structured N-PEG was demonstrated by lipase-mediated degradation studies using DLS and TEM. High encapsulation efficiency followed by release in a sustained manner of a well-known anticancer drug, doxorubicin, demonstrated the feasibility of the new drug delivery system. These results advocate the promising potential of N-PEG micelles as efficient drug delivery system for specific delivery to cancerous cells in vitro and in vivo.
Collapse
Affiliation(s)
- Srishti Munjal
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Smriti R Deka
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Santosh Yadav
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Preeti Goyal
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Ashwani K Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
19
|
Pusuluri A, Krishnan V, Wu D, Shields CW, Wang LW, Mitragotri S. Role of synergy and immunostimulation in design of chemotherapy combinations: An analysis of doxorubicin and camptothecin. Bioeng Transl Med 2019; 4:e10129. [PMID: 31249879 PMCID: PMC6584462 DOI: 10.1002/btm2.10129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/09/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023] Open
Abstract
Combination chemotherapy is often employed to improve therapeutic efficacies of drugs. However, traditional combination regimens often utilize drugs at or near-their maximum tolerated doses (MTDs), elevating the risk of dose-related toxicity and impeding their clinical success. Further, high doses of adjuvant or neoadjuvant chemotherapies can cause myeloablation, which compromises the immune response and hinders the efficacy of chemotherapy as well as accompanying treatments such as immunotherapy. Clinical outcomes can be improved if chemotherapy combinations are designed to reduce the overall doses without compromising their therapeutic efficacy. To this end, we investigated a combination of camptothecin (CPT) with doxorubicin (DOX) as a low-dose treatment option for breast cancer. DOX-CPT combinations were synergistic in several breast cancer cell lines in vitro and one particular ratio displayed extremely high synergy on human triple negative breast cancer cells (MDA-MB-231). This combination led to excellent long-term survival of mice bearing MDA-MB-231 tumors at doses roughly five-fold lower than the reported MTD values of its constituent drugs. Impact of low dose DOX-CPT treatment on local tumor immune environment was assessed in immunocompetent mice bearing breast cancer (4T1) tumors. The combination was not only superior in inhibiting the disease progression compared to individual drugs, but it also generated a more favorable antitumor immunogenic response. Engineering DOX and CPT ratios to manifest synergy enables treatment at doses much lower than their MTDs, which could ultimately facilitate their translation into the clinic as a promising combination for breast cancer treatment.
Collapse
Affiliation(s)
- Anusha Pusuluri
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard UniversityBostonMA 02115
- Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraCA 93106
| | - Vinu Krishnan
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard UniversityBostonMA 02115
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard UniversityBostonMA 02115
| | - C. Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard UniversityBostonMA 02115
| | - Li W. Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard UniversityBostonMA 02115
- Harvard–MIT Health Sciences and Technology ProgramInstitute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeMA 02139
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard UniversityBostonMA 02115
| |
Collapse
|
20
|
Li J, Wu Y, Sun L, Huang S, Li B, Ding Y, Hu A. Self‐Delivery Nanoparticles of Amphiphilic Acyclic Enediynes for Efficient Tumor Cell Suppression. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lili Sun
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Shuai Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
21
|
Zhang B, Huang X, Wang H, Gou S. Promoting antitumor efficacy by suppressing hypoxia via nano self-assembly of two irinotecan-based dual drug conjugates having a HIF-1α inhibitor. J Mater Chem B 2019; 7:5352-5362. [DOI: 10.1039/c9tb00541b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conjugated a hydrophobic HIF-1α inhibitor (YC-1) with a hydrophilic anticancer drug, irinotecan (Ir), into one molecular entity, provided a new insight into the design of smart nanodrug delivery systems to hypoxic tumor tissue.
Collapse
Affiliation(s)
- Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
| | - Xiaochao Huang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
| |
Collapse
|
22
|
Li J, Li B, Sun L, Duan B, Huang S, Yuan Y, Ding Y, Hu A. Self-delivery nanoparticles of an amphiphilic irinotecan–enediyne conjugate for cancer combination chemotherapy. J Mater Chem B 2019; 7:103-111. [DOI: 10.1039/c8tb02367k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An amphiphilic small molecular drug self-delivery system was designed by linking a hydrophilic topoisomerase I inhibitor irinotecan (Ir) with a lipophilic cytotoxic enediyne (EDY) antibiotic through an ester bond.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Lili Sun
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology
- Shanghai
- China
| | - Bing Duan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology
- Shanghai
- China
| | - Shuai Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology
- Shanghai
- China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
23
|
Huang YQ, Yuan JD, Ding HF, Song YS, Qian G, Wang JL, Ji M, Zhang Y. Design, synthesis and pharmacological evaluation of a novel PEG-cRGD-conjugated irinotecan derivative as potential antitumor agent. Eur J Med Chem 2018; 158:82-90. [DOI: 10.1016/j.ejmech.2018.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
24
|
Wang Y, Wang X, Deng F, Zheng N, Liang Y, Zhang H, He B, Dai W, Wang X, Zhang Q. The effect of linkers on the self-assembling and anti-tumor efficacy of disulfide-linked doxorubicin drug-drug conjugate nanoparticles. J Control Release 2018; 279:136-146. [PMID: 29655991 DOI: 10.1016/j.jconrel.2018.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Drug-drug conjugate nanoparticles (DDC NPs) is a potential method for overcoming poor solubility and nonspecific action in cancer therapy, which is based on its high drug loading efficiency and passive tumor-target properties. Our laboratory has prepared DOX-SS-DOX NPs based on disulfide-linked doxorubicin (DOX) drug-drug conjugate, which showed well physical stability and similar anti-tumor efficacy as liposomes. However, how structures of DDCs influence the self-assembling and anti-tumor efficacy is still seldom clarified and needs further investigation. Here, we discussed the role of linker types, length and linkage site in the NPs self-assembling and anti-tumor efficacy. A series of DOX prodrugs were prepared and all the prodrugs could self-assemble into NPs except DOX-SS-DOX (2), indicating the linker length played an important role during self-assembling process. The linkage sites and types of linker exhibited great influence on in vitro cytotoxicity and in vivo anti-tumor efficacy, particularly, modification on C-14 hydroxyl was more efficient for DOX release than on amino group. Besides, disulfide-bond was not cleaved and DOX-SH release did not occur in the metabolism process. The function of disulfide-bond was to enhance the release of DOX in the hydrolysis process. These findings is meaningful for effective prodrug NPs design for therapeutics.
Collapse
Affiliation(s)
- Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Nan Zheng
- National Drug Clinical Trial Center, Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanqin Liang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
25
|
Dong X, Shu X, Wang Y, Niu Z, Xu S, Zhang Y, Zhao S. Synthesis, characterization and in vitro release performance of the pegylated valnemulin prodrug. J Vet Med Sci 2018; 80:173-180. [PMID: 29187697 PMCID: PMC5797878 DOI: 10.1292/jvms.17-0434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valnemulin, successfully developed by Sandoz in 1984, is a new generation derivative of pleuromutilin related to tiamulin. Valnemulin has low water-solubility, a short half-life period,
low bioavailability, and instability. The application of valnemulin was restricted. Therefore, finding a more moderate delivery system is necessary to improve the shortcomings of
valnemulin. The purpose of the study was to improve the strong stability and the irritation caused by of valnemulin hydrochloride power through pegylated-valnemulin
prodrug mode. The prepared pegylated-valnemulin prodrug was characterized and evaluated by in vitro release performance under buffer solutions with pH levels of 7.4 and 3.6. The loading
rate of valnemulin in PEG-succinic-valnemulin prodrug was determined by ultraviolet spectrophotometer and high performance liquid chromatography (HPLC). HPLC with evaporative light
scattering detector was applied to determine the amount of PEG-succinic acid. The loading rate of valnemulin in PEG-succinic-valnemulin prodrug was 6.46%.
PEG-succinic-valnemulin prodrug demonstrated a satisfactory solubility of valnemulin with 523 mg·ml−1 and excellent stability verified by the stability
experiment. The result of the in vitro release test showed that the prepared PEG-valnemulin prodrug has controlled release ability and the release rate of valnemulin
from PEG-valnemulin prodrug with a pH of 7.4 was 64.98%, which was higher than that of pH3.6 with release rate of 31.90%. Therefore, the prepared PEG-succinic-valnemulin prodrug has
great application potential.
Collapse
Affiliation(s)
- Xinrui Dong
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China
| | - Xueye Shu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China
| | - Yingnan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China
| | - Zhaohuan Niu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China
| | - Shixia Xu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China
| | - Yue Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Yuhua East Road, Shijiazhuang 050018, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Yuhua East Road, Shijiazhuang 050018, China
| | - Shuchun Zhao
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Yuhua East Road, Shijiazhuang 050018, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Yuhua East Road, Shijiazhuang 050018, China
| |
Collapse
|
26
|
pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids Surf B Biointerfaces 2018; 162:163-171. [DOI: 10.1016/j.colsurfb.2017.11.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/14/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
|
27
|
Shao W, Liu X, Sun G, Hu XY, Zhu JJ, Wang L. Construction of drug–drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy. Chem Commun (Camb) 2018; 54:9462-9465. [DOI: 10.1039/c8cc05180a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillararene-based GSH-responsive drug–drug conjugate supramolecular prodrug nanocarriers have been successfully constructed for efficient combination chemotherapy.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Mesoscopic Chemistry of MOE
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xin Liu
- Key Laboratory of Mesoscopic Chemistry of MOE
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
28
|
Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. J Control Release 2017; 266:36-46. [DOI: 10.1016/j.jconrel.2017.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
|
29
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
30
|
Powell A, Caterson B, Hughes C, Paul A, James C, Hopkins S, Mansour O, Griffiths P. Do model polymer therapeutics sufficiently diffuse through articular cartilage to be a viable therapeutic route? J Drug Target 2017; 25:919-926. [PMID: 28891340 DOI: 10.1080/1061186x.2017.1378660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability of a polymer therapeutic to access the appropriate subcellular location is crucial to its efficacy and is defined to a large part by the many and complex cellular biological and biochemical barriers such that a construct must traverse. It is shown here that model dextrin conjugates are able to pass through a cartilaginous extracellular matrix into chondrocytes, with little perturbation of the matrix structure, indicating that targeting of potential therapeutics through a cartilaginous extracellular matrix should be proven possible. Rapid chondrocytic targeting of drugs which require intra cellularisation for their activity and uniform extracellular concentrations of drugs with an extracellular target, is thus enabled though polymer conjugation.
Collapse
Affiliation(s)
- Alison Powell
- a School of Biosciences , Cardiff University , Cardiff , UK
| | - Bruce Caterson
- a School of Biosciences , Cardiff University , Cardiff , UK
| | - Clare Hughes
- a School of Biosciences , Cardiff University , Cardiff , UK
| | - Alison Paul
- b School of Chemistry , Cardiff University , Cardiff , UK
| | - Craig James
- b School of Chemistry , Cardiff University , Cardiff , UK
| | | | - Omar Mansour
- c Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science , University of Greenwich , Kent , UK
| | - Peter Griffiths
- c Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science , University of Greenwich , Kent , UK
| |
Collapse
|
31
|
Zhang Z, Shi L, Wu C, Su Y, Qian J, Deng H, Zhu X. Construction of a Supramolecular Drug-Drug Delivery System for Non-Small-Cell Lung Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29505-29514. [PMID: 28809468 DOI: 10.1021/acsami.7b07565] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscale drug delivery systems (DDSs) are generally considered to be an effective alternative to small molecular chemotherapeutics due to improved accumulation in the tumor site and enhanced retention in blood. Nevertheless, most DDSs have low loading efficiency or even pose a high threat to normal organs from severe side effects. Ideally, a supramolecular drug-drug delivery system (SDDDS) composed of pure drugs via supramolecular interaction provides a hopeful approach for cancer treatment. Herein we propose a facile method to construct SDDDS via coassembly of gefitinib (GEF) and tripeptide tyroservatide (YSV), two kinds of chemotherapeutic pharmaceuticals for non-small-cell lung cancer (NSCLC) via multiple intermolecular interactions, including hydrogen bonding and π-π stacking. As shown through transmission electron microscopy (TEM) and dynamic light scattering (DLS), GEF and YSV self-assemble into nanoparticles with regular morphology and uniform size, which facilitates the delivery of both drugs. In vitro studies demonstrate that the SDDDS is much more efficient in entering cancer cells and inhibiting the proliferation of cancer cells compared with single GEF, YSV, or GEF/YSV drug mixture. In vivo experiments show that the SDDDS can selectively accumulate in tumor tissue, resulting in much better drug efficacy without evident side effects. Considering the advantages of the SDDDS, we believe this strategy provides a promising route for enhanced anticancer therapy in nanomedicine.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chenwei Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
32
|
Yang L, Hong J, Di J, Guo Y, Han M, Liu M, Wang X. 10-Hydroxycamptothecin (HCPT) nanosuspensions stabilized by mPEG 1000-HCPT conjugate: high stabilizing efficiency and improved antitumor efficacy. Int J Nanomedicine 2017; 12:3681-3695. [PMID: 28553107 PMCID: PMC5439984 DOI: 10.2147/ijn.s134005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this study, polyethylene glycol (PEG)ylated 10-hydroxycamptothecin (mPEG1000-HCPT) was synthesized and used as a stabilizer to prepare 10-hydroxycamptothecin (HCPT) nanosuspensions for their in vitro and in vivo antitumor investigation. The resultant HCPT nanosuspensions (HCPT-NSps) had a very high drug payload of 94.90% (w/w) and a mean particle size of 92.90±0.20 nm with narrow size distribution (polydispersity index of 0.16±0.01). HCPT-NSps could be lyophilized without the need of the addition of any cryoprotectant and then be reconstituted into nanosuspensions of a similar size by direct resuspension in water. HCPT was in crystalline form in HCPT-NSps. Using mPEG1000-HCPT as stabilizer, insoluble camptothecin and 7-ethyl-10-hydroxycamptothecin could also be easily made into nanosuspensions with similar features such as high drug payload, small particle size, and cryoprotectant-free freeze drying. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay indicated that the HCPT-NSps had a significantly higher cytotoxicity than HCPT injections, with 3.77 times lower IC50 value against HepG2 cells and 14.1 times lower IC50 value against MCF-7 cells. An in vivo study in H22 tumor-bearing mice after intravenous injection of HCPT-NSps demonstrated that HCPT-NSps significantly improved the antitumor efficacy compared to the commercially available HCPT injections (86.38% vs 34.97%) at the same dose of 5 mg/kg. Even at 1/4 of the dose, HCPT-NSps could also achieve a similar antitumor efficacy to that of HCPT injections. mPEG1000-HCPT may be a highly efficient stabilizer able to provide camptothecin-based drugs, and probably other antitumor agents containing aromatic structure, with unique nanosuspensions or nanocrystals for improved in vivo therapeutic efficacy.
Collapse
Affiliation(s)
- Linjie Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Jingyi Hong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Jing Di
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yifei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Meihua Han
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Meifeng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiangtao Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
33
|
Abstract
The drug camptothecin has a wide range of antitumor effects in cancers including gastric cancer, rectal and colon cancer, liver cancer, and lung cancer. Camptothecin-based drugs inhibit topoisomerase 1 (Topo 1), leading to destruction of DNA, and are currently being used as important chemotherapeutic agents in clinical antitumor treatment. However, the main obstacle associated with cancer therapy is represented by systemic toxicity of conventional anticancer drugs and their low accumulation at the tumor site. In addition, low bioavailability, poor water solubility, and other shortcomings hinder their anticancer activity. Different from traditional pharmaceutical preparations, nanotechnology-dependent nanopharmaceutical preparations have become one of the main strategies for different countries worldwide to overcome drug development problems. In this review, we summarized the current hotspots and discussed a variety of camptothecin-based nanodrugs for cancer therapy. We hope that through this review, more efficient drug delivery systems could be designed with potential applications in clinical cancer therapy.
Collapse
Affiliation(s)
- Yan Wen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingze Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xinhe Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhongxiao Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xingjie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Croitoru-Sadger T, Leichtmann-Bardoogo Y, Mizrahi B. A flexible polymersome system with tunable morphology and release profiles for efficient intracellular delivery. Int J Pharm 2016; 508:34-41. [DOI: 10.1016/j.ijpharm.2016.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/10/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023]
|
35
|
Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf B Biointerfaces 2016; 145:319-327. [PMID: 27209384 DOI: 10.1016/j.colsurfb.2016.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Annonaceous acetogenins (ACGs) have exhibited antitumor activity against various cancers. However, these substances' poor solubility has limited clinical applications. In this study, hydroxypropyl-beta-cyclodextrin (HP-β-CD) and soybean lecithin (SPC) were self-assembled into an amphiphilic complex. ACGs nanosuspensions (ACGs-NSps) were prepared with a mean particle size of 144.4nm, a zeta potential of -22.9mV and a high drug payload of 46.17% using this complex as stabilizer. The ACGs-NSps demonstrated sustained release in vitro and good stability in plasma as well as simulated gastrointestinal fluid, and met the demand of both intravenous injection and oral administration. The ACGs-NSps demonstrated significantly increased cytotoxicity against Hela and HepG2 cancer cell lines compared to ACGs in solution (in vitro cytotoxicity assay). An in vivo study with H22-tumor bearing mice demonstrated that nanosuspensions significantly improved ACGs' antitumor activity. When orally administered, ACGs-NSps achieved a similar tumor inhibition rate at 1/10th the dose of ACGs in an oil solution (47.94% vs. 49.74%, p>0.05). Improved therapeutic efficacy was further achieved when the ACGs-NSps were intravenously injected into mice (70.31%). With the help of nanosuspension technology, ACGs may be an effective antitumor drug for clinic use.
Collapse
|
36
|
Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, Chu L, Gao H, Li C, Kong D, Liu Q, Liu J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 2016; 6:21225. [PMID: 26876480 PMCID: PMC4753416 DOI: 10.1038/srep21225] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Ample attention has focused on cancer drug delivery via prodrug nanoparticles due to their high drug loading property and comparatively lower side effects. In this study, we designed a PEG-DOX-Cur prodrug nanoparticle for simultaneous delivery of doxorubicin (DOX) and curcumin (Cur) as a combination therapy to treat cancer. DOX was conjugated to PEG by Schiff's base reaction. The obtained prodrug conjugate could self-assemble in water at pH 7.4 into nanoparticles (PEG-DOX NPs) and encapsulate Cur into the core through hydrophobic interaction (PEG-DOX-Cur NPs). When the PEG-DOX-Cur NPs are internalized by tumor cells, the Schiff's base linker between PEG and DOX would break in the acidic environment that is often observed in tumors, causing disassembling of the PEG-DOX-Cur NPs and releasing both DOX and Cur into the nuclei and cytoplasma of the tumor cells, respectively. Compared with free DOX, free Cur, free DOX-Cur combination, or PEG-DOX NPs, PEG-DOX-Cur NPs exhibited higher anti-tumor activity in vitro. In addition, the PEG-DOX-Cur NPs also showed prolonged blood circulation time, elevated local drug accumulation and increased tumor penetration. Enhanced anti-tumor activity was also observed from the PEG-DOX-Cur-treated animals, demonstrating better tumor inhibitory property of the NPs. Thus, the PEG-DOX-Cur prodrug nanoparticle system provides a simple yet efficient approach of drug delivery for chemotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Honglin Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College. Tianjin 300192, P.R. China
| |
Collapse
|
37
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
38
|
Chen MX, Li T, Peng S, Tao D. Supramolecular nanocapsules from the self-assembly of amphiphilic calixarene as a carrier for paclitaxel. NEW J CHEM 2016. [DOI: 10.1039/c6nj01986b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic calixarene was synthesized as a supramolecular vesicle for paclitaxel with sustained release behavior and enhanced anticancer activity.
Collapse
Affiliation(s)
- Meng-Xia Chen
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| | - Ting Li
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| | - Song Peng
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| | - Dan Tao
- Anhui Institute of Medical Information
- Hefei 230061
- P. R. China
| |
Collapse
|
39
|
Wang S, Deng H, Huang P, Sun P, Huang X, Su Y, Zhu X, Shen J, Yan D. Real-time self-tracking of an anticancer small molecule nanodrug based on colorful fluorescence variations. RSC Adv 2016. [DOI: 10.1039/c5ra24273h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A self-tracking drug delivery system was constructed using two anticancer drugs, resulting in colorful fluorescence variations during drug delivery.
Collapse
Affiliation(s)
- Siteng Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Ping Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Pei Sun
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210046
| | - Yue Su
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210046
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
40
|
Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J, Wang PC, Liang XJ. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:269-86. [PMID: 26707818 DOI: 10.1016/j.nano.2015.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Multidrug resistance is one of the biggest obstacles in the treatment of cancer. Recent research studies highlight that tumor microenvironment plays a predominant role in tumor cell proliferation, metastasis, and drug resistance. Hence, targeting the tumor microenvironment provides a novel strategy for the evolution of cancer nanomedicine. The blooming knowledge about the tumor microenvironment merging with the design of PEG-based amphiphilic nanoparticles can provide an effective and promising platform to address the multidrug resistant tumor cells. This review describes the characteristic features of tumor microenvironment and their targeting mechanisms with the aid of PEG-based amphiphilic nanoparticles for the development of newer drug delivery systems to overcome multidrug resistance in cancer cells. FROM THE CLINICAL EDITOR Cancer is a leading cause of death worldwide. Many cancers develop multidrug resistance towards chemotherapeutic agents with time and strategies are urgently needed to combat against this. In this review article, the authors discuss the current capabilities of using nanomedicine to target the tumor microenvironments, which would provide new insight to the development of novel delivery systems for the future.
Collapse
Affiliation(s)
- Shizhu Chen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Keni Yang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Ruslan G Tuguntaev
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Anbu Mozhi
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, PR China.
| | - Paul C Wang
- Fu Jen Catholic University, Taipei, Taiwan; Laboratory of Molecular Imaging, Department of Radiology, Howard University, WA, DC, USA
| | - Xing-Jie Liang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China.
| |
Collapse
|
41
|
Wang H, Yin H, Yan F, Sun M, Du L, Peng W, Li Q, Feng Y, Zhou Y. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance. Oncotarget 2015; 6:2827-42. [PMID: 25605018 PMCID: PMC4413620 DOI: 10.18632/oncotarget.3090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023] Open
Abstract
Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/ Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers.
Collapse
Affiliation(s)
- He Wang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Henghui Yin
- Center of Breast Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fengjiao Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingna Sun
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingran Du
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Peng
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuli Li
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinghong Feng
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Yi Zhou
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Zhou Z, Murdoch WJ, Shen Y. Synthesis of an esterase-sensitive degradable polyester as facile drug carrier for cancer therapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhuxian Zhou
- Department of Chemical and Biological Engineering, Center for Bionanoengineering and State Key Laboratory for Chemical Engineering; Zhejiang University; Hangzhou 310027 China
- Department of Chemical and Petroleum Engineering; University of Wyoming; Laramie Wyoming 82071
| | - William J. Murdoch
- Department of Animal Science; University of Wyoming; Laramie Wyoming 82071
| | - Youqing Shen
- Department of Chemical and Biological Engineering, Center for Bionanoengineering and State Key Laboratory for Chemical Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
43
|
Song ZL, Chen HL, Wang YH, Goto M, Gao WJ, Cheng PL, Morris-Natschke SL, Liu YQ, Zhu GX, Wang MJ, Lee KH. Design and synthesis of novel PEG-conjugated 20(S)-camptothecin sulfonylamidine derivatives with potent in vitro antitumor activity via Cu-catalyzed three-component reaction. Bioorg Med Chem Lett 2015; 25:2690-3. [PMID: 25987370 PMCID: PMC4768722 DOI: 10.1016/j.bmcl.2015.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
Abstract
In our continuing search for camptothecin (CPT)-derived antitumor drugs, novel structurally diverse PEG-based 20(S)-CPT sulfonylamidine derivatives were designed, synthesized via a Cu-multicomponent reaction (MCR), and evaluated for cytotoxicity against four human tumor cell lines (A-549, MDA-MB-231, KB, and KBvin). All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, and were more potent than irinotecan. Significantly, these derivatives exhibited comparable cytotoxicity against KBvin, while irinotecan was less active against this cell line. With a concise efficient synthesis and potent cytotoxic profiles, especially significant activity towards KBvin, these compounds merit further development as a new generation of CPT-derived PEG-conjugated drug candidates.
Collapse
Affiliation(s)
- Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Hai-Le Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Han Wang
- School of Medicine, Shandong University, Jinan 250012, PR China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Wen-Jing Gao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Pi-Le Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Gao-Xiang Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Mei-Juan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
44
|
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 2015; 87:108-19. [PMID: 25666164 DOI: 10.1016/j.addr.2015.01.007] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/23/2022]
Abstract
The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment.
Collapse
|
45
|
Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015. [PMID: 25701040 DOI: 10.1016/j.biomaterials] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization-Pluronic F127 and chitosan-for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (∼268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 μm, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step-fabricated, dual-surface-functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Na Wei
- Department of Chemistry, Georgia State University, Atlanta, 30302, USA
| | - Mark T Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Yunjin Jung
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
46
|
Amphiphilic p-sulfonatocalix[4]arene as "drug chaperone" for escorting anticancer drugs. Sci Rep 2015; 5:9019. [PMID: 25761778 PMCID: PMC4356970 DOI: 10.1038/srep09019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
Supramolecularly constructing multifunctional platform for drug delivery is a challenging task. In this work, we propose a novel supramolecular strategy “drug chaperone”, in which macrocyclic amphiphiles directly coassemble with cationic drugs into a multifunctional platform and its surface is further decorated with targeting ligands through host–guest recognition. The coassembling and hierarchical decoration processes were monitored by optical transmittance measurements, and the size and morphology of amphiphilic coassemblies were identified by dynamic light scattering and high-resolution transmission electron microscopy. In cell experiments to validate the drug chaperone strategy, the anticancer activities of free drugs were pronouncedly improved by coassembling with amphiphilic chaperone and further functionalization with targeting ligand.
Collapse
|
47
|
Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015; 48:147-60. [PMID: 25701040 DOI: 10.1016/j.biomaterials.2015.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/03/2015] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization-Pluronic F127 and chitosan-for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (∼268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 μm, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step-fabricated, dual-surface-functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Na Wei
- Department of Chemistry, Georgia State University, Atlanta, 30302, USA
| | - Mark T Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Yunjin Jung
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
48
|
Laskar P, Saha B, Ghosh SK, Dey J. PEG based random copolymer micelles as drug carriers: the effect of hydrophobe content on drug solubilization and cytotoxicity. RSC Adv 2015. [DOI: 10.1039/c4ra11479e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effect of hydrophobe content on PEG based random polymeric micelles as drug carriers: a comparative study.
Collapse
Affiliation(s)
- Partha Laskar
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721 302
- India
| | - Biswajit Saha
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur-721 302
- India
| | - Sudip Kumar Ghosh
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur-721 302
- India
| | - Joykrishna Dey
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721 302
- India
| |
Collapse
|
49
|
Zhang H, Wang K, Cheng X, Lu Y, Zhang Q. Synthesis and In vitrocytotoxicity of poly(ethylene glycol)-epothilone B conjugates. J Appl Polym Sci 2014. [DOI: 10.1002/app.41123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyan Zhang
- School of Pharmacy; Central South University; Changsha People's Republic of China
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Kun Wang
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Xiaochen Cheng
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Yuxin Lu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Qinglin Zhang
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| |
Collapse
|
50
|
Laskar P, Samanta S, Ghosh SK, Dey J. In vitro evaluation of pH-sensitive cholesterol-containing stable polymeric micelles for delivery of camptothecin. J Colloid Interface Sci 2014; 430:305-14. [DOI: 10.1016/j.jcis.2014.05.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
|