1
|
Zhang M, Liang J, Liang Y, Li X, Wu W. Efficient delivery of curcumin by functional solid lipid nanoparticles with promoting endosomal escape and liver targeting properties. Colloids Surf B Biointerfaces 2024; 244:114177. [PMID: 39217729 DOI: 10.1016/j.colsurfb.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In the realm of intracellular drug delivery, overcoming the barrier of endosomal entrapment stands as a critical factor influencing the effectiveness of nanodrug delivery systems. This study focuses on the synthesis of an acid-sensitive fatty acid derivative called imidazole-stearic acid (IM-SA). Leveraging the proton sponge effect attributed to imidazole groups, IM-SA was anticipated to play a pivotal role in facilitating endosomal escape. Integrated into the lipid core of solid lipid nanoparticles (SLNs), IM-SA was paired with hyaluronic acid (HA) coating on the surface of SLNs loading with curcumin (CUR). The presence of IM-SA and HA endowed HA-IM-SLNs@CUR with dual functionalities, enabling the promotion of endosomal escape, and specifical targeting of liver cancer. HA-IM-SLNs@CUR exhibited a particle size of ∼228 nm, with impressive encapsulation efficiencies (EE) of 87.5 % ± 2.3 % for CUR. Drugs exhibit significant pH sensitive release behavior. Cellular experiments showed that HA-IM-SLN@CUR exhibits enhanced drug delivery capability. The incorporation of IM-SA significantly improved the endosomal escape of HA-IM-SLN@CUR, facilitating accelerated intracellular drug release and increasing intracellular drug concentration, exhibiting excellent growth inhibitory effects on HepG2 cells. Animal experiments revealed a 3.4-fold increase in CUR uptake at the tumor site with HA-IM-SLNs@CUR over the free CUR, demonstrating remarkable tumor homing potential with the tumor growth inhibition rate of 97.2 %. These findings indicated the significant promise of HA-IM-SLNs@CUR in the realm of cancer drug delivery.
Collapse
Affiliation(s)
- Mengyi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuening Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Al-Shadidi JRMH, Al-Shammari S, Al-Mutairi D, Alkhudhair D, Thu HE, Hussain Z. Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies. Int J Nanomedicine 2024; 19:8373-8400. [PMID: 39161363 PMCID: PMC11332424 DOI: 10.2147/ijn.s472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.
Collapse
Affiliation(s)
- Jafar R M H Al-Shadidi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shahad Al-Shammari
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Danah Al-Mutairi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dalal Alkhudhair
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor Branch, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
3
|
Misaizu R, Endo-Takahashi Y, Nirasawa K, Negishi Y, Asayama S. Diffusive delivery of plasmid DNA using zwitterionic carboxyalkyl poly(1-vinylimidazole) into skeletal muscle in vivo. Biomater Sci 2024; 12:3947-3955. [PMID: 38949480 DOI: 10.1039/d4bm00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Zwitterionic carboxyalkyl poly(1-vinylimidazole) (CA-PVIm) polymers with imidazolium cations and carboxylate anions have been synthesized as a carrier for the in vivo delivery of plasmid DNA (pDNA) to skeletal muscle. From differential scanning calorimetry measurements, resulting CA-PVIm had intermediate water in hydration water as a biocompatible polymer. Notably, when the pDNA and resulting CA-PVIm were mixed, slight retarded bands of the pDNA were observed in agarose gel electrophoresis, suggesting the polyion complex (PIC) formation between the pDNA and CA-PVIm despite zwitterionic polymers. Resulting PICs maintained the higher-order structure of the pDNA. Using resulting pDNA PICs, the highest pDNA expression by intramuscular injection was achieved in the PIC with 7 mol% carboxymethylated PVIm, that is, CA1(7)-PVIm, observed in a widespread area by in vivo imaging system. These results suggest that the CA1(7)-PVIm/pDNA PIC is effective for the diffusive delivery of the pDNA into skeletal muscle for the treatment of serious muscle diseases.
Collapse
Affiliation(s)
- Ren Misaizu
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Yoko Endo-Takahashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Nirasawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
4
|
Wang X, Wang WX. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS NANO 2024; 18:13308-13321. [PMID: 38716827 DOI: 10.1021/acsnano.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Cao J, Zhu C, Cao Z, Ke X. CPPs-modified chitosan as permeability-enhancing chemotherapeutic combined with gene therapy nanosystem by thermosensitive hydrogel for the treatment of osteosarcoma. Int J Biol Macromol 2024; 267:130915. [PMID: 38561118 DOI: 10.1016/j.ijbiomac.2024.130915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chemotherapy resistance of osteosarcoma (OS) is still the crux of poor clinical curative effect.E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin resistance in OS, which ultimately mediated DNA damage tolerance and led to a poor prognosis and chemotherapy response in patients. METHODS In this study, doxorubicin was loaded in the process of Fe2+ and siRad18 forming nanoparticles(FSD) through coordination, chitosan modified with cell penetrating peptide (H6R6) was synthesized and coated on the surface of the NPs(FSD-CHR). FSD-CHR was then dispersed in thermosensitive hydrogel(PPP) for peritumoral injection of osteosarcoma in situ. Subsequently, the physicochemical properties and molecular biological characteristics of the drug delivery system were characterized. Finally, an osteosarcoma model was established to study the anti-tumor effects of multifunctional nanoparticles and the immunotherapy effect combined with αPD-L1. RESULTS FSD-CHR has enhanced tumor tissue permeability, siRad18 can significantly reduce Dox-mediated DNA damage tolerance and enhance anti-tumor effects, and iron-based NPs show enhanced ROS upregulation. FSD-CHR@PPP showed significant inhibition of osteosarcoma growth in vivo and a reduced incidence of lung metastasis. In addition, siRad18 was unexpectedly found to enhance Dox-mediated immunogenic cell death (ICD).FSD-CHR@PPP combined with PD-L1 blocking significantly enhanced anti-tumor effects due to decreased PD-L1 enrichment. CONCLUSION Hydrogel encapsulation of permeable nanoparticles provides an effective strategy for doxorubicin-resistant OS, showing that gene therapy blocking DNA damage tolerance can enhance treatment response to chemotherapy and appears to enhance the effect of ICD inducers to activate the immune system.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Chenghong Zhu
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Ziqi Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Xue Ke
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China.
| |
Collapse
|
6
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024; 16:AD.2024.0206-1. [PMID: 38421835 PMCID: PMC11745437 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Jiang Y, Chiu TP, Mitra R, Rohs R. Probing the role of the protonation state of a minor groove-linker histidine in Exd-Hox-DNA binding. Biophys J 2024; 123:248-259. [PMID: 38130056 PMCID: PMC10808038 DOI: 10.1016/j.bpj.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
DNA recognition and targeting by transcription factors (TFs) through specific binding are fundamental in biological processes. Furthermore, the histidine protonation state at the TF-DNA binding interface can significantly influence the binding mechanism of TF-DNA complexes. Nevertheless, the role of histidine in TF-DNA complexes remains underexplored. Here, we employed all-atom molecular dynamics simulations using AlphaFold2-modeled complexes based on previously solved co-crystal structures to probe the role of the His-12 residue in the Extradenticle (Exd)-Sex combs reduced (Scr)-DNA complex when binding to Scr and Ultrabithorax (Ubx) target sites. Our results demonstrate that the protonation state of histidine notably affected the DNA minor-groove width profile and binding free energy. Examining flanking sequences of various binding affinities derived from SELEX-seq experiments, we analyzed the relationship between binding affinity and specificity. We uncovered how histidine protonation leads to increased binding affinity but can lower specificity. Our findings provide new mechanistic insights into the role of histidine in modulating TF-DNA binding.
Collapse
Affiliation(s)
- Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California; Department of Chemistry, University of Southern California, Los Angeles, California; Department of Physics and Astronomy, University of Southern California, Los Angeles, California; Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, California.
| |
Collapse
|
8
|
Pei P, Chen L, Fan R, Zhou XR, Feng S, Liu H, Guo Q, Yin H, Zhang Q, Sun F, Peng L, Wei P, He C, Qiao R, Wang Z, Luo SZ. Computer-Aided Design of Lasso-like Self-Assembling Anticancer Peptides with Multiple Functions for Targeted Self-Delivery and Cancer Treatments. ACS NANO 2022; 16:13783-13799. [PMID: 36099446 DOI: 10.1021/acsnano.2c01014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticancer peptides are promising drug candidates for cancer treatment, but the short circulation time and low delivery efficiency limit their clinical applications. Herein, we designed several lasso-like self-assembling anticancer peptides (LASAPs) integrated with multiple functions by a computer-aided approach. Among these LASAPs, LASAP1 (CRGDKGPDCGKAFRRFLGALFKALSHLL, 1-9 disulfide bond) was determined to be superior to the others because it can self-assemble into homogeneous nanoparticles and exhibits improved stability in serum. Thus, LASAP1 was chosen for proving the design idea. LASAP1 can self-assemble into nanoparticles displaying iRGD on the surface because of its amphiphilic structure and accumulate to the tumor site after injection because of the EPR effect and iRGD targeting to αVβ3 integrin. The nanoparticles could disassemble in the acidic microenvironment of the solid tumor, and cleaved by the overexpressed hK2, which was secreted by prostate tumor cells, to release the effector peptide PTP-7b (FLGALFKALSHLL), which was further activated by the acidic pH. Therefore, LASAP1 could target the orthotopic prostate tumor in the model mice after intraperitoneal injection and specifically inhibit tumor growth, with low systematic toxicity. Combining the multiple targeting functions, LASAP1 represents a promising design of self-delivery of peptide drugs for targeted cancer treatments.
Collapse
Affiliation(s)
- Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruru Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xi-Rui Zhou
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, P.R. China
| | - Shan Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hangrui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Quanqiang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiwei Yin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Peng Wei
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Renzhong Qiao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
9
|
Design of Smart Nanodiamonds: Introducing pH Sensitivity to Improve Nucleic Acid Carrier Efficiency of Diamoplexes. Pharmaceutics 2022; 14:pharmaceutics14091794. [PMID: 36145542 PMCID: PMC9501119 DOI: 10.3390/pharmaceutics14091794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
The mechanism of cellular uptake and intracellular fate of nanodiamond/nucleic acid complexes (diamoplexes) are major determinants of its performance as a gene carrier. Our group designed lysine-nanodiamonds (K-NDs) as vectors for nucleic acid delivery. In this work, we modified the surface of K-NDs with histidine to overcome endo-lysosomal entrapment diamoplexes, the major rate limiting step in gene transfer. Histidine is conjugated onto the NDs in two configurations: lysyl-histidine-NDs (HK-NDs) where histidine is loaded on 100% of the lysine moieties and lysine/lysyl-histidine-NDs (H50K50-NDs) where histidine is loaded on 50% of the lysine moieties. Both HK-NDs and H50K50-NDs maintained the optimum size distribution (i.e., <200 nm) and a cationic surface (zeta potential > 20 mV), similar to K-NDs. HK-NDs binds plasmid deoxyribonucleic acid (pDNA) and small interfering ribonucleic acid (siRNA) forming diamoplexes at mass ratios of 10:1 and 60:1, respectively. H50K50-NDs significantly improved nucleic acid binding, forming diamoplexes at a 2:1 mass ratio with pDNA and a 30:1 mass ratio with siRNA, which are at values similar to the K-NDs. The amount of histidine on the surface also impacted the interactions with mammalian cells. The HK-NDs reduced the cell viability by 30% at therapeutic concentrations, while H50K50-NDs maintained more than 90% cell viability, even at the highest concentrations. H50K50-NDs also showed highest cellular uptake within 24 h, followed by K-NDs and HK-NDs. Most functionalized NDs show cellular exit after 5 days, leaving less than 10% of cells with internalized diamonds. The addition of histidine to the ND resulted in higher transfection of anti-green fluorescent protein siRNA (anti-GFP siRNA) with the fraction of GFP knockdown being 0.8 vs. 0.6 for K-NDs at a mass ratio of 50:1. H50K50-NDs further improved transfection by achieving a similar fraction of GFP knockdown (0.8) at a lower mass ratio of 30:1. Overall, this study provides evidence that the addition of histidine, a pH-modulating entity in the functionalization design at an optimized ratio, renders high efficiency to the diamoplexes. Further studies will elucidate the uptake mechanism and intracellular fate to build the relationship between physicochemical characteristics and biological efficacy and create a platform for solid-core nanoparticle-based gene delivery.
Collapse
|
10
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
11
|
Chitosan nanoparticles synthesis and surface modification using histidine/ polyethylenimine and evaluation of their gene transfection efficiency in breast cancer cells. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J Control Release 2021; 339:248-258. [PMID: 34563592 DOI: 10.1016/j.jconrel.2021.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023]
Abstract
In recent years, protein engineering efforts have yielded a diverse set of binding proteins that hold promise for various therapeutic applications. Despite this, their inability to reach intracellular targets limits their applications to cell surface or soluble targets. To address this challenge, we previously reported a protein carrier that binds antibodies and delivers them to therapeutic targets inside cancer cells. This carrier, known as the Hex carrier, is comprised of a self-assembling coiled coil hexamer at the core, with each alpha helix fused to a linker, an antibody binding domain, and a six Histidine-tag (His-tag). In this work, we designed different versions of the carrier to determine the role of each building block in cytosolic protein delivery. We found that increasing exposure of the Hex coiled coil on the carriers, through molecular design or removing antibodies, increased internalization, pointing to a role of the coiled coil in promoting endocytosis. We observed a clear increase in endosomal disruption events when His-tags were present on the carrier relative to when they were removed, due to an endosomal buffering effect. Finally, we found that the antibody binding domains of the Hex carrier could be replaced with monomeric ultra-stable GFP for intracellular delivery and endosomal escape. Our results demonstrate that the Hex coiled coil, in conjunction with His-tags, could be a generalizable vehicle for delivering small and large proteins to intracellular targets. This work also highlights new biological applications for oligomeric coiled coils and shows the direct and quantifiable impact of histidine residues on endosomal disruption. These findings could inform the design of future drug delivery vehicles in applications beyond intracellular protein delivery.
Collapse
|
13
|
Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021; 13:1686. [PMID: 34683979 PMCID: PMC8540112 DOI: 10.3390/pharmaceutics13101686] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications.
Collapse
Affiliation(s)
| | | | | | | | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada; (N.A.); (R.R.); (P.P.); (G.C.)
| |
Collapse
|
14
|
Drescher D, Büchner T, Schrade P, Traub H, Werner S, Guttmann P, Bachmann S, Kneipp J. Influence of Nuclear Localization Sequences on the Intracellular Fate of Gold Nanoparticles. ACS NANO 2021; 15:14838-14849. [PMID: 34460234 DOI: 10.1021/acsnano.1c04925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Directing nanoparticles to the nucleus by attachment of nuclear localization sequences (NLS) is an aim in many applications. Gold nanoparticles modified with two different NLS were studied while crossing barriers of intact cells, including uptake, endosomal escape, and nuclear translocation. By imaging of the nanoparticles and by characterization of their molecular interactions with surface-enhanced Raman scattering (SERS), it is shown that nuclear translocation strongly depends on the particular incubation conditions. After an 1 h of incubation followed by a 24 h chase time, 14 nm gold particles carrying an adenoviral NLS are localized in endosomes, in the cytoplasm, and in the nucleus of fibroblast cells. In contrast, the cells display no nanoparticles in the cytoplasm or nucleus when continuously incubated with the nanoparticles for 24 h. The ultrastructural and spectroscopic data indicate different processing of NLS-functionalized particles in endosomes compared to unmodified particles. NLS-functionalized nanoparticles form larger intraendosomal aggregates than unmodified gold nanoparticles. SERS spectra of cells with NLS-functionalized gold nanoparticles contain bands assigned to DNA and were clearly different from those with unmodified gold nanoparticles. The different processing in the presence of an NLS is influenced by a continuous exposure of the cells to nanoparticles and an ongoing nanoparticle uptake. This is supported by mass-spectrometry-based quantification that indicates enhanced uptake of NLS-functionalized nanoparticles compared to unmodified particles under the same conditions. The results contribute to the optimization of nanoparticle analysis in cells in a variety of applications, e.g., in theranostics, biotechnology, and bioanalytics.
Collapse
Affiliation(s)
- Daniela Drescher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Tina Büchner
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Petra Schrade
- Core Facility für Elektronenmikroskopie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Heike Traub
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Stephan Werner
- Department of X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Peter Guttmann
- Department of X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Sebastian Bachmann
- Core Facility für Elektronenmikroskopie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Anatomy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
15
|
Mudarisova RK, Kukovinets OS, Kolesov SV. Copper(II) Complexes with Apple Pectin Modified with L-Histidine and L-Phenylalanine. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221080156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Dousti F, Soleimanbeigi M, Mirian M, Varshosaz J, Hassanzadeh F, Kasesaz Y, Rostami M. Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line. Pharm Dev Technol 2021; 26:899-909. [PMID: 34266344 DOI: 10.1080/10837450.2021.1955927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nanotechnology has revolutionized drug delivery in cancer treatment. In this study, novel efficient pH-responsive boron phenylalanine (BPA) targeted nanoparticles (NPs) based on ionic liquid modified chitosan have been introduced for selective mitoxantrone (MTO) delivery to the U87MG glioma cells. Urocanic acid (UA) and imidazolium (Im) based ionic liquids were used for structural modification simultaneously. The NPs were prepared by ionic gelation and fully characterized; the pH-responding and swelling index of NPs were studied carefully. The drug release was studied at a pH of 5.5 in comparison to the neutral state. Also, the cytotoxicity of loaded NPs was evaluated on U87MG glial cells, and cellular uptake was studied. The NPs were smaller than 250 nm, with a spherical pattern and acceptable uniformity with a zeta potential around +20 mV. The loading efficacy was about 85%, and most of the loaded MTO released at a pH of 5.5 after 48 h with a swelling-controlled mechanism. The NPs showed a relatively lower IC50 than the free MTO, and the BPA-targeted NPs have lower IC50 and better cellular uptake than non-targeted NPs in U87MG cells. More studies on this promising formula are on the way, and the results will be published soon.
Collapse
Affiliation(s)
- Fatemeh Dousti
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Soleimanbeigi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Kasesaz
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Zheng H, Li J, Ning F, Wijaya W, Chen Y, Xiao J, Cao Y, Huang Q. Improving in vitro bioaccessibility and bioactivity of carnosic acid using a lecithin-based nanoemulsion system. Food Funct 2021; 12:1558-1568. [PMID: 33459742 DOI: 10.1039/d0fo02636k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a phenolic terpenoid, carnosic acid (CA) mainly exists in rosemary, which can be effectively used for the treatment of degenerative and chronic diseases by taking advantage of its health-promoting bioactivities. However, the low solubility and dissolution of CA in aqueous solutions at ambient and body temperatures result in low stability and bioaccessibility during the digestion process, which limits its application scope in the functional foods industry. In this regard, a lecithin based nanoemulsion system (CA-NE) is employed in the present work to enhance the bioaccessibility and bioactivities of CA. It is revealed that the CA-NE under investigation exhibits high loading capacity (2.80 ± 0.15%), small particle size (172.0 ± 3.5 nm) with homogeneous particle distribution (polydispersity index (PDI) of 0.231± 0.025) and high repulsive force (zeta potential = -57.2 ± 0.24 mV). More importantly, the bioaccessibility of CA-NE is improved by 2.8-fold compared to that of CA in MCT oil. In addition, the cellular antioxidant assay (CAA) and cellular uptake study of the CA-NE in HepG2 cell models demonstrate a longer endocytosis process, suggesting the well-controlled release of CA from CA-NE. Furthermore, an improved anti-inflammatory activity was evaluated via the inhibition of the pro-inflammatory cytokines, nitric oxide (NO) and TNF-α production in LPS-stimulated RAW 264.7 macrophage cells. The results clearly demonstrated a promising application of CA-NE as a functional food.
Collapse
Affiliation(s)
- Huijuan Zheng
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Fangjian Ning
- State Key Laboratory of Food Science and Technology, College of Food Science, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Wahyu Wijaya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
18
|
Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic Gelation of Chitosan Flat Structures and Potential Applications. Molecules 2021; 26:660. [PMID: 33513925 PMCID: PMC7865838 DOI: 10.3390/molecules26030660] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
The capability of some polymers, such as chitosan, to form low cost gels under mild conditions is of great application interest. Ionotropic gelation of chitosan has been used predominantly for the preparation of gel beads for biomedical application. Only in the last few years has the use of this method been extended to the fabrication of chitosan-based flat structures. Herein, after an initial analysis of the major applications of chitosan flat membranes and films and their usual methods of synthesis, the process of ionotropic gelation of chitosan and some recently proposed novel procedures for the synthesis of flat structures are presented.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy;
| | - Seidy Pedroso-Santana
- Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, 4030000 Concepción, Chile;
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi, Delhi 110021, India;
| | - Nicolas Joly
- Unité Transformations & Agroressources, Université d’Artois—UniLasalle, ULR7519, F-62408 Béthune, France; (N.J.); (P.M.)
| | - Patrick Martin
- Unité Transformations & Agroressources, Université d’Artois—UniLasalle, ULR7519, F-62408 Béthune, France; (N.J.); (P.M.)
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
19
|
Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002197. [PMID: 33051905 DOI: 10.1002/adma.202002197] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Nanomedicine is extensively employed for cancer treatment owing to its unique advantages over conventional drugs and imaging agents. This increased attention to nanomedicine, however, has not fully translated into clinical utilization and patient benefits due to issues associated with reticuloendothelial system clearance, tumor heterogeneity, and complexity of the tumor microenvironment. To address these challenges, efforts are being made to modify the design of nanomedicines, including optimization of their physiochemical properties, active targeting, and response to stimuli, but these studies are often performed independently. Combining favorable nanomedicine designs from individual studies may improve therapeutic outcomes, but, this is difficult to achieve as the effects of different designs are interconnected and often conflicting. Glycol chitosan nanoparticles (CNPs) are shown to accumulate in tumors, suggesting that this type of nanoparticle may constitute a good basis for the additional modification of nanoparticles. Here, multifunctional glycol CNPs designed to overcome multiple obstacles to their use are described and key factors influencing in vivo targeted delivery, targeting strategies, and interesting stimulus-responsive designs for improving cancer nanomedicine are discussed.
Collapse
Affiliation(s)
- Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
20
|
Tsai MF, Lo YL, Huang YC, Yu CC, Wu YT, Su CH, Wang LF. Multi-Stimuli-Responsive DOX Released from Magnetosome for Tumor Synergistic Theranostics. Int J Nanomedicine 2020; 15:8623-8639. [PMID: 33177822 PMCID: PMC7652232 DOI: 10.2147/ijn.s275655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background To improve responses to tumor microenvironments for achieving a better therapeutic outcome in combination cancer therapy, poly(ε-caprolactone)-SS-poly(methacrylic acid) diblock copolymer (PCL-SS-PMAA) with a disulfide linkage between the hydrophobic and hydrophilic junctions was synthesized. Materials and Methods Repeating units of PCL and PMAA in PCL-SS-PMAA were controlled and formulated into polymersomes (PSPps). Truncated octahedral Fe3O4 nanoparticles (IONPs) were synthesized and encapsulated to produce IONPs-PSPps NPs and doxorubicin (DOX) was further loaded to produce IONPs-PSPps@DOX NPs for theranostic applications. Results IONPs-PSPps NPs remained a superparamagnetic property with a saturation magnetization value of 85 emu⋅gFe3O4 -1 and a relaxivity value of 180 mM-1⋅s-1. Upon exposure to an alternating magnetic field (AMF), IONPs-PSPps NPs increased temperature from 25°C to 54°C within 15 min. Among test groups, the cell apoptosis was greatest in the group exposed to IONPs-PSPps@DOX NPs with AMF and magnet assistance. In vivo T2-weighted magnetic resonance images of A549 tumor-bearing mice also showed highest contrast and greatest tumor suppression in the tumor with AMF and magnet assistance. Conclusion IONPs-PSPps@DOX NPs are a potential theranostic agent having multifaceted applications involving magnetic targeting, MRI diagnosis, hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Ming-Fong Tsai
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuan-Chun Huang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
21
|
Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2020; 198:111443. [PMID: 33203600 DOI: 10.1016/j.colsurfb.2020.111443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Combining dual drugs in one vehicle to cancer cells offers spatiotemporal localization of drug at the site of action, leading to synergistic therapeutic effects and reduced side effects. To improve pH/redox responsiveness to the tumor microenvironments for cancer therapy, a pH/redox-responsive micelle based on poly(ε-caprolactone)-SS-poly(methacrylic acid) (PCL-SS-PMAA) diblock copolymer was fabricated for dual drug delivery. The PCL-SS-PMAA was formulated into a core-shell micelle (PSPm) in an aqueous solution. The critical micelle concentration (CMC) values of PSPm were 7.94 × 10-3 mg mL-1 at pH 5.0 and 1.00 × 10-2 mg mL-1 at pH 7.4. The hydrodynamic diameters of PSPm were within 210-270 nm, depending on pH values. Changes in morphology and size of PSPm were clearly observed before and after exposure to a reducing agent. Paclitaxel (PTX) was encapsulated into the core and cisplatin (CDDP) was chelated on the shell of PSPm, with both PTX and CDDP being efficiently released from PSPm in the presence of a reducing agent in an acid condition. MTT and annexin V/propidium iodide dual staining results demonstrated that co-loading of CDDP and PTX into PSPm had a synergistic effect in killing lung cancer cells and exerted superior antitumor activity over the combination of single drug-loaded PSPm or the combination of free-CDDP and free-PTX at equivalent drug amounts. Hence, encapsulating the dual drugs into PSPm exhibits a synergistic effect for potential lung cancer therapy.
Collapse
Affiliation(s)
- Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Xiao-Shan Huang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hsuan-Ying Chen
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yuan-Chun Huang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
22
|
Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications. Molecules 2020; 25:molecules25204758. [PMID: 33081296 PMCID: PMC7587607 DOI: 10.3390/molecules25204758] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a polymer that is extensively used to prepare nanoparticles (NPs) with tailored properties for applications in many fields of human activities. Among them, targeted drug delivery, especially when cancer therapy is the main interest, is a major application of chitosan-based NPs. Due to its positive charges, chitosan is used to produce the core of the NPs or to cover NPs made from other types of polymers, both strategies aiming to protect the carried drug until NPs reach the target sites and to facilitate the uptake and drug delivery into these cells. A major challenge in the design of these chitosan-based NPs is the formation of a protein corona (PC) upon contact with biological fluids. The composition of the PC can, to some extent, be modulated depending on the size, shape, electrical charge and hydrophobic / hydrophilic characteristics of the NPs. According to the composition of the biological fluids that have to be crossed during the journey of the drug-loaded NPs towards the target cells, the surface of these particles can be changed by covering their core with various types of polymers or with functionalized polymers carrying some special molecules, that will preferentially adsorb some proteins in their PC. The PC's composition may change by continuous processes of adsorption and desorption, depending on the affinity of these proteins for the chemical structure of the surface of NPs. Beside these, in designing the targeted drug delivery NPs one can take into account their toxicity, initiation of an immune response, participation (enhancement or inhibition) in certain metabolic pathways or chemical processes like reactive oxygen species, type of endocytosis of target cells, and many others. There are cases in which these processes seem to require antagonistic properties of nanoparticles. Products that show good behavior in cell cultures may lead to poor in vivo results, when the composition of the formed PC is totally different. This paper reviews the physico-chemical properties, cellular uptake and drug delivery applications of chitosan-based nanoparticles, specifying the factors that contribute to the success of the targeted drug delivery. Furthermore, we highlight the role of the protein corona formed around the NP in its intercellular fate.
Collapse
|
23
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
24
|
Zhou LY, Zhu YH, Wang XY, Shen C, Wei XW, Xu T, He ZY. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput Struct Biotechnol J 2020; 18:1980-1999. [PMID: 32802271 PMCID: PMC7403891 DOI: 10.1016/j.csbj.2020.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/05/2023] Open
Abstract
Zwitterions consist of equal molar cationic and anionic moieties and thus exhibit overall electroneutrality. Zwitterionic materials include phosphorylcholine, sulfobetaine, carboxybetaine, zwitterionic amino acids/peptides, and other mix-charged zwitterions that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability and low interfacial energy, zwitterionic materials have become ideal choices for designing therapeutic vectors to prevent undesired biosorption especially nonspecific biomacromolecules during circulation, which was termed antifouling capability. And along with their great biocompatibility, low cytotoxicity, negligible immunogenicity, systematic stability and long circulation time, zwitterionic materials have been widely utilized for the delivery of drugs and therapeutic genes. In this review, we first summarized the possible antifouling mechanism of zwitterions briefly, and separately introduced the features and advantages of each type of zwitterionic materials. Then we highlighted their applications in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers and stressed the multifunctional role they played in therapeutic gene delivery.
Collapse
Affiliation(s)
- Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiao-Yu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
25
|
Evaluation of structure transformation and biocompatibility of chitosan in alkali/urea dissolution system for its large-scale application. Int J Biol Macromol 2020; 154:758-764. [DOI: 10.1016/j.ijbiomac.2020.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 01/28/2023]
|
26
|
Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, Shukla R. Recent Advances in Self-Assembled Nanoparticles for Drug Delivery. Curr Drug Deliv 2020; 17:279-291. [DOI: 10.2174/1567201817666200210122340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/28/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
The collection of different bulk materials forms the nanoparticles, where the properties of the
nanoparticle are solely different from the individual components before being ensembled. Selfassembled
nanoparticles are basically a group of complex functional units that are formed by gathering
the individual bulk components of the system. It includes micelles, polymeric nanoparticle, carbon nanotubes,
liposomes and niosomes, <i>etc</i>. This self-assembly has progressively heightened interest to control
the final complex structure of the nanoparticle and its associated properties. The main challenge of formulating
self-assembled nanoparticle is to improve the delivery system, bioavailability, enhance circulation
time, confer molecular targeting, controlled release, protection of the incorporated drug from external
environment and also serve as nanocarriers for macromolecules. Ultimately, these self-assembled
nanoparticles facilitate to overcome the physiological barriers <i>in vivo</i>. Self-assembly is an equilibrium
process where both individual and assembled components are subsisting in equilibrium. It is a bottom up
approach in which molecules are assembled spontaneously, non-covalently into a stable and welldefined
structure. There are different approaches that have been adopted in fabrication of self-assembled
nanoparticles by the researchers. The current review is enriched with strategies for nanoparticle selfassembly,
associated properties, and its application in therapy.
Collapse
Affiliation(s)
- Lanke Tejesh Varma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Murtaza M. Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi-110062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| |
Collapse
|
27
|
Xu Y, Zi Y, Lei J, Mo X, Shao Z, Wu Y, Tian Y, Li D, Mu C. pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydr Polym 2020; 233:115858. [DOI: 10.1016/j.carbpol.2020.115858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
|
28
|
Zhao J, Zheng D, Tao Y, Li Y, Wang L, Liu J, He J, Lei J. Self-assembled pH-responsive polymeric nanoparticles based on lignin-histidine conjugate with small particle size for efficient delivery of anti-tumor drugs. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Zhao G, Sun Y, Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2383-2395. [PMID: 32036662 DOI: 10.1021/acs.langmuir.9b03722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a novel redox-sensitive micellar system for the co-delivery of doxorubicin (Dox) and a chemosensitizer (curcumin, Cur) to overcome the multidrug resistance (MDR) in cancer cells. Dox and Cur were co-conjugated onto a zwitterionic polymer, poly(carboxybetaine) (pCB), to form Cur-pCB-Dox that self-assembled into stable micelles (164.2 ± 4.8 nm). Single-drug conjugates (pCB-Dox and pCB-Cur) were prepared for comparisons. Compared to the high half-maximal inhibitory concentration (IC50) of Dox (437.2 μg/mL), the IC50 value of pCB-Dox (14.1 μg/mL) was only 1/33 that of Dox. Confocal laser scanning microscopy and flow cytometry revealed the greatly enhanced cell uptake of the conjugate due to the enhanced permeability and retention effect of tumor cells on the micellar conjugate. Co-delivery of pCB-Dox with pCB-Cur further reduced the IC50 value by 37% (8.9 μg/mL). More importantly, Cur-pCB-Dox exhibited the strongest cytotoxicity against MCF-7/Adr cells (IC50, 5.87 μg/mL) because the co-delivered Dox and Cur on one carrier specifically transported into the same cells, which inhibited the efflux of Dox by Cur, led to a higher intracellular Dox concentration and made the drugs exert synergistic effects at the targeting regions. The results proved the zwitterionic micelles as promising drug co-delivery vehicles for fighting against MDR.
Collapse
Affiliation(s)
- Guangfu Zhao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Bi S, Feng C, Wang M, Kong M, Liu Y, Cheng X, Wang X, Chen X. Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydr Polym 2020; 229:115557. [DOI: 10.1016/j.carbpol.2019.115557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
|
31
|
Asayama S. Molecular Design of Polymer-based Carriers for Plasmid DNA Delivery In Vitro and In Vivo. CHEM LETT 2020. [DOI: 10.1246/cl.190696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
32
|
Izadpanah M, Dargahi L, Ai J, Asgari Taei A, Ebrahimi Barough S, Mowla SJ, TavoosiDana G, Farahmandfar M. Extracellular Vesicles as a Neprilysin Delivery System Memory Improvement in Alzheimer's Disease. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:45-60. [PMID: 33224210 PMCID: PMC7667544 DOI: 10.22037/ijpr.2020.112062.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder which has no effective treatment yet due to the blood barrier in the brain that limits the drugs with the potential of disease improvement. Extracellular vesicles (EVs) are biocompatible nanoparticles with a lipid membrane. These vesicles are secreted from various cells such as mesenchymal stem cells (MSCs) and can pass through biological barriers for transfer of information such as signals or be used as carriers for various proteins like Neprilysin (NEP). NEP is an active enzyme in the clearance of abnormal aggregated beta-amyloid sheets in the brain. In the present study, we used EVs to carry NEP for memory improvement in Alzheimer's disease. For this purpose, bone marrow MSCs were isolated from rat femur. Stemness evaluation of established cells was characterized by differentiation potency and specific markers with flowcytometry. EVs were isolated from MSCs supernatant by ultracentrifugation and analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS) and western blotting. EVs were loaded with NEP by freeze-thaw cycle and then administrated intranasally in a rat model of the AD for 14 days. Our findings showed EV-loaded NEP caused a decrease in IL-1beta and also BAX but an increase in BCL2 expression level in the rat brain. Altogether, these data showed that EV-loaded NEP can improve brain-related behavioural function which may be mediated through the regulation of inflammation and apoptosis. These findings suggest that EV-loaded NEP can be considered as a potential drug delivery system for the improvement of AD.
Collapse
Affiliation(s)
- Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ebrahimi Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modarres University, Tehran, Iran.
| | - Gholamreza TavoosiDana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Phosphatidylserine targeting peptide-functionalized pH sensitive mixed micelles for enhanced anti-tumor drug delivery. Eur J Pharm Biopharm 2019; 147:87-101. [PMID: 31899369 DOI: 10.1016/j.ejpb.2019.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/28/2023]
Abstract
In recent decades, targeted drug delivery systems (TDDS) have been widely used as an ideal method of improving therapeutic effects and reducing systemic side effects of chemotherapeutic agents. Historically, a handful of methods have been developed to further improve the targeting ability of delivery systems. Thus, in this study, two methods, taking advantage of tumor characteristics, were used for the creation of a multi-targeted delivery system. The first was the fabrication of pH-sensitive micelles, lending the ability to increase drug release by exploiting the acidic tumor environment. The second method was through utilization of the surface-exposed phosphatidylserine (PS) of tumors, which is normally found in the inner leaflet in healthy cells. Using PS as a target site, PS binding peptide (PSBP-6) was conjugated to pH-sensitive mixed micelles, (consisting of poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PDLLA) and poly (ethylene glycol)-b-poly (L-histidine) (PEG-PHIS)). After successful preparation of micelles, paclitaxel (PTX), a common chemotherapeutic agent, was selected to measure drug loading capacity and encapsulation efficiency, showing 7.9% and 83.5%, respectively. The in vitro release of PTX from mixed micelles at pH 5.0, 6.5, and 7.4 was 78.1, 56.8, and 51.4%, respectively, indicating acid-triggered drug release. The PSBP-6-modified, mixed micelles exhibited significantly enhanced in vitro cytotoxicity and demonstrated more efficient cellular uptake compared to unmodified mixed micelles in the HeLa cell line. Moreover, pharmacokinetic, in vivo biodistribution, and fluorescence imaging studies showed that PSBP-6-PEG-PDLLA/PEG-PHIS mixed micelles provide prolonged time in blood circulation and enhanced tumor accumulation. These results suggest that the use of PS as a novel targeting site is advantageous, and that these new multi-targeted mixed micelles show great potential for realization of broad prospects in the targeted treatment of tumors for chemotherapeutic delivery.
Collapse
|
34
|
Lin F, Jia HR, Wu FG. Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery. Molecules 2019; 24:E4371. [PMID: 31795385 PMCID: PMC6930495 DOI: 10.3390/molecules24234371] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Glycol chitosan (GC), a water-soluble chitosan derivative with hydrophilic ethylene glycol branches, has both hydrophobic segments for the encapsulation of various drugs and reactive functional groups for facile chemical modifications. Over the past two decades, a variety of molecules have been physically encapsulated within or chemically conjugated with GC and its derivatives to construct a wide range of functional biomaterials. This review summarizes the recent advances of GC-based materials in cell surface labeling, multimodal tumor imaging, and encapsulation and delivery of drugs (including chemotherapeutics, photosensitizers, nucleic acids, and antimicrobial agents) for combating cancers and microbial infections. Besides, different strategies for GC modifications are also highlighted with the aim to shed light on how to endow GC and its derivatives with desirable properties for therapeutic purposes. In addition, we discuss both the promises and challenges of the GC-derived biomaterials.
Collapse
Affiliation(s)
| | | | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (F.L.); (H.-R.J.)
| |
Collapse
|
35
|
Su Z, Erdene-Ochir T, Ganbold T, Baigude H. Design of curdlan-based pH-sensitive polymers with endosome buffering functionality for siRNA delivery. Int J Biol Macromol 2019; 146:773-780. [PMID: 31778701 DOI: 10.1016/j.ijbiomac.2019.10.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022]
Abstract
Developing nucleic acid-based tools to control disease-relevant gene expression in human disorders, such as siRNAs, opens up potential opportunities for therapeutics. Because of their high molecular weight and polyanionic nature, synthetic siRNAs fail to cross biological membranes by passive diffusion and therefore, generally require transmembrane siRNA delivery technologies to access the cytoplasm of target cells. To create a biocompatible siRNA delivery agent, we chemically modified natural polysaccharide curdlan derivative 6AC-100 in a regioselective manner to introduce different ratios of imidazole rings in the amino units (denoted as Curimi) and evaluated their siRNA binding ability, cytotoxicity, endosome buffering capacity and siRNA transfection efficiency. The novel curdlan based Curimi polymers formed nanoparticles with siRNA at pH 7.4 in range of 85-105 nm and their size distribution increased along with decreasing pH condition. The zeta potential increased by lowering pH value as well. Curimi polymers showed lower toxicity and higher buffering capacity compared to 6AC-100, and efficiently delivered siRNA against to PLK1 into cancer cells, and subsequently, significantly inhibited target mRNA level. Our result suggested that novel curdlan based Curimi polymers may be used as efficient siRNA carrier for cancer therapy.
Collapse
Affiliation(s)
- Zhiyu Su
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China
| | - Tseyenkhorloo Erdene-Ochir
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China
| | - Tsogzolmaa Ganbold
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China.
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China.
| |
Collapse
|
36
|
Delavari B, Bigdeli B, Mamashli F, Gholami M, Bazri B, Khoobi M, Ghasemi A, Baharifar H, Dehghani S, Gholibegloo E, Amani A, Riahi-Alam N, Ahmadian S, Goliaei B, Asli NS, Rezayan AH, Saboury AA, Varamini P. Theranostic α-Lactalbumin-Polymer-Based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:5189-5208. [DOI: 10.1021/acsbiomaterials.9b01236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Behdad Delavari
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Behrouz Bazri
- Department of Chemistry, Amirkabir University of Technology, No. 424, Hafez Avenue, 1591634311 Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials group, The Institute of Pharmaceutical Sciences Research Center (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Hadi Baharifar
- Department of medical nanotechnology, Applied biophotonics research center, Science and Research branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Sadegh Dehghani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Elham Gholibegloo
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
| | | | - Nader Riahi-Alam
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Keshavarz blvd, 16 Azar St., Tehran 14145, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | | | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and health, University of Sydney, Sydney NSW 2016, Australia
| |
Collapse
|
37
|
Zhang W, Ma H, Hua J, Zhang W, Guo C, Wang J. Construction of pH responsive periodic mesoporous organosilica with histidine framework (His-PMO) for drug delivery. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Choi Y, Lim S, Yoon HY, Kim BS, Kwon IC, Kim K. Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opin Drug Deliv 2019; 16:835-846. [DOI: 10.1080/17425247.2019.1648426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongwhan Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
| | - Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
39
|
Exocytosis - a putative road-block in nanoparticle and nanocomplex mediated gene delivery. J Control Release 2019; 303:67-76. [DOI: 10.1016/j.jconrel.2019.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
|
40
|
Sou K, Le DL, Sato H. Nanocapsules for Programmed Neurotransmitter Release: Toward Artificial Extracellular Synaptic Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900132. [PMID: 30887709 DOI: 10.1002/smll.201900132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Nanocapsules present a promising platform for delivering chemicals and biomolecules to a site of action in a living organism. Because the biological action of the encapsulated molecules is blocked until they are released from the nanocapsules, the encapsulation structure enables triggering of the topical and timely action of the molecules at the target site. A similar mechanism seems promising for the spatiotemporal control of signal transduction triggered by the release of signal molecules in neuronal, metabolic, and immune systems. From this perspective, nanocapsules can be regarded as practical tools to apply signal molecules such as neurotransmitters to intervene in signal transduction. However, spatiotemporal control of the payload release from nanocapsules persists as a key technical issue. Stimulus-responsive nanocapsules that release payloads in response to external input of physical stimuli are promising platforms to enable programmed payload release. These programmable nanocapsules encapsulating neurotransmitters are expected to lead to new insights and perspectives related to artificial extracellular synaptic vesicles that might provide an experimental and therapeutic strategy for neuromodulation and nervous system disorders.
Collapse
Affiliation(s)
- Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Duc Long Le
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
41
|
Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev 2019; 143:97-114. [PMID: 31255595 DOI: 10.1016/j.addr.2019.06.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Nanocarriers (NCs) are a type of drug delivery system commonly used to regulate the pharmacokinetic and pharmacodynamic properties of drugs. Although a wide variety of NCs has been developed, relatively few have been registered for clinical trials and even fewer are clinically approved. Overt or potential toxicity, indistinct mechanisms of drug release and unsatisfactory pharmacokinetic behavior all contribute to their high failure rate during preclinical and clinical testing. These negative characteristics are not only due to the NCs themselves but also to the materials of the drug nanocarrier system (MDNS) that are released in vivo. In this article, we review the main analytical techniques used for bioassay of NCs and MDNS and their pharmacokinetics after administration by various routes. We anticipate our review will serve to improve the understanding of MDNS pharmacokinetics and facilitate the development of NC drug delivery systems.
Collapse
|
42
|
Zhu R, Li Y, Zhang X, Bian K, Yang M, Cong C, Cheng X, Zhao S, Li X, Gao D. Vapreotide-mediated hierarchical mineralized Ag/Au nanoshells for photothermal anti-tumor therapy. NANOTECHNOLOGY 2019; 30:055602. [PMID: 30520422 DOI: 10.1088/1361-6528/aaf0db] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A new type of vapreotide-templated Ag/Au bimetallic nanoshells (Vap@Ag/AuNSs) were successfully designed and fabricated based on polypeptide-directed mineralization and hierarchical self-assembly mechanisms under mild synthetic conditions. The nanoparticles with polypeptides serving as a core and coated Ag/Au bimetallic nanoshells exhibit diverse advantages, such as excellent biocompatibility, tumor targeting and low-cost. The Vap@Ag/AuNSs share excellent dispersibility, uniform size (120 nm) and a positive zeta potential (36.74 ± 4.49 mV), hence they easily accumulate in negatively charged tumor tissue. The results of thermal imaging, temperature variation assays and photothermal conversion efficiency (41.6%) indicated that Vap@Ag/AuNSs have excellent photothermal conversion capability. Based on their photothermal response, as well as biocompatibility determined by MTT assay, the prominent anti-tumor effects of Vap@Ag/AuNSs have been verified by fluorescein diacetate staining. Therefore, Vap@Ag/AuNSs are novel and promising candidates for photothermal tumor therapy.
Collapse
Affiliation(s)
- Ruiyan Zhu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, People's Republic of China. Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang Y, Zhu W, Feng L, Chao Y, Yi X, Dong Z, Yang K, Tan W, Liu Z, Chen M. G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy. NANO LETTERS 2018; 18:6867-6875. [PMID: 30303384 DOI: 10.1021/acs.nanolett.8b02732] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) is a light-triggered therapy used to kill cancer cells by producing reactive oxygen species (ROS). Herein, a new kind of DNA nanostructure based on the coordination between calcium ions (Ca2+) and AS1411 DNA G quadruplexes to form nanoscale coordination polymers (NCPs) is developed via a simple method. Both chlorine e6 (Ce6), a photosensitizer, and hemin, an iron-containing porphyrin, can be inserted into the G-quadruplex structure in the obtained NCPs. With further polyethylene glycol (PEG) modification, we obtain Ca-AS1411/Ce6/hemin@pHis-PEG (CACH-PEG) NCP nanostructure that enables the intranuclear transport of photosensitizer Ce6 to generate ROS inside cell nuclei that are the most vulnerable to ROS. Meanwhile, the inhibition of antiapoptotic protein B-cell lymphoma 2 (Bcl-2) expression by AS1411 allows for greatly improved PDT-induced cell apoptosis. Furthermore, the catalase-mimicking DNAzyme function of G-quadruplexes and hemin in those NCPs could decompose tumor endogenous H2O2 to in situ generate oxygen so as to further enhance PDT by overcoming the hypoxia-associated resistance. This work develops a simple yet general method with which to fabricate DNA-based NCPs and presents an interesting concept of a nanoscale drug-delivery system that could achieve the intranuclear delivery of photosensitizers, the down-regulation of anti-apoptotic proteins, and the modulation of the unfavorable tumor microenvironment simultaneously for improved cancer therapy.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau , China
| | - Wenjun Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xuan Yi
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X) , Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X) , Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Avenida da Universidade , Taipa , Macau , China
| |
Collapse
|
44
|
Wijetunge SS, Wen J, Yeh CK, Sun Y. Lectin-Conjugated Liposomes as Biocompatible, Bioadhesive Drug Carriers for the Management of Oral Ulcerative Lesions. ACS APPLIED BIO MATERIALS 2018; 1:1487-1495. [DOI: 10.1021/acsabm.8b00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sashini S. Wijetunge
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States of America
| | - Jianchuan Wen
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States of America
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio and Geriatric Research Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, Texas 78229, United States of America
| | - Yuyu Sun
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States of America
| |
Collapse
|
45
|
Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B Biointerfaces 2018; 171:391-397. [PMID: 30064087 DOI: 10.1016/j.colsurfb.2018.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are attractive potential carriers for drug delivery because of their natural function of transferring biomolecules among cells without eliciting immune responses. However, an obstacle to the application of exosomes for drug delivery is the difficulty in collecting sufficient numbers of these vesicles. In this study, we demonstrate treatment with calcium phosphate (CaP) particles could increase over two-fold the number of exosomes secreted from macrophage-like RAW264.7 cells and monocyte-like THP-1 cells. CaP particles were easily internalized into cells and dissolved in acidic late-endosomes or lysosomes, resulting in the rupture of their membranes followed by the release of Ca2+ into cytosol. Moreover, we found that exosomes secreted from cells treated with CaP particles are not contaminated by the Ca2+ released from CaP; the Ca2+ contents in exosomes secreted from CaP particle-treated cells were similar to that in exosomes from untreated control cells. This study highlights the potential for the efficient production of exosomes using CaP particles for drug delivery.
Collapse
Affiliation(s)
- Yan-Jye Shyong
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Road, Taipei, 10608, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
| |
Collapse
|
46
|
Polymeric Micelles Based on Modified Glycol Chitosan for Paclitaxel Delivery: Preparation, Characterization and Evaluation. Int J Mol Sci 2018; 19:ijms19061550. [PMID: 29882845 PMCID: PMC6032256 DOI: 10.3390/ijms19061550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
Abstract
Amphiphilic polymer of α-tocopherol succinate modified glycol chitosan (TS-GC) was successfully constructed by conjugating α-tocopherol succinate to the skeleton of glycol chitosan and characterized by Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR). In aqueous milieu, the conjugates self-assembled to micelles with the critical aggregation concentration of 7.2 × 10−3 mg/mL. Transmission electron microscope (TEM) observation and dynamic light scattering (DLS) measurements were carried out to determine the physicochemical properties of the micelles. The results revealed that paclitaxel (PTX)-loaded TS-GC micelles were spherical in shape. Moreover, the PTX-loaded micelles showed increased particle sizes (35 nm vs. 142 nm) and a little reduced zeta potential (+19 mV vs. +16 mV) compared with blank micelles. The X-ray diffraction (XRD) spectra demonstrated that PTX existed inside the micelles in amorphous or molecular state. In vitro and in vivo tests showed that the PTX-loaded TS-GC micelles had advantages over the Cremophor EL-based formulation in terms of low toxicity level and increased dose, which suggested the potential of the polymer as carriers for PTX to improve their delivery properties.
Collapse
|
47
|
Misra SK, Kampert TL, Pan D. Nano-Assembly of Pamitoyl-Bioconjugated Coenzyme-A for Combinatorial Chemo-Biologics in Transcriptional Therapy. Bioconjug Chem 2018; 29:1419-1427. [PMID: 29466855 DOI: 10.1021/acs.bioconjchem.8b00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenesis, the biological mechanism that leads to the diseased state, of many cancers is driven by interruptions to the role of Myc oncoprotein, a regulator protein that codes for a transcription factor. One of the most significant biological interruptions to Myc protein is noted as its dimerization with Max protein, another important factor of family of transcription factors. Binding of this heterodimer to E-Boxes, enhancer boxes as DNA response element found in some eukaryotes that act as a protein-binding site and have been found to regulate gene expression, are interrupted to regulate cancer pathogenesis. The systemic effectiveness of potent small molecule inhibitors of Myc-Max dimerization has been limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. The potential of gene therapy for targeting Myc can be fully realized by successful synthesis of a smart cargo. We developed a "nuclein" type nanoparticle "siNozyme" (45 ± 5 nm) from nanoassembly of pamitoyl-bioconjugated acetyl coenzyme-A for stable incorporation of chemotherapeutics and biologics to achieve remarkable growth inhibition of human melanoma. Results indicated that targeting transcriptional gene cMyc with siRNA with codelivery of a topoisomerase inhibitor, amonafide caused ∼90% growth inhibition and 95% protein inhibition.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering; Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute, Carle Foundation Hospital , 502 North Busey , Urbana , Illinois , 61801 , United States
| | - Taylor L Kampert
- Department of Bioengineering; Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute, Carle Foundation Hospital , 502 North Busey , Urbana , Illinois , 61801 , United States
| | - Dipanjan Pan
- Department of Bioengineering; Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute, Carle Foundation Hospital , 502 North Busey , Urbana , Illinois , 61801 , United States
| |
Collapse
|
48
|
Ma B, Zhuang W, Liu G, Wang Y. A biomimetic and pH-sensitive polymeric micelle as carrier for paclitaxel delivery. Regen Biomater 2018; 5:15-24. [PMID: 29423264 PMCID: PMC5798030 DOI: 10.1093/rb/rbx023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/03/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
As nano-scale drug delivery systems, smart micelles that are sensitive to specific biological environment and allowed for target site-triggered drug release by reversible stabilization of micelle structure are attractive. In this work, a biocompatible and pH-sensitive copolymer is synthesized through bridging poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) block and poly (D, L-lactide) (PLA) block by a benzoyl imine linkage (Blink). Biomimetic micelles with excellent biocompatibility based on such PLA-Blink-PMPC copolymer are prepared as carriers for paclitaxel (PTX) delivery. Due to the rapid breakage of the benzoyl imine linkage under acidic condition, the micelle structure is disrupted with accelerated PTX release. Such pH-sensitive triggered drug release behavior in synchronization with acidic conditions at tumor site is helpful for improving the utilization of drug and facilitating antitumor efficacy. These micelles can be used as promising drug delivery systems due to their biocompatible and smart properties.
Collapse
Affiliation(s)
- Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China and
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China and
| | - Gongyan Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China and
- National Engineering Laboratory of Clean Technology of Leather Manufacture, Department of Biomass Chemistry, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China and
| |
Collapse
|
49
|
Brahmayya M, Suen SY, Dai SA. Sulfonated graphene oxide-catalyzed N-acetylation of amines with acetonitrile under sonication. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Abbasi S, Yousefi G, Tamaddon AM. Polyacrylamide–b-copolypeptide hybrid copolymer as pH-responsive carrier for delivery of paclitaxel: Effects of copolymer composition on nanomicelles properties, loading efficiency and hemocompatibility. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|