1
|
Khademi R, Kharaziha M. Antibacterial and Osteogenic Doxycycline Imprinted Bioglass Microspheres to Combat Bone Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31966-31982. [PMID: 38829697 DOI: 10.1021/acsami.4c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Currently, postoperative infection is a significant challenge in bone and dental surgical procedures, demanding the exploration of innovative approaches due to the prevalence of antibiotic-resistant bacteria. This study aims to develop a strategy for controlled and smart antibiotic release while accelerating osteogenesis to expedite bone healing. In this regard, temperature-responsive doxycycline (DOX) imprinted bioglass microspheres (BGMs) were synthesized. Following the formation of chitosan-modified BGMs, poly N-isopropylacrylamide (pNIPAm) was used for surface imprinting of DOX. The temperature-responsive molecularly imprinted polymers (MIPs) exhibited pH and temperature dual-responsive adsorption and controlled-release properties for DOX. The temperature-responsive MIP was optimized by investigating the molar ratio of N,N'-methylene bis(acrylamide) (MBA, the cross-linker) to NIPAm. Our results demonstrated that the MIPs showed superior adsorption capacity (96.85 mg/g at 35 °C, pH = 7) than nonimprinted polymers (NIPs) and manifested a favorable selectivity toward DOX. The adsorption behavior of DOX on the MIPs fit well with the Langmuir model and the pseudo-second-order kinetic model. Drug release studies demonstrated a controlled release of DOX due to imprinted cavities, which were fitted with the Korsmeyer-Peppas kinetic model. DOX-imprinted BGMs also revealed comparable antibacterial effects against Staphylococcus aureus and Escherichia coli to the DOX (control). In addition, MIPs promoted viability and osteogenic differentiation of MG63 osteoblast-like cells. Overall, the findings demonstrate the significant potential of DOX-imprinted BGMs for use in bone defects. Nonetheless, further in vitro investigations and subsequent in vivo experiments are warranted to advance this research.
Collapse
Affiliation(s)
- Reihaneh Khademi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
2
|
Yu S, Budtova T. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Carbohydr Polym 2024; 332:121925. [PMID: 38431419 DOI: 10.1016/j.carbpol.2024.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Carboxymethyl cellulose (CMC) is a well-known cellulose derivative used in biomedical applications due to its biocompatibility and biodegradability. In this work, novel porous CMC materials, aerogels, were prepared and tested as a drug delivery device. CMC aerogels were made from CMC solutions, followed by non-solvent induced phase separation and drying with supercritical CO2. The influence of CMC characteristics and of processing conditions on aerogels' density, specific surface area, morphology and drug release properties were investigated. Freeze-drying of CMC solutions was also used as an alternative process to compare the properties of the as-obtained "cryogels" with those of aerogels. Aerogels were nanostructured materials with bulk density below 0.25 g/cm3 and high specific surface area up to 143 m2/g. Freeze drying yields highly macroporous materials with low specific surface areas (around 5-18 m2/g) and very low density, 0.01 - 0.07g/cm3. Swelling and dissolution of aerogels and cryogels in water and in a simulated wound exudate (SWE) were evaluated. The drug was loaded in aerogels and cryogels, and release kinetics in SWE was investigated. Drug diffusion coefficients were correlated with material solubility, morphology, density, degree of substitution and drying methods, demonstrating tuneability of new materials' properties in view of their use as delivery matrices.
Collapse
Affiliation(s)
- Sujie Yu
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France.
| |
Collapse
|
3
|
Ojsteršek T, Vrečer F, Hudovornik G. Comparative Fitting of Mathematical Models to Carvedilol Release Profiles Obtained from Hypromellose Matrix Tablets. Pharmaceutics 2024; 16:498. [PMID: 38675159 PMCID: PMC11053526 DOI: 10.3390/pharmaceutics16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model fitting was conducted for the entire relevant dissolution data, as determined by using a paired t-test, and independently for dissolution data up to approximately 60% of carvedilol released. The best models were selected based on the residual sum of squares (RSS) results used as a general measure of goodness of fit, along with the utilization of various criteria for visual assessment of model fit and determination of the acceptability of estimated model parameters indicating burst release or lag time concerning experimental dissolution results and previous research. In addition, a model-dependent analysis of carvedilol release mechanisms was carried out.
Collapse
Affiliation(s)
- Tadej Ojsteršek
- KRKA, d. d., 8501 Novo Mesto, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Franc Vrečer
- KRKA, d. d., 8501 Novo Mesto, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
4
|
Malani M, Thodikayil AT, Saha S, Nirmal J. Carboxylated nanofibrillated cellulose empowers moxifloxacin to overcome Staphylococcus aureus biofilm in bacterial keratitis. Carbohydr Polym 2024; 324:121558. [PMID: 37985120 DOI: 10.1016/j.carbpol.2023.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Bacterial keratitis is one of the vision-threatening ocular diseases that is increasing at an alarming rate due to antimicrobial resistance. One of the primary causes of antimicrobial resistance could be biofilm formation, which alters the mechanism and physiology of the microorganisms. Even a potent drug fails to inhibit biofilm due to the extracellular polysaccharide matrix surrounding the bacteria, inhibiting the permeation of drugs. Therefore, we aimed to develop carboxylated nanocellulose fibers loaded with moxifloxacin (Mox-cNFC) as a novel drug delivery system to treat bacterial corneal infection. Nanocellulose fibers were fabricated using a two-step method involving citric acid hydrolysis followed by TEMPO oxidation to introduce carboxylated groups (1.12 mmol/g). The Mox-cNFC particles showed controlled drug release till 40 h through diffusion. In vitro biofilm inhibition studies showed the particle's ability to disrupt the biofilm matrix and enhance the drug penetration to achieve optimal concentrations that inhibit the persister cells (without increasing minimum inhibitory concentration), thereby reducing the bacterial drug-resistant property. In vivo studies revealed the therapeutic potential of Mox-cNFC to treat Staphylococcus aureus-induced bacterial keratitis with once-a-day treatment, unlike neat moxifloxacin. Mox-cNFC could improve patient compliance by reducing the frequency of instillation and a controlled drug release to prevent toxicity.
Collapse
Affiliation(s)
- Manisha Malani
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
5
|
Santamaría E, Maestro A, González C. Use of Double Gelled Microspheres to Improve Release Control of Cinnamon-Loaded Nanoemulsions. Molecules 2023; 29:158. [PMID: 38202745 PMCID: PMC10780570 DOI: 10.3390/molecules29010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The use of nanoemulsions as encapsulation systems for active ingredients, such as cinnamon oil, has been studied. A surfactant based on polyoxyethylene glycerol esters from coconut/palm kernel oil has been used. The nanoemulsions were obtained by the two most commonly low-energy emulsification methods, the composition inversion phase (PIC) and the temperature inversion phase (PIT) methods. Nanoemulsions were successfully obtained by both methods, with very small droplet sizes (5-14 nm) in both cases, but a greater stability was observed when the PIT method was used. Nanoemulsions were encapsulated by external gelation using two different polysaccharides, alginate or chitosan, dissolved in the continuous phase of the nanoemulsion. Then, the nanoemulsion was dropped into a bath with a gelling agent. To improve the release control of cinnamon oil and avoid the burst effect, beads prepared with one of the polysaccharides were coated with the second polysaccharide and then gelled again. Double gelled beads were successfully obtained, the core with chitosan and the outer layer (shell) with alginate. SEM images showed the morphology of the single beads presenting high porosity. When the beads were coated, the porosity decreased because the second polysaccharide molecules covered the pre-existing pores. The smoother surface was obtained when this second layer was, in turn, gelled. The release patterns at pH = 2 and pH = 7 were studied. It was observed that the double gelled bead provided a more gradual release, but maintained approximately the same amount of final released oil. The release patterns were fitted to the Korsmeyer-Peppas model. The fitting parameters reflected the effect of the different coating layers, correlating with different diffusion mechanisms according to the bead core and shell materials.
Collapse
Affiliation(s)
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain; (E.S.); (C.G.)
| | | |
Collapse
|
6
|
Naeem A, Yu C, Wang X, Peng M, Liu Y, Liu Y. Hydroxyethyl Cellulose-Based Hydrogels as Controlled Release Carriers for Amorphous Solid Dispersion of Bioactive Components of Radix Paeonia Alba. Molecules 2023; 28:7320. [PMID: 37959739 PMCID: PMC10648136 DOI: 10.3390/molecules28217320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Radix Paeoniae Alba (RPA) has been used extensively in Chinese traditional medicine to treat gastrointestinal disorders, immune-modulating diseases, cancers, and numerous other conditions. A few of its active components include paeoniflorin, albiflorin, lactiflorin, and catechin. However, their therapeutic effectiveness is compromised by poor pharmacokinetic profiles, low oral bioavailability, short half-lives, and poor aqueous solubility. In this study, hydroxyethyl cellulose-grafted-2-acrylamido-2-methylpropane sulfonic acid (HEC-g-AMPS) hydrogels were successfully prepared for the controlled release of Radix Paeonia Alba-solid dispersion (RPA-SD). A total of 43 compounds were identified in RPA-SD using UHPLC-Q-TOF-MS analysis. The hydrogel network formation was confirmed by FTIR, TGA, DSC, XRD, and SEM. Hydrogels' swelling and drug release were slightly higher at pH 1.2 (43.31% swelling, 81.70% drug release) than at pH 7.4 (27.73% swelling, 72.46% drug release) after 48 h. The gel fraction, drug release time and mechanical strength of the hydrogels increased with increased polymer and monomer concentration. Furthermore, the hydrogels were porous (84.15% porosity) and biodegradable (8.9% weight loss per week). Moreover, the synthesized hydrogels exhibited excellent antimicrobial and antioxidative properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mingyan Peng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yi Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
7
|
Raval AJ, Parikh JK, Desai MA. A review on the treatment of intimal hyperplasia with perivascular medical devices: role of mechanical factors and drug release kinetics. Expert Rev Med Devices 2023; 20:805-819. [PMID: 37559556 DOI: 10.1080/17434440.2023.2244875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Intimal hyperplasia (IH) is a significant factor limiting the success of revascularization surgery for blood flow restoration. IH results from a foreign body response and mechanical disparity that involves complex biochemical reactions resulting in graft failure. The available treatment option utilizes either different pharmacological interventions or mechanical support to the vascular grafts with limited success. AREAS COVERED This review explains the pathophysiology of IH, responsible mechanical and biological factors, and treatment options, emphasizing perivascular devices. They are designed to provide mechanical support and pharmacology actions. The perivascular drug delivery concept has successfully demonstrated efficacy in various animal studies. Accurate projections of drug release mechanisms using mathematical modeling could be used to formulate prolonged drug elution devices. Numerical modeling aspects for the prediction of design outcomes have been given due importance that fulfills the unmet clinical need for better patient care. EXPERT OPINION IH could be effectively prevented by simultaneous mechanical scaffolding and sustained local drug delivery. Future perivascular medical devices could be designed to integrate these essential features. Numerical modeling for device performance prediction should be utilized in the development of next-generation perivascular devices.
Collapse
Affiliation(s)
- Ankur J Raval
- Department of Chemical Engineering, Sardar Vallabhbhai National of Technology, Surat, Gujarat, India
- Research and Development Department, Sahajanand Medical Technologies Ltd, Surat, Gujarat, India
| | - Jigisha K Parikh
- Department of Chemical Engineering, Sardar Vallabhbhai National of Technology, Surat, Gujarat, India
| | - Meghal A Desai
- Department of Chemical Engineering, Sardar Vallabhbhai National of Technology, Surat, Gujarat, India
| |
Collapse
|
8
|
Durmus S, Ozay O. Synthesis and characterization of methacrylic acid based amphoteric hydrogels: use as a dual drug delivery system. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Secil Durmus
- School of Graduate Studies, Department of Bioengineering and Materials Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
9
|
Quantifying How Drug-Polymer Interaction and Volume Phase Transition Modulate the Drug Release Kinetics from Core-Shell Microgels. Int J Pharm 2022; 622:121838. [PMID: 35597392 DOI: 10.1016/j.ijpharm.2022.121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Accepted: 05/14/2022] [Indexed: 12/30/2022]
Abstract
This paper presents a simple experimental-informed theory describing the drug release process from a temperature-responsive core-shell microgel. In stark contrast to the commonly employed power-law models, we couple electric, hydrophobic, and steric factors to characterize the impact of drug-polymer pair interaction on the release kinetics. To this end, we also propose a characteristic time, depicting the drug release process as an interplay between kinetics and thermodynamics. In some instances, the negative correlation between the diffusivity and the (thermodynamics) drug-polymer interaction renders the drug release time non-trivial. In conclusion, our theory establishes a mechanistic understanding of the drug release process, exploring the effect of (hydrophobic adhesion) attractive and (steric exclusion) repulsive pair interactions between the drugs and the microgel in the presence of temperature-induced volume phase transition.
Collapse
|
10
|
Ganassin R, da Silva VCM, Araujo VHS, Tavares GR, da Silva PB, Cáceres-Vélez PR, Porcel JEM, Rodrigues MC, Andreozzi P, Fernandes RP, Fonseca-Santos B, Moya S, Azevedo RB, Chorilli M, Muehlmann LA. Solid lipid nanoparticles loaded with curcumin: development and in vitro toxicity against CT26 cells. Nanomedicine (Lond) 2022; 17:167-179. [PMID: 35048742 DOI: 10.2217/nnm-2021-0229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.
Collapse
Affiliation(s)
- Rayane Ganassin
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Victor Carlos Mello da Silva
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Victor Hugo Sousa Araujo
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Giulia Rosa Tavares
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Paolin Rocio Cáceres-Vélez
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil.,Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain.,School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joaquin E Martínez Porcel
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Patrizia Andreozzi
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain
| | - Richard Perosa Fernandes
- Laboratory of Thermal Analysis Ivo Giolitto, Chemical Institute, São Paulo State University São Paulo, Araraquara -SP, Brazil
| | | | - Sergio Moya
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, Brazil
| | - Luis Alexandre Muehlmann
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| |
Collapse
|
11
|
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. It is also an important precursor for making other molecules needed by the body. Cholesterol homeostasis plays an essential role in human health. Having high cholesterol can increase the chances of getting heart disease. As a result of the risks associated with high cholesterol, it is imperative that studies are conducted to determine the best course of action to reduce whole body cholesterol levels. Mathematical models can provide direction on this. By examining existing models, the suitable reactions or processes for drug targeting to lower whole-body cholesterol can be determined. This paper examines existing models in the literature that, in total, cover most of the processes involving cholesterol metabolism and transport, including: the absorption of cholesterol in the intestine; the cholesterol biosynthesis in the liver; the storage and transport of cholesterol between the intestine, the liver, blood vessels, and peripheral cells. The findings presented in these models will be discussed for potential combination to form a comprehensive model of cholesterol within the entire body, which is then taken as an in-silico patient for identifying drug targets, screening drugs, and designing intervention strategies to regulate cholesterol levels in the human body.
Collapse
|
12
|
Aslam H, Shukrullah S, Naz MY, Fatima H, Hussain H, Ullah S, Assiri MA. Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Fathi F, Ebrahimi SN, Pereira DM, Estevinho BN, Rocha F. Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from
Punica granatum
peels. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050‐313 Porto Portugal
| | - Berta N. Estevinho
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| | - Fernando Rocha
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| |
Collapse
|
14
|
Sriram A, Tangirala S, Atmakuri S, Hoque S, Modani S, Srivastava S, Mahajan S, Maji I, Kumar R, Khatri D, Madan J, Singh PK. Budding Multi-matrix Technology-a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech 2021; 22:264. [PMID: 34734325 DOI: 10.1208/s12249-021-02133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.
Collapse
|
15
|
Coelho SC, Laget S, Benaut P, Rocha F, Estevinho BN. A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Hydration Patterns in Sodium Alginate Polymeric Matrix Tablets-The Result of Drug Substance Incorporation. MATERIALS 2021; 14:ma14216531. [PMID: 34772056 PMCID: PMC8585188 DOI: 10.3390/ma14216531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
The purpose was to show, using destructive/nondestructive methods, that the interplay between water, tablet structure, and composition determine the unique spatiotemporal hydration pattern of polymer-based matrices. The tablets containing a 1:1 w/w mixture of sodium alginate with salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA) were studied using Karl Fischer titration, differential scanning calorimetry, X-ray microtomography, and magnetic resonance imaging. As the principal results, matrix specific features were detected, e.g., "locking" of the internal part of the matrix (ALG/SA); existence of lamellar region associated with detection of free/freezing water (ALG/SA); existence of water penetrating the matrix forming specific region preceding infiltration layer (ALG/SNA); switch in the onset temperature of endothermic water peak associated with an increase in the fraction of non-freezing water weight per dry matrix weight in the infiltration layer (ALG/SNA). The existence of complicated spatiotemporal hydration patterns influenced by matrix composition and molecular properties of constituents has been demonstrated.
Collapse
|
17
|
Guo B, Fan R, Shen S, Xue Y, Zhu Z, Xu RX. A photo-responsive membrane for tailored drug delivery with spatially and temporally controlled release. J Mater Chem B 2021; 9:8615-8625. [PMID: 34569590 DOI: 10.1039/d1tb01690c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurate delivery of therapeutics to tumor regions and effective sparing of normal tissue structures are important principles for the treatment of widespread metastases or malignant lesions in close proximity to vital organs. However, the currently available drug delivery techniques do not support precise drug release within the identified disease margins. We propose a tailored drug delivery strategy that utilizes a photo-responsive material in combination with tumor margin imaging for automated and tailored release of therapeutics. As a proof of concept, a poly(ethylene oxide)-b-PSPA (PEO-b-PSPA) diblock copolymer is synthesized by spiropyran (SP) polymerization. A photo-responsive membrane (PRM) is formed and irradiated with light sources of different wavelengths. Switching irradiation between ultraviolet light (UV) and green light (Vis) controls the permeability of the PRM in coincidence with the programmed irradiation patterns. The dynamic process of photo-switchable drug permeation through the PRM is modeled and compared with the experimental results. The strategy of tailored drug release is verified using both regular geometric shapes and metastatic cancer images. The therapeutic effect of this tailored drug release strategy is demonstrated in vitro in human breast cancer cells. Our pilot study implies the technical potential of using photo-responsive carriers for image-guided chemotherapy with precisely controlled drug release patterns.
Collapse
Affiliation(s)
- Buyun Guo
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rong Fan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuwei Shen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.,First Affiliated Hospital, University of Science and Technology of China, Hefei 230031, China
| | - Yue Xue
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.,Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou 215000, China.
| |
Collapse
|
18
|
Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02652-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Rawooth M, Qureshi D, Hoque M, Prasad MPJG, Mohanty B, Alam MA, Anis A, Sarkar P, Pal K. Synthesis and characterization of novel tamarind gum and rice bran oil-based emulgels for the ocular delivery of antibiotics. Int J Biol Macromol 2020; 164:1608-1620. [PMID: 32763397 DOI: 10.1016/j.ijbiomac.2020.07.231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022]
Abstract
In this study, we developed tamarind gum (TG) and rice bran oil (RBO)-based emulgels. The control formulation (TR0), did not contain RBO. The emulgels were named as TR1, TR2, TR3, and TR4, which contained 5% (w/w), 10% (w/w), 15% (w/w), and 20% (w/w/) of RBO, respectively. The microscopic studies showed that the emulgels were biphasic in nature. FTIR spectroscopy revealed the reduction in the hydrogen bonding with an increase in the RBO content. Impedance profiles suggested that the resistive component of the emulgels was increased as the RBO content was increased. The thermal analysis suggested that the addition of RBO reduced the water holding capacity of the emulgels. Stress relaxation studies revealed that the fluidic component was considerably higher in TG/RBO-based emulgels as compared to TR0. In vitro release study of the model drug (ciprofloxacin HCl; a hydrochloride salt of ciprofloxacin) suggested a significantly lower release from the emulgel matrices (TR1-TR4) in comparison to TR0. However, ex vivo corneal permeation of the drug increased with an increase in the RBO content. Since the emulgels were able to improve the corneal permeation of the model drug, the emulgels can be explored to deliver drugs to the internal structures of the eye.
Collapse
Affiliation(s)
- Madhusmita Rawooth
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Monjurul Hoque
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | | | | | - Mohammad Asif Alam
- Centre of Excellence for Research in Engineering Materials (CEREM), King Saud University, P.O. Box 800, Riyadh, Saudi Arabia
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India.
| |
Collapse
|
20
|
Arai K, Shikata T. Hydration/Dehydration Behavior of Hydroxyethyl Cellulose Ether in Aqueous Solution. Molecules 2020; 25:molecules25204726. [PMID: 33076298 PMCID: PMC7587591 DOI: 10.3390/molecules25204726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/03/2022] Open
Abstract
Hydroxyethyl cellulose (HeC) maintains high water solubility over a wide temperature range even in a high temperature region where other nonionic chemically modified cellulose ethers, such as methyl cellulose (MC) and hydroxypropylmethyl cellulose (HpMC), demonstrate cloud points. In order to clarify the reason for the high solubility of HeC, the temperature dependence of the hydration number per glucopyranose unit, nH, for the HeC samples was examined by using extremely high frequency dielectric spectrum measuring techniques up to 50 GHz over a temperature range from 10 to 70 °C. HeC samples with a molar substitution number (MS) per glucopyranose unit by hydroxyethyl groups ranging from 1.3 to 3.6 were examined in this study. All HeC samples dissolve into water over the examined temperature range and did not show their cloud points. The value of nH for the HeC sample possessing the MS of 1.3 was 14 at 20 °C and decreased gently with increasing temperature and declined to 10 at 70 °C. The nH values of the HeC samples are substantially larger than the minimum critical nH value of ca. 5 necessary to be dissolved into water for cellulose ethers such as MC and HpMC, even in a high temperature range. Then, the HeC molecules possess water solubility over the wide temperature range. The temperature dependence of nH for the HeC samples and triethyleneglycol, which is a model compound for substitution groups of HeC, is gentle and they are similar to each other. This observation strongly suggests that the hydration/dehydration behavior of the HeC samples was essentially controlled by that of their substitution groups.
Collapse
Affiliation(s)
- Kengo Arai
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Toshiyuki Shikata
- Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
- Division of Natural Resources and Eco-materials, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Correspondence:
| |
Collapse
|
21
|
Yin X, Li L, Gu X, Wang H, Wu L, Qin W, Xiao T, York P, Zhang J, Mao S. Dynamic structure model of polyelectrolyte complex based controlled-release matrix tablets visualized by synchrotron radiation micro-computed tomography. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111137. [PMID: 32806274 DOI: 10.1016/j.msec.2020.111137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023]
Abstract
Hydrophilic matrix tablets are the most commonly used dosage forms to fabricate oral controlled-release systems. It is highly desirable to design delivery system with novel mechanism to achieve sustained drug release through a simplified preparation process. The chitosan-anionic polymers based matrix tablets is assumed to produce self-assembly in the gastrointestinal tract, then transferring into film-coated tablets from original matrix type. But its dynamic behavior during dissolution process and the on-going internal microstructural changes during drug release were still in the dark. In this study, by using synchrotron radiation X-ray micro-tomography (SR-μCT) with phase contrast imaging, the micro-structure characteristics of chitosan-λ-carrageenan (CS-λ-CG) matrix based tablets during the dissolution were successfully elucidated for the first time. The qualitative and quantitative analyses of intensity distribution distinguished a hydrated CS-λ-CG layer from a solid core. Visualization based on 3D models provided quantitative details on the micro-structural characteristics of hydration dynamics. After CS-λ-CG matrix tablets were immersed in simulated gastric fluid (SGF) pH 1.2 medium for 0.5-2.0 h, the hydrated layer transformed into a gel layer and a solid swollen layer. The erosion front, swelling front, and solvent penetration front were also defined from the distinguishable micro-structures. More importantly, once the matrix tablet was transferred from SGF to the simulated intestinal fluid (SIF) pH 6.8 medium, a new layer with the enhanced strength and compactness in comparison to common gels was formed on the surface of tablets. The temporal and spatial variation of 3D models further provided direct evidence for this cross-linking behavior, the new layer was composed of CS-λ-CG polyelectrolyte complexes (PEC) which subsequently dominated release mechanisms. In summary, the phase contrast SR-μCT technique was utilized to investigate the hydration dynamics of CS-λ-CG matrix tablets which was supposed to provide a novel drug release mechanism. Based on the structure feature obtained from the high contrast image, different hydration region was distinguished and the cross-linked film was identified and visualized directly for the first time.
Collapse
Affiliation(s)
- Xianzhen Yin
- Center for Drug Delivery Systems, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangqin Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huimin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Wu
- Center for Drug Delivery Systems, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Qin
- Center for Drug Delivery Systems, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peter York
- University of Bradford, Bradford, West Yorkshire BD7 1DP, UK
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
22
|
Estevinho BN, Lazar R, Blaga A, Rocha F. Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110794. [PMID: 32409024 DOI: 10.1016/j.msec.2020.110794] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022]
Abstract
This paper presents the results of a combined experimental and analytical study of blended FDA-approved polymers [polylactic-co-glycolic acid (PLGA), polyethylene glycol (PEG) and polycaprolactone (PCL)] with the potential for sustained localized cancer drug release. Porous drug-loaded 3D degradable PLGA-PEG and PLGA-PCL scaffolds were fabricated using a multistage process that involved solvent casting and particulate leaching with lyophilization. The physicochemical properties including the mechanical, thermal and biostructural properties of the drug-loaded microporous scaffolds were characterized. The release of the encapsulated prodigiosin (PG) or paclitaxel (PTX) drug (from the drug-loaded polymer scaffolds) was also studied experimentally at human body temperature (37 °C) and hyperthermic temperatures (41 and 44 °C). These characteristic controlled and localized in vitro drug release from the properties of the microporous scaffold were analyzed using kinetics and thermodynamic models. Subsequently, normal breast cells (MCF-10A) were cultured for a 28-day period on the resulting 3D porous scaffolds in an effort to study the possible regrowth of normal breast tissue, following drug release. The effects of localized cancer drug release on breast cancer cells and normal breast cell proliferation are demonstrated for scenarios that are relevant to palliative breast tumor surgery for 16 weeks under in vivo conditions. Results from the in vitro drug release show a sustained anomalous (non-Fickian) drug release that best fits the Korsmeyer-Peppas (KP) kinetic model with a non-spontaneous thermodynamic process that leads to a massive decrease in breast cancer cell (MDA-MB-231) viability. Our findings from the animal suggest that localized drug release from drug-based 3D resorbable porous scaffolds can be used to eliminate/treat local recurred triple negative breast tumors and promote normal breast tissue regeneration after surgical resection.
Collapse
|
24
|
Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydr Polym 2020; 230:115617. [DOI: 10.1016/j.carbpol.2019.115617] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
|
25
|
Lucas J, Ralaivao M, Estevinho BN, Rocha F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Cardoso T, Gonçalves A, Estevinho BN, Rocha F. Potential food application of resveratrol microparticles: Characterization and controlled release studies. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Huperzine A loaded multiparticulate disintegrating tablet: Drug release mechanism of ethyl cellulose microparticles and pharmacokinetic study. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Boudoukhani M, Yahoum MM, Lefnaoui S, Moulai-Mostefa N, Banhobre M. Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm J 2019; 27:1127-1137. [PMID: 31885472 PMCID: PMC6921171 DOI: 10.1016/j.jsps.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
This paper addressed the application of deacetylated xanthan (XGDS) and chitosan (CTS) as a mixture blend forming hydrophilic matrices for Tramadol (TD) sustained release tablets. XGDSs derivatives were obtained by alkaline treatment of xanthan gum (XG) with various degrees of deacetylation (DD). The obtained products were characterized in terms of structural, thermal and physicochemical properties. Different tablet formulations containing CTS/XGDSs were prepared by direct compression method and compared to CTS/XG tablets. Flow properties of powder mixtures and pharmaceutical characteristics were evaluated. The dissolution test of TD was realized under simulated gastric and intestinal conditions to achieve drug release more than 24 h. All developed tablets were found conforming to standard evaluation tests. It was shown that CTS/XGDSs matrices ensure a slower release of TD in comparison with CTS/XG based formulations. Meanwhile, increasing DD resulted in a decrease of drug release. In addition, TD release from XGDS matrices was faster at pH (6.8) than at acidic pH (1.2). The matrix tablets based on CTS/XGDS4 (DD = 98.08%) were selected as the best candidates compared to the other systems in prolonging drug release. The optimal formulation was found to release 99.99% of TD after 24 h following a non-Fickian type.
Collapse
Affiliation(s)
- Meriem Boudoukhani
- LME, Faculty of Technology, University of Medea, Ain D'Heb, Medea, Algeria
| | - Madiha M Yahoum
- LME, Faculty of Technology, University of Medea, Ain D'Heb, Medea, Algeria
| | - Sonia Lefnaoui
- Faculty of Sciences, University of Medea, Ain D'Heb, Medea, Algeria
| | | | - Manuel Banhobre
- INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
29
|
Development and In Vitro-In Vivo Evaluation of a Novel Sustained-Release Loxoprofen Pellet with Double Coating Layer. Pharmaceutics 2019; 11:pharmaceutics11060260. [PMID: 31195668 PMCID: PMC6631012 DOI: 10.3390/pharmaceutics11060260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.
Collapse
|
30
|
Choi Y, Min KA, Kim CK. Development and evaluation of dexibuprofen formulation with fast onset and prolonged effect. Drug Dev Ind Pharm 2019; 45:895-904. [DOI: 10.1080/03639045.2019.1576720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yoonho Choi
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Republic of Korea
| | - Chong-Kook Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Sustained delivery of atenolol drug using gum dammar crosslinked polyacrylamide and zirconium based biodegradable hydrogel composites. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.11.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Hybrid Hydrogel Composed of Polymeric Nanocapsules Co-Loading Lidocaine and Prilocaine for Topical Intraoral Anesthesia. Sci Rep 2018; 8:17972. [PMID: 30568251 PMCID: PMC6299281 DOI: 10.1038/s41598-018-36382-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
This study reports the development of nanostructured hydrogels for the sustained release of the eutectic mixture of lidocaine and prilocaine (both at 2.5%) for intraoral topical use. The local anesthetics, free or encapsulated in poly(ε-caprolactone) nanocapsules, were incorporated into CARBOPOL hydrogel. The nanoparticle suspensions were characterized in vitro in terms of particle size, polydispersity, and surface charge, using dynamic light scattering measurements. The nanoparticle concentrations were determined by nanoparticle tracking analysis. Evaluation was made of physicochemical stability, structural features, encapsulation efficiency, and in vitro release kinetics. The CARBOPOL hydrogels were submitted to rheological, accelerated stability, and in vitro release tests, as well as determination of mechanical and mucoadhesive properties, in vitro cytotoxicity towards FGH and HaCaT cells, and in vitro permeation across buccal and palatal mucosa. Anesthetic efficacy was evaluated using Wistar rats. Nanocapsules were successfully developed that presented desirable physicochemical properties and a sustained release profile. The hydrogel formulations were stable for up to 6 months under critical conditions and exhibited non-Newtonian pseudoplastic flows, satisfactory mucoadhesive strength, non-cytotoxicity, and slow permeation across oral mucosa. In vivo assays revealed higher anesthetic efficacy in tail-flick tests, compared to a commercially available product. In conclusion, the proposed hydrogel has potential for provision of effective and longer-lasting superficial anesthesia at oral mucosa during medical and dental procedures. These results open perspectives for future clinical trials.
Collapse
|
34
|
Vanden Braber NL, Novotny Nuñez I, Bohl L, Porporatto C, Nazar FN, Montenegro MA, Correa SG. Soy genistein administered in soluble chitosan microcapsules maintains antioxidant activity and limits intestinal inflammation. J Nutr Biochem 2018; 62:50-58. [PMID: 30245183 DOI: 10.1016/j.jnutbio.2018.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022]
Abstract
We used water-soluble Chitosan obtained by Maillard reaction with glucosamine to microencapsulate soy genistein (Ge) and preserve its biological activity for oral administration. Release of Ge was pH dependent with a super Case II mechanism at pH 1.2 and an anomalous transport with non-Fickian kinetics at pH 6.8. Microencapsulated Ge retained its antioxidant properties in vitro and its daily administration to mice attenuated clinical signs of acute colitis, limited inflammatory reaction and reduced oxidative stress and tissue injury as well. Remarkably, after feeding microencapsulated Ge the production of IL-10 in colonic tissue was restored to levels of untreated controls. According to statistical multivariate analysis, this cytokine was the parameter with the highest influence on the inflammatory/oxidative status. Microencapsulation of Ge with derivatized Chitosan becomes an interesting alternative to develop therapeutic approaches for oxidative inflammatory diseases; our findings suggest that the soy isoflavone could be incorporated into any functional food for application in intestinal inflammation.
Collapse
Affiliation(s)
- Noelia L Vanden Braber
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Ivanna Novotny Nuñez
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luciana Bohl
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Carina Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana A Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Silvia G Correa
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
35
|
Neuro-fuzzy modeling of ibuprofen-sustained release from tablets based on different cellulose derivatives. Drug Deliv Transl Res 2018; 9:162-177. [DOI: 10.1007/s13346-018-00592-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Yang F, Han H, Fan H, Xiao D, Chen Y, Li G. Synthesis, characterization, and in vitro release analysis of a novel glucan-based polymer carrier. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz-Bortuzzo JA, Roether JA, Cicha I, Kaschta J, Schubert DW, Chrissafis K, Detsch R, Boccaccini AR. Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int J Biol Macromol 2018; 114:614-625. [PMID: 29572141 DOI: 10.1016/j.ijbiomac.2018.03.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/21/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Hydrogels from natural polymers are widely used in tissue engineering due to their unique properties, especially when regarding the cell environment and their morphological similarity to the extracellular matrix (ECM) of native tissues. In this study, we describe the production and characterization of novel hybrid hydrogels composed of alginate blended with elastin from bovine neck ligament. The properties of elastin as a component of the native ECM were combined with the excellent chemical and mechanical stability as well as biocompatibility of alginate to produce two hybrid hydrogels geometries, namely 2D films obtained using sonication treatment and 3D microcapsules produced by pressure-driven extrusion. The resulting blend hydrogels were submitted to an extensive physico-chemical characterization. Furthermore, the biological compatibility of these materials was assessed using normal human dermal fibroblasts, indicating the suitability of this blend for soft tissue engineering.
Collapse
Affiliation(s)
- Raquel Silva
- Institute of Briomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Raminder Singh
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine, ENT Department, University Hospital Erlangen, 91054 Erlangen, Germany; Laboratory of Molecular Cardiology, Medical Clinic 2, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Bapi Sarker
- Institute of Briomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dimitrios G Papageorgiou
- Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; School of Materials and National Graphene Institute, University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Judith A Juhasz-Bortuzzo
- Institute of Briomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Judith A Roether
- Institute for Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine, ENT Department, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Joachim Kaschta
- Institute for Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dirk W Schubert
- Institute for Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Konstantinos Chrissafis
- Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Rainer Detsch
- Institute of Briomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Briomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
38
|
Modulation of functional pendant chains within poly(ethylene glycol) hydrogels for refined control of protein release. Sci Rep 2018. [PMID: 29531294 PMCID: PMC5847582 DOI: 10.1038/s41598-018-22249-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Hydrogels are highly attractive delivery vehicles for therapeutic proteins. Their innate biocompatibility, hydrophilicity and aqueous permeability allow stable encapsulation and release of proteins. The release rates also can be controlled simply by altering the crosslinking density of the polymeric network. However, the crosslinking density also influences the mechanical properties of hydrogels, generally opposite to the permeability. In addition, the release of larger proteins may be hindered below critically diminished porosity determined by the crosslinking density. Herein, the physical properties of the hydrogels are tuned by presenting functional pendant chains, independent of crosslinking density. Heterobifunctional poly(ethylene glycol) monomethacrylate (PEGMA) with various end functional groups is synthesized and copolymerized with PEG dimethacrylate (PEGDA) to engineer PEG hydrogels with pendant PEG chains. The pendant chains of the PEG hydrogels consisting of sulfonate, trimethylammonium chloride, and phenyl groups are utilized to provide negative charge, positive charge and hydrophobicity, respectively, to the hydrogels. The release rates of proteins with different isoelectric points are controlled in a wide range by the type and the density of functional pendant chains via electrostatic and hydrophobic interactions.
Collapse
|
39
|
Al-Odayni ABM, Aouak T, Alghamdi AA, Saeed WS, Ouladsmane M, Karama U, Alothman ZA. Ibuprofen grafted on poly(2-hydroxyethylmethacrylate): Synthesis, mass transfer, and in vitrodrug release investigations. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1297940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Taieb Aouak
- Department of Chemistry, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, Advanced Materials Research Chair, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz ali Alghamdi
- Department of Chemistry, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Waseem Sharaf Saeed
- Department of Chemistry, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Usama Karama
- Department of Chemistry, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zeid Abdullah Alothman
- Department of Chemistry, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, Advanced Materials Research Chair, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
New comprehensive mathematical model for HPMC-MCC based matrices to design oral controlled release systems. Eur J Pharm Biopharm 2017; 121:61-72. [DOI: 10.1016/j.ejpb.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
|
41
|
Aho J, Halme A, Boetker J, Water JJ, Bohr A, Sandler N, Rantanen J, Baldursdottir S. The effect of HPMC and MC as pore formers on the rheology of the implant microenvironment and the drug release in vitro. Carbohydr Polym 2017; 177:433-442. [PMID: 28962789 DOI: 10.1016/j.carbpol.2017.08.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Porous implants or implantable scaffolds used for tissue regeneration can encourage tissue growth inside the implant and provide extended drug release. Water-soluble polymers incorporated into a biodegradable or inert implant matrix may leach out upon contact with biological fluids and thereby gradually increasing the porosity of the implant and simultaneously release drug from the implant matrix. Different molecular weight grades of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) were mixed with polylactide and extruded into model implants containing nitrofurantoin as a model drug. The effect of the leached pore formers on the implant porosity and the rheology of the implant microenvironment in vitro was investigated and it was shown that HPMC pore formers had the greatest effect on the surrounding viscosity, with higher drug release and pore forming ability as compared to the MC pore formers. The highest molecular weight HPMC led to the most significant increase in viscosity of the implant microenvironment, while the highest drug release was achieved with the lowest molecular weight HPMC. The data suggested that the microenvironmental rheology of the implant, both in the formed pores and in biological fluids in the immediate vicinity of the implant could be an important factor affecting the diffusion of the drug and other molecules in the implantation site.
Collapse
Affiliation(s)
- Johanna Aho
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Amanda Halme
- Åbo Akademi University, Department of Biosciences, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Johan Boetker
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jorrit Jeroen Water
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Adam Bohr
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Niklas Sandler
- Åbo Akademi University, Department of Biosciences, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Jukka Rantanen
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stefania Baldursdottir
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
42
|
Recife ACD, Meneguin AB, Cury BSF, Evangelista RC. Evaluation of retrograded starch as excipient for controlled release matrix tablets. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. ACTA PHARMACEUTICA 2017; 67:149-168. [PMID: 28590908 DOI: 10.1515/acph-2017-0020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
In this study, we investigate molecularly imprinted polymers (MIPs), which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery.
Collapse
Affiliation(s)
- Pijush Kumar Paul
- Molecular Recognition Materials Research Unit, Nanotec-PSU Center of Excellence on Drug Delivery System Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hatyai, Songkhla , 90112, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park Phahonyothin Road Pathum Thani 12120, Pathum Thani , Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Nanotec-PSU Center of Excellence on Drug Delivery System Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hatyai, Songkhla , 90112, Thailand
| |
Collapse
|
44
|
Freire MCLC, Alexandrino F, Marcelino HR, Picciani PHDS, Silva KGDHE, Genre J, Oliveira AGD, Egito ESTD. Understanding Drug Release Data through Thermodynamic Analysis. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E651. [PMID: 28773009 PMCID: PMC5554032 DOI: 10.3390/ma10060651] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 11/29/2022]
Abstract
Understanding the factors that can modify the drug release profile of a drug from a Drug-Delivery-System (DDS) is a mandatory step to determine the effectiveness of new therapies. The aim of this study was to assess the Amphotericin-B (AmB) kinetic release profiles from polymeric systems with different compositions and geometries and to correlate these profiles with the thermodynamic parameters through mathematical modeling. Film casting and electrospinning techniques were used to compare behavior of films and fibers, respectively. Release profiles from the DDSs were performed, and the mathematical modeling of the data was carried out. Activation energy, enthalpy, entropy and Gibbs free energy of the drug release process were determined. AmB release profiles showed that the relationship to overcome the enthalpic barrier was PVA-fiber > PVA-film > PLA-fiber > PLA-film. Drug release kinetics from the fibers and the films were better fitted on the Peppas-Sahlin and Higuchi models, respectively. The thermodynamic parameters corroborate these findings, revealing that the AmB release from the evaluated systems was an endothermic and non-spontaneous process. Thermodynamic parameters can be used to explain the drug kinetic release profiles. Such an approach is of utmost importance for DDS containing insoluble compounds, such as AmB, which is associated with an erratic bioavailability.
Collapse
Affiliation(s)
| | - Francisco Alexandrino
- Programa de Pós-graduaçãoem Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal-RN 59012-570, Brazil.
| | - Henrique Rodrigues Marcelino
- Programa de Pós-graduaçãoem Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN 59012-570, Brazil.
| | | | | | - Julieta Genre
- Programa de Pós-graduaçãoem Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN 59012-570, Brazil.
| | - Anselmo Gomes de Oliveira
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara-SP 14800-903, Brazil.
| | - Eryvaldo Sócrates Tabosa do Egito
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal-RN 59012-570, Brazil.
- Programa de Pós-graduaçãoem Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal-RN 59012-570, Brazil.
- Programa de Pós-graduaçãoem Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN 59012-570, Brazil.
| |
Collapse
|
45
|
Saleh YE, Gepreel MA, Allam NK. Functional Nanoarchitectures For Enhanced Drug Eluting Stents. Sci Rep 2017; 7:40291. [PMID: 28079127 PMCID: PMC5227685 DOI: 10.1038/srep40291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.
Collapse
Affiliation(s)
- Yomna E Saleh
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Gepreel
- Department of Materials Science and Engineering, Egypt-Japan University for Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
46
|
Influence of HPMC K100LV and Compritol® HD5 ATO on Drug Release and Rheological Behavior of HPMC K4M Matrix Tablets. J Pharm Innov 2017. [DOI: 10.1007/s12247-016-9269-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Wang B, Han Y, Lin Q, Liu H, Shen C, Nan K, Chen H. In vitro and in vivo evaluation of xanthan gum-succinic anhydride hydrogels for the ionic strength-sensitive release of antibacterial agents. J Mater Chem B 2016; 4:1853-1861. [PMID: 32263062 DOI: 10.1039/c5tb02046h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, we report a new approach to prepare high gel performance hydrogels which are used as ionic strength-sensitive drug release systems. Succinic anhydride (SA)-modified xanthan (XG-SA) derivatives were prepared and confirmed by Fourier transform-infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Rheological measurements showed that the storage moduli (G') and loss moduli (G'') of XG-SA were much higher than native XG suggesting a higher stability of the hydrogels. XG-SA could form stable hydrogels when the content of a dry gel was 1.4 wt%. Drug release studies showed the ionic strength-sensitive and sustained release of gentamicin (GS) for 9 days under aqueous physiological conditions. Biofilm inhibition assay revealed that the XG-SA/GS hydrogels were sufficient to inhibit biofilm formation. The Kirby-Bauer method showed that there was a zone of inhibition at around 8.2 mm indicating the excellent bactericidal function of the hydrogels. Cytocompatibility assessment against human lens epithelial cells revealed that the hydrogels supported cell adhesion, proliferation and migration when the loading dosage of GS was 1 mg g-1. XG-SA/GS hydrogels were compared to native XG-SA in the rabbit subcutaneous S. aureus infection model. XG-SA/GS hydrogels yielded a significantly lower degree of infection than XG-SA hydrogels at day 7. In this way, XG-SA hydrogels are promising drug delivery materials for antibacterial applications.
Collapse
Affiliation(s)
- Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
49
|
A unified multicomponent stress-diffusion model of drug release from non-biodegradable polymeric matrix tablets. J Control Release 2016; 224:43-58. [DOI: 10.1016/j.jconrel.2015.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022]
|
50
|
Oz UC, Devrim B, Bozkır A, Canefe K. Development of reconstitutable suspensions containing diclofenac sodium-loaded microspheres for pediatric delivery. J Microencapsul 2015; 32:317-28. [DOI: 10.3109/02652048.2015.1017616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|