1
|
Nie Y, Kong Y, Peng J, Sun J, Fan B. Enhanced oral bioavailability of cannabidiol by flexible zein nanoparticles: in vitro and pharmacokinetic studies. Front Nutr 2024; 11:1431620. [PMID: 39086540 PMCID: PMC11289775 DOI: 10.3389/fnut.2024.1431620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Cannabidiol (CBD) has a variety of pharmacological effects including antiepileptic, antispasmodic, anxiolytic and anti-inflammatory among other pharmacological effects. However, since CBD is a terpene-phenolic compound, its clinical application is limited by its poor water solubility, low stability, and low bioavailability. Methods In this study, we used several strategies to address the above problems. Hydrochloric acid was used to modify zein to improve the molecular flexibility. Flexible zein nanoparticles (FZP-CBD) loaded with CBD was prepared to improve the stability and bioavailability of CBD. The parameters were evaluated in terms of morphology, particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), loading capacity (LC%), and storage stability. Simulated gastrointestinal fluid release experiment and bioavailability assay were applied in the evaluation. Results The simulated gastrointestinal fluid experiment showed that the release rates of FZP-CBD and natural zein nanoparticles (NZP-CBD) loaded with CBD were 3.57% and 89.88%, respectively, after digestion with gastric fluid for 2 h, 92.12% and 92.56%, respectively, after intestinal fluid digestion for 2 h. Compared with NZP-CBD, the C max of FZP-CBD at 3 different doses of CBD was increased by 1.7, 1.3 and 1.5 times respectively, and AUC0-t was increased by 1.4, 1.1 and 1.7 times respectively, bioavailability (F) was increased by 135.9%, 114.9%, 169.6% respectively. Discussion The experimental results showed that FZP-CBD could protect most of the CBD from being released in the stomach, and then control its release in the intestines, promote the absorption of CBD in the small intestine, and increase the bioavailability of CBD. Therefore, FZP-CBD could improve the utilization value of CBD and provide a new idea for the application of CBD in medicine and pharmacy.
Collapse
Affiliation(s)
| | | | | | | | - Bin Fan
- Beijing Key Laboratory of Basic Research on Traditional Chinese Medicine to Prevent and Control Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kim H, Han S, Choi K, Lee J, Lee SH, Won YW, Lim KS. Self-assembled Nanocomplex Using Cellulose Nanocrystal Based on Zinc/DNA Nanocluster for Gene Delivery. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Sun S, Yang Y, Niu H, Luo M, Wu ZS. Design and application of DNA nanostructures for organelle-targeted delivery of anticancer drugs. Expert Opin Drug Deliv 2022; 19:707-723. [PMID: 35618266 DOI: 10.1080/17425247.2022.2083603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION DNA nanostructures targeting organelles are of great significance for the early diagnosis and precise therapy of human cancers. This review is expected to promote the development of DNA nanostructure-based cancer treatment with organelle-level precision in the future. AREAS COVERED In this review, we introduce the different principles for targeting organelles, summarize the progresses in the development of organelle-targeting DNA nanostructures, highlight their advantages and applications in disease treatment, and discuss current challenges and future prospects. EXPERT OPINION Accurate targeting is a basic problem for effective cancer treatment. However, current DNA nanostructures cannot meet the actual needs. Targeting specific organelles is expected to further improve the therapeutic effect and overcome tumor cell resistance, thereby holding great practical significance for tumor treatment in the clinic. With the deepening of the research on the molecular mechanism of disease development, especially on tumorigenesis and tumor progression, and increasing understanding of the behavior of biological materials in living cells, more versatile DNA nanostructures will be constructed to target subcellular organelles for drug delivery, essentially promoting the early diagnosis of cancers, classification, precise therapy and the estimation of prognosis in the future.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Mengxue Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
4
|
Wang J, Chen G, Liu N, Han X, Zhao F, Zhang L, Chen P. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022; 302:102638. [PMID: 35299136 DOI: 10.1016/j.cis.2022.102638] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
In the past decades, the striking development of cationic polypeptides and cell-penetrating peptides (CPPs) tailored for small interfering RNA (siRNA) delivery has been fuelled by the conception of nuclear acid therapy and precision medicine. Owing to their amino acid compositions, inherent secondary structures as well as diverse geometrical shapes, peptides or peptide-containing polymers exhibit good biodegradability, high flexibility, and bio-functional diversity as nonviral siRNA vectors. Also, a variety of noncovalent nanocomplexes could be built via self-assembling and electrostatic interactions between cationic peptides and siRNAs. Although the peptide/siRNA nanocomplex-based RNAi therapies, STP705 and MIR-19, are under clinical trials, a guideline addressing the current bottlenecks of peptide/siRNA nanocomplex delivery is in high demand for future research and development. In this review, we present strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes in the treatment of genetic disorders. Through thorough analysis of those RNAi formulations using different delivery strategies, we seek to shed light on the rationale of peptide design and modification in constructing robust siRNA delivery systems, including targeted and co-delivery systems. Based on this, we provide a timely and comprehensive understanding of how to engineer biocompatible and efficient peptide-based siRNA vectors.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Xiaoxia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China.
| |
Collapse
|
5
|
Lacasse V, Beaudoin S, Jean S, Leyton JV. A Novel Proteomic Method Reveals NLS Tagging of T-DM1 Contravenes Classical Nuclear Transport in a Model of HER2-Positive Breast Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:99-119. [PMID: 33024794 PMCID: PMC7522293 DOI: 10.1016/j.omtm.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/27/2020] [Indexed: 11/01/2022]
Abstract
The next breakthrough for protein therapeutics is effective intracellular delivery and accumulation within target cells. Nuclear localization signal (NLS)-tagged therapeutics have been hindered by the lack of efficient nuclear localization due to endosome entrapment. Although development of strategies for tagging therapeutics with technologies capable of increased membrane penetration has resulted in proportional increased potency, nonspecific membrane penetration limits target specificity and, hence, widespread clinical success. There is a long-standing idea that nuclear localization of NLS-tagged agents occurs exclusively via classical nuclear transport. In the present study, we modified the antibody-drug conjugate trastuzumab-emtansine (T-DM1) with a classical NLS linked to cholic acid (cell accumulator [Accum]) that enables modified antibodies to escape endosome entrapment and increase nuclear localization efficiency without abrogating receptor targeting. In parallel, we developed a proteomics-based method to evaluate nuclear transport. Accum-modified T-DM1 significantly enhanced cytotoxic efficacy in the human epidermal growth factor receptor 2 (HER2)-positive SKBR3 breast cancer system. We discovered that efficacy was dependent on the nonclassical importin-7. Our evaluation reveals that when multiple classical NLS tagging occurs, cationic charge build-up as opposed to sequence dominates and becomes a substrate for importin-7. This study results in an effective target cell-specific NLS therapeutic and a general approach to guide future NLS-based development initiatives.
Collapse
Affiliation(s)
- Vincent Lacasse
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Simon Beaudoin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Steve Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| | - Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada.,Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
6
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
7
|
Zhang X, Wang Y, Wei G, Zhao J, Yang G, Zhou S. Stepwise dual targeting and dual responsive polymer micelles for mitochondrion therapy. J Control Release 2020; 322:157-169. [PMID: 32169533 DOI: 10.1016/j.jconrel.2020.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/24/2020] [Accepted: 03/07/2020] [Indexed: 12/31/2022]
Abstract
Methods to selectively destroy mitochondria of tumor cells and induce cell apoptosis with nanomedicine constitute challenges in cancer therapy. In the present study, we develop cell membrane/mitochondria dual targeting and pH/redox dual responsive nanoparticles for mitochondrion therapy. The nanoparticles are fabricated by the self-assembly of triphenylphosphonium (TPP) grafted poly(ethylene glycol)(PEG)-poly(d,l-lactide)(PLA) copolymers (TPP-PEG-ss-PLA) using disulfide bonds as the intermediate linkers. To shield the surface positive charge of the nanoparticles from TPP composition, chondroitin sulfate (CS) is employed to coat the nanoparticles, and this prolongs blood circulation while endowing an active targeting ability to the cell membrane. In acidic lyso-somes/endosomes, the negatively charged CS layer falls away to expose the TPP component. Subsequently, in the cyto-plasm, the nanoparticles can anchor to the mitochondrial outer membrane by TPP-mediated targeting, thereby inducing a decrease in the membrane potential and opening of the permeability transition pore. Thus, the overproduction of ROS in the mitochondria promotes cell apoptosis. The released DOX directly diffuse into the mitochondria, thereby resulting in mito-chondrial DNA damage. Therefore, the nanoparticles exhibit significant potential in terms of a new avenue for mitochondrion therapy in cancer treatment.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, PR China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610101, PR China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guoqing Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guang Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
8
|
Target-specific gene delivery in plant systems and their expression: Insights into recent developments. J Biosci 2020. [DOI: 10.1007/s12038-020-0008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Digiacomo L, Pozzi D, Palchetti S, Zingoni A, Caracciolo G. Impact of the protein corona on nanomaterial immune response and targeting ability. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1615. [DOI: 10.1002/wnan.1615] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | - Daniela Pozzi
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | - Sara Palchetti
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | | | - Giulio Caracciolo
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| |
Collapse
|
10
|
Rychter P, Christova D, Lewicka K, Rogacz D. Ecotoxicological impact of selected polyethylenimines toward their potential application as nitrogen fertilizers with prolonged activity. CHEMOSPHERE 2019; 226:800-808. [PMID: 30965251 DOI: 10.1016/j.chemosphere.2019.03.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/06/2023]
Abstract
Poly(2-oxazoline) polymers have found extensive application in the preparation of microcapsules for biomedical purposes. However, there is a scarcity of information related to their ecotoxicological assessment. Therefore, in this study, we focused on the ecotoxicity of selected polyethylenimines (PEIs) including poly(2-ethyl-2-oxazoline) (PEtOx) as an N-acyl-substituted PEI, linear polyethylenimine (LPEI) and branched polyethylenimine (BPEI). Oat (a monocotyledon) (Avena sativa) and radish (a dicotyledon) (Raphanus sativus) were selected as the representative plants, which are recommended by the Organization for Economic Cooperation and Development (OECD) 208 as the standard to test for plant growth. Shoot and root length, fresh and dry matter, level of total nitrogen in green parts of the plants, as well as total chlorophyll and carotenoids were determined. Phytotoxicity of all the tested parameters was dependent on the concentration of the examined polymers in the soil as well as on the time of their incubation in the soil. According to our results, the amount of nitrogen in green parts of the plants was increased compared to the control plants, which revealed the uptake of the plant-available form of nitrogen released from the tested PEIs. This was especially true for the plants treated with LPEI. Ecotoxicological impact of the incubated polymers in the soil against marine bacteria Allivibrio fischeri proved that, the all tested polyethylenimines may be classified as not harmful to aquatic microorganisms.
Collapse
Affiliation(s)
- Piotr Rychter
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland.
| | - Darinka Christova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 103-A, BG-1113, Sofia, Bulgaria
| | - Kamila Lewicka
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland
| | - Diana Rogacz
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200, Częstochowa, Poland
| |
Collapse
|
11
|
Polymeric nanoparticles promote endocytosis of a survivin molecular beacon: Localization and fate of nanoparticles and beacon in human A549 cells. Life Sci 2018; 215:106-112. [DOI: 10.1016/j.lfs.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 11/21/2022]
|
12
|
Tomori Y, Iijima N, Hinuma S, Ishii H, Takumi K, Takai S, Ozawa H. Morphological Analysis of Trafficking and Processing of Anionic and Cationic Liposomes in Cultured Cells. Acta Histochem Cytochem 2018; 51:81-92. [PMID: 29867281 PMCID: PMC5976888 DOI: 10.1267/ahc.17021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
Liposomes, artificial phospholipid vesicles, have been developed as a non-viral drug delivery system to allow contained agents to be efficiently delivered to target sites via systemic circulation. Liposomes have been used as a gene transfer tool with cultured cells; however, their precise trafficking and processing remain uncertain. Furthermore, liposomes with different surface charges are known to exhibit distinct properties. The purpose of the current study was to elucidate the intracellular trafficking and processing of liposomes with anionic and cationic surface charges from a morphological view point. We found that cationic liposomes (CLs) were more effectively taken by the cells than anionic liposomes (ALs). Confocal laser scanning microscopy and transmission electron microscopy demonstrated distinct intracellular localization and processing patterns of ALs and CLs. ALs and their contents were localized in lysosomes but not in cytosol, indicating that ALs are subjected to the endosome-lysosome system. In contrast, contents of CLs were distributed mainly in the cytosol. CLs appear to disturb the cell membrane and then collapse to release their contents into the cytosol. It is feasible that the contents of CLs enter the cytosol directly rather than via the endosome-lysosome system.
Collapse
Affiliation(s)
- Yuji Tomori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
- Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School
| | - Norio Iijima
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
- Present affiliation: Center for Medical Science, International University of Health and Welfare
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Ken Takumi
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
- Present affiliation: Department of Zoology, Okayama University of Science
| | - Shinro Takai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
13
|
Zupančič E, Curato C, Kim JS, Yeini E, Porat Z, Viana AS, Globerson-Levin A, Waks T, Eshhar Z, Moreira JN, Satchi-Fainaro R, Eisenbach L, Jung S, Florindo HF. Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:835-847. [PMID: 29306001 DOI: 10.1016/j.nano.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
Nanoparticulate vaccines are promising tools to overcome cancer immune evasion. However, a deeper understanding on nanoparticle-immune cell interactions and treatments regime is required for optimal efficacy. We provide a comprehensive study of treatment schedules and mode of antigen-association to nanovaccines on the modulation of T cell immunity in vivo, under steady-state and tumor-bearing mice. The coordinated delivery of antigen and two adjuvants (Monophosphoryl lipid A, oligodeoxynucleotide cytosine-phosphate-guanine motifs (CpG)) by nanoparticles was crucial for dendritic cell activation. A single vaccination dictated a 3-fold increase on cytotoxic memory-T cells and raised antigen-specific immune responses against B16.M05 melanoma. It generated at least a 5-fold increase on IFN-γ cytokine production, and presented over 50% higher lymphocyte count in the tumor microenvironment, compared to the control. The number of lymphocytes at the tumor site doubled with triple immunization. This lymphocyte infiltration pattern was confirmed in mammary huHER2 carcinoma, with significant tumor reduction.
Collapse
Affiliation(s)
- Eva Zupančič
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculty of Medicine (Polo I), Coimbra, Portugal
| | - Caterina Curato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Porat
- Flow Cytometry unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ana S Viana
- Chemistry and Biochemistry Center, Sciences Faculty, Universidade de Lisboa, Lisbon, Portugal
| | - Anat Globerson-Levin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Tova Waks
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - João N Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculty of Medicine (Polo I), Coimbra, Portugal; Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
14
|
Duo X, Li Q, Wang J, Lv J, Hao X, Feng Y, Ren X, Shi C, Zhang W. Core/Shell Gene Carriers with Different Lengths of PLGA Chains to Transfect Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13315-13325. [PMID: 29100464 DOI: 10.1021/acs.langmuir.7b02934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to improve the transfection efficiency and reduce the cytotoxicity of gene carriers, many strategies have been used to develop novel gene carriers. In this study, five complex micelles (MSP(2 k), MSP(4 k), MSP(6 k), MSP(8 k), and MSP(10 k)) were prepared from methoxy-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (mPEG-b-PLGA) and sorbitol-poly(d,l-lactide-co-glycolide)-graft-PEI (sorbitol-PLGA-g-PEI, where the designed molecular weights of PLGA chains were 2 kDa, 4 kDa, 6 kDa, 8 kDa, and 10 kDa, respectively) copolymers by a self-assembly method, and the mass ratio of mPEG-b-PLGA to sorbitol-PLGA-g-PEI was 1/3. These complex micelles and their gene complexes had appropriate sizes and zeta potentials, and pEGFP-ZNF580 (pDNA) could be efficiently internalized into EA.hy926 cells by their gene complexes (MSP(2 k)/pDNA, MSP(4 k)/pDNA, MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA). The MTT assay results demonstrated that the gene complexes had low cytotoxicity in vitro. When the hydrophobic PLGA chain increased above 6 kDa, the gene complexes showed higher performance than that prepared from short hydrophobic chains. Moreover, the relative ZNF580 protein expression levels in MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA) groups were 79.6%, 71.2%, and 73%, respectively. These gene complexes could promote the transfection of endothelial cells, while providing important information and insight for the design of new and effective gene carriers to promote the proliferation and migration of endothelial cells.
Collapse
Affiliation(s)
- Xinghong Duo
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities , Bayi middle Road 3, Xining, Qinghai 810007, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Juan Lv
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
- Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin University-Helmholtz-Zentrum Geesthacht , Yaguan Road 135, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS , Wenzhou, Zhejiang 325011, China
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325011, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| |
Collapse
|
15
|
Lim KS, Lee DY, Valencia GM, Won YW, Bull DA. Cell surface-engineering to embed targeting ligands or tracking agents on the cell membrane. Biochem Biophys Res Commun 2016; 482:1042-1047. [PMID: 27908724 DOI: 10.1016/j.bbrc.2016.11.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022]
Abstract
The key challenge to improve the efficacy of cell therapy is how to efficiently modify cells with a specific molecule or compound that can guide the cells to the target tissue. To address this, we have developed a cell surface engineering technology to non-invasively modify the cell surface. This technology can embed a wide variety of bioactive molecules on any cell surface and allow for the targeting of a wide range of tissues in a variety of disease states. Using our cell surface engineering technology, mesenchymal stem cells (MSC)s were modified with: 1) a homing peptide or a recombinant protein to facilitate the migration of the cells toward a specific molecular target; or 2) magnetic resonance imaging (MRI) contrast agents to allow for in vivo tracking of the cells. The incorporation of a homing peptide or a targeting ligand on MSCs facilitated the migration of the cells toward their molecular target. MRI contrast agents were successfully embedded on the cell surfaces without adverse effects to the cells and the contrast agent-labeled cells were detectable by MRI. Our technology is a promising method of cell surface engineering that is applicable to a broad range of cell therapies.
Collapse
Affiliation(s)
- Kwang Suk Lim
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Daniel Y Lee
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Gabriel M Valencia
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Gene Delivery Systems. Drug Deliv 2016. [DOI: 10.1201/9781315382579-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Zhong J, Zhu X, Luo K, Li L, Tang M, Liu Y, Zhou Z, Huang Y. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion. Mol Pharm 2016; 13:3069-79. [PMID: 27417390 DOI: 10.1021/acs.molpharmaceut.6b00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.
Collapse
Affiliation(s)
- Jiaju Zhong
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| | - Xi Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| | - Manlin Tang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| | - Yanxi Liu
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministery of Education), West China School of Pharmacy, Sichuan University , NO. 17, Block 3, South Renmin Road, Chengdu 610041, P.R. China
| |
Collapse
|
18
|
Jumping the nuclear envelope barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. J Control Release 2016; 234:90-7. [DOI: 10.1016/j.jconrel.2016.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/14/2016] [Accepted: 05/16/2016] [Indexed: 01/02/2023]
|
19
|
1-[2,3-Bis(tetradecyloxy)propyl]-3-[2-(piperazin-1-yl)ethyl]urea. MOLBANK 2015. [DOI: 10.3390/m873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Kim HA, Lee HL, Choi E, Kim YH, Lee M. Reducible Poly(Oligo-D-Arginine) as an Efficient Carrier of the Thymidine Kinase Gene in the Intracranial Glioblastoma Animal Model. J Pharm Sci 2015; 104:3743-3751. [PMID: 26178805 DOI: 10.1002/jps.24576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/22/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022]
Abstract
Gene therapy has been considered as an alternative treatment for glioblastoma therapy. In this study, a glioblastoma-specific suicide gene, pEpo-NI2-SV-TK, was delivered into the intracranial glioblastoma model using reducible poly(oligo-d-arginines) (rPOA). pEpo-NI2-SV-TK has the erythropoietin (Epo) enhancer and the nestin intron 2 (NI2) for glioblastoma specific gene expression. The in vitro studies showed that the rPOA formed stable complexes with pEpo-NI2-SV-TK. In the MTT and TUNEL assays, rPOA showed lower cytotoxicity than polyethylenimine (25 kDa, PEI25k). In addition, the rPOA/pEpo-NI2-SV-TK complex induced higher glioblastoma cell death under hypoxic condition than normoxic condition, suggesting that pEpo-NI2-SV-TK induced gene expression in the hypoxic tumor tissue. For in vivo therapeutic efficacy evaluation, the rPOA/pEpo-NI2-SV-TK complex was injected into the brains of an intracranial glioblastoma rat model. The rPOA/pEpo-NI2-SV-TK injected group had a significantly reduced tumor size, compared with the control and the PEI25k/pEpo-NI2-SV-TK injected group. The TUNEL assay showed that the rPOA-pEpo-NI2-SV-TK complex had more apoptotic cells than the control and PEI25k/pEpo-NI2-SV-TK injected groups. These results suggest that the rPOA is an efficient carrier for pEpo-NI2-SV-TK and increased the therapeutic efficacy in the intracranial glioblastoma models. Therefore, the rPOA/pEpo-NI2-SV-TK complex may be useful for glioblastoma specific gene therapy.
Collapse
Affiliation(s)
- Hyun Ah Kim
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Seoul, 133-791, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Hyun-Lin Lee
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Seoul, 133-791, Republic of Korea
| | - Eunji Choi
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Seoul, 133-791, Republic of Korea
| | - Yong-Hee Kim
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Seoul, 133-791, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133-791, Republic of Korea.
| | - Minhyung Lee
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Seoul, 133-791, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
21
|
Yao S, He Z, Chen C. CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy. Hum Gene Ther 2015; 26:463-71. [PMID: 26075804 DOI: 10.1089/hum.2015.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shaohua Yao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| | - Zhiyao He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| | - Chong Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
22
|
Preparation and Testing of Quaternized Chitosan Nanoparticles as Gene Delivery Vehicles. Appl Biochem Biotechnol 2015; 175:3244-57. [DOI: 10.1007/s12010-015-1483-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
|
23
|
Balmayor ER, van Griensven M. Gene therapy for bone engineering. Front Bioeng Biotechnol 2015; 3:9. [PMID: 25699253 PMCID: PMC4313589 DOI: 10.3389/fbioe.2015.00009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures need to be taken by physicians. It is important to combine cells, scaffolds and growth factors, and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany ; Institute for Advanced Science, Technical University Munich , Garching , Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany
| |
Collapse
|
24
|
Yu D, Zou G, Cui X, Mao Z, Estrela-Lopis I, Donath E, Gao C. Monitoring the intracellular transformation process of surface-cleavable PLGA particles containing disulfide bonds by fluorescence resonance energy transfer. J Mater Chem B 2015; 3:8865-8873. [DOI: 10.1039/c5tb01687h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The FRET technique was used to quantify the surface cleavage kinetics of PLGA particles containing disulfide bonds in cells.
Collapse
Affiliation(s)
- Dahai Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Guangyang Zou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaojing Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Irina Estrela-Lopis
- Institute of Medical Physics & Biophysics
- Leipzig University
- 04107 Leipzig
- Germany
| | - Edwin Donath
- Institute of Medical Physics & Biophysics
- Leipzig University
- 04107 Leipzig
- Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
25
|
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9:GE01-6. [PMID: 25738007 DOI: 10.7860/jcdr/2015/10443.5394] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Non-viral vectors are simple in theory but complex in practice. Apart from intra cellular and extracellular barriers, number of other challenges also needs to be overcome in order to increase the effectiveness of non-viral gene transfer. These barriers are categorized as production, formulation and storage. No one-size-fits-all solution to gene delivery, which is why in spite of various developments in liposome, polymer formulation and optimization, new compounds are constantly being proposed and investigated. In this review, we will see in detail about various types of non-viral vectors highlighting promising development and recent advances that had improved the non-viral gene transfer efficiency of translating from "Bench to bedside".
Collapse
Affiliation(s)
- Murali Ramamoorth
- Former Reader, Department of Prosthodontics, Sinhgad Dental College & Hospital , Pune, India
| | - Aparna Narvekar
- Former Lecturer, Department of Prosthodontics, Sinhgad Dental College & Hospital , Pune, India
| |
Collapse
|
26
|
Targeted siRNA therapy using cytoplasm-responsive nanocarriers and cell-penetrating peptides. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0155-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 2014; 10:2761-74. [PMID: 25483497 PMCID: PMC4977448 DOI: 10.4161/hv.29589] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/15/2014] [Indexed: 02/07/2023] Open
Abstract
Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials' physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants.
Collapse
Affiliation(s)
- Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology of China; Beijing, PR China
- Center for Inflammation and Epigenetics; Houston Methodist Research Institute; Houston, TX USA
| | - Rongfu Wang
- Center for Inflammation and Epigenetics; Houston Methodist Research Institute; Houston, TX USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology of China; Beijing, PR China
| |
Collapse
|
28
|
McCullough KC, Milona P, Thomann-Harwood L, Démoulins T, Englezou P, Suter R, Ruggli N. Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles. Vaccines (Basel) 2014; 2:735-54. [PMID: 26344889 PMCID: PMC4494254 DOI: 10.3390/vaccines2040735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) play essential roles determining efficacy of vaccine delivery with respect to immune defence development and regulation. This renders DCs important targets for vaccine delivery, particularly RNA vaccines. While delivery of interfering RNA oligonucleotides to the appropriate intracellular sites for RNA-interference has proven successful, the methodologies are identical for RNA vaccines, which require delivery to RNA translation sites. Delivery of mRNA has benefitted from application of cationic entities; these offer value following endocytosis of RNA, when cationic or amphipathic properties can promote endocytic vesicle membrane perturbation to facilitate cytosolic translocation. The present review presents how such advances are being applied to the delivery of a new form of RNA vaccine, replicons (RepRNA) carrying inserted foreign genes of interest encoding vaccine antigens. Approaches have been developed for delivery to DCs, leading to the translation of the RepRNA and encoded vaccine antigens both in vitro and in vivo. Potential mechanisms favouring efficient delivery leading to translation are discussed with respect to the DC endocytic machinery, showing the importance of cytosolic translocation from acidifying endocytic structures. The review relates the DC endocytic pathways to immune response induction, and the potential advantages for these self-replicating RNA vaccines in the near future.
Collapse
Affiliation(s)
| | - Panagiota Milona
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | | | - Thomas Démoulins
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | - Pavlos Englezou
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | - Rolf Suter
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | - Nicolas Ruggli
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| |
Collapse
|
29
|
Wen Y, Liu K, Yang H, Li Y, Lan H, Liu Y, Zhang X, Yi T. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal Chem 2014; 86:9970-6. [PMID: 25196578 DOI: 10.1021/ac502909c] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a marker for oxidative stress and a second messenger in signal transduction, hydrogen peroxide (H2O2) plays an important role in living systems. It is thus critical to monitor the changes in H2O2 in cells and tissues. Here, we developed a highly sensitive and versatile ratiometric H2O2 fluorescent probe (NP1) based on 1,8-naphthalimide and boric acid ester. In response to H2O2, the ratio of its fluorescent intensities at 555 and 403 nm changed 1020-fold within 200 min. The detecting limit of NP1 toward H2O2 is estimated as 0.17 μM. It was capable of imaging endogenous H2O2 generated in live RAW 264.7 macrophages as a cellular inflammation response, and especially, it was able to detect H2O2 produced as a signaling molecule in A431 human epidermoid carcinoma cells through stimulation by epidermal growth factor. This probe contains an azide group and thus has the potential to be linked to various molecules via the click reaction. After binding to a Nuclear Localization Signal peptide, the peptide-based combination probe (pep-NP1) was successfully targeted to nuclei and was capable of ratiometrically detecting nuclear H2O2 in living cells. These results indicated that NP1 was a highly sensitive ratiometric H2O2 dye with promising biological applications.
Collapse
Affiliation(s)
- Ying Wen
- Department of Chemistry and Concerted Innovation Center of Chemistry for Energy Materials, Fudan University , Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Won YW, Bull DA, Kim SW. Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release 2014; 195:110-9. [PMID: 25076177 DOI: 10.1016/j.jconrel.2014.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 01/18/2023]
Abstract
Ischemic heart disease is rapidly growing as the common cause of death in the world. It is a disease that occurs as a result of coronary artery stenosis and is caused by the lack of oxygen within cardiac muscles due to an imbalance between oxygen supply and demand. The conventional medical therapy is focused on the use of drug eluting stents, coronary-artery bypass graft surgery and anti-thrombosis. Gene therapy provides great opportunities for treatment of cardiovascular disease. In order for gene therapy to be successful, the development of proper gene delivery systems and hypoxia-regulated gene expression vectors is the most important factors. Several non-viral gene transfer methods have been developed to overcome the safety problems of viral transduction. Some of which include plasmids that regulate gene expression that is controlled by environment specific promoters in the transcriptional or the translational level. This review explores polymeric gene carriers that target the myocardium and hypoxia-inducible vectors, which regulate gene expression in response to hypoxia, and their application in animal myocardial infarction models.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
31
|
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57:78-94. [PMID: 24795041 DOI: 10.1016/j.peptides.2014.04.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/19/2014] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
Abstract
Efficient delivery of therapeutic and diagnostic molecules to the cells and tissues is a difficult challenge. The cellular membrane is very effective in its role as a selectively permeable barrier. While it is essential for cell survival and function, also presents a major barrier for intracellular delivery of cargo such as therapeutic and diagnostic agents. In recent years, cell-penetrating peptides (CPPs), that are relatively short cationic and/or amphipathic peptides, received great attention as efficient cellular delivery vectors due to their intrinsic ability to enter cells and mediate uptake of a wide range of macromolecular cargo such as plasmid DNA (pDNA), small interfering RNA (siRNAs), drugs, and nanoparticulate pharmaceutical carriers. This review discusses the various uptake mechanisms of these peptides. Furthermore, we discuss recent advances in the use of CPP for the efficient delivery of nanoparticles, nanocarriers, DNA, siRNA, and anticancer drugs to the cells. In addition, we have been highlighting new results for improving endosomal escape of CPP-cargo molecules. Finally, pH-responsive and activable CPPs for tumor-targeting therapy have been described.
Collapse
Affiliation(s)
- Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Hadi Karami
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Sardasht, 38481 Arak, Iran.
| | - Samane Mohammadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Nasrin Sohrabi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Fariba Badrzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| |
Collapse
|
32
|
Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization. Acta Biomater 2014; 10:2147-58. [PMID: 24406199 DOI: 10.1016/j.actbio.2013.12.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/13/2013] [Accepted: 12/26/2013] [Indexed: 11/24/2022]
Abstract
The main limitation of gene therapy towards clinics is the lack of robust, safe and efficient gene delivery vectors. This paper describes new polycations for gene delivery based on poly(β-amino ester)s (pBAE) containing terminal oligopeptides. The authors developed oligopeptide-modified pBAE-pDNA nanoparticles that achieve better cellular viability and higher transfection efficacy than other end-modified pBAE and commercial transfection agents. Gene expression in highly permissive cell lines was remarkably high, but transfection efficiency in less-permissive cell lines was highly dependent on oligopeptide composition and nanoparticle formulation. Moreover, the use of selected oligopeptides in the pBAE formulation led to preferential intracellular localization of the particles. Particle analysis of highly efficient pBAE formulations revealed different particle sizes and charge features, which indicates chemical pseudotyping of the particle surface, related to the oligopeptide chemical nature. In conclusion, chemical modification at the termini of pBAE with amine-rich oligopeptides is a powerful strategy for developing delivery systems for future gene therapy applications.
Collapse
|
33
|
|
34
|
Yasuzaki Y, Yamada Y, Kanefuji T, Harashima H. Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J Control Release 2013; 172:805-11. [PMID: 24100263 DOI: 10.1016/j.jconrel.2013.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 01/16/2023]
Abstract
Mitochondrial genetic disorders are a major cause of mitochondrial diseases. It is therefore likely that mitochondrial gene therapy will be useful for the treatment of such diseases. Here, we report on the possibility of mitochondrial gene delivery in skeletal muscle using hydrodynamic limb vein (HLV) injection. The HLV injection procedure, a useful method for transgene expression in skeletal muscle, involves the rapid injection of a large volume of naked plasmid DNA (pDNA) into the distal vein of a limb. We hypothesized that the technique could be used to deliver pDNA not only to nuclei but also to mitochondria, since cytosolic pDNA that is internalized by the method may be able to overcome mitochondrial membrane. We determined if pDNA could be delivered to myofibrillar mitochondria by HLV injection by PCR analysis. Mitochondrial toxicity assays showed that the HLV injection had no influence on mitochondrial function. These findings indicate that HLV injection promises to be a useful technique for in vivo mitochondrial gene delivery.
Collapse
Affiliation(s)
- Yukari Yasuzaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
35
|
Zhang H, Liang Z, Li W, Li F, Chen Q. Nuclear location signal peptide–modified poly (ethyleneimine)/DNA complexes: An efficient gene delivery vector in vitro and in vivo. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513483507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The low transfection efficiency of nonviral gene delivery systems limits their applications. In this study, we demonstrated a simple method to modify poly(ethyleneimine)/DNA complexes with a nuclear location signal peptide via bis(succinimidyl) penta(ethylene glycol) coupling. The amount of grafted nuclear location signal peptide was controlled within a range of 0–9 µg for poly(ethyleneimine)/DNA complexes containing 10 µg DNA and 100 µg poly(ethyleneimine) by adjusting the grafting agent and peptide feeds. The particle size and surface zeta-potential of the complexes were largely retained after nuclear location signal immobilization. Based on the results of the flow cytometry measurements, the nuclear location signal–modified poly(ethyleneimine)/DNA complexes were internalized into at bone marrow stem cells at a significantly faster rate and a higher amount than the unmodified complexes. In vitro transfection experiments, using plasmid DNA encoding bone morphogenetic protein 2, indicated that the nuclear location signal peptide–modified poly(ethyleneimine)/DNA complexes have significantly higher gene transfection ability toward bone marrow stem cells than unmodified complexes. The porous collagen scaffolds loaded with nuclear location signal–modified poly(ethyleneimine)/plasmid DNA encoding bone morphogenetic protein 2 complexes successfully transfected tissue cells and induced the human bone morphogenetic protein 2 expression in a rat. The modification of the poly(ethyleneimine)/DNA complexes with nuclear location signal peptide was effective in enhancing gene transfection of complexes in vitro and in vivo, thus indicating potential applications for bioactive scaffolds with enhanced tissue regeneration performance.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongyan Liang
- The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanli Li
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangcai Li
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qixin Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
37
|
Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 2013; 46:622-31. [PMID: 22891796 DOI: 10.1021/ar300031y] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although a growing number of innovations have emerged in the fields of nanobiotechnology and nanomedicine, new engineered nanomaterials (ENMs) with novel physicochemical properties are posing novel challenges to understand the full spectrum of interactions at the nano-bio interface. Because these could include potentially hazardous interactions, researchers need a comprehensive understanding of toxicological properties of nanomaterials and their safer design. In depth research is needed to understand how nanomaterial properties influence bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological responses. Toxicity of ENMs differ with their size and surface properties, and those connections hold true across a spectrum of in vitro to in vivo nano-bio interfaces. In addition, the in vitro results provide a basis for modeling the biokinetics and in vivo behavior of ENMs. Nonetheless, we must use caution in interpreting in vitro toxicity results too literally because of dosimetry differences between in vitro and in vivo systems as well the increased complexity of an in vivo environment. In this Account, we describe the impact of ENM physicochemical properties on cellular bioprocessing based on the research performed in our groups. Organic, inorganic, and hybrid ENMs can be produced in various sizes, shapes and surface modifications and a range of tunable compositions that can be dynamically modified under different biological and environmental conditions. Accordingly, we cover how ENM chemical properties such as hydrophobicity and hydrophilicity, material composition, surface functionalization and charge, dispersal state, and adsorption of proteins on the surface determine ENM cellular uptake, intracellular biotransformation, and bioelimination versus bioaccumulation. We review how physical properties such as size, aspect ratio, and surface area of ENMs influence the interactions of these materials with biological systems, thereby affecting their hazard potential. We discuss our actual experimental findings and show how these properties can be tuned to control the uptake, biotransformation, fate, and hazard of ENMs. This Account provides specific information about ENM biological behavior and safety issues. This research also assists the development of safer nanotherapeutics and guides the design of new materials that can execute novel functions at the nano-bio interface.
Collapse
Affiliation(s)
- Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huan Meng
- Division of NanoMedicine, David Geffen School of Medicine, UC Center for the Environmental Impact of Nanotechnology, UCLA Center for Nano Biology and Predictive toxicology, California Nanosystem Institute, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Division of NanoMedicine, David Geffen School of Medicine, UC Center for the Environmental Impact of Nanotechnology, UCLA Center for Nano Biology and Predictive toxicology, California Nanosystem Institute, University of California, Los Angeles, California 90095, United States
| | - Andre Nel
- Division of NanoMedicine, David Geffen School of Medicine, UC Center for the Environmental Impact of Nanotechnology, UCLA Center for Nano Biology and Predictive toxicology, California Nanosystem Institute, University of California, Los Angeles, California 90095, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
38
|
Wang M, Zhang Y, Feng J, Gu T, Dong Q, Yang X, Sun Y, Wu Y, Chen Y, Kong W. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Int J Nanomedicine 2013; 8:1141-54. [PMID: 23658482 PMCID: PMC3607418 DOI: 10.2147/ijn.s41457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Exendin-4 is an incretin mimetic agent approved for type 2 diabetes treatment. However, the required frequent injections restrict its clinical application. Here, the potential use of chitosan-coated poly (d,l-lactide-co-glycolide) (CS-PLGA) nanoparticles was investigated for intestinal delivery of exendin-4. Methods and results Nanoparticles were prepared using a modified water–oil–water (w/o/w) emulsion solvent-evaporation method, followed by coating with chitosan. The physical properties, particle size, and cell toxicity of the nanoparticles were examined. The cellular uptake mechanism and transmembrane permeability were performed in Madin-Darby canine kidney-cell monolayers. Furthermore, in vivo intraduodenal administration of exendin-4-loaded nanoparticles was carried out in rats. The PLGA nanoparticle coating with chitosan led to a significant change in zeta potential, from negative to positive, accompanied by an increase in particle size of ~30 nm. Increases in both the molecular weight and degree of deacetylation of chitosan resulted in an observable increase in zeta potential but no apparent change in the particle size of ~300 nm. Both unmodified PLGA and chitosan-coated nanoparticles showed only slight cytotoxicity. Use of different temperatures and energy depletion suggested that the cellular uptake of both types of nanoparticles was energy-dependent. Further investigation revealed that the uptake of PLGA nanoparticles occurred via caveolin-mediated endocytosis and that of CS-PLGA nanoparticles involved both macropinocytosis and clathrin-mediated endocytosis, as evidenced by using endocytic inhibitors. However, under all conditions, CS-PLGA nanoparticles showed a greater potential to be transported into cells, as shown by flow cytometry and confocal microscopy. Transmembrane permeability analysis showed that unmodified and modified PLGA nanoparticles could improve the transport of exendin-4 by up to 8.9- and 16.5-fold, respectively, consistent with the evaluation in rats. Conclusion The chitosan-coated nanoparticles have a higher transport potential over both free drug and unmodified particles, providing support for their potential development as a candidate oral delivery agent for exendin-4.
Collapse
Affiliation(s)
- Mengshu Wang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chu M, Dong C, Zhu H, Cai X, Dong H, Ren T, Su J, Li Y. Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a nuclear targeting ligand. Polym Chem 2013. [DOI: 10.1039/c3py21092h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
|
41
|
Yue Y, Wu C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater Sci 2013; 1:152-170. [DOI: 10.1039/c2bm00030j] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 2013; 42:7289-325. [DOI: 10.1039/c3cs60048c] [Citation(s) in RCA: 752] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Won YW, McGinn AN, Lee M, Bull DA, Kim SW. Targeted gene delivery to ischemic myocardium by homing peptide-guided polymeric carrier. Mol Pharm 2012; 10:378-85. [PMID: 23214982 DOI: 10.1021/mp300500y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myocardial ischemia needs an alternative treatment such as gene therapy for the direct protection of cardiomyocytes against necrosis or apoptosis and to prevent the development of myocardial fibrosis and cardiac dysfunction. Despite the utility of gene therapy, its therapeutic use is limited due to inadequate transfection in cardiomyocytes and difficulty in directing to ischemic myocardium. Here, we present a polymeric gene carrier that is capable of targeting ischemic myocardium, resulting in high localization within the ischemic zone of the left ventricle (LV) of an ischemia/reperfusion (I/R) rat model upon systemic administration. Cystamine bisacrylamide-diamino hexane (CD) polymer was modified with the ischemic myocardium-targeted peptide (IMTP) and D-9-arginine (9R) for dual effects of the homing to ischemic myocardium and enhanced transfection efficiency with minimized polymer use. Conjugation of IMTP and 9R to CD led to an increase in transfection under hypoxia and significantly reduced the amount of polymer required for high transfection. Finally, we confirmed targeting of IMTP-CD-9R/DNA polyplex to ischemic myocardium and enhanced gene expression in LV of the I/R rat after tail vein injection. This study provides a clue that gene therapy for the treatment of myocardial ischemia can be achieved by using homing peptide-guided gene delivery systems.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States
| | | | | | | | | |
Collapse
|
44
|
Ma X, Nguyen KT, Borah P, Ang CY, Zhao Y. Functional silica nanoparticles for redox-triggered drug/ssDNA co-delivery. Adv Healthc Mater 2012. [PMID: 23184818 DOI: 10.1002/adhm.201200123] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A mesoporous silica nanoparticle (MSNP) based co-delivery system is developed in order to deliver simultaneously drug and single strand DNA (ssDNA) in a controlled manner. Negatively charged ssDNA as a model gene is immobilized onto the surface of positively charged ammonium-functionalized MSNPs through electrostatic interaction, effectively blocking the loaded drugs within the mesopores of MSNPs. When the pre-installed disulfide bond on the ammonium unit is broken by the addition of the reducing agent such as dithiothreitol or glutathione, the ssDNA network on the surface is freed, leading to the release of the loaded drug molecules from the mesopores. The cell investigations indicate that the functional nanoparticles have a very low cytotoxicity under the concentrations measured. The doxorubicin-loaded and ssDNA-coated nanoparticles show an enhanced cellular internalization, leading to a successful drug/ssDNA co-delivery in vitro for significant apoptosis of Hela cancer cells as compared with that of free doxorubicin. The obtained experimental results indicate promising applications of the functional nanoparticles in cancer treatment.
Collapse
Affiliation(s)
- Xing Ma
- Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
45
|
Kawazu T, Kanzaki H, Uno A, Azuma H, Nagasaki T. HVJ-E/importin-β hybrid vector for overcoming cytoplasmic and nuclear membranes as double barrier for non-viral gene delivery. Biomed Pharmacother 2012; 66:519-24. [DOI: 10.1016/j.biopha.2012.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022] Open
|
46
|
Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 2012; 5:87-100. [PMID: 24198499 DOI: 10.2147/nsa.s25515] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) are materials with overall dimensions in the nanoscale range. They have unique physicochemical properties, and have emerged as important players in current research in modern medicine. In the last few decades, several types of NPs and microparticles have been synthesized and proposed for use as contrast agents for diagnostics and imaging and for drug delivery; for example, in cancer therapy. Yet specific targeting that will improve their delivery still represents an unsolved challenge. The mechanism by which NPs enter the cell has important implications not only for their fate but also for their impact on biological systems. Several papers in the literature discuss the potential risks related to NP exposure, and more recently the concept that even sublethal doses of NPs may elicit a cell response has been proposed. In this review, we intend to present an overall view of cell mechanisms that may be perturbed by cell-NP interaction. Published data, in fact, emphasize that NPs should no longer be viewed only as simple carriers for biomedical applications, but that they can also play an active role in mediating biological effects.
Collapse
Affiliation(s)
- Alice Panariti
- Department of Experimental Medicine, University of Milano Bicocca, Monza, Italy
| | | | | |
Collapse
|
47
|
Grigoriev IV, Korobeinikov VA, Cheresiz SV, Pokrovsky AG, Zakharova LY, Voronin MA, Lukashenko SS, Konovalov AI, Zuev YF. Cationic gemini surfactants as new agents for plasmid DNA delivery into cells. DOKL BIOCHEM BIOPHYS 2012; 445:197-9. [PMID: 22941102 DOI: 10.1134/s1607672912040047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/22/2022]
|
48
|
Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles. Ther Deliv 2012; 3:1077-99. [DOI: 10.4155/tde.12.90] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are essential to many aspects of immune defense development and regulation. They provide important targets for prophylactic and therapeutic delivery. While protein delivery has had considerable success, RNA delivery is still expanding. Delivering RNA molecules for RNAi has shown particular success and there are reports on successful delivery of mRNA. Central, therein, is the application of cationic entities. Following endocytosis of the delivery vehicle for the RNA, cationic entities should promote vesicular membrane perturbation, facilitating cytosolic release. The present review explains the diversity of DC function in immune response development and control. Promotion of delivered RNA cytosolic release is discussed, relating to immunoprophylactic and therapeutic potential, and DC endocytic machinery is reviewed, showing how DC endocytic pathways influence the handling of internalized material. The potential advantages for application of replicating RNA are presented and discussed, in consideration of their value and development in the near future.
Collapse
|
49
|
Abstract
Polymeric nanoparticles-based therapeutics show great promise in the treatment of a wide range of diseases, due to the flexibility in which their structures can be modified, with intricate definition over their compositions, structures and properties. Advances in polymerization chemistries and the application of reactive, efficient and orthogonal chemical modification reactions have enabled the engineering of multifunctional polymeric nanoparticles with precise control over the architectures of the individual polymer components, to direct their assembly and subsequent transformations into nanoparticles of selective overall shapes, sizes, internal morphologies, external surface charges and functionalizations. In addition, incorporation of certain functionalities can modulate the responsiveness of these nanostructures to specific stimuli through the use of remote activation. Furthermore, they can be equipped with smart components to allow their delivery beyond certain biological barriers, such as skin, mucus, blood, extracellular matrix, cellular and subcellular organelles. This tutorial review highlights the importance of well-defined chemistries, with detailed ties to specific biological hurdles and opportunities, in the design of nanostructures for various biomedical delivery applications.
Collapse
Affiliation(s)
- Mahmoud Elsabahy
- Department of Chemistry, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Karen L. Wooley
- Department of Chemistry, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Department of Chemical Engineering, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| |
Collapse
|
50
|
Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012; 33:4773-82. [PMID: 22469294 DOI: 10.1016/j.biomaterials.2012.03.032] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/10/2012] [Indexed: 11/23/2022]
Abstract
Dendrimers have emerged as promising carriers for the delivery of a wide variety of pay-loads including therapeutic drugs, imaging agents and nucleic acid materials into biological systems. The current work aimed to develop a novel mitochondria-targeted generation 5 poly(amidoamine) (PAMAM) dendrimer (G(5)-D). To achieve this goal, a known mitochondriotropic ligand triphenylphosphonium (TPP) was conjugated on the surface of the dendrimer. A fraction of the cationic surface charge of G(5)-D was neutralized by partial acetylation of the primary amine groups. Next, the mitochondria-targeted dendrimer was synthesized via the acid-amine-coupling conjugation reaction between the acid group of (3-carboxypropyl)triphenyl-phosphonium bromide and the primary amines of the acetylated dendrimer (G(5)-D-Ac). These dendrimers were fluorescently labeled with fluorescein isothiocyanate (FITC) to quantify cell association by flow cytometry and for visualization under confocal laser scanning microscopy to assess the mitochondrial targeting in vitro. The newly developed TPP-anchored dendrimer (G(5)-D-Ac-TPP) was efficiently taken up by the cells and demonstrated good mitochondrial targeting. In vitro cytotoxicity experiments carried out on normal mouse fibroblast cells (NIH-3T3) had greater cell viability in the presence of the G(5)-D-Ac-TPP compared to the parent unmodified G(5)-D. This mitochondria-targeted dendrimer-based nanocarrier could be useful for imaging as well as for selective delivery of bio-actives to the mitochondria for the treatment of diseases associated with mitochondrial dysfunction.
Collapse
|