1
|
Liu W, Liu H, Zhang S, Hao H, Meng F, Ma W, Guo Z, Jiang S, Shang X. Silica nanoparticles cause ovarian dysfunction and fertility decrease in mice via oxidative stress-activated autophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117049. [PMID: 39303637 DOI: 10.1016/j.ecoenv.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Silica nanoparticles (SiNPs) are widely used in various commercial applications, which inevitably increase the risk of human exposure. It's reported that SiNPs have toxic effects on fertility, however, the specific mechanism of female reproductive toxicity induced by SiNPs remains confusing. In this study, female C57BL/6 mice at the age of 8 weeks were administrated orally with SiNPs at doses of 0, 3, and 10 mg/kg bw. every day in the presence/absence of NAC for eight weeks. The results showed that SiNPs could cause damage to ovaries and reduce the number of ovarian follicles, which led to disruption of sex hormone, altered estrous cyclicity and decreased female fertility. In addition, SiNPs induced oxidative stress in the ovary, as manifested by increased ROS and MDA levels, decreased SOD activity and inhibition of the Nrf2/HO-1 signaling pathway. Further study revealed that exposure to SiNPs resulted in mitochondrial dysfunction and promoted autophagy mediated by PI3K/AKT/mTOR and PINK1/Parkin signaling pathways. Meanwhile, apoptosis is also involved in SiNPs-induced cell death in a cooperative and synchronized manner, as evidenced by an increase in apoptosis-positive cells and activation of the ATM/p53-mediated apoptotic pathway. The supplementation of NAC restored most of the reproductive characteristics of the mice to its physiological range. These results demonstrated that SiNPs could cause ovarian damage via inducing oxidative stress and mitochondrial dysfunction, which led to autophagy and apoptosis, and ultimately resulting in abnormal folliculogenesis and female subfertility.
Collapse
Affiliation(s)
- Wenpeng Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Hui Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Shumin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei 063210, People's Republic of China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei 063210, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Organ Fibrosis Research, Tangshan, Hebei 063210, People's Republic of China.
| |
Collapse
|
2
|
Bendellaa M, Cave C, Godard A, Dalonneau F, Sickinger A, Goze C, Maury O, Le Gendre P, Bodio E, Busser B, Sancey L. WazaGaY: An Innovative Aza-BODIPY-Derived Near-Infrared Fluorescent Probe for Enhanced Tumor Imaging. J Med Chem 2024; 67:16635-16648. [PMID: 39289797 DOI: 10.1021/acs.jmedchem.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Aza-BODIPYs represent a class of fluorophores in which the π-conjugated system is rigidified and stabilized by a boron atom. A promising strategy to enhance their fluorescence properties involves replacing the boron atom with a metal ion. Here, we describe the synthesis and characterization of a water-soluble derivative where the metal is a gallium(III) ion, termed WazaGaY (water-soluble aza-GaDIPY). Water solubility is ensured by two ammonium substituents, inducing a bathochromic shift and a significant increase in quantum yield compared to that of the dimethylamino analog. The cellular behavior of WazaGaY-1 was observed across different tumor cells. In vivo, the distribution and safety profiles were determined, and tumor uptake was assessed in various tumor types. Following intravenous injection, WazaGaY-1 enabled clear discrimination of tumors engrafted subcutaneously in mice with high tumor-to-muscle ratios (ranging from 7 to 20), even in the absence of specific conjugation. Its potential as a contrast agent for fluorescence-guided surgery was confirmed.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | - Charlotte Cave
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Fabien Dalonneau
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | | | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Olivier Maury
- CNRS, ENS de Lyon, CNRS, LCH, UMR 5182, Lyon F-69342, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Benoit Busser
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
- Institut Universitaire de France (IUF), Paris 75005, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| |
Collapse
|
3
|
Jackman MJ, Li W, Smith A, Workman D, Treacher KE, Corrigan A, Abdulrazzaq F, Sonzini S, Nazir Z, Lawrence MJ, Mahmoudi N, Cant D, Counsell J, Cairns J, Ferguson D, Lenz E, Baquain S, Madla CM, van Pelt S, Moss J, Peter A, Puri S, Ashford M, Mazza M. Impact of the physical-chemical properties of poly(lactic acid)-poly(ethylene glycol) polymeric nanoparticles on biodistribution. J Control Release 2024; 365:491-506. [PMID: 38030083 DOI: 10.1016/j.jconrel.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.
Collapse
Affiliation(s)
- Mark J Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Kevin E Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Adam Corrigan
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fadi Abdulrazzaq
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Zahid Nazir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, UK
| | - David Cant
- National Physical Laboratory, Teddington, UK
| | | | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Doug Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Eva Lenz
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Saif Baquain
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Christine M Madla
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sally van Pelt
- Business, Planning & Operations, AstraZeneca, Cambridge, UK
| | - Jennifer Moss
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alison Peter
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
4
|
Meng F, Hao H, Guo Z, Liu W, Zhang S, Tang W, Ma W, Shang X. Silica nanoparticles induces sperm granuloma formation and blood-epididymal barrier disruption via the p38 MAPK pathway in mice. Food Chem Toxicol 2023; 182:114113. [PMID: 37890760 DOI: 10.1016/j.fct.2023.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Previous researches have demonstrated that the silica nanoparticles (SiNPs), which are widely used in all aspects of life, are hazardous to the male reproductive system. However, the cellular and molecular mechanism underlying SiNPs toxicity to the epididymis remain unclear. In this present study, a total of 60 male mice were separated into 4 groups and then treated to SiNPs for 7 consecutive days at a dose of 0, 2.5, 10, and 20 mg/kg body weight. The results showed that SiNPs could alter the histological structure of epididymis and induce sperm granuloma formation, leading to decreased sperm quality and quantity. In addition, the ultrastructure and permeability of blood-epididymal barrier (BEB) were impaired after exposure to SiNPs, and a significant downregulation of integral membrane proteins at the BEB was detected. SiNPs were also found to raise the percentage of macrophages in the epithelium and interstitium of the epididymis, followed by increased expression of pro-inflammatory molecules including TNF α, IL-1β, and IL-6. Meanwhile, SiNPs induced oxidative stress in epididymis, as shown by the markedly elevated generation of reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated activity of superoxide dismutase (SOD). Further study showed that SiNPs activated the p38 MAPK signaling pathway, which accelerated clathrin-mediated endocytosis of integral membrane proteins and perturb vesicular trafficking. Taken together, exposure to SiNPs could induce sperm granuloma formation and impair the integrity of BEB in mice through activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China
| | - Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China; Tangshan Key Laboratory for Nucleic Acid Genetic Information, PR China
| | - Wenpeng Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China
| | - Shumin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China
| | - Wenxuan Tang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, PR China; Tangshan Key Laboratory for Nucleic Acid Genetic Information, PR China.
| |
Collapse
|
5
|
Bongaerts E, Mamia K, Rooda I, Björvang RD, Papaikonomou K, Gidlöf SB, Olofsson JI, Ameloot M, Alfaro-Moreno E, Nawrot TS, Damdimopoulou P. Ambient black carbon particles in human ovarian tissue and follicular fluid. ENVIRONMENT INTERNATIONAL 2023; 179:108141. [PMID: 37603992 DOI: 10.1016/j.envint.2023.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Evidence indicates a link between exposure to ambient air pollution and decreased female fertility. The ability of air pollution particles to reach human ovarian tissue and follicles containing the oocytes in various maturation stages has not been studied before. Particulate translocation might be an essential step in explaining reproductive toxicity and assessing associated risks. Here, we analysed the presence of ambient black carbon particles in (i) follicular fluid samples collected during ovum pick-up from 20 women who underwent assisted reproductive technology treatment and (ii) adult human ovarian tissue from 5 individuals. Follicular fluid and ovarian tissue samples were screened for the presence of black carbon particles from ambient air pollution using white light generation by carbonaceous particles under femtosecond pulsed laser illumination. We detected black carbon particles in all follicular fluid (n = 20) and ovarian tissue (n = 5) samples. Black carbon particles from ambient air pollution can reach the ovaries and follicular fluid, directly exposing the ovarian reserve and maturing oocytes. Considering the known link between air pollution and decreased fertility, the impact of such exposure on oocyte quality, ovarian ageing and fertility needs to be clarified urgently.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, 3590 Hasselt, Belgium
| | - Katariina Mamia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ilmatar Rooda
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Richelle D Björvang
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden; Department of Women's and Children's Health, Uppsala University, 75185 Uppsala, Sweden
| | - Kiriaki Papaikonomou
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden; Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sebastian B Gidlöf
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden; Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jan I Olofsson
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, 3590 Hasselt, Belgium
| | - Ernesto Alfaro-Moreno
- Nanosafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden.
| |
Collapse
|
6
|
Santacruz-Márquez R, Flaws JA, Sánchez-Peña LDC, Hernández-Ochoa I. Exposure to Zinc Oxide Nanoparticles Increases Estradiol Levels and Induces an Antioxidant Response in Antral Ovarian Follicles In Vitro. TOXICS 2023; 11:602. [PMID: 37505567 PMCID: PMC10384780 DOI: 10.3390/toxics11070602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The use of zinc oxide nanoparticles (ZnO NP) in consumer products is increasing, raising concern about their potential toxicity to human health. Nanoparticles have endocrine disrupting effects and can induce oxidative stress, leading to biomolecule oxidation and cell dysfunction. The ovary is one of the most important endocrine organs in female reproduction. Nanoparticles accumulate in the ovary, but it is unknown whether and how exposure to these materials disrupts antral follicle functions. Thus, this study tested the hypothesis that the in vitro exposure to ZnO NPs affects the steroidogenic pathway and induces oxidative stress in ovarian antral follicles. Antral follicles from CD-1 mice were cultured with ZnO NPs (5, 10, and 15 µg/mL) for 96 h. ZnO NP exposure did not affect apoptosis and cell cycle regulators at any of the tested concentrations. ZnO NP exposure at low levels (5 µg/mL) increased aromatase levels, leading to increased estradiol levels and decreased estrogen receptor alpha (Esr1) expression. ZnO NP exposure at 15 µg/mL induced an antioxidant response in the antral follicles as evidenced by changes in expression of antioxidant molecules (Nrf2, Cat, Sod1, Gsr, Gpx) and decreased levels of reactive oxygen species. Interestingly, ZnO NPs dissolve up to 50% in media and are internalized in cells as soon as 1 h after culture. In conclusion, ZnO NPs are internalized in antral follicles, leading to increased estrogen production and an antioxidant response.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Toxicología, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Luz Del Carmen Sánchez-Peña
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Toxicología, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Isabel Hernández-Ochoa
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Toxicología, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
7
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
9
|
Poley M, Mora-Raimundo P, Shammai Y, Kaduri M, Koren L, Adir O, Shklover J, Shainsky-Roitman J, Ramishetti S, Man F, de Rosales RTM, Zinger A, Peer D, Ben-Aharon I, Schroeder A. Nanoparticles Accumulate in the Female Reproductive System during Ovulation Affecting Cancer Treatment and Fertility. ACS NANO 2022; 16:5246-5257. [PMID: 35293714 PMCID: PMC7613117 DOI: 10.1021/acsnano.1c07237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Throughout the female menstrual cycle, physiological changes occur that affect the biodistribution of nanoparticles within the reproductive system. We demonstrate a 2-fold increase in nanoparticle accumulation in murine ovaries and uterus during ovulation, compared to the nonovulatory stage, following intravenous administration. This biodistribution pattern had positive or negative effects when drug-loaded nanoparticles, sized 100 nm or smaller, were used to treat different cancers. For example, treating ovarian cancer with nanomedicines during mouse ovulation resulted in higher drug accumulation in the ovaries, improving therapeutic efficacy. Conversely, treating breast cancer during ovulation, led to reduced therapeutic efficacy, due to enhanced nanoparticle accumulation in the reproductive system rather than at the tumor site. Moreover, chemotherapeutic nanoparticles administered during ovulation increased ovarian toxicity and decreased fertility compared to the free drug. The menstrual cycle should be accounted for when designing and implementing nanomedicines for females.
Collapse
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Shammai
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
| | - Rafael T. M. de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
- London Centre for Nanotechnology, King's College London, Strand Campus, London, WC2R 2LS, UK
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa, 3200003 Israel
- Cardiovascular Sciences and Neurosurgery Departments, Houston Methodist Academic Institute, Houston, 77030 TX, USA
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Irit Ben-Aharon
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, 320000, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
10
|
Particle Engineering of Innovative Nanoemulsion Designs to Modify the Accumulation in Female Sex Organs by Particle Size and Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14020301. [PMID: 35214035 PMCID: PMC8877295 DOI: 10.3390/pharmaceutics14020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Particle engineering of nanosized drug delivery systems (DDS) can be used as a strategic tool to influence their pharmacokinetics after intravenous (i.v.) application by the targeted adaptation of their particle properties according to the needs at their site of action. This study aimed to investigate particle properties depending on patterns in the biodistribution profile to modify the accumulation in the female sex organs using tailor-made nanoemulsion designs and thereby to either increase therapeutic efficiency for ovarian dysfunctions and diseases or to decrease the side effects caused by unintended accumulation. Through the incorporation of the anionic phospholipid phosphatidylglycerol (PG) into the stabilizing macrogol 15 hydroxystearate (MHS) layer of the nanoemulsions droplets, it was possible to produce tailor-made nanoparticles with tunable particle size between 25 to 150 nm in diameter as well as tunable surface charges between −2 to nearly −30 mV zeta potential using a phase inversion-based process. Three chosen negatively surface-charged nanoemulsions of 50, 100, and 150 nm in diameter showed very low cellular toxicities on 3T3 and NHDF fibroblasts and merely interacted with the blood cells, but instead stayed inert in the plasma. In vivo and ex vivo fluorescence imaging of adult female mice i.v. injected with the negatively surface-charged nanoemulsions revealed a high accumulation depending on their particle size in the reticuloendothelial system (RES), being found in the liver and spleen with a mean portion of the average radiant efficiency (PARE) between 42–52%, or 8–10%, respectively. With increasing particle size, an accumulation in the heart was detected with a mean PARE up to 8%. These three negatively surface-charged nanoemulsions overcame the particle size-dependent accumulation in the female sex organs and accumulated equally with a small mean PARE of 5%, suitable to reduce the side effects caused by unintended accumulation while maintaining different biodistribution profiles. In contrast, previously investigated neutral surface-charged nanoemulsions accumulated with a mean PARE up to 10%, strongly dependent on their particle sizes, which is useful to improve the therapeutic efficacy for ovarian dysfunctions and diseases.
Collapse
|
11
|
Karrow NA, Shandilya UK, Pelech S, Wagter-Lesperance L, McLeod D, Bridle B, Mallard BA. Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal Development. Vaccines (Basel) 2021; 9:1351. [PMID: 34835282 PMCID: PMC8617890 DOI: 10.3390/vaccines9111351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Vaccines have been developed at "warp speed" to combat the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Although they are considered the best approach for preventing mortality, when assessing the safety of these vaccines, pregnant women have not been included in clinical trials. Thus, vaccine safety for this demographic, as well as for the developing fetus and neonate, remains to be determined. A global effort has been underway to encourage pregnant women to get vaccinated despite the uncertain risk posed to them and their offspring. Given this, post-hoc data collection, potentially for years, will be required to determine the outcomes of COVID-19 and vaccination on the next generation. Most COVID-19 vaccine reactions include injection site erythema, pain, swelling, fatigue, headache, fever and lymphadenopathy, which may be sufficient to affect fetal/neonatal development. In this review, we have explored components of the first-generation viral vector and mRNA COVID-19 vaccines that are believed to contribute to adverse reactions and which may negatively impact fetal and neonatal development. We have followed this with a discussion of the potential for using an ovine model to explore the long-term outcomes of COVID-19 vaccination during the prenatal and neonatal periods.
Collapse
Affiliation(s)
- Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Steven Pelech
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Lauraine Wagter-Lesperance
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| | - Deanna McLeod
- Kaleidoscope Strategic Inc., Toronto, ON M6R 1E7, Canada;
| | - Byram Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| |
Collapse
|
12
|
Tassinari R, Cordelli E, Eleuteri P, Villani P, Pacchierotti F, Narciso L, Tait S, Valeri M, Martinelli A, Di Felice G, Butteroni C, Barletta B, Corinti S, Lori G, Maranghi F. Effects of sub-chronic oral exposure to pyrogenic synthetic amorphous silica (NM-203) in male and female Sprague-Dawley rats: focus on reproductive systems. Reprod Toxicol 2021; 105:17-24. [PMID: 34380069 DOI: 10.1016/j.reprotox.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Synthetic amorphous silica (SAS) consists of agglomerates and aggregates of primary particles in the nanorange (<100 nm) and it is the E551 authorized food additive. The potential risks for human health associated to dietary exposure to SAS are not completely assessed; in particular, data on male and female reproductive systems are lacking. A 90-day oral toxicity study with pyrogenic SAS nanomaterial NM-203 was carried out on the basis of the OECD test guideline 408 in the frame of the NANoREG project. Adult Sprague-Dawley rats of both sexes were orally treated for 90 days with 0, 2, 5, 10, 20 and 50 mg SAS/kg bw per day. Dose levels were selected to be as close as possible to the expected human exposure to food additive E551. The present paper provides specific information on potential effects on male and female reproductive systems, through the evaluation of serum biomarkers, sperm count, histopathological analysis of testis, epididymis, ovary and uterus and real-time PCR on uterus; potential genotoxic alterations were evaluated by comet assay on testis, sperm and ovary. NM-203 did not induce histophatological and genotoxic effects in male reproductive system. In female rats, ovary is not target of NM-203 and only tissue-specific effects on uterus were recorded up to 10 mg/kg bw per day. To our best knowledge, this is the first study providing data on male and female reproductive systems after long-term, repeated oral exposure at dose levels close to dietary human exposure, which identifies a limited concern only for female reproductive health.
Collapse
Affiliation(s)
- Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy
| | - Eugenia Cordelli
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Rome, Italy
| | - Patrizia Eleuteri
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Rome, Italy
| | - Paola Villani
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Rome, Italy
| | - Francesca Pacchierotti
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) Rome, Italy
| | - Laura Narciso
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy; Environment and Health Department, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy
| | | | | | - Gabriella Di Felice
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy
| | - Cinzia Butteroni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy
| | - Bianca Barletta
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy
| | - Silvia Corinti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy
| | - Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy; Università Degli Studi di Roma Tre, Science Department, Viale Guglielmo Marconi 446, Rome, Italy
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome, Italy.
| |
Collapse
|
13
|
Ajdary M, Keyhanfar F, Moosavi MA, Shabani R, Mehdizadeh M, Varma RS. Potential toxicity of nanoparticles on the reproductive system animal models: A review. J Reprod Immunol 2021; 148:103384. [PMID: 34583090 DOI: 10.1016/j.jri.2021.103384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, nanotechnology has been involved in an array of applications in various fields, including diagnostic kits, disease treatment, drug manufacturing, drug delivery, and gene therapy. But concerns about the toxicity of nanoparticles have greatly hindered their use; also, due to their increasing use in various industries, all members of society are exposed to the toxicity of these nanoparticles. Nanoparticles have a negative impact on various organs, including the reproductive system. They also can induce abortion in women, reduce fetal growth and development, and can damage the reproductive system and sperm morphology in men. In some cases, it has been observed that despite the modification of nanoparticles in composition, concentration, and method of administration, there is still damage to the reproductive organs. Therefore, understanding how nanoparticles affect the reproductive system is of very importance. In several studies, the nanoparticle toxicity effect on the genital organs has been investigated at the clinical and molecular levels using the in vivo and in vitro models. This study reviews these investigations and provides important data on the toxicity, hazards, and safety of nanoparticles in the reproductive system to facilitate the optimal use of nanoparticles in the industry.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| | - Ronak Shabani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Busmann EF, Kollan J, Mäder K, Lucas H. Ovarian Accumulation of Nanoemulsions: Impact of Mice Age and Particle Size. Int J Mol Sci 2021; 22:ijms22158283. [PMID: 34361049 PMCID: PMC8347032 DOI: 10.3390/ijms22158283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology in the field of drug delivery comes with great benefits due to the unique physicochemical properties of newly developed nanocarriers. However, they may come as well with severe toxicological side effects because of unwanted accumulation in organs outside of their targeted site of actions. Several studies showed an unintended accumulation of various nanocarriers in female sex organs, especially in the ovaries. Some led to inflammation, fibrosis, or decreasing follicle numbers. However, none of these studies investigated ovarian accumulation in context to both reproductive aging and particle size. Besides the influences of particle size, the biodistribution profile may be altered as well by reproductive aging because of reduced capacities of the reticuloendothelial system (RES), changes in sex steroid hormone levels as well as altering ovarian stromal blood flow. This systematic investigation of the biodistribution of intravenously (i.v) injected nanoemulsions revealed significant dependencies on the two parameters particle size and age starting from juvenile prepubescent to senescent mice. Using fluorescent in vivo and ex vivo imaging, prepubescent mice showed nearly no accumulation of nanoemulsion in their uteri and ovaries, but high accumulations in the organs of the RES liver and spleen independently of the particle size. In fertile adult mice, the accumulation increased significantly in the ovaries with an increased particle size of the nanoemulsions by nearly doubling the portion of the average radiant efficiency (PARE) to ~10% of the total measured signal of all excised organs. With reproductive aging and hence loss of fertility in senescent mice, the accumulation decreased again to moderate levels, again independently of the particle size. In conclusion, the ovarian accumulation of these nanocarriers depended on both the age plus the particle size during maturity.
Collapse
|
15
|
Santacruz-Márquez R, González-De Los Santos M, Hernández-Ochoa I. Ovarian toxicity of nanoparticles. Reprod Toxicol 2021; 103:79-95. [PMID: 34098047 DOI: 10.1016/j.reprotox.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The ovary is a highly important organ for female reproduction. The main functions include sex steroid hormone synthesis, follicular development, and achievement of oocyte meiotic and development competence for proper fertilization. Nanoparticle (NP) exposure is becoming unavoidable because of its wide use in different products, including cosmetics, food, health, and personal care products. Studies examining different nonreproductive tissues or systems have shown that characteristics such as the size, shape, core material, agglomeration, and dissolution influence the effects of NPs. However, most studies evaluating NP-mediated reproductive toxicity have paid little or no attention to the influence of the physicochemical characteristics of NP on the observed effects. As accumulating evidence indicates that NP may reach the ovary to impair proper functions, this review summarizes the available data on NP accumulation in ovarian tissue, as well as data describing toxicity to ovarian functions, including sex steroid hormone production, follicular development, oocyte quality, and fertility. Due to their toxicological relevance, this review also describes the main physicochemical characteristics involved in NP toxicity and the importance of considering NP physicochemical characteristics as factors influencing the ovarian toxicity of NPs. Finally, this review summarizes the main mechanisms of toxicity described in ovarian cells.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Marijose González-De Los Santos
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
16
|
Klein ME, Rieckmann M, Sedding D, Hause G, Meister A, Mäder K, Lucas H. Towards the Development of Long Circulating Phosphatidylserine (PS)- and Phosphatidylglycerol (PG)-Enriched Anti-Inflammatory Liposomes: Is PEGylation Effective? Pharmaceutics 2021; 13:pharmaceutics13020282. [PMID: 33669803 PMCID: PMC7922817 DOI: 10.3390/pharmaceutics13020282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
The anionic phospholipids (PLs) phosphatidylserine (PS) and phosphatidylglycerol (PG) are endogenous phospholipids with anti-inflammatory and immunomodulatory activity. A potential clinical use requires well-defined systems and for several applications, a long circulation time is desirable. Therefore, we aimed the development of long circulating liposomes with intrinsic anti-inflammatory activity. Hence, PS- and PG-enriched liposomes were produced, whilst phosphatidylcholine (PC) liposomes served as control. Liposomes were either formulated as conventional or PEGylated formulations. They had diameters below 150 nm, narrow size distributions and composition-dependent surface charges. Pharmacokinetics were assessed non-invasively via in vivo fluorescence imaging (FI) and ex vivo in excised organs over 2 days. PC liposomes, conventionally formulated, were rapidly cleared from the circulation, while PEGylation resulted in prolongation of liposome circulation robustly distributing among most organs. In contrast, PS and PG liposomes, both as conventional or PEGylated formulations, were rapidly cleared. Non-PEGylated PS and PG liposomes did accumulate almost exclusively in the liver. In contrast, PEGylated PS and PG liposomes were observed mainly in liver and spleen. In summary, PEGylation of PS and PG liposomes was not effective to prolong the circulation time but caused a higher uptake in the spleen.
Collapse
Affiliation(s)
- Miriam E. Klein
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
| | - Max Rieckmann
- Mid-German Heart Center, Department of Cardiology, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.R.); (D.S.)
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology, University Hospital, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.R.); (D.S.)
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Annette Meister
- Faculty of Biosciences, IWE ZIK HALOmem and Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Karsten Mäder
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
| | - Henrike Lucas
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.E.K.); (K.M.)
- Correspondence: ; Tel.: +49-345-552-5133
| |
Collapse
|
17
|
Neumann PR, Erdmann F, Holthof J, Hädrich G, Green M, Rao J, Dailey LA. Different PEG-PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIR-Emitting π-Conjugated Polymer Contrast Agents. Adv Healthc Mater 2021; 10:e2001089. [PMID: 32864903 PMCID: PMC11469236 DOI: 10.1002/adhm.202001089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Indexed: 12/15/2022]
Abstract
The π-conjugated polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) with deep-red/near-infrared (NIR) absorption and emission has been investigated as a contrast agent for in vivo optical and photoacoustic imaging. PCPDTBT is encapsulated within poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG2kDa -PLGA4kDa or PEG5kDa -PLGA55kDa ) micelles or enveloped by the phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEG2kDa -DPPE), to investigate the formulation effect on imaging performance, biodistribution, and biocompatibility. Nanoparticles that meet the quality requirements for parenteral administration are generated with similar physicochemical properties. Optical phantom imaging reveals that both PEG-PLGA systems exhibit a 30% higher signal-to-background ratio (SBR) than PEG2kDa -DPPE. This trend cannot be observed in a murine HeLa xenograft model following intravenous administration since dramatic differences in biodistribution are observed. PEG2kDa -PLGA4kDa systems accumulate more rapidly in the liver compared to other formulations and PEG2kDa -DPPE demonstrates a higher tumor localization. Protein content in the "hard" corona differs between formulations (PEG2kDa -DPPE < PEG2kDa -PLGA4kDa < PEG5kDa -PLGA55kDa ), although this observation alone does not explain biodistribution patterns. PEG2kDa -PLGA4kDa systems show the highest photoacoustic amplitude in a phantom, but also a lower signal in the tumor due to differences in biodistribution. This study demonstrates that formulations for conjugated polymer contrast agents can have significant impact on both imaging performance and biodistribution.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Frank Erdmann
- Institute of PharmacyDepartment of PharmacologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Joost Holthof
- FUJIFILM VisualsonicsJoop Geesinkweg 140Amsterdam1114 ABThe Netherlands
| | - Gabriela Hädrich
- Department of Pharmaceutical Technology and BiopharmaceuticsMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Mark Green
- Department of PhysicsKing's College LondonLondonWC2R 2LSUK
| | - Jianghong Rao
- Department of Radiology and ChemistryStanford UniversityStanfordCA94305‐5484USA
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and BiopharmacyUniversity of ViennaVienna1090Austria
| |
Collapse
|
18
|
Ma Y, Mou Q, Yan D, Zhu X. Engineering small molecule nanodrugs to overcome barriers for cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
19
|
Busmann EF, Martínez DG, Lucas H, Mäder K. Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:213-224. [PMID: 32082961 PMCID: PMC7006485 DOI: 10.3762/bjnano.11.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Lipid nanoemulsions are attractive drug delivery systems for lipophilic drugs. To produce nanoemulsions with droplets of very small diameter (<100 nm), we investigated thermotropic phase transitions as an alternative to the standard procedure of high-pressure homogenization. Employing shock dilution with ice-cold water during the phase inversion gives the opportunity to produce nanoemulsions without any use of potentially toxic organic solvents. The systematic investigation of the relation of the three involved components surfactant, aqueous phase and lipid phase showed that depending on the ratio of surfactant to lipid the emulsions contained particles of diameters between 16 and 175 nm with narrow polydispersity index distributions and uncharged surfaces. Nanoemulsions with particles of 50 and 100 nm in diameter showed very little toxicity to fibroblast cells in vitro. An unusual, exponential-like nonlinear increase in osmolality was observed with increasing concentration of the nonionic surfactant Kolliphor HS 15. The experimental results indicate, that nanoemulsions with particles of small and tunable size can be easily formed without homogenization by thermal cycling.
Collapse
Affiliation(s)
- Eike Folker Busmann
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dailén García Martínez
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
20
|
Neumann PR, Crossley DL, Turner M, Ingleson M, Green M, Rao J, Dailey LA. In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46525-46535. [PMID: 31746180 DOI: 10.1021/acsami.9b17022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Borylated poly(fluorene-benzothiadiazoles) (PF8-BT) are π-conjugated polymers (CPs) with deep-red/near-infrared (NIR) absorption and emission profiles suitable for in vivo optical imaging. A fully borylated PF8-BT derivative (P4) was encapsulated in pegylated poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles and compared with a reference NIR-emitting CP (PCPDTBT) or indocyanine green (ICG). All formulations satisfied quality requirements for parenterally administered diagnostics. P4 nanoparticles had higher quantum yield (2.3%) than PCPCDTBT (0.01%) or ICG nanoparticles (1.1%). The signal/background ratios (SBRs) of CP systems P4 and PCPDTBT in a phantom mouse (λem = 820 nm) increased linearly with fluorophore mass (12.5-100 μg/mL), while the SBRs of ICG decreased above 25 μg/mL. P4 nanoparticles experienced <10% photobleaching over 10 irradiations (PCPDTBT: ∼25% and ICG: >44%). In a mouse tumor xenograft model, P4 nanoparticles showed a 5-fold higher SBR than PCPDTBT particles with fluorophore accumulation in the liver > spleen > tumor. Blood chemistry and tissue histology showed no abnormalities compared to untreated animals after a single administration.
Collapse
Affiliation(s)
- Paul Robert Neumann
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| | - Daniel L Crossley
- Department of Chemical Sciences , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Michael Turner
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | - Michael Ingleson
- School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , U.K
| | - Mark Green
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Jianghong Rao
- Department of Radiology and Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics , Martin-Luther-University Halle-Wittenberg , Halle/Saale 06120 , Germany
| |
Collapse
|
21
|
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 2018; 13:8487-8506. [PMID: 30587973 PMCID: PMC6294055 DOI: 10.2147/ijn.s170723] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With the vigorous development of nanometer-sized materials, nanoproducts are becoming widely used in all aspects of life. In medicine, nanoparticles (NPs) can be used as nanoscopic drug carriers and for nanoimaging technologies. Thus, substantial attention has been paid to the potential risks of NPs. Previous studies have shown that numerous types of NPs are able to pass certain biological barriers and exert toxic effects on crucial organs, such as the brain, liver, and kidney. Only recently, attention has been directed toward the reproductive toxicity of nanomaterials. NPs can pass through the blood–testis barrier, placental barrier, and epithelial barrier, which protect reproductive tissues, and then accumulate in reproductive organs. NP accumulation damages organs (testis, epididymis, ovary, and uterus) by destroying Sertoli cells, Leydig cells, and germ cells, causing reproductive organ dysfunction that adversely affects sperm quality, quantity, morphology, and motility or reduces the number of mature oocytes and disrupts primary and secondary follicular development. In addition, NPs can disrupt the levels of secreted hormones, causing changes in sexual behavior. However, the current review primarily examines toxicological phenomena. The molecular mechanisms involved in NP toxicity to the reproductive system are not fully understood, but possible mechanisms include oxidative stress, apoptosis, inflammation, and genotoxicity. Previous studies have shown that NPs can increase inflammation, oxidative stress, and apoptosis and induce ROS, causing damage at the molecular and genetic levels which results in cytotoxicity. This review provides an understanding of the applications and toxicological effects of NPs on the reproductive system.
Collapse
Affiliation(s)
- Ruolan Wang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China, .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China,
| |
Collapse
|
22
|
Wersig T, Krombholz R, Janich C, Meister A, Kressler J, Mäder K. Indomethacin functionalised poly(glycerol adipate) nanospheres as promising candidates for modified drug release. Eur J Pharm Sci 2018; 123:350-361. [PMID: 30063978 DOI: 10.1016/j.ejps.2018.07.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
Abstract
The linear polyester poly(glycerol adipate) (PGA) with its free pendant hydroxyl groups was covalently grafted with indomethacin which yields polymeric prodrugs. It was possible to produce nanospheres with narrow particle size distribution of these polymer-drug conjugates with an optimized interfacial deposition method. Nanospheres were characterized by zeta potential measurements, dynamic light scattering, electron microscopy and nanoparticle tracking analysis. Moreover, cell viability studies and cytotoxicity tests in three different cell lines were carried out showing low toxicity for three different degrees of grafting. In addition, the nanospheres had (in contrast to the free drug) low hemolytic activity in vitro. Release studies of nanodispersions are challenging. The use of a specially developed setup with highly porous aluminum oxide membranes enabled us to overcome problems associated with other setups (e.g. dialysis membranes). A slow and controlled release profile without any burst was observed over 15 days. The results indicate that indomethacin-PGA conjugates can be formulated successfully as nanospheres with the desired characteristics of small size with narrow distribution, controlled drug release and low toxicity. The newly developed particles have the potential to improve the therapy of inflammation and associated diseases.
Collapse
Affiliation(s)
- T Wersig
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - R Krombholz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - C Janich
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - A Meister
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - J Kressler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - K Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| |
Collapse
|
23
|
Hu C, Gu F, Tai Z, Yao C, Gong C, Xia Q, Gao Y, Gao S. Synergistic effect of reduced polypeptide micelle for co-delivery of doxorubicin and TRAIL against drug-resistance in breast cancer. Oncotarget 2018; 7:61832-61844. [PMID: 27557520 PMCID: PMC5308694 DOI: 10.18632/oncotarget.11451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Cationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) as the co-carrier of both doxorubicin (DOX) and the necrosis factor-related apoptosis-inducing ligand (pTRAIL). The LHRss/DOX/TRAIL construct has reduction-sensitive behavior and an enhanced endosomal escape ability to increase the cytotoxicity of DOX and the transfection efficiency. Further, the LHRss/DOX/TRAIL construct increased the accumulation of DOX and promoted the expression of pTRAIL, thus increasing cellular apoptosis by 83.7% in MCF-7/ADR cells. In addition, the in vivo biodistribution results showed that the LHRss/DOX/TRAIL construct could target tumors well. The in vivo anti-tumor effect study demonstrated that the LHRss/DOX/TRAIL construct inhibited tumor growth markedly, with a tumor inhibitory rate of 94.0%. The co-delivery system showed a significant synergistic anti-tumor effect. The LHRss/DOX/TRAIL construct may prove to be a promising co-delivery vector for the effective treatment of drug resistant breast cancer.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fenfen Gu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunai Gong
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qingming Xia
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Weiss VM, Lucas H, Mueller T, Chytil P, Etrych T, Naolou T, Kressler J, Mäder K. Intended and Unintended Targeting of Polymeric Nanocarriers: The Case of Modified Poly(glycerol adipate) Nanoparticles. Macromol Biosci 2017; 18. [PMID: 29218838 DOI: 10.1002/mabi.201700240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/24/2017] [Indexed: 11/09/2022]
Abstract
Biodegradable nanoparticles based on stearic acid-modified poly(glycerol adipate) (PGAS) are promising carriers for drug delivery. In order to investigate the impact of the particle interface characteristics on the biological fate, PGAS nanoparticles are covalently and noncovalently coated with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers. HPMA copolymer-modified PGAS nanoparticles have similar particle sizes, but less negative zeta-potentials. Nanoparticles are double labeled with the fluorescent dyes DiR (noncovalently) and DYOMICS-676 (covalently bound to HPMA copolymer), and their biodistribution is investigated noninvasively by multispectral optical imaging. Both covalent and noncovalent coatings cause changes in the pharmacokinetics and biodistribution in healthy and tumor-bearing mice. In addition to the intended tumor accumulation, high signals of both fluorescent dyes are also observed in other organs, including liver, ovaries, adrenal glands, and bone. The unintended accumulation of nanocarriers needs further detailed and systematic investigations, especially with respect to the observed ovarian and adrenal gland accumulation.
Collapse
Affiliation(s)
- Verena M Weiss
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Thomas Mueller
- Department of Internal Medicine IV (Oncology/Hematology), Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Science, 162 06, Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Science, 162 06, Prague 6, Czech Republic
| | - Toufik Naolou
- Department of Biomimetic Materials, Institute of Biomaterial Science, HZG Teltow, 14513, Teltow, Germany
| | - Jörg Kressler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
25
|
Park EJ, Jeong U, Kim Y, Lee BS, Cho MH, Go YS. Deleterious effects in reproduction and developmental immunity elicited by pulmonary iron oxide nanoparticles. ENVIRONMENTAL RESEARCH 2017; 152:503-513. [PMID: 27776739 DOI: 10.1016/j.envres.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/11/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
With the extensive application of iron oxide nanoparticles (FeNPs), attention about their potential risks to human health is also rapidly raising, particularly in sensitive subgroups such as pregnant women and babies. In this study, we a single instilled intratracheally FeNPs (1, 2, and 4mg/kg) to the male and female parent mice, mated, then assessed reproductive toxicity according to the modified OECD TG 421. During the pre-mating period (14 days), two female parent mice died at 4mg/kg dose, and the body weight gain dose-dependently decreased in male and female parent mice exposed to FeNPs. Additionally, iron accumulation and the enhanced expression of MHC class II molecules were observed in the ovary and the testis of parent mice exposed to the highest dose of FeNPs, and the total sex ratio (male/female) of the offspring mice increased in the groups exposed to FeNPs. Following, we a single instilled intratracheally to their offspring mice with the same doses and evaluated the immunotoxic response on day 28. The increased mortality and significant hematological- and biochemical- changes were observed in offspring mice exposed at 4mg/kg dose, especially in female mice. More interestingly, balance of the immune response was shifted to a different direction in male and female offspring mice. Taken together, we conclude that the NOAEL for reproductive and developmental toxicity of FeNPs may be lower than 2mg/kg, and that female mice may show more sensitive response to FeNPs exposure than male mice. Furthermore, we suggest that further studies are necessary to identify causes of both the alteration in sex ratio of offspring mice and different immune response in male and female offspring mice.
Collapse
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, 685, Gasuwon-dong, Seo-Gu, Daejeon 302-718, South Korea.
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, South Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, South Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, South Korea
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - You-Seok Go
- Genome Application Division, Macrogen Inc., Seoul, South Korea
| |
Collapse
|
26
|
Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques. J Control Release 2016; 235:352-364. [DOI: 10.1016/j.jconrel.2016.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022]
|
27
|
Park EJ, Choi J, Kim JH, Lee BS, Yoon C, Jeong U, Kim Y. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology 2016; 10:1188-202. [DOI: 10.1080/17435390.2016.1202348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon, Republic of Korea,
| | - Je Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea,
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea, and
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Falchi L, Bogliolo L, Galleri G, Ariu F, Zedda MT, Pinna A, Malfatti L, Innocenzi P, Ledda S. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology 2015; 85:1274-81.e3. [PMID: 26777564 DOI: 10.1016/j.theriogenology.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
The aim of the study was to investigate the interaction and the short-term effects of increasing doses of cerium dioxide nanoparticles (CeO2 NPs) on ram spermatozoa, stored at 4 °C for up to 24 hours, on the main functional and kinematic parameters. Spermatozoa were incubated with 0, 22, 44, and 220 μg/mL of CeO2 NPs at 4 °C and submitted at 0, 2, and 24 hours to the following analyses: (1) intracellular uptake of CeO2 NPs by the spermatozoa; (2) kinematic parameters; (3) acrosome and membrane integrity; (4) integrity of DNA; (5) mitochondrial activity; (6) ROS production. The results indicated that the exposure of spermatozoa to increasing doses of nanoceria was well tolerated. No intracellular uptake of NPs by the cells was observed and both kinematic parameters and status of the membranes were not affected by the incubation with NPs (P > 0.05). Moreover, no influence on the redox status of spermatozoa and on the levels of fragmentation of DNA was reported among groups at any time (P > 0.05). The data collected provide new information about the impact of CeO2 NPs on the male gamete in large animal model and could open future perspectives about their biomedical use in the assisted reproductive techniques.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy.
| | - Luisa Bogliolo
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Grazia Galleri
- Dipartimento di Medicina Clinica e Sperimentale, Università di Sassari, Sassari, Italy
| | - Federica Ariu
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Maria Teresa Zedda
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Alessandra Pinna
- Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.D.U., Università di Sassari, CR-INSTM, Alghero, Italy
| | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.D.U., Università di Sassari, CR-INSTM, Alghero, Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.D.U., Università di Sassari, CR-INSTM, Alghero, Italy
| | - Sergio Ledda
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| |
Collapse
|
29
|
Lainé AL, Gravier J, Henry M, Sancey L, Béjaud J, Pancani E, Wiber M, Texier I, Coll JL, Benoit JP, Passirani C. Conventional versus stealth lipid nanoparticles: formulation and in vivo fate prediction through FRET monitoring. J Control Release 2014; 188:1-8. [PMID: 24878182 DOI: 10.1016/j.jconrel.2014.05.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/27/2023]
Abstract
The determination of the nanocarrier fate in preclinical models is required before any translation from laboratory to clinical trials. Modern fluorescent imaging techniques have gained considerable advances becoming a powerful technology for non-invasive visualization in living subjects. Among them, Forster (fluorescence) resonance energy transfer (FRET) is a particular fluorescence imaging which involves energy transfer between 2 fluorophores in a distance-dependent manner. Considering this feature, the encapsulation of an acceptor/donor pair in lipid nanoparticles (LNEs: lipid nanoemulsions, LNCs: lipid nanocapsules) allowed the carrier integrity to be tracked. Accordingly, we used this FRET technique to evaluate the behavior of LNEs, conventional LNCs and newly designed stealth LNCs. After the development through a one-step (OS) PEGylation process of these stealth LNCs (OS LNCs), in vitro guest exchange dynamics and release kinetics were evaluated for both LNC formulations. We thereafter assessed in vivo biodistribution of all types of lipid nanoparticles. Results showed enhanced stability of encapsulation in OS LNCs in comparison to conventional LNCs. Additionally, the presence of the long PEG chains on the lipid nanoparticle surface altered the biodistribution pattern. Despite different release kinetic profiles, OS LNCs and LNEs showed extended blood circulation time associated with a good structure stability over several hours after intravenous injection.
Collapse
Affiliation(s)
- A-L Lainé
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - J Gravier
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France; CEA, LETI, DTBS, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - M Henry
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France
| | - L Sancey
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France
| | - J Béjaud
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - E Pancani
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - M Wiber
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - I Texier
- CEA, LETI, DTBS, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - J-L Coll
- INSERM U823, Institut Albert Bonniot, F-38 706 Grenoble, France; Université Joseph Fourier, F-38706 Grenoble, France
| | - J-P Benoit
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - C Passirani
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France.
| |
Collapse
|
30
|
Goszczyński TM, Filip-Psurska B, Kempińska K, Wietrzyk J, Boratyński J. Hydroxyethyl starch as an effective methotrexate carrier in anticancer therapy. Pharmacol Res Perspect 2014; 2:e00047. [PMID: 25505592 PMCID: PMC4186415 DOI: 10.1002/prp2.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/13/2014] [Accepted: 03/28/2014] [Indexed: 01/26/2023] Open
Abstract
At present, effective anticancer therapy remains one of the most challenging tasks facing the scientific community. A major limitation to most conventional low-molecular weight anticancer chemotherapeutics is their unfavourable uptake by healthy tissue, fast metabolism and lack of tumour cell selectivity. One way to solve this problem is the application of hybrid nanoparticles containing widely known therapeutic substances. This study was performed with the aim of investigating the potential of use hydroxyethyl starch (HES) as a high-molecular weight carrier for anticancer drug (methotrexate, MTX). HES-MTX conjugates were characterized in terms of MTX content, hydrodynamic size, zeta potential, and drug release kinetics. In vitro biological characteristics were determined using different cancer cell lines. The antitumor effect in vivo was tested in NOD/SCID mice subcutaneously inoculated with MV-4-11 human leukaemia cells and CDF1 mice intraperitoneally inoculated with P388 murine leukaemia cells. The in vivo experiments revealed the considerably higher antitumor efficacy of HES-MTX conjugates in comparison to unconjugated drug. The results presented in this article demonstrate that the application of HES as an anticancer drug carrier can improve the treatment efficacy and have significant implications for the future design and implementation of drug-carrier conjugates. The study should help create new opportunities in the design of HES-based innovative drug-carrier conjugates.
Collapse
Affiliation(s)
- T M Goszczyński
- "Neolek" Laboratory, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| | - B Filip-Psurska
- "Neolek" Laboratory, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| | - K Kempińska
- "Neolek" Laboratory, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| | - J Wietrzyk
- "Neolek" Laboratory, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| | - J Boratyński
- "Neolek" Laboratory, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| |
Collapse
|
31
|
Schädlich A, Kempe S, Mäder K. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging. J Control Release 2014; 179:52-62. [PMID: 24503251 DOI: 10.1016/j.jconrel.2014.01.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/22/2014] [Accepted: 01/26/2014] [Indexed: 11/16/2022]
Abstract
The pH inside drug delivery systems influences directly the physical and chemical behavior of its ingredients specifically their solubility and stability. These properties significantly affect the release performance of the formulations as well as the pharmacological effect. Therefore, the determination of the microclimate pH (μpH) inside the drug delivery systems is of great importance and interest. Implants are considered to be attractive parenteral drug delivery systems used for the long-term application of drugs and of peptides. Poly(lactide-co-glycolide) (PLGA) is the most frequently used and extensively researched polymer for implant preparation. However it is known that the microclimate pH (μpH) within the PLGA implants can also drop dramatically. This pH drop can cause peptide or protein instabilities as well as drug insolubilities and further decomposition. Although the internal pH behavior of PLGA implants and microparticles has been studied in vitro, no data about the μpH behavior in in situ forming implants has yet been described. This is due to the fact, that there is no reliable non-invasive method available to measure directly and continuously the pH in vivo. Therefore, the question if in vitro measurement results are potentially assignable remains unclear. In this study, the μpH of in situ forming PLGA implants were mapped in vitro, in vivo, and ex vivo. A non-invasive in vivo pH measurement method using the multispectral Maestro fluorescence imaging system was developed. The in vivo experiments performed, not only enabled the authors of this article to make certain assumptions about μpH behavior but also emphasized certain expectations regarding the solvent replacement in the core area of the implant as well as the release profile of hydrophilic substances. The experiments emphasized the broad application range of the fluorescence imaging technique for non-invasive monitoring of μpH values in drug delivery systems in vivo.
Collapse
Affiliation(s)
- Andreas Schädlich
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Sabine Kempe
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Faculty of Biosciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
32
|
Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.10.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Pullulan-based nanoparticles: future therapeutic applications in transmucosal protein delivery. Ther Deliv 2013; 4:1339-41. [DOI: 10.4155/tde.13.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. Int J Pharm 2013; 453:594-600. [DOI: 10.1016/j.ijpharm.2013.05.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 01/09/2023]
|
35
|
Hoffmann S, Caysa H, Kuntsche J, Kreideweiß P, Leimert A, Mueller T, Mäder K. Carbohydrate plasma expanders for passive tumor targeting: In vitro and in vivo studies. Carbohydr Polym 2013; 95:404-13. [DOI: 10.1016/j.carbpol.2013.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 11/25/2022]
|
36
|
|