1
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
2
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
3
|
Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis Photodyn Ther 2020; 29:101640. [DOI: 10.1016/j.pdpdt.2019.101640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
|
4
|
Pucelik B, Arnaut LG, Dąbrowski JM. Lipophilicity of Bacteriochlorin-Based Photosensitizers as a Determinant for PDT Optimization through the Modulation of the Inflammatory Mediators. J Clin Med 2019; 9:E8. [PMID: 31861531 PMCID: PMC7019385 DOI: 10.3390/jcm9010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
: Photodynamic therapy (PDT) augments the host antitumor immune response, but the role of the PDT effect on the tumor microenvironment in dependence on the type of photosensitizer and/or therapeutic protocols has not been clearly elucidated. We employed three bacteriochlorins (F2BOH, F2BMet and Cl2BHep) of different polarity that absorb near-infrared light (NIR) and generated a large amount of reactive oxygen species (ROS) to compare the PDT efficacy after various drug-to-light intervals: 15 min. (V-PDT), 3h (E-PDT) and 72h (C-PDT). We also performed the analysis of the molecular mechanisms of PDT crucial for the generation of the long-lasting antitumor immune response. PDT-induced damage affected the integrity of the host tissue and developed acute (protocol-dependent) local inflammation, which in turn led to the infiltration of neutrophils and macrophages. In order to further confirm this hypothesis, a number of proteins in the plasma of PDT-treated mice were identified. Among a wide range of cytokines (IL-6, IL-10, IL-13, IL-15, TNF-α, GM-CSF), chemokines (KC, MCP-1, MIP1α, MIP1β, MIP2) and growth factors (VEGF) released after PDT, an important role was assigned to IL-6. PDT protocols optimized for studied bacteriochlorins led to a significant increase in the survival rate of BALB/c mice bearing CT26 tumors, but each photosensitizer (PS) was more or less potent, depending on the applied DLI (15 min, 3 h or 72 h). Hydrophilic (F2BOH) and amphiphilic (F2BMet) PSs were equally effective in V-PDT (>80 cure rate). F2BMet was the most efficient in E-PDT (DLI = 3h), leading to a cure of 65 % of the animals. Finally, the most powerful PS in the C-PDT (DLI = 72 h) regimen turned out to be the most hydrophobic compound (Cl2BHep), allowing 100 % of treated animals to be cured at a light dose of only 45 J/cm2.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland;
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Luis G. Arnaut
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | | |
Collapse
|
5
|
Guan M, Zhou Y, Liu S, Chen D, Ge J, Deng R, Li X, Yu T, Xu H, Sun D, Zhao J, Zou T, Wang C, Shu C. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials 2019; 213:119218. [PMID: 31136911 DOI: 10.1016/j.biomaterials.2019.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Efficient treatment of primary tumor and preventing cancer metastasis present intriguing alternatives to cancer therapy. Herein, for the first time, we reported the photo-triggered nano-gadofullerene (Gd@C82-Ala, abbreviated Gd-Ala) induced malignant tumor vascular disruption by shortening the light interval between Gd-Ala administration and light illumination, where oxygen in blood vessels was employed efficiently to produce cytotoxic reactive oxygen species (ROS). The produced ROS could not only destroy the tumor cells but also devastate the vascular endothelial cells corresponding to the loss of intercellular junctions and vessels disruption. Notably, the irradiated Gd-Ala could enhance dendritic cells (DCs) maturation, which further secreted tumor necrosis factor-α (TNF-α) and interleukin-12 (IL)-12, and then activated T lymphocytes by up-regulation of cluster of differentiation CD4+ and CD8+ T lymphocytes. Furthermore, the down-regulation of matrix metalloprotein 2 (MMP2) and MMP9 also reduce the rate of tumor metastasis. This work explored a new biomedical application of gadofullerene, thereby providing a smart carbon nanomaterial candidate for tumor ablation and inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ruijun Deng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Sun
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiajia Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
6
|
Hamdan IM, Tekko IA, Matchett KB, Arnaut LG, Silva CS, McCarthy HO, Donnelly RF. Intradermal Delivery of a Near-Infrared Photosensitizer Using Dissolving Microneedle Arrays. J Pharm Sci 2018; 107:2439-2450. [DOI: 10.1016/j.xphs.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 12/01/2022]
|
7
|
Semi-synthesis and PDT activities of a new amphiphilic chlorin derivative. Photodiagnosis Photodyn Ther 2017; 17:39-47. [DOI: 10.1016/j.pdpdt.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
|
8
|
Murakami T. Photodynamic Action of Single-Walled Carbon Nanotubes. Chem Pharm Bull (Tokyo) 2017; 65:629-636. [DOI: 10.1248/cpb.c17-00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ogawara KI, Higaki K. Nanoparticle-Based Photodynamic Therapy: Current Status and Future Application to Improve Outcomes of Cancer Treatment. Chem Pharm Bull (Tokyo) 2017; 65:637-641. [DOI: 10.1248/cpb.c17-00063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ken-ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
10
|
Obaid G, Broekgaarden M, Bulin AL, Huang HC, Kuriakose J, Liu J, Hasan T. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology. NANOSCALE 2016; 8:12471-503. [PMID: 27328309 PMCID: PMC4956486 DOI: 10.1039/c5nr08691d] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tayyaba Hasan
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Science and Technology, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Casadó A, Giuffrida MC, Sagristá ML, Castelli F, Pujol M, Alsina MA, Mora M. Langmuir monolayers and Differential Scanning Calorimetry for the study of the interactions between camptothecin drugs and biomembrane models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:422-33. [DOI: 10.1016/j.bbamem.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
12
|
Ogawara KI, Shiraishi T, Araki T, Watanabe TI, Ono T, Higaki K. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative. Eur J Pharm Sci 2016; 82:154-60. [DOI: 10.1016/j.ejps.2015.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
13
|
Yeung HY, Lo PC, Ng DKP, Fong WP. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol 2015; 14:223-234. [PMID: 26388236 DOI: 10.1038/cmi.2015.84] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.
Collapse
Affiliation(s)
- Hing-Yuen Yeung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
14
|
Boix-Garriga E, Acedo P, Casadó A, Villanueva A, Stockert JC, Cañete M, Mora M, Sagristá ML, Nonell S. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating. NANOTECHNOLOGY 2015; 26:365104. [PMID: 26293792 DOI: 10.1088/0957-4484/26/36/365104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are being considered as nanodelivery systems for photodynamic therapy. The physico-chemical and biological aspects of their use remain largely unknown. Herein we report the results of a study of PLGA NPs for the delivery of the model hydrophobic photosensitizer ZnTPP to HeLa cells. ZnTPP was encapsulated in PLGA with high efficiency and the NPs showed negative zeta potentials and diameters close to 110 nm. Poly(ethylene glycol) (PEG) coating, introduced to prevent opsonization and clearance by macrophages, decreased the size and zeta potential of the NPs by roughly a factor of two and improved their stability in the presence of serum proteins. Photophysical studies revealed two and three populations of ZnTPP and singlet oxygen in uncoated and PEGylated NPs, respectively. Singlet oxygen is confined within the NPs in bare PLGA while it is more easily released into the external medium after PEG coating, which contributes to a higher photocytotoxicity towards HeLa cells in vitro. PLGA NPs are internalized by endocytosis, deliver their cargo to lysosomes and induce cell death by apoptosis upon exposure to light. In conclusion, PLGA NPs coated with PEG show high potential as delivery systems for photodynamic applications.
Collapse
Affiliation(s)
- Ester Boix-Garriga
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hamblin MR, Chiang LY, Lakshmanan S, Huang YY, Garcia-Diaz M, Karimi M, de Souza Rastelli AN, Chandran R. Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. NANOTECHNOLOGY REVIEWS 2015; 4:359-372. [PMID: 26640747 PMCID: PMC4666539 DOI: 10.1515/ntrev-2015-0027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The research interests of the Hamblin Laboratory are broadly centered on the use of different kinds of light to treat many different diseases. Photodynamic therapy (PDT) uses the combination of dyes with visible light to produce reactive oxygen species and kill bacteria, cancer cells and destroy unwanted tissue. Likewise, UV light is also good at killing especially pathogens. By contrast, red or near-infrared light can have the opposite effect, to act to preserve tissue from dying and can stimulate healing and regeneration. In all these applications, nanotechnology is having an ever-growing impact. In PDT, self-assembled nano-drug carriers (micelles, liposomes, etc.) play a great role in solubilizing the photosensitizers, metal nanoparticles can carry out plasmon resonance enhancement, and fullerenes can act as photosensitizers, themselves. In the realm of healing, single-walled carbon nanotubes can be electrofocused to produce nano-electonic biomedical devices, and nanomaterials will play a great role in restorative dentistry.
Collapse
Affiliation(s)
| | - Long Y. Chiang
- Department of Chemistry, University of Massachusetts, Lowell, MA, USA
| | - Shanmugamurthy Lakshmanan
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | - Mahdi Karimi
- Iran University of Medical Science, Tehran, Iran
| | | | - Rakkiyappan Chandran
- Joint School of Nanoscience and Nanoengineering, University of North Carolina, Greensboro, NC, USA
| |
Collapse
|
16
|
Weijer R, Broekgaarden M, Kos M, van Vught R, Rauws EA, Breukink E, van Gulik TM, Storm G, Heger M. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.05.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Araki T, Ogawara KI, Suzuki H, Kawai R, Watanabe TI, Ono T, Higaki K. Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature. J Control Release 2015; 200:106-14. [DOI: 10.1016/j.jconrel.2014.12.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
|
18
|
Voon SH, Kiew LV, Lee HB, Lim SH, Noordin MI, Kamkaew A, Burgess K, Chung LY. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4993-5013. [PMID: 25164105 DOI: 10.1002/smll.201401416] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/26/2014] [Indexed: 06/03/2023]
Abstract
Animal models, particularly rodents, are major translational models for evaluating novel anticancer therapeutics. In this review, different types of nanostructure-based photosensitizers that have advanced into the in vivo evaluation stage for the photodynamic therapy (PDT) of cancer are described. This article focuses on the in vivo efficacies of the nanostructures as delivery agents and as energy transducers for photosensitizers in animal models. These materials are useful in overcoming solubility issues, lack of tumor specificity, and access to tumors deep in healthy tissue. At the end of this article, the opportunities made possible by these multiplexed nanostructure-based systems are summarized, as well as the considerable challenges associated with obtaining regulatory approval for such materials. The following questions are also addressed: (1) Is there a pressing demand for more nanoparticle materials? (2) What is the prognosis for regulatory approval of nanoparticles to be used in the clinic?
Collapse
Affiliation(s)
- Siew Hui Voon
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Casadó A, Sagristá ML, Mora M. Formulation and In Vitro Characterization of Thermosensitive Liposomes for the Delivery of Irinotecan. J Pharm Sci 2014; 103:3127-38. [DOI: 10.1002/jps.24097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/09/2023]
|
20
|
Masiera N, Buczyńska J, Orzanowska G, Piwoński H, Waluk J. Enhancing fluorescence by using pluronic block copolymers as carriers of monomeric porphycenes. Methods Appl Fluoresc 2014; 2:024003. [DOI: 10.1088/2050-6120/2/2/024003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S, Costoya JA, Taboada P, Mosquera V. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS NANO 2014; 8:2725-38. [PMID: 24571629 DOI: 10.1021/nn406425h] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Here we report the synthesis of PLGA/DOXO-core Au-branched shell nanostructures (BGNSHs) functionalized with a human serum albumin/indocyanine green/folic acid complex (HSA-ICG-FA) to configure a multifunctional nanotheranostic platform. First, branched gold nanoshells (BGNSHs) were obtained through a seeded-growth surfactant-less method. These BGNSHs were loaded during the synthetic process with the chemotherapeutic drug doxorubicin, a DNA intercalating agent and topoisomerase II inhibitior. In parallel, the fluorescent near-infrared (NIR) dye indocyanine green (ICG) was conjugated to the protein human serum albumin (HSA) by electrostatic and hydrophobic interactions. Subsequently, folic acid was covalently attached to the HSA-ICG complex. In this way, we created a protein complex with targeting specificity and fluorescent imaging capability. The resulting HSA-ICG-FA complex was adsorbed to the gold nanostructures surface (BGNSH-HSA-ICG-FA) in a straightforward incubation process thanks to the high affinity of HSA to gold surface. In this manner, BGNSH-HSA-ICG-FA platforms were featured with multifunctional abilities: the possibility of fluorescence imaging for diagnosis and therapy monitoring by exploiting the inherent fluorescence of the dye, and a multimodal therapy approach consisting of the simultaneous combination of chemotherapy, provided by the loaded drug, and the potential cytotoxic effect of photodynamic and photothermal therapies provided by the dye and the gold nanolayer of the hybrid structure, respectively, upon NIR light irradiation of suitable wavelength. The combination of this trimodal approach was observed to exert a synergistic effect on the cytotoxicity of tumoral cells in vitro. Furthermore, FA was proved to enhance the internalization of nanoplatform. The ability of the nanoplatforms as fluorescence imaging contrast agents was tested by preliminary analyzing their biodistribution in vivo in a tumor-bearing mice model.
Collapse
Affiliation(s)
- Antonio Topete
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela , Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P, Penny C, Pillay V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 2014; 9:589-613. [PMID: 24489467 PMCID: PMC3904834 DOI: 10.2147/ijn.s50941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanotechnology, although still in its infantile stages, has the potential to revolutionize the diagnosis, treatment, and monitoring of disease progression and success of therapy for numerous diseases and conditions, not least of which is cancer. As it is a leading cause of mortality worldwide, early cancer detection, as well as safe and efficacious therapeutic intervention, will be indispensable in improving the prognosis related to cancers and overall survival rate, as well as health-related quality of life of patients diagnosed with cancer. The development of a relatively new field of nanomedicine, which combines various domains and technologies including nanotechnology, medicine, biology, pharmacology, mathematics, physics, and chemistry, has yielded different approaches to addressing these challenges. Of particular relevance in cancer, nanosystems have shown appreciable success in the realm of diagnosis and treatment. Characteristics attributable to these systems on account of the nanoscale size range allow for individualization of therapy, passive targeting, the attachment of targeting moieties for more specific targeting, minimally invasive procedures, and real-time imaging and monitoring of in vivo processes. Furthermore, incorporation into nanosystems may have the potential to reintroduce into clinical practice drugs that are no longer used because of various shortfalls, as well as aid in the registration of new, potent drugs with suboptimal pharmacokinetic profiles. Research into the development of nanosystems for cancer diagnosis and therapy is thus a rapidly emerging and viable field of study.
Collapse
Affiliation(s)
- Derusha Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lomas Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Medical Oncology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Saavedra R, Rocha LB, Dąbrowski JM, Arnaut LG. Modulation of Biodistribution, Pharmacokinetics, and Photosensitivity with the Delivery Vehicle of a Bacteriochlorin Photosensitizer for Photodynamic Therapy. ChemMedChem 2013; 9:390-8. [DOI: 10.1002/cmdc.201300449] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 11/10/2022]
|
24
|
Huang YY, Balasubramanian T, Yang E, Luo D, Diers JR, Bocian DF, Lindsey JS, Holten D, Hamblin MR. Stable synthetic bacteriochlorins for photodynamic therapy: role of dicyano peripheral groups, central metal substitution (2H, Zn, Pd), and Cremophor EL delivery. ChemMedChem 2012; 7:2155-67. [PMID: 23065820 DOI: 10.1002/cmdc.201200351] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 12/14/2022]
Abstract
A series of four stable synthetic bacteriochlorins was tested in vitro in HeLa cells for their potential in photodynamic therapy (PDT). The parent bacteriochlorin (BC), dicyano derivative (NC)(2)BC and corresponding zinc chelate (NC)(2)BC-Zn and palladium chelate (NC)(2)BC-Pd were studied. Direct dilution of a solution of bacteriochlorin in an organic solvent (N,N-dimethylacetamide) into serum-containing medium was compared with the dilution of bacteriochlorin in Cremophor EL (CrEL; polyoxyethylene glycerol triricinoleate) micelles into the same medium. CrEL generally reduced aggregation (as indicated by absorption and fluorescence) and increased activity up to tenfold (depending on bacteriochlorin), although it decreased cellular uptake. The order of PDT activity against HeLa human cancer cells after 24 h incubation and illumination with 10 J cm(-2) of near-infrared (NIR) light is (NC)(2)BC-Pd (LD(50)=25 nM) > (NC)(2)BC > (NC)(2)BC-Zn ≈ BC. Subcellular localization was determined to be in the endoplasmic reticulum, mitochondria and lysosomes, depending on the bacteriochlorin. (NC)(2)BC-Pd showed PDT-mediated damage to mitochondria and lysosomes, and the greatest production of hydroxyl radicals as determined using a hydroxyphenylfluorescein probe. The incorporation of cyano substituents provides an excellent motif for the enhancement of the photoactivity and photostability of bacteriochlorins as PDT photosensitizers.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|