1
|
Stump WH, Klingenberg HJ, Ott AC, Gonzales DM, Burns JM. Design and Evaluation of Chimeric Plasmodium falciparum Circumsporozoite Protein-Based Malaria Vaccines. Vaccines (Basel) 2024; 12:351. [PMID: 38675734 PMCID: PMC11053680 DOI: 10.3390/vaccines12040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies.
Collapse
Affiliation(s)
| | | | | | | | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA; (W.H.S.); (H.J.K.); (A.C.O.); (D.M.G.)
| |
Collapse
|
2
|
Jin H, Ji Y, An J, Ha DH, Lee YR, Kim HJ, Lee CG, Jeong W, Kwon IC, Yang EG, Kim KH, Lee C, Chung HS. Engineering Escherichia coli for constitutive production of monophosphoryl lipid A vaccine adjuvant. Biotechnol Bioeng 2024; 121:1144-1162. [PMID: 38184812 DOI: 10.1002/bit.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.
Collapse
Affiliation(s)
- Hyunjung Jin
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yuhyun Ji
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jinsu An
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul, Republic of Korea
| | - Da Hui Ha
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Ye-Ram Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hye-Ji Kim
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Choon Geun Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Wooyeon Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Gyeong Yang
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chankyu Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hak Suk Chung
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
3
|
Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev 2023; 36:e0008823. [PMID: 38032192 PMCID: PMC10732062 DOI: 10.1128/cmr.00088-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis (Mtb) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.
Collapse
Affiliation(s)
- Simpal Kumar Suman
- School of Bio Sciences & Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nano Biotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C. George Priya Doss
- Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
El Bissati K, Krishack PA, Zhou Y, Weber CR, Lykins J, Jankovic D, Edelblum KL, Fraczek L, Grover H, Chentoufi AA, Singh G, Reardon C, Dubey JP, Reed S, Alexander J, Sidney J, Sette A, Shastri N, McLeod R. CD4 + T Cell Responses to Toxoplasma gondii Are a Double-Edged Sword. Vaccines (Basel) 2023; 11:1485. [PMID: 37766162 PMCID: PMC10535856 DOI: 10.3390/vaccines11091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep.
Collapse
Affiliation(s)
- Kamal El Bissati
- Institute of Molecular Engineering, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Paulette A. Krishack
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Christopher R. Weber
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Joseph Lykins
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Karen L. Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Center for Immunity and Inflammation, Laboratory Medicine, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Laura Fraczek
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Harshita Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Aziz A. Chentoufi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Catherine Reardon
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102, USA;
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121, USA;
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| |
Collapse
|
5
|
Mao L, Ma P, Luo X, Cheng H, Wang Z, Ye E, Loh XJ, Wu YL, Li Z. Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS NANO 2023. [PMID: 37207347 DOI: 10.1021/acsnano.3c02273] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of nanovaccines that employ polymeric delivery carriers has garnered substantial interest in therapeutic treatment of cancer and a variety of infectious diseases due to their superior biocompatibility, lower toxicity and reduced immunogenicity. Particularly, stimuli-responsive polymeric nanocarriers show great promise for delivering antigens and adjuvants to targeted immune cells, preventing antigen degradation and clearance, and increasing the uptake of specific antigen-presenting cells, thereby sustaining adaptive immune responses and improving immunotherapy for certain diseases. In this review, the most recent advances in the utilization of stimulus-responsive polymer-based nanovaccines for immunotherapeutic applications are presented. These sophisticated polymeric nanovaccines with diverse functions, aimed at therapeutic administration for disease prevention and immunotherapy, are further classified into several active domains, including pH, temperature, redox, light and ultrasound-sensitive intelligent nanodelivery systems. Finally, the potential strategies for the future design of multifunctional next-generation polymeric nanovaccines by integrating materials science with biological interface are proposed.
Collapse
Affiliation(s)
- Liuzhou Mao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Luo
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| |
Collapse
|
6
|
Araujo IL, Piraine REA, Fischer G, Leite FPL. Recombinant BoHV-5 glycoprotein (rgD5) elicits long-lasting protective immunity in cattle. Virology 2023; 584:44-52. [PMID: 37244054 DOI: 10.1016/j.virol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
BoHV-5 is a worldwide distributed pathogen usually associated with a lethal neurological disease in dairy and beef cattle resulting in important economic losses due to the cattle industry. Using recombinant gD5, we evaluated the long-duration humoral immunity of the recombinant vaccines in a cattle model. Here we report that two doses of intramuscular immunization, particularly with the rgD5ISA vaccine, induce long-lasting antibody responses. Recombinant gD5 antigen elicited tightly mRNA transcription of the Bcl6 and the chemokine receptor CXCR5 which mediate memory B cells and long-lived plasma cells in germinal centers. In addition, using an in-house indirect ELISA we observed higher and earlier responses of rgD5-specific IgG antibody and the upregulation of mRNA transcription of IL2, IL4, IL10, IL15, and IFN-γ in rgD5 vaccinated cattle, indicating a mixed immune response. We further show that rgD5 immunization protects against both BoHV -1 and -5. Our findings indicate that the rgD5-based vaccine represents an effective vaccine strategy to induce an efficient control of herpesviruses.
Collapse
Affiliation(s)
- Itauá L Araujo
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Renan E A Piraine
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| | - Fábio P L Leite
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
7
|
Kwon KW, Kang TG, Lee A, Jin SM, Lim YT, Shin SJ, Ha SJ. Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection. Immune Netw 2023; 23:e16. [PMID: 37179749 PMCID: PMC10166659 DOI: 10.4110/in.2023.23.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/15/2023] Open
Abstract
Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Ara Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
8
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
9
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
10
|
Wang X, Du J, Zhang Y, Zhu T, Mao L, Xu L, Shi Z, Zhang J, Sun Q, Qi Z, Xia L. Construction and expression of Mycobacterium tuberculosis fusion protein AR2 and its immunogenicity in combination with various adjuvants to form vaccine. Tuberculosis (Edinb) 2022; 137:102270. [PMID: 36265370 DOI: 10.1016/j.tube.2022.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is recognized as a highly infectious disease worldwide, and Bacille Calmette-Guerin (BCG) remains the only TB vaccine licensed for clinical use. As there is little evidence that BCG is effective in adults, there is an urgent need for a safe and effective vaccine to control TB in adults. In this study, we tested the immunomodulatory efficiency of the fusion protein AR2. whole blood IFN-γ release assay (WBIA) was used to detect antigen specificity. The immunogenicity of the vaccine was tested in C57BL/6 mice, and confirmed by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and qRT-PCR. The fusion protein AR2 was successfully constructed and expressed. The level of IFN-γ in the peripheral blood of subjects stimulated by AR2 was significantly higher than in those induced by all subcomponent proteins. AR2-specific IgG and the Th1 cytokines IFN-γ, TNF-α, and iNOS were significantly increased in the group treated with the fusion protein and compound adjuvant (AR2+DMC). Likewise, the number of IFN-γ+ CD4+, IFN-γ+CD8+, and IL-4+ CD8+ T lymphocytes increased significantly. The combination of the fusion protein and the compound adjuvant (AR2+DMC) may be a suitable candidate for an enhanced TB vaccine. This study provides theoretical and experimental support for future research to enhance the effectiveness of TB vaccines and provides an experimental basis for evaluating the influence of different adjuvants on vaccine efficacy.
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Jianpeng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yanpeng Zhang
- Department of Cosmetology, College of Medicine, Huainan Union University, Huainan, 232038, China.
| | - Tao Zhu
- Department of Morphology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Lirong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Lifa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Zilun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Jingyan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, 046000, China.
| | - Qishan Sun
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan, 232001, China.
| | - Zhiyang Qi
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Lu Xia
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
11
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
12
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
13
|
Yu W, Shen L, Qi Q, Hu T. Conjugation with loxoribine and mannan improves the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. Eur J Pharm Biopharm 2022; 172:193-202. [DOI: 10.1016/j.ejpb.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
|
14
|
Gomez M, Ahmed M, Das S, McCollum J, Mellett L, Swanson R, Gupta A, Carrigy NB, Wang H, Barona D, Bachchhav S, Gerhardt A, Press C, Archer MC, Liang H, Seydoux E, Kramer RM, Kuehl PJ, Vehring R, Khader SA, Fox CB. Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Front Pharmacol 2022; 12:799034. [PMID: 35126135 PMCID: PMC8814656 DOI: 10.3389/fphar.2021.799034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022] Open
Abstract
Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against Mycobacterium tuberculosis (Mtb) in a murine model when administered via different routes. Four administration routes for the spray-dried ID93+GLA-SE were evaluated along with relevant controls—1) reconstitution and intramuscular injection, 2) reconstitution and intranasal delivery, 3) nasal dry powder delivery via inhalation, and 4) pulmonary dry powder delivery via inhalation. Dry powder intranasal and pulmonary delivery was achieved using a custom nose-only inhalation device, and optimization using representative vaccine-free powder demonstrated that approximately 10 and 44% of the maximum possible delivered dose would be delivered for intranasal delivery and pulmonary delivery, respectively. Spray-dried powder was engineered according to the different administration routes including maintaining approximately equivalent delivered doses of ID93 and GLA. Vaccine properties of the different spray-dried lots were assessed for quality control in terms of nanoemulsion droplet diameter, polydispersity index, adjuvant content, and antigen content. Our results using the Mtb mouse challenge model show that both intranasal reconstituted vaccine delivery as well as pulmonary dry powder vaccine delivery resulted in Mtb control in infected mice comparable to traditional intramuscular delivery. Improved protection in these two vaccinated groups over their respective control groups coincided with the presence of cytokine-producing T cell responses. In summary, our results provide novel vaccine formulations and delivery routes that can be harnessed to provide protection against Mtb infection.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Joseph McCollum
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Leah Mellett
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Rosemary Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Nicholas B. Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shital Bachchhav
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Alana Gerhardt
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Ryan M. Kramer
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| |
Collapse
|
15
|
Kadir R, Luwi NM, Ahmad S, Azlyna AN, Nordin A, Sarmiento M, Acosta A, Azmi M, Uskoković V, Mohamud R. Liposomes as immunological adjuvants and delivery systems in the development of tuberculosis vaccine: A review. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.332806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Safar HA, Mustafa AS, Amoudy HA, El-Hashim A. The Effect of Delivery Systems on the Induction of T Helper 1 Cell Response to an ESAT6-Like Protein Rv3619c and Identification of Its Immunodominant Peptides. Med Princ Pract 2022; 31:359-367. [PMID: 35584661 PMCID: PMC9485963 DOI: 10.1159/000525136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study determined the effects of chemical adjuvants, incomplete Freund's adjuvant (IFA) and aluminum hydroxide (Alum), mycobacteria, and a DNA plasmid as delivery systems on the induction of protective Th1 (interferon-gamma (IFN-γ)) and nonprotective Th2 (IL-5) and Treg (IL-10) cytokine responses to Rv3619c and its peptides. Rv3619c is an immunodominant Mycobacterium tuberculosis-specific antigen and belongs to the early-secreted antigenic target of 6 kDa-family of proteins. Delivery systems are needed to deliver such antigens in animal models and induce protective immune responses. METHODS The rv3619c gene was amplified from the genomic DNA of M. tuberculosis and cloned into appropriate vectors for expression in Escherichia coli, Mycobacterium smegmatis, and eukaryotic cells. Spleen cells from mice immunized with rv3619c using different delivery systems were stimulated in vitro with synthetic peptides (P1 to P6) of Rv3619c, and secreted cytokines were estimated by ELISA. RESULTS The recombinant M. smegmatis and DNA plasmid induced the secretion of the protective cytokine IFN-γ in response to peptide-pool of Rv3619c and all the individual peptides, whereas rv3619c/IFA induced the secretion of IFN-γ in response to the peptide pool, and the peptides P5 and P6. However, the secretions of the nonprotective cytokines IL-5 and IL-10 were induced to none of the peptides with the delivery systems used. CONCLUSION Rv3619c is a major antigen of M. tuberculosis with multiple immunogenic epitopes; however, immune responses to individual epitopes can vary based on delivery systems used.
Collapse
Affiliation(s)
- Hussain A. Safar
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- *Abu Salim Mustafa,
| | - Hanady A. Amoudy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmed El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
17
|
Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021; 608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer is still a major threat for human life, and the cancer immunotherapy can be more optimized to prolong life. However, the effect of immunotherapy is not encouraging. In order to achieve outstanding immune effect, it is necessary to strengthen antigens uptake of antigen presenting cells. Adjuvants were added to vaccines to achieve this purpose, which could be divided into two types: as an immunostimulatory molecule, the innate immunities of the body were triggered; or as a delivery carrier, and antigens were cross-delivery through the "cytoplasmic pathway" and released at a specific location. This paper reviewed the relevant research status of tumor vaccine immune adjuvants in recent years. Among the review, the function, combination strategies and derivatives of lipid A were discussed in detail. In addition, some suggestions on the existing problems and research direction of lipids as tumor vaccine adjuvants were put forward.
Collapse
Affiliation(s)
- Zhiling Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lin Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
18
|
Ramli ANM, Sukri NAM, Azelee NIW, Bhuyar P. Exploration of antibacterial and antioxidative activity of seed/peel extracts of Southeast Asian fruit Durian (
Durio zibethinus
) for effective shelf‐life enhancement of preserved meat. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences and Technology, College of Computing and Applied Sciences Universiti Malaysia Pahang Kuantan Malaysia
- Bio Aromatic Research Centre of Excellence Universiti Malaysia Pahang Kuantan Malaysia
| | - Nur Afiqah Muhammad Sukri
- Faculty of Industrial Sciences and Technology, College of Computing and Applied Sciences Universiti Malaysia Pahang Kuantan Malaysia
| | - Nur Izyan Wan Azelee
- Faculty of Engineering, School of Chemical and Energy Engineering Universiti Teknologi Malaysia, UTM Skudai Johor Malaysia
- Institute of Bioproduct Development (IBD) Universiti Teknologi Malaysia, UTM Skudai Johor Malaysia
| | - Prakash Bhuyar
- School of Renewable Energy Maejo University Chiang Mai Thailand
| |
Collapse
|
19
|
Gomez M, Archer M, Barona D, Wang H, Ordoubadi M, Bin Karim S, Carrigy NB, Wang Z, McCollum J, Press C, Gerhardt A, Fox CB, Kramer RM, Vehring R. Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. Eur J Pharm Biopharm 2021; 163:23-37. [PMID: 33753213 PMCID: PMC8096719 DOI: 10.1016/j.ejpb.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Spray drying is a technique that can be used to stabilize biopharmaceuticals, such as vaccines, within dry particles. Compared to liquid pharmaceutical products, dry powder has the potential to reduce costs associated with refrigerated storage and transportation. In this study, spray drying was investigated for processing an adjuvanted tuberculosis subunit vaccine, formulated as an oil-in-water nanoemulsion, into a dry powder composed of microparticles. Applying in-silico approaches to the development of formulation and processing conditions, successful encapsulation of the adjuvanted vaccine within amorphous microparticles was achieved in only one iteration, with high retention (>90%) of both the antigen and adjuvant system. Moisture-controlled stability studies on the powder were conducted over 26 months at temperatures up to 40 °C. Results showed that the powder was physically stable after 26 months of storage for all tested temperatures. Adjuvant system integrity was maintained at temperatures up to 25 °C after 26 months and after one month of storage at 40 °C. The spray-dried product demonstrated improved antigen thermostability when stored above refrigerated temperatures as compared to the liquid product. These results demonstrate the feasibility of spray drying as a method of encapsulating and stabilizing an adjuvanted vaccine.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabab Bin Karim
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zheng Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Baldwin SL, Reese VA, Larsen SE, Beebe E, Guderian J, Orr MT, Fox CB, Reed SG, Coler RN. Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS One 2021; 16:e0247990. [PMID: 33705411 PMCID: PMC7951850 DOI: 10.1371/journal.pone.0247990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
An estimated 10 million people developed tuberculosis (TB) disease in 2019 which underscores the need for a vaccine that prevents disease and reduces transmission. The aim of our current studies is to characterize and test a prophylactic tuberculosis vaccine comprised of ID93, a polyprotein fusion antigen, and a liposomal formulation [including a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant, GLA) and QS-21] in a preclinical mouse model of TB disease. Comparisons of the ID93+GLA-LSQ vaccines are also made to the highly characterized ID93+GLA-SE oil-in-water emulsion adjuvant, which are also included these studies. The recent success of vaccine candidate M72 combined with adjuvant AS01E (GlaxoSmithKline Biologicals) in reducing progression to active disease is promising and has renewed excitement for experimental vaccines currently in the TB vaccine pipeline. The AS01E adjuvant contains monophosphoryl lipid A (MPL) and QS-21 (a saponin) in a liposomal formulation. While AS01E has demonstrated potent adjuvant activity as a component of both approved and experimental vaccines, developing alternatives to this adjuvant system will become important to fill the high demand envisioned for future vaccine needs. Furthermore, replacement sources of potent adjuvants will help to supply the demand of a TB vaccine [almost one-quarter of the world's population are estimated to have latent Mycobacterium tuberculosis (Mtb) according to the WHO 2019 global TB report], addressing (a) cost of goods, (b) supply of goods, and (c) improved efficacy of subunit vaccines against Mtb. We show that both ID93+GLA-SE (containing an emulsion adjuvant) and ID93+GLA-LSQ (containing a liposomal adjuvant) induce ID93-specific TH1 cellular immunity including CD4+CD44+ T cells expressing IFNγ, TNF, and IL-2 (using flow cytometry and intracellular cytokine staining) and vaccine-specific IgG2 antibody responses (using an ELISA). In addition, both ID93+GLA-SE and ID93+GLA-LSQ effectively decrease the bacterial load within the lungs of mice infected with Mtb. Formulations based on this liposomal adjuvant formulation may provide an alternative to AS01 adjuvant systems.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- * E-mail:
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Elyse Beebe
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Jeff Guderian
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Mark T. Orr
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
21
|
Gomez M, McCollum J, Wang H, Ordoubadi M, Jar C, Carrigy NB, Barona D, Tetreau I, Archer M, Gerhardt A, Press C, Fox CB, Kramer RM, Vehring R. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. Int J Pharm 2021; 593:120121. [PMID: 33278492 PMCID: PMC7790949 DOI: 10.1016/j.ijpharm.2020.120121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Protection against primarily respiratory infectious diseases, such as tuberculosis (TB), can likely be enhanced through mucosal immunization induced by direct delivery of vaccines to the nose or lungs. A thermostable inhalable dry powder vaccine offers further advantages, such as independence from the cold chain. In this study, we investigate the formulation for a stable, inhalable dry powder version of ID93 + GLA-SE, an adjuvanted subunit TB vaccine candidate, containing recombinant fusion protein ID93 and glucopyranosyl lipid A (GLA) in a squalene emulsion (SE) as an adjuvant system, via spray drying. The addition of leucine (20% w/w), pullulan (10%, 20% w/w), and trileucine (3%, 6% w/w) as dispersibility enhancers was investigated with trehalose as a stabilizing agent. Particle morphology and solid state, nanoemulsion droplet size, squalene and GLA content, ID93 presence, and aerosol performance were assessed for each formulation. The results showed that the addition of leucine improved aerosol performance, but increased aggregation of the emulsion droplets was demonstrated on reconstitution. Addition of pullulan preserved emulsion droplet size; however, the antigen could not be detected after reconstitution. The trehalose-trileucine excipient formulations successfully stabilized the adjuvant system, with evidence indicating retention of the antigen, in an inhalable dry powder format suitable for lung delivery.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Chester Jar
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Isobel Tetreau
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Adeagbo BA, Akinlalu AO, Phan T, Guderian J, Boukes G, Willenburg E, Fenner C, Bolaji OO, Fox CB. Controlled Covalent Conjugation of a Tuberculosis Subunit Antigen (ID93) to Liposome Improved In Vitro Th1-Type Cytokine Recall Responses in Human Whole Blood. ACS OMEGA 2020; 5:31306-31313. [PMID: 33324841 PMCID: PMC7726955 DOI: 10.1021/acsomega.0c04774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) remains a foremost poverty-related disease with a high rate of mortality despite global immunization with Bacille Calmette-Guérin (BCG). Several adjuvanted recombinant proteins are in clinical development for TB to protect against the disease in infants and adults. Nevertheless, simple mixing of adjuvants with antigens may not be optimal for enhancing the immune response due to poor association. Hence, co-delivery of adjuvants with antigens has been advocated for improved immune response. This report, therefore, presents a strategy of using chemical conjugation to co-deliver an adjuvanted recombinant protein TB vaccine (ID93 + GLA-LSQ). Chemical conjugation involving glutaraldehyde (GA) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) was used to associate the antigen (ID93) to the modified liposome (mGLA-LSQ). The physicochemical stability of the formulations was evaluated using high-performance liquid chromatography (HPLC) (adjuvant content), dynamic light scattering (DLS, particle size analysis), and sodium dodecyl sulfate-polyacrylamide gel (SDS) electrophoresis (protein analysis). The bioactivity was assessed by cytokine stimulation using fresh whole blood from 10 healthy donors. The conjugates of ID93 + mGLA_LSQ maintained liposomal and protein integrity with the two protein chemistries. The GLA and QS21 content of the vaccine were also stable for 3 months. However, only the glutaraldehyde conjugates provoked significant secretion of interleukin-2 (210.4 ± 11.45 vs 166.7 ± 9.15; p = 0.0059), interferon-gamma (210.5 ± 14.79 vs 144.1 ± 4.997; p = 0.0011), and tumor necrosis factor alpha (2075 ± 46.8 vs 1456 ± 144.8; p = 0.0082) compared to simple mixing. Conjugation of recombinant protein (ID93) to the liposome (mGLA_LSQ) through chemical conjugation resulted in a stable vaccine formulation, which could facilitate co-delivery of the subunit vaccine to promote a robust immune response.
Collapse
Affiliation(s)
- Babatunde Ayodeji Adeagbo
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Akintunde Oluseto Akinlalu
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
| | - Tony Phan
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Jeff Guderian
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
| | - Gerhardt Boukes
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Elize Willenburg
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Caryn Fenner
- Afrigen
Biologics (Pty) Limited, South Africa Medical
Research Council Medicina Campus Francie van Zijl Drive, Cape Town, ZA 7500, South Africa
| | - Oluseye Oladotun Bolaji
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, NG 220280, Nigeria
| | - Christopher B. Fox
- Infectious
Disease Research Institute, 1616 Eastlake Avenue East Suite 400, Seattle, Washington 98102, United States
- Department
of Global Health, University of Washington, 3980 15th Ave NE, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Clemmensen HS, Knudsen NPH, Billeskov R, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Mortensen R. Rescuing ESAT-6 Specific CD4 T Cells From Terminal Differentiation Is Critical for Long-Term Control of Murine Mtb Infection. Front Immunol 2020; 11:585359. [PMID: 33240275 PMCID: PMC7677256 DOI: 10.3389/fimmu.2020.585359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
In most cases, Mycobacterium tuberculosis (Mtb) causes life-long chronic infections, which poses unique challenges for the immune system. Most of the current tuberculosis (TB) subunit vaccines incorporate immunodominant antigens and at this point, it is poorly understood how the CD4 T cell subsets recognizing these antigens are affected during long-term infection. Very little is known about the requirements for sustainable vaccine protection against TB. To explore this, we screened 62 human-recognized Mtb antigens during chronic murine Mtb infection and identified the four most immunodominant antigens in this setting (MPT70, Rv3020c, and Rv3019c and ESAT-6). Combined into a subunit vaccine, this fusion protein induced robust protection both in a standard short-term model and in a long-term infection model where immunity from BCG waned. Importantly, replacement of ESAT-6 with another ESAT-6-family antigen, Rv1198, led to similar short-term protection but a complete loss of bacterial control during chronic infection. This observation was further underscored, as the ESAT-6 containing vaccine mediated sustainable protection in a model of post-exposure vaccination, where the ESAT-6-replacement vaccine did not. An individual comparison of the CD4 T cell responses during Mtb infection revealed that ESAT-6-specific T cells were more terminally differentiated than the other immunodominant antigens and immunization with the ESAT-6 containing vaccine led to substantially greater reduction in the overall T cell differentiation status. Our data therefore associates long-term bacterial control with the ability of a vaccine to rescue infection-driven CD4T cell differentiation and future TB antigen discovery programs should focus on identifying antigens with the highest accompanying T cell differentiation, like ESAT-6. This also highlights the importance of long-term readouts in both preclinical and clinical studies with TB vaccines.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
24
|
Preclinical optimization of an enterotoxigenic Escherichia coli adjuvanted subunit vaccine using response surface design of experiments. NPJ Vaccines 2020; 5:83. [PMID: 32983577 PMCID: PMC7486917 DOI: 10.1038/s41541-020-00228-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.
Collapse
|
25
|
Sato-Kaneko F, Yao S, Lao FS, Shpigelman J, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Chu PJ, Burkhart D, Schoener R, Matsutani T, Carson DA, Corr M, Hayashi T. A Novel Synthetic Dual Agonistic Liposomal TLR4/7 Adjuvant Promotes Broad Immune Responses in an Influenza Vaccine With Minimal Reactogenicity. Front Immunol 2020; 11:1207. [PMID: 32636840 PMCID: PMC7318308 DOI: 10.3389/fimmu.2020.01207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The limited efficacy of seasonal influenza vaccines is usually attributed to ongoing variation in the major antigenic targets for protective antibody responses including hemagglutinin (HA) and neuraminidase (NA). Hence, vaccine development has largely focused on broadening antigenic epitopes to generate cross-reactive protection. However, the vaccine adjuvant components which can accelerate, enhance and prolong antigenic immune responses, can also increase the breadth of these responses. We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus HA, inducing rapid, and sustained antibody responses that are protective against influenza viruses in homologous and heterologous murine challenge models. To further enhance adjuvant efficacy, we performed a structure-activity relationship study for the TLR4 ligand, N-cyclohexyl-2-((5-methyl-4-oxo-3-phenyl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide (C25H26N4O2S; 1Z105), and identified the 8-(furan-2-yl) substituted pyrimido[5,4-b]indole analog (C29H28N4O3S; 2B182C) as a derivative with higher potency in activating both human and mouse TLR4-NF-κB reporter cells and primary cells. In a prime-boost immunization model using inactivated influenza A virus [IIAV; A/California/04/2009 (H1N1)pdm09], 2B182C used as adjuvant induced higher serum anti-HA and anti-NA IgG1 levels compared to 1Z105, and also increased the anti-NA IgG2a responses. In combination with a TLR7 ligand, 1V270, 2B182C induced equivalent levels of anti-NA and anti-HA IgG1 to 1V270+1Z105. However, the combination of 1V270+2B182C induced 10-fold higher anti-HA and anti-NA IgG2a levels compared to 1V270+1Z105. A stable liposomal formulation of 1V270+2B182C was developed, which synergistically enhanced anti-HA and anti-NA IgG1 and IgG2a responses without demonstrable reactogenicity after intramuscular injection. Notably, vaccination with IIAV plus the liposomal formulation of 1V270+2B182C protected mice against lethal homologous influenza virus (H1N1)pdm09 challenge and reduced lung viral titers and cytokine levels. The combination adjuvant induced a greater diversity in B cell clonotypes of immunoglobulin heavy chain (IGH) genes in the draining lymph nodes and antibodies against a broad spectrum of HA epitopes encompassing HA head and stalk domains and with cross-reactivity against different subtypes of HA and NA. This novel combination liposomal adjuvant contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
Affiliation(s)
- Fumi Sato-Kaneko
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Fitzgerald S. Lao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Shpigelman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Karen Messer
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Minya Pu
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Nikunj M. Shukla
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Howard B. Cottam
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Michael Chan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Paul J. Chu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | - Dennis A. Carson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
26
|
Safar HA, Mustafa AS, Amoudy HA, El-Hashim A. The effect of adjuvants and delivery systems on Th1, Th2, Th17 and Treg cytokine responses in mice immunized with Mycobacterium tuberculosis-specific proteins. PLoS One 2020; 15:e0228381. [PMID: 32027660 PMCID: PMC7004338 DOI: 10.1371/journal.pone.0228381] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) is a major health problem of global concern. The control of this disease requires appropriate preventive measures, including vaccines. In TB, T helper (Th)1 cytokines provide protection whereas Th2 and T regulatory (Treg) cytokines contribute to the pathogenesis and Th17 cytokines play a role in both protection and pathogenesis. Previous studies with Mycobacterium tuberculosis-specific proteins have identified seven low molecular weight proteins, PE35, ESXA, ESXB, Rv2346c, Rv2347c, Rv3619c, and Rv3620c, as immunodominant antigens inducing Th1-cell responses in humans following natural infection with M. tuberculosis. The aim of this study was to characterize the cytokine responses induced in mice immunized with these proteins, using various adjuvants and delivery systems, i.e. chemical adjuvants (Alum and IFA), non-pathogenic mycobacteria (M. smegmatis and M. vaccae) and a DNA vaccine plasmid (pUMVC6). The immune responses were monitored by quantifying the marker cytokines secreted by Th1 (IFN-ɣ), Th2 (IL-5), Treg (IL-10), and Th17 (IL-17A) cells. DNA corresponding to pe35, esxa, esxb, rv2346c, rv2347c, rv3619c, and rv3620c genes were cloned into the expression vectors pGES-TH-1, pDE22 and pUMVC6 for expression in Escherichia coli, mycobacteria and eukaryotic cells, respectively. Mice were immunized with the recombinants using different adjuvants and delivery systems, and spleen cells were stimulated in vitro with peptides of immunizing proteins to investigate antigen-specific secretion of Th1 (IFN-ɣ), Th2 (IL-5), Treg (IL-10), and Th17 (IL-17A) cytokines. The results showed that spleen cells, from mice immunized with all antigens, secreted the protective Th1 cytokine IFN-ɣ, except ESXB, with one or more adjuvants and delivery systems. However, only Rv3619c consistently induced Th1-biased responses, without the secretion of significant concentrations of Th2, Th17 and Treg cytokines, with all adjuvants and delivery systems. Rv3619c also induced antigen-specific IgG antibodies in immunized mice.
Collapse
Affiliation(s)
- Hussain A. Safar
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- * E-mail:
| | - Hanady A. Amoudy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmed El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait City, Kuwait
| |
Collapse
|
27
|
Khandhar AP, Liang H, Simpson AC, Reed SG, Carter D, Fox CB, Orr MT. Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. NANOSCALE 2020; 12:2515-2523. [PMID: 31930264 DOI: 10.1039/c9nr09936k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The growing shift to subunit antigen vaccines underscores the need for adjuvants that can enhance the magnitude and quality of immune response. Aluminum salts or alums are the first adjuvants with a long history of clinical use. Alum predominantly induces T helper 2 (TH2) type immunity in animal models, characterized by antibody production with little to no induction of antigen-specific T cells. The lack of cell-mediated or T helper 1 (TH1) immunity makes alum adjuvants ineffective in mounting durable responses against diseases like tuberculosis, malaria and HIV. Here we show that the clinically approved adjuvant, Alhydrogel, reformulated as a stable nanoparticle (nanoalum) with the anionic polymer polyacrylic acid (PAA) induces structure-dependent TH1 response against the recombinant tuberculosis antigen ID93. We found that PAA adsorption to Alhydrogel was a key parameter affecting nanoalum adjuvanticity. Adsorption depended on various factors, most notably formulation pH, and directly correlated with immunological response in mice, enhancing known hallmarks of a murine TH1 type response: induction of antigen-specific IFN-γ secreting CD4+ T cells and IgG2c subclass of antibodies. Our results demonstrate a correlation between a measurable nanoalum property and immunological response, providing a structural basis to derive a beneficial immunological outcome from a clinically approved adjuvant.
Collapse
Affiliation(s)
- Amit P Khandhar
- Infectious Disease Research Institute, Seattle, WA, USA. and PAI Life Sciences, Seattle, WA, USA
| | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA, USA.
| | | | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA, USA. and Department of Global Health, University of Washington, Seattle, WA, USA and HDT BioCorp, Seattle, WA, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA, USA. and PAI Life Sciences, Seattle, WA, USA and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA. and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA, USA.
| |
Collapse
|
28
|
Ji Y, An J, Hwang D, Ha DH, Lim SM, Lee C, Zhao J, Song HK, Yang EG, Zhou P, Chung HS. Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant. Metab Eng 2020; 57:193-202. [PMID: 31786244 PMCID: PMC6960009 DOI: 10.1016/j.ymben.2019.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/09/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Monophosphoryl lipid A (MPLA) species, including MPL (a trade name of GlaxoSmithKline) and GLA (a trade name of Immune Design, a subsidiary of Merck), are widely used as an adjuvant in vaccines, allergy drugs, and immunotherapy to boost the immune response. Even though MPLA is a derivative of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, bacterial strains producing MPLA have not been found in nature nor engineered. In fact, MPLA generation involves expensive and laborious procedures based on synthetic routes or chemical transformation of precursors isolated from Gram-negative bacteria. Here, we report the engineering of an Escherichia coli strain for in situ production and accumulation of MPLA. Furthermore, we establish a succinct method for purifying MPLA from the engineered E. coli strain. We show that the purified MPLA (named EcML) stimulates the mouse immune system to generate antigen-specific IgG antibodies similarly to commercially available MPLA, but with a dramatically reduced manufacturing time and cost. Our system, employing the first engineered E. coli strain that directly produces the adjuvant EcML, could transform the current standard of industrial MPLA production.
Collapse
Affiliation(s)
- Yuhyun Ji
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Da Hui Ha
- Eubiologics.CO.,Ltd, V Plant 125, Wonmudong-gil, Dongsan-myeon, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Sang Min Lim
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chankyu Lee
- Eubiologics.CO.,Ltd, V Plant 125, Wonmudong-gil, Dongsan-myeon, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Durham, 27710, USA
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, 27710, USA
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
29
|
Fox CB, Van Hoeven N, Granger B, Lin S, Guderian JA, Hartwig A, Marlenee N, Bowen RA, Soultanov V, Carter D. Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152927. [PMID: 31465981 PMCID: PMC6790179 DOI: 10.1016/j.phymed.2019.152927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Next to aluminum salts, squalene nanoemulsions comprise the most widely employed class of adjuvants in approved vaccines. Despite their importance, the mechanisms of action of squalene nanoemulsions are not completely understood, nor are the structure/function requirements of the oil composition. PURPOSE In this study, we build on previous work that compared the adjuvant properties of nanoemulsions made with different classes of oil structures to squalene nanoemulsion. Here, we introduce nanoemulsions made with polyprenols derived from species of the Pinaceae family as novel vaccine adjuvant compositions. In contrast with long-chain triglycerides that do not efficiently enhance an immune response, both polyprenols and squalene are comprised of multimeric isoprene units, which may represent an important structural property of oils in nanoemulsions with adjuvant properties. STUDY DESIGN Oils derived from species of the Pinaceae family were formulated in nanoemulsions, with or without a synthetic Toll-like receptor 4 (TLR4) ligand, and characterized regarding physicochemical and biological activity properties in comparison to squalene nanoemulsions. METHODS Oils were extracted from species of the Pinaceae family and used to prepare oil-in-water nanoemulsions by microfluidization. Emulsion droplet diameter stability was characterized by dynamic light scattering. Nanoemulsions were evaluated for in vitro biological activity using human whole blood, and in vivo biological activity in mouse, pig, and ferret models when combined with pandemic influenza vaccine antigens. RESULTS Nanoemulsions comprised of Pinaceae-derived polyprenol oils demonstrated long-term physical stability, stimulated cytokine production from human cells in vitro, and promoted antigen-specific immune responses in various animal models, particularly when formulated with the TLR4 ligand glucopyranosyl lipid adjuvant (GLA). CONCLUSION Pinaceae-derived nanoemulsions are compatible with inclusion of a synthetic TLR4 ligand and promote antigen-specific immune responses to pandemic influenza antigens in mouse, pig, and ferret models.
Collapse
Affiliation(s)
- Christopher B Fox
- IDRI, 1616 Eastlake Ave E, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | | | | | - Susan Lin
- IDRI, 1616 Eastlake Ave E, Seattle, WA, USA
| | | | - Airn Hartwig
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| | - Nicole Marlenee
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| | - Richard A Bowen
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| | - Vagif Soultanov
- Prenolica Limited, 98-106 Moray St., South Melbourne, Victoria, Australia
| | - Darrick Carter
- IDRI, 1616 Eastlake Ave E, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release 2019; 303:130-150. [PMID: 31022431 PMCID: PMC7111479 DOI: 10.1016/j.jconrel.2019.04.025] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Liposomes are widely utilized as a carrier to improve therapeutic efficacy of agents thanks to their merits of high loading capacity, targeting delivery, reliable protection of agents, good biocompatibility, versatile structure modification and adjustable characteristics, such as size, surface charge, membrane flexibility and the agent loading mode. In particular, in recent years, through modification with immunopotentiators and targeting molecules, and in combination with innovative immunization devices, liposomes are rapidly developed as a multifunctional vaccine adjuvant-delivery system (VADS) that has a high capability in inducing desired immunoresponses, as they can target immune cells and even cellular organelles, engender lysosome escape, and promote Ag cross-presentation, thus enormously enhancing vaccination efficacy. Moreover, after decades of development, several products developed on liposome VADS have already been authorized for clinical immunization and are showing great advantages over conventional vaccines. This article describes in depth some critical issues relevant to the development of liposomes as a VADS, including principles underlying immunization, physicochemical properties of liposomes as the immunity-influencing factors, functional material modification to enhance immunostimulatory functions, the state-of-the-art liposome VADSs, as well as the marketed vaccines based on a liposome VADS. Therefore, this article provides a comprehensive reference to the development of novel liposome vaccines.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
31
|
Sepehri Z, Kiani Z, Kohan F, Ghavami S. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med 2019; 50:117-129. [PMID: 30124945 DOI: 10.1093/labmed/lmy047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To review the main Mycobacterium tuberculosis (Mtb) pathogen-associated molecular patterns (PAMPs) and the roles played by toll-like receptor (TLR)4 in determination of Mtb infection outcome. METHODS Several scientific databases, including Scopus, PubMed, and Google Scholar, were used for searching appropriate research articles from the literature for information on our topic. RESULTS TLR4 plays positive roles in induction of immune responses against Mtb and participates in eradication of the infection. Some limited investigations approved the roles of TLR4 in induction of apoptosis in macrophages during tuberculosis (TB) and attenuation of immune responses in some situations. CONCLUSIONS TB outcome appears to be dependent on TLR4/Mtb interaction and several factors, including bacterial load and immune or nonimmune cells, as hosts. Also, other TLR/Mtb interactions can affect TLR4 responses.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran and Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Kohan
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
32
|
Orr MT, Khandhar AP, Seydoux E, Liang H, Gage E, Mikasa T, Beebe EL, Rintala ND, Persson KH, Ahniyaz A, Carter D, Reed SG, Fox CB. Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. NPJ Vaccines 2019; 4:1. [PMID: 30622742 PMCID: PMC6318334 DOI: 10.1038/s41541-018-0094-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023] Open
Abstract
Aluminum salts, developed almost a century ago, remain the most commonly used adjuvant for licensed human vaccines. Compared to more recently developed vaccine adjuvants, aluminum adjuvants such as Alhydrogel are heterogeneous in nature, consisting of 1–10 micrometer-sized aggregates of nanoparticle aluminum oxyhydroxide fibers. To determine whether the particle size and aggregated state of aluminum oxyhydroxide affects its adjuvant activity, we developed a scalable, top-down process to produce stable nanoparticles (nanoalum) from the clinical adjuvant Alhydrogel by including poly(acrylic acid) (PAA) polymer as a stabilizing agent. Surprisingly, the PAA:nanoalum adjuvant elicited a robust TH1 immune response characterized by antigen-specific CD4+ T cells expressing IFN-γ and TNF, as well as high IgG2 titers, whereas the parent Alhydrogel and PAA elicited modest TH2 immunity characterized by IgG1 antibodies. ASC, NLRP3 and the IL-18R were all essential for TH1 induction, indicating an essential role of the inflammasome in this adjuvant’s activity. Compared to microparticle Alhydrogel this nanoalum adjuvant provided superior immunogenicity and increased protective efficacy against lethal influenza challenge. Therefore PAA:nanoalum represents a new class of alum adjuvant that preferentially enhances TH1 immunity to vaccine antigens. This adjuvant may be widely beneficial to vaccines for which TH1 immunity is important, including tuberculosis, pertussis, and malaria. Aluminum salt-based adjuvants such as alhydrogel have been a mainstay of vaccines for decades. Christopher B. Fox and colleagues at the Infectious Disease Research Institute in Seattle, USA, investigate the effect adjuvant particle size has on experimental vaccine responses. Shearing conventional micrometer-scale alhyrodogel into nanoparticles is followed by rapid reaggregation; however, the authors show that addition of anionic polymer (PAA) prevents this and results in stable nanoparticles (PAA:nanoalum). Used as an adjuvant with either influenza or TB antigens triggers robust TH1 and IgG2a responses that are superior to alhydrogel even when the latter includes a Toll-like receptor 4 (TLR4) agonist. Interestingly, addition of TLR4 agonist to PAA:nanoalum actually impairs its adjuvanticity. PAA:nanoalum efficacy is nevertheless dependent on the NLRP3 inflammasome suggesting that this novel adjuvant somehow triggers this pathway through some as yet undefined route.
Collapse
Affiliation(s)
- Mark T Orr
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA.,2Department of Global Health, University of Washington, 1510 San Juan Road, Seattle, WA 98195 USA
| | - Amit P Khandhar
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Emilie Seydoux
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Hong Liang
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Emily Gage
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Traci Mikasa
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Elyse L Beebe
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Nicholas D Rintala
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA
| | - Karin H Persson
- 3Unit of Surface, Process and Formulation, Division of Bioscience and Materials, RISE Research Institutes of Sweden, Drottning Kristinas Väg 45, Box 5607, SE 11486 Stockholm, Sweden
| | - Anwar Ahniyaz
- 3Unit of Surface, Process and Formulation, Division of Bioscience and Materials, RISE Research Institutes of Sweden, Drottning Kristinas Väg 45, Box 5607, SE 11486 Stockholm, Sweden
| | - Darrick Carter
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA.,2Department of Global Health, University of Washington, 1510 San Juan Road, Seattle, WA 98195 USA
| | - Steven G Reed
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA.,2Department of Global Health, University of Washington, 1510 San Juan Road, Seattle, WA 98195 USA
| | - Christopher B Fox
- 1Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA 98102 USA.,2Department of Global Health, University of Washington, 1510 San Juan Road, Seattle, WA 98195 USA
| |
Collapse
|
33
|
Zhang J, Miao J, Han X, Lu Y, Deng B, Lv F, Zhao Y, Ding C, Hou J. Development of a novel oil-in-water emulsion and evaluation of its potential adjuvant function in a swine influenza vaccine in mice. BMC Vet Res 2018; 14:415. [PMID: 30577861 PMCID: PMC6303909 DOI: 10.1186/s12917-018-1719-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/27/2018] [Indexed: 12/03/2022] Open
Abstract
Background Vaccination is the principal strategy for prevention and control of diseases, and adjuvant use is an effective strategy to enhance vaccine efficacy. Traditional mineral oil-based adjuvants have been reported with post-immunization reactions. Developing new adjuvant formulations with improved potency and safety will be of great value. Results In the study reported herein, a novel oil-in-water (O/W) Emulsion Adjuvant containing Squalane (termed EAS) was developed, characterized and investigated for swine influenza virus immunization. The data show that EAS is a homogeneous nanoemulsion with small particle size (~ 105 nm), low viscosity (2.04 ± 0.24 cP at 20 °C), excellent stability (at least 24 months at 4 °C) and low toxicity. EAS-adjuvanted H3N2 swine influenza vaccine was administrated in mice subcutaneously to assess the adjuvant potency of EAS. The results demonstrated that in mice EAS-adjuvanted vaccine induced significantly higher titers of hemagglutination inhibition (HI) and IgG antibodies than water-in-oil (W/O) vaccines or antigen alone, respectively, at day 42 post vaccination (dpv) (P < 0.05). EAS-adjuvanted vaccine elicited significantly stronger IgG1 and IgG2a antibodies and higher concentrations of Th1 (IFN-γ and IL-2) cytokines compared to the W/O vaccine or antigen alone. Mice immunized with EAS-adjuvanted influenza vaccine conferred potent protection after homologous challenge. Conclusion The O/W emulsion EAS developed in the present work induced potent humoral and cellular immune responses against inactivated swine influenza virus, conferred effective protection after homologous virus challenge and showed low toxicity in mice, indicating that EAS is as good as the commercial adjuvant MF59. The superiority of EAS to the conventional W/O formulation in adjuvant activity, safety and stability will make it a potential veterinary adjuvant.
Collapse
Affiliation(s)
- Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu Lu
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Bihua Deng
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Lv
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yanhong Zhao
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jibo Hou
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
34
|
Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. Trends Biotechnol 2018; 37:373-388. [PMID: 30470547 DOI: 10.1016/j.tibtech.2018.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Pathogens comprise a diverse set of immunostimulatory molecules that activate the innate immune system during infection. The immune system recognizes distinct combinations of pathogenic molecules leading to multiple immune activation events that cooperate to produce enhanced immune responses, known as 'immune synergies'. Effective immune synergies are essential for the clearance of pathogens, thus inspiring novel adjuvant design to improve vaccines. We highlight current vaccine adjuvants and the importance of immune synergies to adjuvant and vaccine design. The focus is on new technologies used to study and apply immune synergies to adjuvant and vaccine development. Finally, we discuss how recent findings can be applied to the future design and characterization of synergistic adjuvants and vaccines.
Collapse
|
35
|
Araujo IL, Dummer LA, Rodrigues PRC, Dos Santos AG, Fischer G, Cunha RC, Leite FPL. Immune responses in bovines to recombinant glycoprotein D of bovine herpesvirus type 5 as vaccine antigen. Vaccine 2018; 36:7708-7714. [PMID: 30381153 DOI: 10.1016/j.vaccine.2018.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022]
Abstract
Bovine herpesvirus 5 (BoHV-5) is responsible for outbreaks of meningoencephalitis that cause important economic losses in young cattle. BoHV-5 glycoprotein D (gD5) is essential for attachment and penetration into permissive cells and targeting of host immune systems, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate the vaccinal immune response of vaccines formulated with the recombinant BoHV-5 gD (rgD5) in bovines. For the experiment, 72 heifers were randomly allotted into 6 different groups with 12 animals each. Group 1: vaccine formulated using inactivated BoHV-5 (iBoHV-5) adjuvanted with ISA50V2; Group 2: iBoHV-5 associated with 100 µg of rgD5 adjuvanted with ISA50V2; Group 3: 100 µg of rgD5 adjuvanted with ISA50V2; Group 4: 100 µg of rgD5 adjuvanted with Al(OH)3; Group 5: commercial vaccine; and Group 6: control group. Two doses were administered in a 26-day interval and the third after 357 days from primo vaccination. Cattle vaccinated with the vaccines formulated with iBoHV-5 plus rgD5 showed a significant (p < 0.01) five-fold increase in total immunoglobulin G (IgG) for BoHV-5, BoHV-1, and rgD5 as compared with the commercial and control groups. Also, a significant (p < 0.05) increase in IgG1 and IgG2a levels was induced in serum for rgD5. In addition, these same vaccines showed significant (p < 0.01) four-fold higher titers of BoHV-1 and -5 neutralizing antibodies. The results demonstrated that the rgD5 conserved important epitopes that were able to stimulate bovine humoral immunity response capable of viral neutralization of BoHV-1 and -5, suggesting it as a promising vaccine antigen to be used in vaccine for BoHV-1 and -5 endemic areas.
Collapse
Affiliation(s)
- Itauá Leston Araujo
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Paulo Ricardo Centeno Rodrigues
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Alceu Gonçalves Dos Santos
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Geferson Fischer
- Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Rodrigo Casquero Cunha
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil.
| |
Collapse
|
36
|
Das A, Asad M, Sabur A, Didwania N, Ali N. Monophosphoryl Lipid A Based Cationic Liposome Facilitates Vaccine Induced Expansion of Polyfunctional T Cell Immune Responses against Visceral Leishmaniasis. ACS APPLIED BIO MATERIALS 2018; 1:999-1018. [PMID: 34996141 DOI: 10.1021/acsabm.8b00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
37
|
Coler RN, Day TA, Ellis R, Piazza FM, Beckmann AM, Vergara J, Rolf T, Lu L, Alter G, Hokey D, Jayashankar L, Walker R, Snowden MA, Evans T, Ginsberg A, Reed SG. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines 2018; 3:34. [PMID: 30210819 PMCID: PMC6123489 DOI: 10.1038/s41541-018-0057-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of infectious death worldwide. Development of improved TB vaccines that boost or replace BCG is a major global health goal. ID93 + GLA-SE is a fusion protein TB vaccine candidate combined with the Toll-like Receptor 4 agonist adjuvant, GLA-SE. We conducted a phase 1, randomized, double-blind, dose-escalation clinical trial to evaluate two dose levels of the ID93 antigen, administered intramuscularly alone or in combination with two dose levels of the GLA-SE adjuvant, in 60 BCG-naive, QuantiFERON-negative, healthy adults in the US (ClinicalTrials.gov identifier: NCT01599897). When administered as 3 injections, 28 days apart, all dose levels of ID93 alone and ID93 + GLA-SE demonstrated an acceptable safety profile. All regimens elicited vaccine-specific humoral and cellular responses. Compared with ID93 alone, vaccination with ID93 + GLA-SE elicited higher titers of ID93-specific antibodies, a preferential increase in IgG1 and IgG3 subclasses, and a multifaceted Fc-mediated effector function response. The addition of GLA-SE also enhanced the magnitude and polyfunctional cytokine profile of CD4+ T cells. The data demonstrate an acceptable safety profile and indicate that the GLA-SE adjuvant drives a functional humoral and T-helper 1 type cellular response. A tuberculosis vaccine containing an immunity-potentiating agent stimulated strong immune responses in a first-in-human trial. Tuberculosis (TB) is the world’s foremost cause of infectious disease deaths, yet lacks an effective vaccine for adult humans. Rhea Coler, of the Infectious Disease Research Institute, Seattle, and a team from the United States and South Africa, tested their prophylactic on 60 healthy US adults. The vaccine consisted of ID93, a fusion of TB therapeutic target proteins, and GLA-SE—a supplement to boost immune responses. The candidate proved safe in all participants, with mild-to-moderate adverse effects, and provoked promising immune responses. The formulation was significantly more effective with GLA-SE than without. Further studies will elucidate the therapeutic benefit of this formulation and its ability to combat the pathogenicity of TB.
Collapse
Affiliation(s)
- Rhea N Coler
- 1Infectious Disease Research Institute, Seattle, WA 98102 USA.,2Department of Global Health, University of Washington, Seattle, WA 98195 USA.,3PAI Life Sciences, Seattle, WA 98102 USA
| | - Tracey A Day
- 1Infectious Disease Research Institute, Seattle, WA 98102 USA
| | | | - Franco M Piazza
- 1Infectious Disease Research Institute, Seattle, WA 98102 USA
| | | | - Julie Vergara
- 1Infectious Disease Research Institute, Seattle, WA 98102 USA
| | - Tom Rolf
- 1Infectious Disease Research Institute, Seattle, WA 98102 USA
| | - Lenette Lu
- 5Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Boston, MA 02139 USA
| | - Galit Alter
- 5Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Boston, MA 02139 USA
| | | | | | | | | | | | | | - Steven G Reed
- 1Infectious Disease Research Institute, Seattle, WA 98102 USA
| | | |
Collapse
|
38
|
Zhang W, Ahmad G, Molehin AJ, Torben W, Le L, Kim E, Lazarus S, Siddiqui AJ, Carter D, Siddiqui AA. Schistosoma mansoni antigen Sm-p80: prophylactic efficacy using TLR4 agonist vaccine adjuvant glucopyranosyl lipid A-Alum in murine and non-human primate models. J Investig Med 2018; 66:1124-1132. [PMID: 29997146 PMCID: PMC6288690 DOI: 10.1136/jim-2018-000786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading candidate for a schistosomiasis vaccine. The prophylactic and antifecundity efficacy of Sm-p80 has been tested in three animal models (mouse, hamster and baboon) using a multitude of vaccine formulations and approaches. In our continual effort to enhance the vaccine efficacy, in this study, we have utilized the adjuvant, synthetic hexa-acylated lipid A derivative, glucopyranosyl lipid A (GLA) formulated in aluminum (GLA-Alum) with recombinant Sm-p80. The rSm-p80+GLA-Alum immunization regimen provided 33.33%–53.13% reduction in worm burden in the mouse model and 38% worm burden reduction in vaccinated baboons. Robust Sm-p80-specific immunoglobulin (Ig)G, IgG1, IgG2a and IgM responses were observed in all immunized animals. The rSm-p80+GLA-Alum coadministration induced a mix of T-helper (Th) cells (Th1, Th2 and Th17) responses as determined via the release of interleukin (IL)-2, IL-4, IL-18, IL-21, IL-22 and interferon-γ.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Gul Ahmad
- Department of Natural Sciences, School of Arts & Sciences, Peru State College, Peru, Nebraska, USA
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Workineh Torben
- Comparative Pathology/Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
39
|
Kramer RM, Archer MC, Orr MT, Dubois Cauwelaert N, Beebe EA, Huang PWD, Dowling QM, Schwartz AM, Fedor DM, Vedvick TS, Fox CB. Development of a thermostable nanoemulsion adjuvanted vaccine against tuberculosis using a design-of-experiments approach. Int J Nanomedicine 2018; 13:3689-3711. [PMID: 29983563 PMCID: PMC6028350 DOI: 10.2147/ijn.s159839] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Adjuvants have the potential to increase the efficacy of protein-based vaccines but need to be maintained within specific temperature and storage conditions. Lyophilization can be used to increase the thermostability of protein pharmaceuticals; however, no marketed vaccine that contains an adjuvant is currently lyophilized, and lyophilization of oil-in-water nanoemulsion adjuvants presents a specific challenge. We have previously demonstrated the feasibility of lyophilizing a candidate adjuvanted protein vaccine against Mycobacterium tuberculosis (Mtb), ID93 + GLA-SE, and the subsequent improvement of thermostability; however, further development is required to prevent physicochemical changes and degradation of the TLR4 agonist glucopyranosyl lipid adjuvant formulated in an oil-in-water nanoemulsion (SE). Materials and methods In this study, we took a systematic approach to the development of a thermostable product by first identifying compatible solution conditions and stabilizing excipients for both antigen and adjuvant. Next, we applied a design-of-experiments approach to identify stable lyophilized drug product formulations. Results We identified specific formulations that contain disaccharide or a combination of disaccharide and mannitol that can achieve substantially improved thermostability and maintain immunogenicity in a mouse model when tested in accelerated and real-time stability studies. Conclusion These efforts will aid in the development of a platform formulation for use with other similar vaccines.
Collapse
Affiliation(s)
- Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA,
| | | | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA, USA,
| | | | - Elyse A Beebe
- Infectious Disease Research Institute, Seattle, WA, USA,
| | - Po-Wei D Huang
- Infectious Disease Research Institute, Seattle, WA, USA,
| | | | | | - Dawn M Fedor
- Infectious Disease Research Institute, Seattle, WA, USA,
| | | | | |
Collapse
|
40
|
Lodaya RN, Brito LA, Wu TYH, Miller AT, Otten GR, Singh M, O'Hagan DT. Stable Nanoemulsions for the Delivery of Small Molecule Immune Potentiators. J Pharm Sci 2018; 107:2310-2314. [PMID: 29883663 DOI: 10.1016/j.xphs.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023]
Abstract
Adjuvants are required to enhance immune responses to typically poorly immunogenic recombinant antigens. Toll-like receptor agonists (TLRa) have been widely evaluated as adjuvants because they activate the innate immune system. Currently, licensed vaccines adjuvanted with TLRa include the TLR4 agonist monophosphoryl lipid, while additional TLRa are in clinical development. Unfortunately, naturally derived TLRa are often complex and heterogeneous entities, which brings formulation challenges. Consequently, the use of synthetic small-molecule TLRa has significant advantages because they are well-defined discrete molecules, which can be chemically modified to modulate their physicochemical properties. We previously described the discovery of a family of TLR7 agonists based on a benzonaphthyridine scaffold. In addition, we described how Alum could be used to deliver these synthetic TLRa. An alternative adjuvant approach with enhanced potency over Alum are squalene containing oil-in-water emulsions, which have been included in licensed influenza vaccines, including Fluad (MF59 adjuvanted) and Pandemrix (AS03 adjuvanted). Here, we describe how to enable the co-delivery of a TLR7 agonist in a squalene-based oil-in-water emulsion, for adjuvant evaluation.
Collapse
Affiliation(s)
- Rushit N Lodaya
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Luis A Brito
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Tom Y H Wu
- Genomics Institute of Novartis Research Foundation (GNF), San Diego, California 92121
| | - Andrew T Miller
- Genomics Institute of Novartis Research Foundation (GNF), San Diego, California 92121
| | - Gillis R Otten
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Manmohan Singh
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | | |
Collapse
|
41
|
Larsen SE, Baldwin SL, Orr MT, Reese VA, Pecor T, Granger B, Dubois Cauwelaert N, Podell BK, Coler RN. Enhanced Anti- Mycobacterium tuberculosis Immunity over Time with Combined Drug and Immunotherapy Treatment. Vaccines (Basel) 2018; 6:vaccines6020030. [PMID: 29795025 PMCID: PMC6027321 DOI: 10.3390/vaccines6020030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
It is estimated that one third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). This astounding statistic, in combination with costly and lengthy treatment regimens make the development of therapeutic vaccines paramount for controlling the global burden of tuberculosis. Unlike prophylactic vaccination, therapeutic immunization relies on the natural pulmonary infection with Mtb as the mucosal prime that directs boost responses back to the lung. The purpose of this work was to determine the protection and safety profile over time following therapeutic administration of our lead Mtb vaccine candidate, ID93 with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion (GLA-SE)), in combination with rifampicin, isoniazid, and pyrazinamide (RHZ) drug treatment. We assessed the host inflammatory immune responses and lung pathology 7–22 weeks post infection, and determined the therapeutic efficacy of combined treatment by enumeration of the bacterial load and survival in the SWR/J mouse model. We show that drug treatment alone, or with immunotherapy, tempered the inflammatory responses measured in brochoalveolar lavage fluid and plasma compared to untreated cohorts. RHZ combined with therapeutic immunizations significantly enhanced TH1-type cytokine responses in the lung over time, corresponding to decreased pulmonary pathology evidenced by a significant decrease in the percentage of lung lesions and destructive lung inflammation. These data suggest that bacterial burden assessment alone may miss important correlates of lung architecture that directly contribute to therapeutic vaccine efficacy in the preclinical mouse model. We also confirmed our previous finding that in combination with antibiotics therapeutic immunizations provide an additive survival advantage. Moreover, therapeutic immunizations with ID93/GLA-SE induced differential T cell immune responses over the course of infection that correlated with periods of enhanced bacterial control over that of drug treatment alone. Here we advance the immunotherapy model and investigate reliable correlates of protection and Mtb control.
Collapse
Affiliation(s)
- Sasha E Larsen
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Susan L Baldwin
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Valerie A Reese
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
| | - Tiffany Pecor
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
| | - Brian Granger
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
| | | | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA 98102, USA.
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
- PAI Life Sciences Inc., Seattle, WA 98102, USA.
| |
Collapse
|
42
|
Seydoux E, Liang H, Dubois Cauwelaert N, Archer M, Rintala ND, Kramer R, Carter D, Fox CB, Orr MT. Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:98-112. [PMID: 29769270 DOI: 10.4049/jimmunol.1701604] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood. In this article, we demonstrate that the inflammasome activation and the subsequent release of IL-1β are central effectors of the action of GLA-SE, as infiltration of innate cells into the draining lymph nodes and production of IFN-γ are reduced in ASC-/- animals. Importantly, the early proliferation of Ag-specific CD4+ T cells was completely ablated after immunization in ASC-/- animals. Moreover, numbers of Ag-specific CD4+ T and B cells as well as production of IFN-γ, TNF-α, and IL-2 and Ab titers were considerably reduced in ASC-/-, NLRP3-/-, and IL-1R-/- mice compared with wild-type mice and were completely ablated in TLR4-/- animals. Also, extracellular ATP, a known trigger of the inflammasome, augments Ag-specific CD4+ T cell responses, as hydrolyzing it with apyrase diminished adaptive responses induced by GLA-SE. These data thus demonstrate that GLA-SE adjuvanticity acts through TLR4 signaling and NLRP3 inflammasome activation to promote robust Th1 and B cell responses to vaccine Ags. The findings suggest that engagement of both TLR and inflammasome activators may be a general paradigm for induction of robust CD4 T cell immunity with combination adjuvants such as GLA-SE.
Collapse
Affiliation(s)
- Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Michelle Archer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Ryan Kramer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Abstract
Developing new vaccines against emerging pathogens or pathogens where variability of antigenic sites presents a challenge, the inclusion of stimulators of the innate immune system is critical to mature the immune response in a way that allows high avidity recognition while preserving the ability to react to drifted serovars. The innate immune system is an ancient mechanism for recognition of nonself and the first line of defense against pathogen insult. By triggering innate receptors, adjuvants can boost responses to vaccines and enhance the quality and magnitude of the resulting immune response. This chapter: (1) describes the innate immune system, (2) provides examples of how adjuvants are formulated to optimize their effectiveness, and (3) presents examples of how adjuvants can improve outcomes of immunization.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., 1616 Eastlake Ave E, Suite 550, Seattle, WA, 98102, USA.
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA.
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.
| | - Malcolm S Duthie
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Steven G Reed
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| |
Collapse
|
44
|
Abstract
INTRODUCTION Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.
Collapse
|
45
|
El Bissati K, Zhou Y, Paulillo SM, Raman SK, Karch CP, Roberts CW, Lanar DE, Reed S, Fox C, Carter D, Alexander J, Sette A, Sidney J, Lorenzi H, Begeman IJ, Burkhard P, McLeod R. Protein nanovaccine confers robust immunity against Toxoplasma. NPJ Vaccines 2017; 2:24. [PMID: 29263879 PMCID: PMC5627305 DOI: 10.1038/s41541-017-0024-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/08/2022] Open
Abstract
We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.
Collapse
Affiliation(s)
- Kamal El Bissati
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | - Ying Zhou
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | | | | | - Christopher P. Karch
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 USA
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE UK
| | - David E. Lanar
- Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910 USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Chris Fox
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Darrick Carter
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121 USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037 USA
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037 USA
| | - Hernan Lorenzi
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850 USA
| | - Ian J. Begeman
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | - Peter Burkhard
- Alpha-O Peptides AG, Lörracherstrasse 50, 4125 Riehen, Switzerland
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 USA
| | - Rima McLeod
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
- Pediatrics (Infectious Diseases), The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| |
Collapse
|
46
|
Abstract
Adjuvants have been deliberately added to vaccines since the 1920's when alum was discovered to boost antibody responses, leading to better protection. The first adjuvants were discovered by accident and were used in the safer but less immunogenic subunit vaccines, supposedly by providing an antigen depot to extend antigen presentation. Since that time, much has been discovered about how these adjuvants impact cells at the tissue site to activate innate immune responses, mobilize dendritic cells and drive adaptive immunity. New approaches to vaccine construction for infectious diseases that have so far not been well addressed by conventional vaccines often attempt to induce antibodies, polyfunctional CD4+ T cells and CD8+ CTLs. The discovery of pattern recognition receptors and ligands that drive desired T cell responses has led to development of novel adjuvant strategies using immunomodulatory agents to direct appropriate immune responses.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Philippa Marrack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, 1400, Jackson St., Denver, CO 80206, USA
| |
Collapse
|
47
|
Barnes V L, Fedor DM, Williams S, Dowling QM, Archer MC, Cloutier S, Parker S, Vedvick TS, Fox CB, Kramer RM. Lyophilization of an Adjuvanted Mycobacterium tuberculosis Vaccine in a Single-Chamber Pharmaceutical Cartridge. AAPS PharmSciTech 2017; 18:2077-2084. [PMID: 28000085 DOI: 10.1208/s12249-016-0688-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/03/2016] [Indexed: 11/30/2022] Open
Abstract
Although substantial effort has been made in the development of next-generation recombinant vaccine systems, maintenance of a cold chain is still typically required and remains a critical challenge in effective vaccine distribution. The ability to engineer alternative containment systems that improve distribution and administration represents potentially significant enhancements to vaccination strategies. In this work, we evaluate the ability to successfully lyophilize a previously demonstrated thermostable tuberculosis vaccine formulation (ID93 + GLA-SE) in a cartridge format compared to a traditional vial container format. Due to differences in the shape of the container formats, a novel apparatus was developed to facilitate lyophilization in a cartridge. Following lyophilization, the lyophilizate was assessed visually, by determining residual moisture content, and by collecting melting profiles. Reconstituted formulations were assayed for particle size, protein presence, and GLA content. Based on assessment of the lyophilizate, the multicomponent vaccine was successfully lyophilized in both formats. Also, the physicochemical properties of the major components in the formulation, including antigen and adjuvant, were retained after lyophilization in either format. Ultimately, this study demonstrates that complex formulations can be lyophilized in alternative container formats to the standard pharmaceutical glass vial, potentially helping to increase the distribution of vaccines.
Collapse
|
48
|
Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017; 8:66656-66667. [PMID: 29029545 PMCID: PMC5630445 DOI: 10.18632/oncotarget.19105] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tumors are closely related to chronic inflammation, during which there are various changes in inflammatory sites, such as immune cells infiltration, pro-inflammation cytokines production, and interaction between immune cells and tissue cells. Besides, substances, released from both tissue cells attacked by exogenous etiologies, also act on local cells. These changes induce a dynamic and complex microenvironment favorable for tumor growth, invasion, and metastasis. The toll-like receptor 4 (TLR4) is the first identified member of the toll-like receptor family that can recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMPs). TLR4 expresses not only on immune cells but also on tumor cells. Accumulating evidences demonstrated that the activation of TLR4 in tumor microenvironment can not only boost the anti-tumor immunity but also give rise to immune surveillance and tumor progression. This review will summarize the expression and function of TLR4 on dendritic cells (DCs), tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), tumor cells as well as stromal cells in tumor microenvironment. Validation of the multiple role of TLR4 in tumors could primarily pave the road for the development of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
49
|
Speir M, Hermans IF, Weinkove R. Engaging Natural Killer T Cells as 'Universal Helpers' for Vaccination. Drugs 2017; 77:1-15. [PMID: 28005229 DOI: 10.1007/s40265-016-0675-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand. .,Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand. .,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
50
|
Jakob V, Brunner L, Barnier-Quer C, Blust M, Collin N, Carter L, Carter D, Rausch KM, Fox CB. Accounting for adjuvant-induced artifacts in the characterization of vaccine formulations by polyacrylamide gel electrophoresis. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:31-38. [PMID: 28515938 DOI: 10.1177/2051013617702072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Several vaccine adjuvants comprise complex nano- or micro-particle formulations, such as oil-in-water emulsions. In order to characterize interactions and compatibility of oil-in-water emulsion adjuvants with protein antigens in vaccines, effective protein characterization methods that can accommodate potential interference from high concentrations of lipid-based particles are needed. METHODS Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a standard protein characterization technique which is affected by the presence of adjuvants such as oil-in-water emulsions. In this article, we investigate variations in SDS-PAGE methods that result in a reduction of adjuvant-induced staining artifacts. We have investigated whether the SDS method or the adjuvant composition were the reason for these artifacts and succeeded in reducing the artifacts with a modified sample preparation and different staining procedures. RESULTS The best results were obtained by using gold staining or silver staining instead of a Coomassie Blue staining procedure. Moreover, the replacement of the dilution buffer (20% SDS to disrupt emulsion) by alternative detergents such as Tween® 80 and Triton® X-100 removed adjuvant-induced streaking artifacts at the top of the gel. CONCLUSIONS These methods may be useful for improving characterization approaches of antigen-adjuvant mixtures by SDS-PAGE.
Collapse
Affiliation(s)
- Virginie Jakob
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Livia Brunner
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | | | - Molly Blust
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Lauren Carter
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA, USA, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, Department of Global Health, University of Washington, 1616 Eastlake Ave E Ste 400, Seattle, WA 98102, USA
| |
Collapse
|