1
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Daly AC. Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives. Adv Healthc Mater 2024; 13:e2301388. [PMID: 37317658 DOI: 10.1002/adhm.202301388] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Granular hydrogels, which are formed by densely packing microgels, are promising materials for bioprinting due to their extrudability, porosity, and modularity. However, the multidimensional parameter space involved in granular hydrogel design makes material optimization challenging. For example, design inputs such as microgel morphology, packing density, or stiffness can influence multiple rheological properties that govern printability and the behavior of encapsulated cells. This review provides an overview of fabrication methods for granular hydrogels, and then examines how important design inputs can influence material properties associated with printability and cellular responses across multiple scales. Recent applications of granular design principles in bioink engineering are described, including the development of granular support hydrogels for embedded printing. Further, the paper provides an overview of how key physical properties of granular hydrogels can influence cellular responses, highlighting the advantages of granular materials for promoting cell and tissue maturation after the printing process. Finally, potential future directions for advancing the design of granular hydrogels for bioprinting are discussed.
Collapse
Affiliation(s)
- Andrew C Daly
- Biomedical Engineering, University of Galway, Galway, H91 TK33, Ireland
- CÚRAM the Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
3
|
Mukundan LM, Das S, Rajasekaran R, Ganguly D, Seesala VS, Dhara S, Chattopadhyay S. Photo-annealable agarose microgels for jammed microgel printing: Transforming thermogelling hydrogel to a functional bioink. Int J Biol Macromol 2024; 278:134550. [PMID: 39116964 DOI: 10.1016/j.ijbiomac.2024.134550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Three-dimensional (3D) printing of hydrogel structures using jammed microgel inks offer distinct advantages of improved printing functionalities, as these inks are strain-yielding and self-recovering types. However, interparticle binding in granular hydrogel inks is a challenge to overcome the limited integrity and reduced macroscale modulus prevalent in the 3D printed microgel scaffolds. In this study, we prepared chemically annealable agarose microgels through a process of xerogel rehydration, applying a low-cost and high throughput method of spray drying. The crosslinked jammed microgel matrix is found to have superior mechanical properties with a Young's modulus of 2.23 MPa and extensibility up to 7.2%, surpassing those of traditional biopolymer-based and microgel-based inks. Furthermore, this study addresses the complexities encountered in the existing system of printing thermoresponsive agarose bioink using this jammed microgel printing approach. The jammed agarose microgel ink exhibited to be self-recovering, yield stress fluid and validated the temperature-independent printing. Furthermore, the 3D printed jammed microgel scaffold demonstrated good cell responsiveness as evaluated through the viability and morphological study in-vitro with mesenchymal stem cells cultured in it. This unique fabrication approach offers exciting possibilities to expand on microgel printing for varied requirements in tissue engineering.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Rubber Technology Center, Indian Institute of Technology Kharagpur; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Samir Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | | | - Venkata Sundeep Seesala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | | |
Collapse
|
4
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Curry CW, Sturgeon SM, O'Grady BJ, Yates A, Kjar A, Paige H, Mowery LS, Katdare KA, Patel R, Mlouk K, Stiefbold MR, Vafaie-Partin S, Kawabata A, McKee R, Moore-Lotridge S, Hawkes A, Kusunose J, Gibson-Corley KN, Schmeckpeper J, Schoenecker JG, Caskey CF, Lippmann ES. Growth factor free, peptide-functionalized gelatin hydrogel promotes arteriogenesis and attenuates tissue damage in a murine model of critical limb ischemia. Biomaterials 2023; 303:122397. [PMID: 37979513 PMCID: PMC10843678 DOI: 10.1016/j.biomaterials.2023.122397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Critical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e. arteriogenesis), either by remodeling of pre-existing vascular networks or de novo growth of new vessels, can prevent or reverse ischemic damage, but it remains challenging to stimulate collateral arteriole development in a therapeutic context. Here, we show that a gelatin-based hydrogel, devoid of growth factors or encapsulated cells, promotes arteriogenesis and attenuates tissue damage in a murine CLI model. The gelatin hydrogel is functionalized with a peptide derived from the extracellular epitope of Type 1 cadherins. Mechanistically, these "GelCad" hydrogels promote arteriogenesis by recruiting smooth muscle cells to vessel structures in both ex vivo and in vivo assays. In a murine femoral artery ligation model of CLI, delivery of in situ crosslinking GelCad hydrogels was sufficient to restore limb perfusion and maintain tissue health for 14 days, whereas mice treated with gelatin hydrogels had extensive necrosis and autoamputated within 7 days. A small cohort of mice receiving the GelCad hydrogels were aged out to 5 months and exhibited no decline in tissue quality, indicating durability of the collateral arteriole networks. Overall, given the simplicity and off-the-shelf format of the GelCad hydrogel platform, we suggest it could have utility for CLI treatment and potentially other indications that would benefit from arteriole development.
Collapse
Affiliation(s)
- Corinne W Curry
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sarah M Sturgeon
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Brian J O'Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexis Yates
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hayden Paige
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lucas S Mowery
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Riya Patel
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kate Mlouk
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Madison R Stiefbold
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sidney Vafaie-Partin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Atsuyuki Kawabata
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel McKee
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Hawkes
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiro Kusunose
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey Schmeckpeper
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Charles F Caskey
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Boesveld S, Kittel Y, Luo Y, Jans A, Oezcifci B, Bartneck M, Preisinger C, Rommel D, Haraszti T, Centeno SP, Boersma AJ, De Laporte L, Trautwein C, Kuehne AJC, Strnad P. Microgels as Platforms for Antibody-Mediated Cytokine Scavenging. Adv Healthc Mater 2023; 12:e2300695. [PMID: 37248777 PMCID: PMC11469277 DOI: 10.1002/adhm.202300695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Therapeutic antibodies are the key treatment option for various cytokine-mediated diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease. However, systemic injection of these antibodies can cause side effects and suppress the immune system. Moreover, clearance of therapeutic antibodies from the blood is limiting their efficacy. Here, water-swollen microgels are produced with a size of 25 µm using droplet-based microfluidics. The microgels are functionalized with TNFα antibodies to locally scavenge the pro-inflammatory cytokine TNFα. Homogeneous distribution of TNFα-antibodies is shown throughout the microgel network and demonstrates specific antibody-antigen binding using confocal microscopy and FLIM-FRET measurements. Due to the large internal accessibility of the microgel network, its capacity to bind TNFα is extremely high. At a TNFα concentration of 2.5 µg mL-1 , the microgels are able to scavenge 88% of the cytokine. Cell culture experiments reveal the therapeutic potential of these microgels by protecting HT29 colorectal adenocarcinoma cells from TNFα toxicity and resulting in a significant reduction of COX II and IL8 production of the cells. When the microgels are incubated with stimulated human macrophages, to mimic the in vivo situation of inflammatory bowel disease, the microgels scavenge almost all TNFα that is produced by the cells.
Collapse
Affiliation(s)
- Sarah Boesveld
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Yonca Kittel
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Yizhao Luo
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Alexander Jans
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Burak Oezcifci
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Department of Cellular Protein ChemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584 CHThe Netherlands
| | - Matthias Bartneck
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Christian Preisinger
- Proteomics FacilityInterdisciplinary Centre for Clinical Research (IZKF)Medical SchoolRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Dirk Rommel
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Tamás Haraszti
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Silvia P. Centeno
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
| | - Arnold J. Boersma
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Department of Cellular Protein ChemistryBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8Utrecht3584 CHThe Netherlands
| | - Laura De Laporte
- DWI‐Leibniz Institute for Interactive MaterialsRWTH Aachen UniversityForckenbeckstraße 5052074AachenGermany
- Institute for Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME) Department of Center for Biohybrid Medical Systems (CBMS)Forckenbeckstraße 5552074AachenGermany
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Alexander J. C. Kuehne
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Pavel Strnad
- Department of Internal Medicine IIIUniversity HospitalRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| |
Collapse
|
7
|
Curry CW, Sturgeon SM, O’Grady BJ, Yates AK, Kjar A, Paige HA, Mowery LS, Katdare KA, Patel RV, Mlouk K, Stiefbold MR, Vafaie-Partin S, Kawabata A, McKee RM, Moore-Lotridge S, Hawkes A, Kusunose J, Gibson-Corley KN, Schmeckpeper J, Schoenecker JG, Caskey CF, Lippmann ES. Growth factor-free, peptide-functionalized gelatin hydrogel promotes arteriogenesis and attenuates tissue damage in a murine model of critical limb ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542150. [PMID: 37292898 PMCID: PMC10245920 DOI: 10.1101/2023.05.24.542150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Critical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e. arteriogenesis), either by remodeling of pre-existing vascular networks or de novo growth of new vessels, can prevent or reverse ischemic damage, but it remains challenging to stimulate collateral arteriole development in a therapeutic context. Here, we show that a gelatin-based hydrogel, devoid of growth factors or encapsulated cells, promotes arteriogenesis and attenuates tissue damage in a murine CLI model. The gelatin hydrogel is functionalized with a peptide derived from the extracellular epitope of Type 1 cadherins. Mechanistically, these "GelCad" hydrogels promote arteriogenesis by recruiting smooth muscle cells to vessel structures in both ex vivo and in vivo assays. In a murine femoral artery ligation model of CLI, delivery of in situ crosslinking GelCad hydrogels was sufficient to restore limb perfusion and maintain tissue health for 14 days, whereas mice treated with gelatin hydrogels had extensive necrosis and autoamputated within 7 days. A small cohort of mice receiving the GelCad hydrogels were aged out to 5 months and exhibited no decline in tissue quality, indicating durability of the collateral arteriole networks. Overall, given the simplicity and off-the-shelf format of the GelCad hydrogel platform, we suggest it could have utility for CLI treatment and potentially other indications that would benefit from arteriole development.
Collapse
Affiliation(s)
- Corinne W. Curry
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sarah M. Sturgeon
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexis K. Yates
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hayden A. Paige
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lucas S. Mowery
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A. Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Riya V. Patel
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kate Mlouk
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Madison R. Stiefbold
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sidney Vafaie-Partin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Atsuyuki Kawabata
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel M. McKee
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Hawkes
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiro Kusunose
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey Schmeckpeper
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Charles F. Caskey
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
9
|
Jammed microgels fabricated via various methods for biological studies. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Jalandhra GK, Molley TG, Hung TT, Roohani I, Kilian KA. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Acta Biomater 2023; 156:75-87. [PMID: 36055612 DOI: 10.1016/j.actbio.2022.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteochondral tissue has a complex hierarchical structure spanning subchondral bone to articular cartilage. Biomaterials approaches to mimic and repair these interfaces have had limited success, largely due to challenges in fabricating composite hard-soft interfaces with living cells. Biofabrication approaches have emerged as attractive methods to form osteochondral analogues through additive assembly of hard and soft components. We have developed a unique printing platform that is able to integrate soft and hard materials concurrently through freeform printing of mineralized constructs within tunable microgel suspensions containing living cells. A library of microgels based on gelatin were prepared, where the stiffness of the microgels and a liquid "filler" phase can be tuned for bioprinting while simultaneously directing differentiation. Tuning microgel stiffness and filler content differentially directs chondrogenesis and osteogenesis within the same construct, demonstrating how this technique can be used to fabricate osteochondral interfaces in a single step. Printing of a rapidly setting calcium phosphate cement, so called "bone-ink" within a cell laden suspension bath further guides differentiation, where the cells adjacent to the nucleated hydroxyapatite phase undergo osteogenesis with cells in the surrounding medium undergoing chondrogenesis. In this way, bone analogues with hierarchical structure can be formed within cell-laden gradient soft matrices to yield multiphasic osteochondral constructs. This technique provides a versatile one-pot biofabrication approach without harsh post-processing which will aid efforts in bone disease modelling and tissue engineering. STATEMENT OF SIGNIFICANCE: This paper demonstrates the first example of a biofabrication approach to rapidly form osteochondral constructs in a single step under physiological conditions. Key to this advance is a tunable suspension of extracellular matrix microgels that are packed together with stem cells, providing a unique and modular scaffolding for guiding the simultaneous formation of bone and cartilage tissue. The physical properties of the suspension allow direct writing of a ceramic "bone-ink", resulting in an ordered structure of microscale hydrogels, living cells, and bone mimics in a single step. This platform reveals a simple approach to making complex skeletal tissue for disease modelling, with the possibility of repairing and replacing bone-cartilage interfaces in the clinic using a patient's own cells.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052
| | - Iman Roohani
- School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney NSW 2052; School of Chemistry, University of New South Wales, Sydney NSW 2052; Australian Centre for NanoMedicine, University of New South Wales, Sydney NSW 2052.
| |
Collapse
|
11
|
Pan Y, Luo Y, Hong J, He H, Dai L, Zhu H, Wu J. Advances for the treatment of lower extremity arterial disease associated with diabetes mellitus. Front Mol Biosci 2022; 9:929718. [PMID: 36060247 PMCID: PMC9429832 DOI: 10.3389/fmolb.2022.929718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lower extremity arterial disease (LEAD) is a major vascular complication of diabetes. Vascular endothelial cells dysfunction can exacerbate local ischemia, leading to a significant increase in amputation, disability, and even mortality in patients with diabetes combined with LEAD. Therefore, it is of great clinical importance to explore proper and effective treatments. Conventional treatments of diabetic LEAD include lifestyle management, medication, open surgery, endovascular treatment, and amputation. As interdisciplinary research emerges, regenerative medicine strategies have provided new insights to treat chronic limb threatening ischemia (CLTI). Therapeutic angiogenesis strategies, such as delivering growth factors, stem cells, drugs to ischemic tissues, have also been proposed to treat LEAD by fundamentally stimulating multidimensional vascular regeneration. Recent years have seen the rapid growth of tissue engineering technology; tissue-engineered biomaterials have been used to study the treatment of LEAD, such as encapsulation of growth factors and drugs in hydrogel to facilitate the restoration of blood perfusion in ischemic tissues of animals. The primary purpose of this review is to introduce treatments and novel biomaterials development in LEAD. Firstly, the pathogenesis of LEAD is briefly described. Secondly, conventional therapies and therapeutic angiogenesis strategies of LEAD are discussed. Finally, recent research advances and future perspectives on biomaterials in LEAD are proposed.
Collapse
Affiliation(s)
- Yang Pan
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Hong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Lu Dai
- The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Jiang Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
He Y, Sun M, Wang J, Yang X, Lin C, Ge L, Ying C, Xu K, Liu A, Wu L. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis. Acta Biomater 2022; 151:512-527. [PMID: 35964941 DOI: 10.1016/j.actbio.2022.07.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) play a critical role in the pathogenesis of osteoarthritis. The injection of a single antioxidant drug is characterized by low drug utilization and short residence time in the articular cavity, limiting the therapeutic effect of antioxidant drugs on osteoarthritis. Currently, the drug circulation half-life can be extended using delivery vehicles such as liposomes and microspheres, which are widely used to treat diseases. In addition, the composite carriers of liposomes and hydrogel microspheres can combine the advantages of different material forms and show stronger plasticity and flexibility than traditional single carriers, which are expected to become new local drug delivery systems. Chondroitin sulfate, a sulfated glycosaminoglycan commonly found in native cartilage, has good antioxidant properties and degradability and is used to develop an injectable chondroitin sulfate hydrogel by covalent modification with photo-cross-linkable methacryloyl groups (ChsMA). Herein, ChsMA microgels anchored with liquiritin (LQ)-loaded liposomes (ChsMA@Lipo) were developed to delay the progression of osteoarthritis by dual antioxidation. On the one hand, the antioxidant drug LQ wrapped in ChsMA@Lipo microgels exhibits significant sustained-release kinetics due to the double obstruction of the lipid membrane and the hydrogel matrix network. On the other hand, ChsMA can eliminate ROS through degradation into chondroitin sulfate monomers by enzymes in vivo. Therefore, ChsMA@Lipo, as a degradable and dual antioxidant drug delivery platform, is a promising option for osteoarthritis treatment. STATEMENT OF SIGNIFICANCE: Compared with the traditional single carrier, the composite carriers of hydrogel microspheres and liposome can complement the advantages of different materials, which shows stronger plasticity and flexibility, and is expected to become a new and efficient drug delivery system. ChsMA@Lipo not only attenuates IL-1β-induced ECM degradation in chondrocytes but also inhibits the M1 macrophages polarization and the inflammasome activation. The obtained ChsMA@Lipo alleviates the progression of osteoarthritis in vivo, which is promising for osteoarthritis treatment.
Collapse
Affiliation(s)
- Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Sun
- The Affiliated Hospital of Stomatology, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jirong Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lujie Ge
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenting Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - An Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
14
|
Charlet A, Bono F, Amstad E. Mechanical reinforcement of granular hydrogels. Chem Sci 2022; 13:3082-3093. [PMID: 35414870 PMCID: PMC8926196 DOI: 10.1039/d1sc06231j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Granular hydrogels are composed of hydrogel-based microparticles, so-called microgels, that are densely packed to form an ink that can be 3D printed, injected or cast into macroscopic structures. They are frequently used as tissue engineering scaffolds because microgels can be made biocompatible and the porosity of the granular hydrogels enables a fast exchange of reagents, waste products, and if properly designed even the infiltration of cells. Most of these granular hydrogels can be shaped into appropriate macroscopic structures, yet, these structures are mechanically rather weak. The poor mechanical properties prevent the use of these structures as load-bearing materials and hence, limit their field of applications. The mechanical properties of granular hydrogels depend on the composition of microgels and the interparticle interactions. In this review, we discuss different strategies to assemble microparticles into granular hydrogels and highlight the influence of inter-particle connections on the stiffness and toughness of the resulting materials. Mechanically strong and tough granular hydrogels have the potential to open up new fields of their use and thereby to contribute to fast advances in these fields. In particular, we envisage them to be well-suited as soft actuators and robots, tissue replacements, and adaptive sensors.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Francesca Bono
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| |
Collapse
|
15
|
Kittel Y, Kuehne AJC, De Laporte L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022; 11:e2101989. [PMID: 34826201 DOI: 10.1002/adhm.202101989] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Organic and Macromolecular Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
- Institute of Technical and Macromolecular Chemistry (ITMC) Polymeric Biomaterials RWTH University Aachen Worringerweg 2 52074 Aachen Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck School‐Matter to Life (MtL) Jahnstraße 29 69120 Heidelberg Germany
- Advanced Materials for Biomedicine (AMB) Institute of Applied Medical Engineering (AME) Center for Biohybrid Medical Systems (CBMS) University Hospital RWTH 52074 Aachen Germany
| |
Collapse
|
16
|
Costa ALR, Willerth SM, de la Torre LG, Han SW. Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia. Mater Today Bio 2022; 13:100221. [PMID: 35243296 PMCID: PMC8866736 DOI: 10.1016/j.mtbio.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Sang Won Han
- Department of Biophysics, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
17
|
Weiss JB, Phillips CJ, Malin EW, Gorantla VS, Harding JW, Salgar SK. Stem cell, Granulocyte-Colony Stimulating Factor and/or Dihexa to promote limb function recovery in a rat sciatic nerve damage-repair model: Experimental animal studies. Ann Med Surg (Lond) 2021; 71:102917. [PMID: 34703584 PMCID: PMC8524106 DOI: 10.1016/j.amsu.2021.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Background Optimizing nerve regeneration and re-innervation of target muscle/s is the key for improved functional recovery following peripheral nerve damage. We investigated whether administration of mesenchymal stem cell (MSC), Granulocyte-Colony Stimulating Factor (G-CSF) and/or Dihexa can improve recovery of limb function following peripheral nerve damage in rat sciatic nerve transection-repair model. Materials and methods There were 10 experimental groups (n = 6–8 rats/group). Bone marrow derived syngeneic MSCs (2 × 106; passage≤6), G-CSF (200–400 μg/kg b.wt.), Dihexa (2–4 mg/kg b.wt.) and/or Vehicle were administered to male Lewis rats locally via hydrogel at the site of nerve repair, systemically (i.v./i.p), and/or to gastrocnemius muscle. The limb sensory and motor functions were assessed at 1–2 week intervals post nerve repair until the study endpoint (16 weeks). Results The sensory function in all nerve boundaries (peroneal, tibial, sural) returned to nearly normal by 8 weeks (Grade 2.7 on a scale of Grade 0–3 [0 = No function; 3 = Normal function]) in all groups combined. The peroneal nerve function recovered quickly with return of function at one week (∼2.0) while sural nerve function recovered rather slowly at four weeks (∼1.0). Motor function at 8–16 weeks post-nerve repair as determined by walking foot print grades significantly (P < 0.05) improved with MSC + G-CSF or MSC + Dihexa administrations into gastrocnemius muscle and mitigated foot flexion contractures. Conclusions These findings demonstrate MSC, G-CSF and Dihexa are promising candidates for adjunct therapies to promote limb functional recovery after surgical nerve repair, and have implications in peripheral nerve injury and limb transplantation. IACUC No.215064. G-CSF in combination with MSCs improved limb function recovery in sciatic nerve transection- repair model. Dihexa in combination with MSC improved limb function recovery in sciatic nerve transection- repair model. Foot flexion contractures were reduced with G-CSF & MSC or Dihexa & MSC administration into target muscle gastrocnemius. MSC, G-CSF or Dihexa combination therapy is attractive, feasible & promising in peripheral nerve injury repair and have implications in limb transplantation. The findings warrant further investigation to understand the cellular/molecular mechanisms.
Collapse
Affiliation(s)
- Jessica B Weiss
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Cody J Phillips
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Edward W Malin
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph W Harding
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| |
Collapse
|
18
|
Biomaterials for Cell-Surface Engineering and Their Efficacy. J Funct Biomater 2021; 12:jfb12030041. [PMID: 34287337 PMCID: PMC8293134 DOI: 10.3390/jfb12030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis. According to the target disease, various therapeutic cells can be engineered to improve their survival and regenerative activity, and there are several types of biomaterials available for cell-surface engineering. In this review, biomaterial types and application strategies for cell-surface engineering are presented along with their expected efficacy.
Collapse
|
19
|
Erfani A, Hanna A, Zarrintaj P, Manouchehri S, Weigandt K, Aichele CP, Ramsey JD. Biodegradable zwitterionic poly(carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function. SOFT MATTER 2021; 17:5349-5361. [PMID: 33954314 DOI: 10.1039/d1sm00154j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many recent innovative treatments are based on monoclonal antibodies (mAbs) and other protein therapies. Nevertheless, sustained subcutaneous, oral or pulmonary delivery of such therapeutics is limited by the poor stability, short half-life, and non-specific interactions between the antibody (Ab) and delivery vehicle. Protein stabilizers (osmolytes) such as carboxybetaine can prevent non-specific interactions within proteins. In this work, a biodegradable zwitterionic poly(carboxybetaine), pCB, based microgel covalently crosslinked with tetra(ethylene glycol) diacrylate (TTEGDA) was synthesized for Ab encapsulation. The resulting microgels were characterized via FTIR, diffusion NMR, small-angle neutron scattering (SANS), and cell culture studies. The microgels were found to contain up to 97.5% water content and showed excellent degradability that can be tuned with crosslinking density. Cell compatibility of the microgel was studied by assessing the toxicity and immunogenicity in vitro. Cells exposed to microgel showed complete viability and no pro-inflammatory secretion of interleukin 6 (IL6) or tumor necrosis factor-alpha (TNFα). Microgel was loaded with Immunoglobulin G (as a model Ab), using a post-fabrication loading technique, and Ab sustained release from microgels of varying crosslinking densities was studied. The released Abs (especially from the high crosslinked microgels) proved to be completely active and able to bind with Ab receptors. This study opens a new horizon for scientists to use such a platform for local delivery of Abs to the desired target with minimized non-specific interactions.
Collapse
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Abanoub Hanna
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Katie Weigandt
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20889-6102, USA
| | - Clint P Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
20
|
Babu S, Albertino F, Omidinia Anarkoli A, De Laporte L. Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Adv Healthc Mater 2021; 10:e2002221. [PMID: 33951341 PMCID: PMC11469279 DOI: 10.1002/adhm.202002221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks.
Collapse
Affiliation(s)
- Susan Babu
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
| | - Filippo Albertino
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | | | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)Center for Biohybrid Medical Systems (CMBS)University Hospital RWTH AachenForckenbeckstrasse 55Aachen52074Germany
| |
Collapse
|
21
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
22
|
Parthiban SP, Athirasala A, Tahayeri A, Abdelmoniem R, George A, Bertassoni LE. BoneMA—synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of in-vitro vascularized tissue constructs. Biofabrication 2021; 13. [DOI: 10.1088/1758-5090/abb11f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
|
23
|
Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268:118932. [PMID: 33400933 DOI: 10.1016/j.lfs.2020.118932] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
The sophisticated chain of cellular and molecular episodes during wound healing includes cell migration, cell proliferation, deposition of extracellular matrix, and remodelling and are onerous to replicate. Encapsulation of growth factors (GFs) and Stem cell-based (SCs) has been proclaimed to accelerate healing by transforming every phase associated with wound healing to enhance skin regeneration. Therapeutic application of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) provides aid in wound fixing, tissue integrity restoration and function of impaired tissue. Several scientific studies have established the essential role GFs in wound healing and their reduced degree in the chronic wound. The overall limitation includes half-life, unfriendly microhabitat abundant with protease, and inadequate delivery approaches results in decreased delivery of effective amounts in a suitable time-based fashion. Advancements in the area of reformative medicine as well as tissue engineering have offered techniques competent of dispensing SCs and GFs in site-oriented manner. The progress in nanotechnology-based approaches attracts researcher to study and evaluate the potential of this SCs and GFs based therapy in chronic wounds. These techniques embrace the polymeric regime viz., nano-formulations, hydrogels, liposomes, scaffolds, nanofibers, metallic nanoparticles, lipid-based nanoparticles and dendrimers that have established better retort through targeting tissues when GFs and SCs are transported via these humans made devices. Assumed the current problems, improvements in delivery approaches and difficulties offered by chronic wounds, we hope to show that encapsulation of SCs and GFs loaded nanoformulations therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Alzanbaki H, Moretti M, Hauser CAE. Engineered Microgels-Their Manufacturing and Biomedical Applications. MICROMACHINES 2021; 12:45. [PMID: 33401474 PMCID: PMC7824414 DOI: 10.3390/mi12010045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Microgels are hydrogel particles with diameters in the micrometer scale that can be fabricated in different shapes and sizes. Microgels are increasingly used for biomedical applications and for biofabrication due to their interesting features, such as injectability, modularity, porosity and tunability in respect to size, shape and mechanical properties. Fabrication methods of microgels are divided into two categories, following a top-down or bottom-up approach. Each approach has its own advantages and disadvantages and requires certain sets of materials and equipments. In this review, we discuss fabrication methods of both top-down and bottom-up approaches and point to their advantages as well as their limitations, with more focus on the bottom-up approaches. In addition, the use of microgels for a variety of biomedical applications will be discussed, including microgels for the delivery of therapeutic agents and microgels as cell carriers for the fabrication of 3D bioprinted cell-laden constructs. Microgels made from well-defined synthetic materials with a focus on rationally designed ultrashort peptides are also discussed, because they have been demonstrated to serve as an attractive alternative to much less defined naturally derived materials. Here, we will emphasize the potential and properties of ultrashort self-assembling peptides related to microgels.
Collapse
Affiliation(s)
| | | | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah 23955-6900, Saudi Arabia; (H.A.); (M.M.)
| |
Collapse
|
25
|
Jumelle C, Sani ES, Taketani Y, Yung A, Gantin F, Chauhan SK, Annabi N, Dana R. Growth factor-eluting hydrogels for management of corneal defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111790. [PMID: 33545916 PMCID: PMC7867677 DOI: 10.1016/j.msec.2020.111790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
With 1.5-2.0 million new cases annually worldwide, corneal injury represents a common cause of vision loss, often from irreversible scarring due to surface corneal defects. In this study, we assessed the use of hepatocyte growth factor (HGF) loaded into an in situ photopolymerizable transparent gelatin-based hydrogel for the management of corneal defects. In vitro release kinetics showed that, in regard to the total amount of HGF released over a month, 55 ± 11% was released during the first 24 h, followed by a slow release profile for up to one month. The effect of HGF was assessed using an ex vivo model of pig corneal defect. After three days of organ culture, epithelial defects were found to be completely healed for 89% of the corneas treated with HGF, compared to only 11% of the corneas that had fully re-epithelialized when treated with the hydrogel without HGF. The thickness of the epithelial layer was found to be significantly higher for the HGF-treated group compared to the group treated with hydrogel without HGF (p = 0.0012). Finally, histological and immunostaining assessments demonstrated a better stratification and adhesion of the epithelial layer in the presence of HGF. These results suggest that the HGF-loaded hydrogel system represents a promising solution for the treatment of persistent corneal defects at risk of scarring.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Ann Yung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Fanny Gantin
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Nasim Annabi
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
26
|
Xu H, Sun M, Wang C, Xia K, Xiao S, Wang Y, Ying L, Yu C, Yang Q, He Y, Liu A, Chen L. Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 2020; 13:015010. [PMID: 33361566 DOI: 10.1088/1758-5090/abc4d3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleus pulposus (NP) degeneration is the major cause of degenerative disc disease (DDD). This condition cannot be treated or attenuated by traditional open or minimally invasive surgical options. However, a combination of stem cells, growth factors (GFs) and biomaterials present a viable option for regeneration. Injectable biomaterials act as carriers for controlled release of GFs and deliver stem cells to target tissues through a minimally invasive approach. In this study, injectable gelatin methacryloyl microspheres (GMs) with controllable, uniform particle sizes were rapidly biosynthesized through a low-cost electrospraying method. The GMs were used as delivery vehicles for cells and GFs, and they exhibited good mechanical properties and biocompatibility and enhanced the in vitro differentiation of laden cells into NP-like phenotypes. Furthermore, this integrated system attenuated the in vivo degeneration of rat intervertebral discs, maintained NP tissue integrity and accelerated the synthesis of extracellular matrix. Therefore, this novel therapeutic system is a promising option for the treatment of DDD.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China. Department of Orthopedic Research, Institute of Zhejiang University, Hangzhou 310009, Zhejiang, People's Republic of China. These two authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carrabba M, Jover E, Fagnano M, Thomas AC, Avolio E, Richardson T, Carter B, Vozzi G, Perriman AW, Madeddu P. Fabrication of New Hybrid Scaffolds for in vivo Perivascular Application to Treat Limb Ischemia. Front Cardiovasc Med 2020; 7:598890. [PMID: 33330660 PMCID: PMC7711071 DOI: 10.3389/fcvm.2020.598890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Cell therapies are emerging as a new therapeutic frontier for the treatment of ischemic disease. However, femoral occlusions can be challenging environments for effective therapeutic cell delivery. In this study, cell-engineered hybrid scaffolds are implanted around the occluded femoral artery and the therapeutic benefit through the formation of new collateral arteries is investigated. First, it is reported the fabrication of different hybrid “hard-soft” 3D channel-shaped scaffolds comprising either poly(ε-caprolactone) (PCL) or polylactic-co-glycolic acid (PLGA) and electro-spun of gelatin (GL) nanofibers. Both PCL-GL and PLGA-GL scaffolds show anisotropic characteristics in mechanical tests and PLGA displays a greater rigidity and faster degradability in wet conditions. The resulting constructs are engineered using human adventitial pericytes (APCs) and both exhibit excellent biocompatibility. The 3D environment also induces expressional changes in APCs, conferring a more pronounced proangiogenic secretory profile. Bioprinting of alginate-pluronic gel (AG/PL), containing APCs and endothelial cells, completes the hybrid scaffold providing accurate spatial organization of the delivered cells. The scaffolds implantation around the mice occluded femoral artery shows that bioengineered PLGA hybrid scaffold outperforms the PCL counterpart accelerating limb blood flow recovery through the formation arterioles with diameters >50 μm, demonstrating the therapeutic potential in stimulating reparative angiogenesis.
Collapse
Affiliation(s)
- Michele Carrabba
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Eva Jover
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita C Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Thomas Richardson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ben Carter
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Giovanni Vozzi
- Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Dipartimento di Ingegneria dell'informazione, University of Pisa, Pisa, Italy
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol 2020; 11:495-521. [PMID: 32812139 DOI: 10.1007/s13239-020-00482-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current design strategies for small diameter vascular grafts (< 6 mm internal diameter; ID) are focused on mimicking native vascular tissue because the commercially available grafts still fail at small diameters, notably due to development of intimal hyperplasia and thrombosis. To overcome these challenges, various design approaches, material selection, and surface modification strategies have been employed to improve the patency of small-diameter grafts. REVIEW The purpose of this review is to outline various considerations in the development of small-diameter vascular grafts, including material choice, surface modifications to enhance biocompatibility/endothelialization, and mechanical properties of the graft, that are currently being implanted. Additionally, we have taken into account the general vascular physiology, tissue engineering approaches, and collective achievements of the authors in this area. We reviewed both commercially available synthetic grafts (e-PTFE and PET), elastic polymers such as polyurethane and biodegradable and bioresorbable materials. We included naturally occurring materials by focusing on their potential application in the development of future vascular alternatives. CONCLUSION Until now, there are few comprehensive reviews regarding considerations in the design of small-diameter vascular grafts in the literature. Here-in, we have discussed in-depth the various strategies employed to generate engineered vascular graft due to their high demand for vascular surgeries. While some TEVG design strategies have shown greater potential in contrast to autologous or synthetic ePTFE conduits, many are still hindered by high production cost which prevents their widespread adoption. Nonetheless, as tissue engineers continue to develop on their strategies and procedures for improved TEVGs, soon, a reliable engineered graft will be available in the market. Hence, we anticipate a viable TEVG with resorbable property, fabricated via electrospinning approach to hold a greater potential that can overcome the challenges observed in both autologous and allogenic grafts. This is because they can be mechanically tuned, incorporated/surface-functionalized with bioactive molecules and mass-manufactured in a reproducible manner. It is also found that most of the success in engineered vascular graft approaching commercialization is for large vessels rather than small-diameter grafts used as cardiovascular bypass grafts. Consequently, the field of vascular engineering is still available for future innovators that can take up the challenge to create a functional arterial substitute.
Collapse
Affiliation(s)
- Francis O Obiweluozor
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| | - Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Do-Wan Kim
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Hwa-Jin Cho
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - In Seok Jeong
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
29
|
Caldwell AS, Aguado BA, Anseth KS. Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907670. [PMID: 33841061 PMCID: PMC8026140 DOI: 10.1002/adfm.201907670] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| |
Collapse
|
30
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
31
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
32
|
Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. NATURE REVIEWS. MATERIALS 2020; 5:20-43. [PMID: 34123409 PMCID: PMC8191408 DOI: 10.1038/s41578-019-0148-6] [Citation(s) in RCA: 524] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 05/13/2023]
Abstract
Hydrogel microparticles (HMPs) are promising for biomedical applications, ranging from the therapeutic delivery of cells and drugs to the production of scaffolds for tissue repair and bioinks for 3D printing. Biologics (cells and drugs) can be encapsulated into HMPs of predefined shapes and sizes using a variety of fabrication techniques (batch emulsion, microfluidics, lithography, electrohydrodynamic (EHD) spraying and mechanical fragmentation). HMPs can be formulated in suspensions to deliver therapeutics, as aggregates of particles (granular hydrogels) to form microporous scaffolds that promote cell infiltration or embedded within a bulk hydrogel to obtain multiscale behaviours. HMP suspensions and granular hydrogels can be injected for minimally invasive delivery of biologics, and they exhibit modular properties when comprised of mixtures of distinct HMP populations. In this Review, we discuss the fabrication techniques that are available for fabricating HMPs, as well as the multiscale behaviours of HMP systems and their functional properties, highlighting their advantages over traditional bulk hydrogels. Furthermore, we discuss applications of HMPs in the fields of cell delivery, drug delivery, scaffold design and biofabrication.
Collapse
Affiliation(s)
- Andrew C. Daly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally: Andrew C. Daly, Lindsay Riley
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- These authors contributed equally: Andrew C. Daly, Lindsay Riley
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Departments of Dermatology and Neurology, Duke University, Durham, NC, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Riley L, Schirmer L, Segura T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr Opin Biotechnol 2019; 60:1-8. [PMID: 30481603 PMCID: PMC6534490 DOI: 10.1016/j.copbio.2018.11.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/03/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Granular hydrogels are emerging as a versatile and effective platform for tissue engineered constructs in regenerative medicine. The hydrogel microparticles (HMPs) that compose these materials exhibit particle jamming above a minimum packing fraction, which results in a bulk, yet dynamic, granular hydrogel scaffold. These injectable, microporous scaffolds possess self-assembling, shear-thinning, and self-healing properties. Recently, they have been utilized as cell cultures platforms and extracellular matrix mimics with remarkable success in promoting cellular infiltration and subsequent tissue remodeling in vivo. Furthermore, the modular nature of granular hydrogels accommodates heterogeneous HMP assembly, where varying HMPs have been fabricated to target distinct biological processes or deliver unique cargo. Such multifunctional materials offer enormous potential for capturing the structural and biofunctional complexity observed in native human tissue.
Collapse
Affiliation(s)
- Lindsay Riley
- Department of Biomedical Engineering, Duke University, United States
| | - Lucas Schirmer
- Department of Biomedical Engineering, Duke University, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, United States; Department of Dermatology, Duke University, United States; Department of Neurology, Duke University, United States.
| |
Collapse
|
34
|
Jooybar E, Abdekhodaie MJ, Karperien M, Mousavi A, Alvi M, Dijkstra PJ. Developing hyaluronic acid microgels for sustained delivery of platelet lysate for tissue engineering applications. Int J Biol Macromol 2019; 144:837-846. [PMID: 31715235 DOI: 10.1016/j.ijbiomac.2019.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
Abstract
Platelet lysate (PL), a blood product that contains high concentrations of growth factors (GFs), can be considered as a cost-effective source of multiple GFs. In this study, hyaluronic acid (HA) based microgels were developed for delivery of PL proteins. Spherical microgel were prepared using a water in oil emulsion method. First, hyaluronic acid was grafted with tyramine groups, after which prepared microdroplets were crosslinked via an enzymatic reaction in the presence of hydrogen peroxide and horseradish peroxidase. Because of electrostatic interactions, these microgels are promising carriers for positively charged proteins entrapment like most of the GFs. When microgels are incubated in PL solution, protein loading takes place which is mainly governed by nonspecific adsorption of plasma proteins. Although this hampered loading efficiency, loading could be increased by repeated washing and incubation steps. The loaded microgels presented a sustained release of PL growth factors for a period of two weeks. When PL enriched microgels were embedded in a HA bulk hydrogel, cell proliferation was higher compared to constructs without microgels. These findings suggest that the developed microgels are a potential candidate for sustained delivery of PL growth factors and present a solution to the issue of their short half-lives in vivo.
Collapse
Affiliation(s)
- Elaheh Jooybar
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Marcel Karperien
- MIRA - Institute for Biomedical Technology and Technical Medicine and Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, PO Box 217, 7500 AE, the Netherlands
| | - Abbas Mousavi
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mansour Alvi
- Canadian Center for Regenerative Therapy, Toronto, ON, Canada
| | - Pieter J Dijkstra
- MIRA - Institute for Biomedical Technology and Technical Medicine and Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, PO Box 217, 7500 AE, the Netherlands.
| |
Collapse
|
35
|
Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization. Acta Biomater 2019; 95:285-296. [PMID: 30710712 DOI: 10.1016/j.actbio.2019.01.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Cell delivery systems based on micro-hydrogels may facilitate the long-term survival of cells upon transplantation. Micro-hydrogels may effectively support cell proliferation, attachment, and migration in ischemic environments. In this study, we report the fabrication of a gelatin methacrylate (GelMA)-based micro-hydrogel for efficient in vivo delivery of genetically engineered endothelial cells. Micro-hydrogels were initially processed via electrospraying of GelMA and alginate (ALG) mixtures (at different ratios) on to calcium chloride (CaCl2) solution. Electrospraying of the GelMA/ALG mixture resulted in the formation of a micro-hydrogel, owing to ALG crosslinking. Secondary crosslinking of GelMA with UV light and ALG hydrogel chelation using sodium citrate solution resulted in GelMA-based micro-hydrogel formation. We observed the angiogenic response of human umbilical vein endothelial cells (HUVECs) in GelMA concentration-dependent manner. The seeding of HUVECs engineered to express human vascular endothelial growth factor on to the GelMA micro-hydrogel and the subsequent transplantation of the micro-hydrogel into a hindlimb ischemia model effectively attenuated the ischemia condition. This facile and simple micro-hydrogel fabrication strategy may serve as a robust method to fabricate efficient cell carriers for various ischemic diseases. STATEMENT OF SIGNIFICANCE: For the therapeutic angiogenesis, it is important to provide the therapeutic cells with a carrier that could stabilize therapeutic cells and facilitate long-term survival of cells. Furthermore, it is also important to administer as many therapeutic cells as possible in a fixed volume. From these cues, we fabricated ECM-based micro-hydrogel produced by the high through-put system. And we intended to facilitate activation of therapeutic cells by coating the therapeutic cells onto the micro-hydrogel. In this manuscript, we fabricated methacrylate gelatin (GelMA) based micro-hydrogels using the electro-spraying method and coated HUVECs engineered to express hVEGF onto the micro-hydrogels. Then, we identified that GelMA concentration-dependent angiogenic response of HUVECs. Furthermore, we demonstrated that the VEGF secreting HUVEC-GelMA micro-hydrogels induced the restoration of blood flow and neovascularization in a hind-limb ischemia mouse model. These findings demonstrate that the high-throughput fabrication of ECM micro-hydrogels could be a novel platform to apply in neovascularization and tissue engineering.
Collapse
|
36
|
Liu X, Tao J, Liu J, Xu X, Zhang J, Huang Y, Chen Y, Zhang J, Deng DYB, Gou M, Wei Y. 3D Printing Enabled Customization of Functional Microgels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12209-12215. [PMID: 30860353 DOI: 10.1021/acsami.8b18701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Injectable microgels show great promising applications in cell therapy and drug delivery. Currently, there remains a challenge to rapidly and cost-effectively fabricate customized microgels. Here, we present a digital light processing based three-dimensional (3D) printing process to fabricate microgels with tailored shapes and sizes. The microgels are constructed by the digital light controlled polymerization of photopolymerizable monomer solution within 2 s. By mixing nanoparticle-encapsulated drugs into the monomer solution, the microgels with sustained drug release can be readily prepared. Also, cells can be printed into microgels with survival and proliferation. In conclusion, this study provides a 3D printing process for customizing functional microgels containing drugs or cells with potential therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Y B Deng
- Scientific Research Center , The Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen 518107 , Guangdong , P. R. China
| | | | | |
Collapse
|
37
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
38
|
Prolonged cell persistence with enhanced multipotency and rapid angiogenesis of hypoxia pre-conditioned stem cells encapsulated in marine-inspired adhesive and immiscible liquid micro-droplets. Acta Biomater 2019; 86:257-268. [PMID: 30639576 DOI: 10.1016/j.actbio.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
Stem cell therapies are emerging regenerative treatments for ischemic and chronic diseases. Although high cell retention and prompt angiogenesis are prerequisites to improving efficacy, advancements have not yet been developed. Here, we proposed long-term surviving and angiogenesis-inducing stem cell with high cell retention thanks to fluid immiscible liquid micro-droplets bio-inspired by a glue modality 'complex coacervate' found in the sandcastle worm. Formed by the Coulombic force between polycationic MAP and polyanionic hyaluronic acid, the exploited coacervate micro-droplets enabled the encapsulation of stem cells. The underwater adhesiveness facilitated integrating the encapsulated stem cells onto various surfaces with impressive cell retention after facile injection. Stem cells encapsulated in the coacervate platform formed cell clusters capable of pre-adjusting to hypoxia by expressing hypoxia-inducible factor 1α (HIF-1α), increasing viability and reducing apoptosis under hypoxia and ischemia as well as normoxia. Interestingly, multipotent and angiogenic factors were significantly enhanced by HIF-1α expression. In the in vivo evaluation, the coacervate platform showed impressive angiogenesis with biocompatibility and long-term cell retention capacity with sustainable release as protein factories. Therefore, the proposed MAP-based water-immiscible, injectable, sticky, and bioactive 3D coacervate micro-droplets offers a promising tool for chronic diseases in body fluid-rich environments. STATEMENT OF SIGNIFICANCE: High cell retention, long-term survival, and rapid angiogenesis are prerequisites of successful stem cell therapy. However, no previous advancements have simultaneously satisfied all of these requirements. In this work, we clearly developed a novel, revolutionary stem cell carrier platform with underwater adhesiveness from a mussel-derived glue protein and water immiscibility from a sandcastle-worm-inspired glue modality via 'complex coacervation'. To the best of our knowledge, no report has emerged employing coacervate as a stem cell therapeutic platform. This fluid-immiscible, injectable, sticky, and bioactive 3-dimensional stem cell micro-droplets demonstrated the excellent stem cell retention and viability under hypoxia environments and enhanced multipotent and angiogenic effects with minimal immune response.
Collapse
|
39
|
Kumar Meena L, Rather H, Kedaria D, Vasita R. Polymeric microgels for bone tissue engineering applications – a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1570512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalit Kumar Meena
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Hilal Rather
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Dhaval Kedaria
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
40
|
Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 2019; 83:96-108. [PMID: 30541703 PMCID: PMC6296825 DOI: 10.1016/j.actbio.2018.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
41
|
Farhat W, Hasan A, Lucia L, Becquart F, Ayoub A, Kobeissy F. Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. IEEE Rev Biomed Eng 2019; 12:333-351. [DOI: 10.1109/rbme.2018.2824335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Tasev D, Dekker-Vroling L, van Wijhe M, Broxterman HJ, Koolwijk P, van Hinsbergh VWM. Hypoxia Impairs Initial Outgrowth of Endothelial Colony Forming Cells and Reduces Their Proliferative and Sprouting Potential. Front Med (Lausanne) 2018; 5:356. [PMID: 30619865 PMCID: PMC6306419 DOI: 10.3389/fmed.2018.00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular homeostasis and regeneration in ischemic tissue relies on intrinsic competence of the tissue to rapidly recruit endothelial cells for vascularization. The mononuclear cell (MNC) fraction of blood contains circulating progenitors committed to endothelial lineage. These progenitors give rise to endothelial colony-forming cells (ECFCs) that actively participate in neovascularization of ischemic tissue. To evaluate if the initial clonal outgrowth of ECFCs from cord (CB) and peripheral blood (PB) was stimulated by hypoxic conditions, MNCs obtained from CB and PB were subjected to 20 and 1% O2 cell culture conditions. Clonal outgrowth was followed during a 30 day incubation period. Hypoxia impaired the initial outgrowth of ECFC colonies from CB and also reduced their number that were developing from PB MNCs. Three days of oxygenation (20% O2) prior to hypoxia could overcome the initial CB-ECFC outgrowth. Once proliferating and subcultured the CB-ECFCs growth was only modestly affected by hypoxia; proliferation of PB-ECFCs was reduced to a similar extent (18-30% reduction). Early passages of subcultured CB- and PB-ECFCs contained only viable cells and few if any senescent cells. Tube formation by subcultured PB-ECFCs was also markedly inhibited by continuous exposure to 1% O2. Gene expression profiles point to regulation of the cell cycle and metabolism as major altered gene clusters. Finally we discuss our counterintuitive observations in the context of the important role that hypoxia has in promoting neovascularization.
Collapse
Affiliation(s)
- Dimitar Tasev
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laura Dekker-Vroling
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Michiel van Wijhe
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk J Broxterman
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
43
|
Martins CR, Custódio CA, Mano JF. Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohydr Polym 2018; 202:91-98. [PMID: 30287047 PMCID: PMC6443035 DOI: 10.1016/j.carbpol.2018.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Microfabrication technologies have been widely explored to produce microgels that can be assembled in functional constructs for tissue engineering and regenerative medicine applications. Here, we propose microfluidics coupled to a source of UV light to produce multifunctional methacrylated laminarin microparticles with narrow distribution of sizes using photopolymerization. The multifunctional microparticles were loaded with platelet lysates and further conjugated with an adhesive peptide. The adhesive peptides dictated cell adhesiveness to the laminarin microparticles, the incorporation of platelet lysates have resulted in improved cell expansion compared to clear microparticles. Overall, our findings demonstrate that multifunctional methacrylated laminarin microparticles provide an effective support for cell attachment and expansion. Moreover, expanded cells provide the link for microparticles aggregation resulting in robust 3D structures. This suggest the potential for using the methacrylated laminarin microplatforms capable to be assembled by the action of cells to rapidly produce large tissue engineered constructs.
Collapse
Affiliation(s)
- C R Martins
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C A Custódio
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
44
|
Boda SK, Li X, Xie J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. JOURNAL OF AEROSOL SCIENCE 2018; 125:164-181. [PMID: 30662086 PMCID: PMC6333098 DOI: 10.1016/j.jaerosci.2018.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Electrospraying (ES) is a robust and versatile technique for the fabrication of micro- and nanoparticulate materials of various compositions, morphologies, shapes, textures and sizes. The physics of ES provides a great degree of flexibility towards the materials design of choice with desired physicochemical and biological properties. Not surprising, this technology has become an important tool for the production of micro- and nanostructured materials, especially in the pharmaceutical and biomedical arena. In this review, a basic introduction to the fundamentals of ES along with a brief description of the experimental parameters that can be manipulated to obtain micro- and nanostructured materials of desired composition, size, and configuration are outlined. A greater focus of this review is to bring to light the broad range of electrosprayed materials and their applications in drug delivery, biomedical imaging, implant coating, tissue engineering, and sensing. Taken together, this review will provide an appreciation of this unique technology, which can be used to fabricate micro- and nanostructured materials with tremendous applications in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
45
|
Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:295. [PMID: 30406106 PMCID: PMC6205967 DOI: 10.3389/fmed.2018.00295] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
The term “Endothelial progenitor cell” (EPC) has been used to describe multiple cell populations that express endothelial surface makers and promote vascularisation. However, the only population that has all the characteristics of a real “EPC” is the Endothelial Colony Forming Cells (ECFC). ECFC possess clonal proliferative potential, display endothelial and not myeloid cell surface markers, and exhibit pronounced postnatal vascularisation ability in vivo. ECFC have been used to investigate endothelial molecular dysfunction in several diseases, as they give access to endothelial cells from patients in a non-invasive way. ECFC also represent a promising tool for revascularization of damaged tissue. Here we review the translational applications of ECFC research. We discuss studies which have used ECFC to investigate molecular endothelial abnormalities in several diseases and review the evidence supporting the use of ECFC for autologous cell therapy, gene therapy and tissue regeneration. Finally, we discuss ways to improve the therapeutic efficacy of ECFC in clinical applications, as well as the challenges that must be overcome to use ECFC in clinical trials for regenerative approaches.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Combined therapy for critical limb ischaemia: Biomimetic PLGA microcarriers potentiates the pro-angiogenic effect of adipose tissue stromal vascular fraction cells. J Tissue Eng Regen Med 2018; 12:1363-1373. [DOI: 10.1002/term.2667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/28/2018] [Indexed: 11/07/2022]
|
47
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
48
|
Chen J, Huang K, Chen Q, Deng C, Zhang J, Zhong Z. Tailor-Making Fluorescent Hyaluronic Acid Microgels via Combining Microfluidics and Photoclick Chemistry for Sustained and Localized Delivery of Herceptin in Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3929-3937. [PMID: 29302970 DOI: 10.1021/acsami.7b15832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibody therapeutics, though representing a most used biomedicine, suffers from poor in vivo stability, rapid degradation, and frequent injections. Here, we report that fluorescent hyaluronic acid microgels (HMGs) tailor-made by combining microfluidics and "tetrazole-alkene" photoclick chemistry enable sustained and localized delivery of Herceptin in ovarian tumors. HMGs were obtained with a defined size (25-50 μm), narrow size distribution, high stability, and strong green fluorescence. Notably, HMGs exhibited a remarkably high loading of proteins such as Herceptin and IgG with a loading efficiency exceeding 90% at a theoretical protein-loading content of 30 wt %. In vitro protein release experiments revealed a sustained and hyaluronidase (HAase)-dependent release of Herceptin from HMGs, in which 80.6% of Herceptin was released at 1 U/mL HAase in 10 days. The released Herceptin maintained its secondary structure and antitumor activity. In vivo imaging results demonstrated obviously better tumoral retention for Cy5-labeled Herceptin-loaded HMGs following subcutaneous (sc) injection than for the free-protein counterpart. Interestingly, sc injection of the Herceptin-loaded HMGs into SKOV-3 human ovarian tumor-bearing nude mice at a dose of 30 mg Herceptin equiv/kg induced nearly complete tumor suppression, which was significantly more effective than the sc or systemic injection of free Herceptin. These tailor-made fluorescent HMGs appeared as a robust injectable platform for sustained and localized delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jing Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Ke Huang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Qijun Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
49
|
Wu JPJ, Cheng B, Roffler SR, Lundy DJ, Yen CYT, Chen P, Lai JJ, Pun SH, Stayton PS, Hsieh PCH. Reloadable multidrug capturing delivery system for targeted ischemic disease treatment. Sci Transl Med 2017; 8:365ra160. [PMID: 27856799 DOI: 10.1126/scitranslmed.aah6228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 10/01/2016] [Indexed: 12/14/2022]
Abstract
Human clinical trials of protein therapy for ischemic diseases have shown disappointing outcomes so far, mainly because of the poor circulatory half-life of growth factors in circulation and their low uptake and retention by the targeted injury site. The attachment of polyethylene glycol (PEG) extends the circulatory half-lives of protein drugs but reduces their extravasation and retention at the target site. To address this issue, we have developed a drug capture system using a mixture of hyaluronic acid (HA) hydrogel and anti-PEG immunoglobulin M antibodies, which, when injected at a target body site, can capture and retain a variety of systemically injected PEGylated therapeutics at that site. Furthermore, repeated systemic injections permit "reloading" of the capture depot, allowing the use of complex multistage therapies. This study demonstrates this capture system in both murine and porcine models of critical limb ischemia. The results show that the reloadable HA/anti-PEG system has the potential to be clinically applied to patients with ischemic diseases, who require sequential administration of protein drugs for optimal outcomes.
Collapse
Affiliation(s)
- Jasmine P J Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - David J Lundy
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Institute of Medical Genomics and Proteomics and Department of Surgery, National Taiwan University and Hospital, Taipei 100, Taiwan
| |
Collapse
|
50
|
Lee H, Woo HM, Kang BJ. Impact of collagen-alginate composition from microbead morphological properties to microencapsulated canine adipose tissue-derived mesenchymal stem cell activities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:1042-1052. [PMID: 29082833 DOI: 10.1080/09205063.2017.1399002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to identify the effect of collagen-alginate composition on the size and shape of microbeads and the proliferation and osteogenic properties of microencapsulated canine adipose-derived mesenchymal stem cells (ASCs) in vitro. Canine ASCs were microencapsulated in mixtures of various collagen-alginate compositions using a vibrational technologic encapsulator. The size and shape of the resultant microbeads were measured using a light field microscope and the viability of the microencapsulated canine ASCs was evaluated using a live/dead viability/cytotoxicity kit. Proliferation and osteogenic potentials of microencapsulated canine ASCs were evaluated using an alamarBlue proliferation assay and an alkaline phosphatase assay, respectively. As the collagen ratio increased, the size and size variation of microbeads increased and the shape of microbeads became more irregular. Nonetheless, homogeneous microbeads were created with no significant difference in size and shape, in the range of 0.75% alginate mixed with 0.099% collagen solution in 1.2% alginate solution. There were no significant differences in viability of the ASCs in the various collagen-alginate compositions. Both proliferation and osteogenic properties, in vitro, increased with increasing collagen ratio. Microencapsulation of canine ASCs with appropriate collagen-alginate composition increases cell proliferation and osteogenic properties, in vitro, without significant effects on the shape and size of microbeads and cell viability. Microencapsulation with adequate collagen-alginate composition may produce injectable microbeads that could enhance the therapeutic efficacy of stem cells.
Collapse
Affiliation(s)
- Hyunkyu Lee
- a Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science , Kangwon National University , Chuncheon , Republic of Korea
| | - Heung-Myong Woo
- a Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science , Kangwon National University , Chuncheon , Republic of Korea
| | - Byung-Jae Kang
- a Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science , Kangwon National University , Chuncheon , Republic of Korea
| |
Collapse
|