1
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
2
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
3
|
Ma S, Zhang Y, Li S, Li A, Li Y, Pei D. Engineering exosomes for bone defect repair. Front Bioeng Biotechnol 2022; 10:1091360. [PMID: 36568296 PMCID: PMC9768454 DOI: 10.3389/fbioe.2022.1091360] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Currently, bone defect repair is still an intractable clinical problem. Numerous treatments have been performed, but their clinical results are unsatisfactory. As a key element of cell-free therapy, exosome is becoming a promising tool of bone regeneration in recent decades, because of its promoting osteogenesis and osteogenic differentiation function in vivo and in vitro. However, low yield, weak activity, inefficient targeting ability, and unpredictable side effects of natural exosomes have limited the clinical application. To overcome the weakness, various approaches have been applied to produce engineering exosomes by regulating their production and function at present. In this review, we will focus on the engineering exosomes for bone defect repair. By summarizing the exosomal cargos affecting osteogenesis, the strategies of engineering exosomes and properties of exosome-integrated biomaterials, this work will provide novel insights into exploring advanced engineering exosome-based cell-free therapy for bone defect repair.
Collapse
Affiliation(s)
| | | | | | | | - Ye Li
- *Correspondence: Ye Li, ; Dandan Pei,
| | | |
Collapse
|
4
|
Chen H, Sun R, Zeng T, Zheng J, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise photothermal therapy and chemotherapy by composite scaffolds of gold nanoparticles, BP nanosheets and gelatin immobilized with doxorubicin-loaded thermosensitive liposomes. Biomater Sci 2022; 10:7042-7054. [PMID: 36310532 DOI: 10.1039/d2bm01155g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the synergistic effect of photothermal therapy (PTT) and chemotherapy has been recognized as an effective strategy for cancer treatment. Controlling the PTT temperature and drug release profile is desirable for minimizing the unexpected damage to normal cells. In this study, a smart platform of stepwise PTT and chemotherapy has been developed by using composite porous scaffolds of biodegradable black phosphorus (BP) nanosheets, gold nanorods(AuNRs), doxorubicin (Dox)-encapsulated thermosensitive liposomes and biodegradable polymers. Under near-infrared (NIR) laser irradiation, the composite scaffolds could attain high and low local temperatures before and after BP degradation, respectively. Dox release from the composite scaffolds could be controlled by the temperature change. In vitro cell culture and in vivo animal experiments indicated that a strong synergistic effect of PTT and chemotherapy could be achieved at an early stage of treatment before BP degradation, and a mild hyperthermia effect was shown for chemotherapy in the late stage after BP degradation. Moreover, the composite scaffolds after the complete release of Dox could support the proliferation of mesenchymal stem cells. The composite scaffolds showed a synergistic effect of stepwise PTT and chemotherapy for breast cancer elimination and promoted stem cell activities after killing cancer cells.
Collapse
Affiliation(s)
- Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
5
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
6
|
Kang M, Lee CS, Lee M. Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration. Bioengineering (Basel) 2021; 8:bioengineering8100137. [PMID: 34677210 PMCID: PMC8533541 DOI: 10.3390/bioengineering8100137] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
With population aging and increased life expectancy, an increasing number of people are facing musculoskeletal health problems that necessitate therapeutic intervention at defect sites. Bone tissue engineering (BTE) has become a promising approach for bone graft substitutes as traditional treatments using autografts or allografts involve clinical complications. Significant advancements have been made in developing ideal BTE scaffolds that can integrate bioactive molecules promoting robust bone repair. Herein, we review bioactive scaffolds tuned for local bone regenerative therapy, particularly through integrating synthetic liposomal vesicles or extracellular vesicles to the scaffolds. Liposomes offer an excellent drug delivery system providing sustained release of the loaded bioactive molecules. Extracellular vesicles, with their inherent capacity to carry bioactive molecules, are emerging as an advanced substitute of synthetic nanoparticles and a novel cell-free therapy for bone regeneration. We discuss the recent advance in the use of synthetic liposomes and extracellular vesicles as bioactive materials combined with scaffolds, highlighting major challenges and opportunities for their applications in bone regeneration. We put a particular focus on strategies to integrate vesicles to various biomaterial scaffolds and introduce the latest advances in achieving sustained release of bioactive molecules from the vesicle-loaded scaffolds at the bone defect site.
Collapse
Affiliation(s)
- Minjee Kang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA;
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea;
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA;
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
7
|
Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci 2021; 269:119020. [PMID: 33450258 DOI: 10.1016/j.lfs.2021.119020] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
The conventional cancer treatment modalities such as radiotherapy and chemotherapy suffer from several limitations; hence, their efficiency needs to be improved with other complementary modalities. Hyperthermia, as an adjuvant therapeutic modality for cancer, can result in a synergistic effect on radiotherapy (radiosensitizer) and chemotherapy (chemosensitizer). Conventional hyperthermia methods affect both tumoral and healthy tissues and have low specificity. In addition, a temperature gradient generates in the tissues situated along the path of the heat source, which is a more serious for deep-seated tumors. Nanoparticles (NPs)-induced hyperthermia can resolve these drawbacks through localization around/within tumoral tissue and generating local hyperthermia. Although there are several review articles dealing with NPs-induced hyperthermia, lack of a paper discussing the combination of NPs-induced hyperthermia with the conventional chemotherapy or radiotherapy is tangible. Accordingly, the main focus of the current paper is to summarize the principles of NPs-induced hyperthermia and more importantly its synergic effects on the conventional chemotherapy or radiotherapy. The heat-producing nanostructures such as gold NPs, iron oxide NPs, and carbon NPs, as well as the non-heat-producing nanostructures, such as lipid-based, polymeric, and silica-based NPs, as the carrier for heat-producing NPs, are discussed and their pros and cons highlighted.
Collapse
|
8
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
9
|
Wang C, Ye X, Zhao Y, Bai L, He Z, Tong Q, Xie X, Zhu H, Cai D, Zhou Y, Lu B, Wei Y, Mei L, Xie D, Wang M. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication 2020; 12:035004. [DOI: 10.1088/1758-5090/ab6d35] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Combined Modality Therapy Based on Hybrid Gold Nanostars Coated with Temperature Sensitive Liposomes to Overcome Paclitaxel-Resistance in Hepatic Carcinoma. Pharmaceutics 2019; 11:pharmaceutics11120683. [PMID: 31847496 PMCID: PMC6969923 DOI: 10.3390/pharmaceutics11120683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we prepared gold nanostar (GNS) composite nanoparticles containing siRNA of cyclooxygenase-2(siCOX-2) that were modified by tumor targeting ligand 2-deoxyglucose (DG) and transmembrane peptide 9-poly-D-arginine (9R) to form siCOX-2(9R/DG-GNS). Paclitaxel loaded temperature sensitive liposomes (PTX-TSL) were surface-modified to produce PTX-TSL-siCOX-2(9R/DG-GNS) displaying homogeneous star-shaped structures of suitable size (293.93 nm ± 3.21) and zeta potentials (2.47 mV ± 0.22). PTX-TSL-siCOX-2(9R/DG-GNS) had a high thermal conversion efficiency under 808 nm laser radiation and a superior transfection efficiency, which may be related to the targeting effects of DG and increased heat induced membrane permeability. COX-2 expression in HepG2/PTX cells was significantly suppressed by PTX-TSL-siCOX-2(9R/DG-GNS) in high temperatures. The co-delivery system inhibited drug-resistant cell growth rates by ≥77% and increased the cell apoptosis rate about 47% at elevated temperatures. PTX-TSL and siCOX-2 loaded gold nanostar particles, therefore, show promise for overcoming tumor resistance.
Collapse
|
11
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
12
|
Xu L, Zhang W, Park HB, Kwak M, Oh J, Lee PCW, Jin JO. Indocyanine green and poly I:C containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. J Immunother Cancer 2019; 7:220. [PMID: 31412934 PMCID: PMC6694491 DOI: 10.1186/s40425-019-0702-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Efficient cancer therapy is sought not only for primary tumor treatment but also for the prevention of metastatic cancer growth. Immunotherapy has been shown to prevent cancer metastasis by inducing antigen-specific immune responses. Indocyanine green (ICG) has a peak spectral absorption at about 800 nm, which makes it a photothermal reagent for direct treatment of solid tumors by photothermal therapy (PTT). Since PTT alone cannot fully induce antigen-specific immune response for prevention of cancer metastasis, the combination of PTT and immunotherapy has been developed as a new strategy of cancer treatment. METHODS Thermal responsive liposomes (TRL) were synthesized by incorporating ICG into the lipid bilayer and encapsulating the water-soluble immune stimulatory molecule polyinosinic:polycytidylic acid (poly I:C) in the hydrophilic core. The poly I:C- and ICG-containing TRLs (piTRLs) were analyzed according to size, and their photothermal effect was evaluated following laser irradiation at 808 nm. Moreover, the temperature-dependent release of poly I:C was also measured. For cancer therapy, CT-26 (carcinoma) and B16 (melanoma) cells were subcutaneously inoculated to build the 1st transplanted tumor in BALB/c and C57BL/6 mice, respectively. These mice received a 2nd transplantation with the same cancer cells by intravenous inoculation, for evaluation of the anti-metastatic effects of the liposomes after PTT. RESULTS Near-infrared (NIR) laser irradiation increased the temperature of piTRLs and effectively released poly I:C from the liposomes. The increased temperature induced a photothermal effect, which promoted cancer cell apoptosis and dissolution of the 1st transplanted tumor. Moreover, the released poly I:C from the piTRL induced activation of dendritic cells (DCs) in tumor draining lymph node (tdLN). Cancer cell apoptosis and DC-activation-mediated cancer antigen-specific immune responses further prevented growth of lung metastatic cancer developed following intravenous transplantation of cancer cells. CONCLUSION These results demonstrated the potential usage of a piTRL with laser irradiation for immuno-photothermal therapy against various types of cancer and their metastases.
Collapse
Affiliation(s)
- Li Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Hae-Bin Park
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea.,Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China. .,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
13
|
Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1509-1522. [DOI: 10.1016/j.msec.2019.02.070] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/09/2023]
|
14
|
Xu X, Li Y, Wang L, Li Y, Pan J, Fu X, Luo Z, Sui Y, Zhang S, Wang L, Ni Y, Zhang L, Wei S. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials 2019; 212:98-114. [PMID: 31112825 DOI: 10.1016/j.biomaterials.2019.05.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Polyetheretherketone (PEEK) is considered a potential orthopedic/dental material because of its excellent mechanical and chemical properties (e.g., similar elastic modulus to that of human bone). However, the poor bacteriostasis and anti-inflammatory and osseointegrative properties of bioinert PEEK impede its clinical application. We previously developed a facile and versatile surface modification method using dexamethasone plus minocycline-loaded liposomes (Dex/Mino liposomes) bonded by a mussel-inspired polydopamine coating, which effectively modulated cell inflammatory response and discouraged bacterial colonization in vitro. Herein, we report the application of this multifunctional surface modification method to improve bioinert PEEK, aimed at further studying the in vitro osteogenesis and in vivo properties of Dex/Mino liposome-modified PEEK to prevent bacterial contamination, attenuate the inflammatory response, and enhance ossification for physiologic osseointegration. Our study established that the Dex/Mino liposome-modified PEEK surface presented favorable stability and cytocompatibility. Compared with bare PEEK, improved osteogenic differentiation of human mesenchymal stem cells under both osteoinductive and osteoconductive conditions was found on the functionalized surface due to the liposomal Dex releasing. In vivo bacteriostasis assay confirmed that Mino released from the functionalized surface provided an effective antibacterial effect. Moreover, the subcutaneous foreign body reaction and beagle femur implantation models corroborated the enhanced anti-inflammatory and osteointegrative properties of the functionalized PEEK. Our findings indicate that the developed Dex/Mino liposome-modified PEEK with enhanced antibacterial, anti-inflammatory, and osseointegrative capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yongliang Li
- Second Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Xiaoming Fu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Zuyuan Luo
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Yi Sui
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Liang Wang
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yaofeng Ni
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Lei Zhang
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China; Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China.
| |
Collapse
|
15
|
Polo L, Gómez-Cerezo N, García-Fernández A, Aznar E, Vivancos JL, Arcos D, Vallet-Regí M, Martínez-Máñez R. Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry 2018; 24:18944-18951. [PMID: 30203561 DOI: 10.1002/chem.201803301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/21/2022]
Abstract
An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application in the bone regeneration field, due their osteo-regenerative capability and their ability to release drugs from the mesoporous structure. These special features have been studied as an option to fight against bone infection, which is one of the most common problems regarding bone regeneration therapies. In this work, a mesoporous bioglass functionalized with polyamines and capped with adenosine triphosphate (ATP) as the molecular gate was developed for the controlled release of the antibiotic levofloxacin. Phosphate bonds of ATP were hydrolyzed in the presence of acid phosphatase (APase), the concentration of which is significantly increased in bone infection due to the activation of bone resorption processes. The solid was characterized and tested successfully against bacteria. The final gated solid induced bacterial death only in the presence of acid phosphatase. Additionally, it was demonstrated that the solid is not toxic against human cells. The double function of the prepared material as a drug delivery system and bone regeneration enhancer confirms the possible development of a new approach in the tissue engineering field, in which controlled release of therapeutic agents can be finely tuned and, at the same time, osteoinduction is favored.
Collapse
Affiliation(s)
- Lorena Polo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Natividad Gómez-Cerezo
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - José-Luis Vivancos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Mantorell, 46026, Valencia, Spain
| | - Daniel Arcos
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Vallet-Regí
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Mantorell, 46026, Valencia, Spain
| |
Collapse
|
16
|
Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1987-1997. [PMID: 29933024 DOI: 10.1016/j.nano.2018.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
In the present study, we fabricated an efficient, simple biomimetic scaffold to stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Electrospun poly L-lactic acid nanofibers were employed to mimic the nanofibrillar structure of bone proteins and coated with hydroxyapatite nanoparticles to simulate bone minerals. Thereafter, we regulated the release pattern of BMP-2 peptide through covalent attachment of an optimized liposomal formulation to the scaffold. The fabricated platform provided a sustained release profile of BMP-2 peptide up to 21 days while supporting cellular attachment and proliferation without cytotoxicity. In-vitro results confirmed the superiority of the scaffold containing liposomes through enhancement of growth and differentiation of MSCs. Ectopic bone formation model exhibited significant localized initiation of bone formation of liposome incorporated scaffold. Consequently, these findings demonstrated that our designed platform with modified release properties of BMP-2 peptide considerably promoted osteogenic differentiation of MSCs making it a unique candidate for bone regeneration therapeutics.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Abstract
The therapeutic potential of liposomes can be amplified when combined with biomaterial scaffolds. Such configurations overcome the convergent demands of therapies by enabling enhanced delivery, environmental responsiveness and potency. Liposomes benefit from the increased physical and mechanical strength, favorable rheological properties and natural environment conducive to improved tissue formation that scaffolds provide, while enabling biocompatible delivery of hydrophilic and lipophilic compounds that can be further functionalized to achieve targeted delivery. Topical, ocular, oral, nasal and vaginal applications have been explored using various polymer- or nanofiber-based scaffolds. Mechanistic and rheological findings on complexation between biomaterials, liposomes and cargo have led to multimodal systems with tremendous clinical potential. A review of the key developments in bioengineered liposome-scaffold composites is presented in this manuscript.
Collapse
|
18
|
Curtin C, Nolan JC, Conlon R, Deneweth L, Gallagher C, Tan YJ, Cavanagh BL, Asraf AZ, Harvey H, Miller-Delaney S, Shohet J, Bray I, O'Brien FJ, Stallings RL, Piskareva O. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater 2018; 70:84-97. [PMID: 29447961 DOI: 10.1016/j.actbio.2018.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022]
Abstract
3D scaffold-based in vitro cell culturing is a recent technological advancement in cancer research bridging the gap between conventional 2D culture and in vivo tumours. The main challenge in treating neuroblastoma, a paediatric cancer of the sympathetic nervous system, is to combat tumour metastasis and resistance to multiple chemotherapeutic drugs. The aim of this study was to establish a physiologically relevant 3D neuroblastoma tissue-engineered system and explore its therapeutic relevance. Two neuroblastoma cell lines, chemotherapeutic sensitive Kelly and chemotherapeutic resistant KellyCis83 were cultured in a 3D in vitro model on two collagen-based scaffolds containing either glycosaminoglycan (Coll-GAG) or nanohydroxyapatite (Coll-nHA) and compared to 2D cell culture and an orthotopic murine model. Both neuroblastoma cell lines actively infiltrated the scaffolds and proliferated displaying >100-fold increased resistance to cisplatin treatment when compared to 2D cultures, exhibiting chemosensitivity similar to orthotopic xenograft in vivo models. This model demonstrated its applicability to validate miRNA-based gene delivery. The efficacy of liposomes bearing miRNA mimics uptake and gene knockdown was similar in both 2D and 3D in vitro culturing models highlighting the proof-of-principle for the applicability of 3D collagen-based scaffolds cell system for validation of miRNA function. Collectively, this data shows the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. While neuroblastoma is the specific disease being focused upon, the platform may have multi-functionality beyond this tumour type. STATEMENT OF SIGNIFICANCE Traditional 2D cell cultures do not completely capture the 3D architecture of cells and extracellular matrix contributing to a gap in our understanding of mammalian biology at the tissue level and may explain some of the discrepancies between in vitro and in vivo results. Here, we demonstrated the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. The ability to test drugs in this reproducible and controllable tissue-engineered model system will help reduce the attrition rate of the drug development process and lead to more effective and tailored therapies. Importantly, such 3D cell models help to reduce and replace animals for pre-clinical research addressing the principles of the 3Rs.
Collapse
Affiliation(s)
- C Curtin
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - J C Nolan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - R Conlon
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - L Deneweth
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Gallagher
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Y J Tan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - A Z Asraf
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Harvey
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Miller-Delaney
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, TX, United States
| | - I Bray
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - R L Stallings
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - O Piskareva
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| |
Collapse
|
19
|
Lou J, Carr AJ, Watson AJ, Mattern-Schain SI, Best MD. Calcium-Responsive Liposomes via a Synthetic Lipid Switch. Chemistry 2018; 24:3599-3607. [PMID: 29323763 DOI: 10.1002/chem.201705810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Alexa J Watson
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Samuel I Mattern-Schain
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
20
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8:34-50. [PMID: 29872621 PMCID: PMC5985630 DOI: 10.1016/j.apsb.2017.11.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.
Collapse
Key Words
- ABD, albumin binding domain
- ACM, aclacinomycin
- ACS, absorbable collagen sponge
- ADH, adipic dihydrazide
- ART, artemisinin
- ASF, Antheraea mylitta silk fibroin
- ATRA, all-trans retinoic acid
- ATS, artesunate
- BCEC, brain capillary endothelial cells
- BMP-2, bone morphogenetic protein-2
- BSA, bovine serum albumin
- BSF, Bombyx mori silk fibroin
- Biomacromolecule
- CC-HAM, core-crosslinked polymeric micelle based hyaluronic acid
- CD, cyclodextrin
- CD-NPs, amphiphilic MMA–tBA β-CD star copolymers that are capable of forming nanoparticles
- CD-g-CS, chitosan grafted with β-cyclodextrin
- CD/BP, cyclodextrin–bisphosphonate complexes
- CIA, collagen-induced arthritis
- CM, collagen matrices
- CMD-ChNP, carboxylmethyl dextran chitosan nanoparticle
- DHA, dihydroartesunate
- DOXO-EMCH, (6-maleimidocaproyl)hydrazone derivative of doxorubicin
- DOX–TRF, doxorubincin–transferrin conjugate
- DTX-HPLGA, HA coated PLGA nanoparticulate docetaxel
- Drug delivery
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EPR, enhanced permeability and retention
- FcRn, neonatal Fc receptor
- GAG, glycosaminoglycan
- GC-DOX, glycol–chitosan–doxorubicin conjugate
- GDNF, glial-derived neurotrophic factor
- GO, grapheme oxide
- GSH, glutathione
- Gd, gadolinium
- HA, hyaluronic acid
- HA-CA, catechol-modified hyaluronic acid
- HCF, heparin-conjugated fibrin
- HDL, high density lipoprotein
- HEK, human embryonic kidney
- HSA, human serum albumin
- IDL, intermediate density lipoprotein
- INF, interferon
- LDL, low density lipoprotein
- LDLR, low density lipoprotein receptor
- LDV, leucine–aspartic acid–valine
- LMWH, low molecular weight heparin
- MSA, mouse serum albumin
- MTX–HSA, methotrexate–albumin conjugate
- NIR, near-infrared
- NSCLC, non-small cell lung cancer
- OP-Gel-NS, oxidized pectin-gelatin-nanosliver
- PEC, polyelectrolyte
- PTX, paclitaxel
- Polysaccharide
- Protein
- RES, reticuloendothelial system
- RGD, Arg–Gly–Asp peptide
- SF, silk fibroin
- SF-CSNP, silk fibroin modified chitosan nanoparticle
- SFNP, silk fibroin nanoparticle
- SPARC, secreted protein acidic and rich in cysteine
- TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
- Tf, transferrin
- TfR, transferrin receptor
- Tissue engineering
- VEGF, vascular endothelial growth factor
- VLDL, very low density lipoprotein
- pDNA, plasmid DNA
- rHDL, recombinant HDL
- rhEGF-2/HA, recombinant human fibroblast growth factor type 2 in a hyaluronic acid carrier
Collapse
Affiliation(s)
| | | | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Rehman M, Madni A, Shi D, Ihsan A, Tahir N, Chang KR, Javed I, Webster TJ. Enhanced blood brain barrier permeability and glioblastoma cell targeting via thermoresponsive lipid nanoparticles. NANOSCALE 2017; 9:15434-15440. [PMID: 28976512 DOI: 10.1039/c7nr05216b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermoresponsive targeting is used to deliver therapeutic agents at hyperthermic conditions (39-45 °C). However, available thermoresponsive drug delivery systems (TDDS), including liposomes, have a complex method of preparation involving toxic solvents and reagents. The objective of this in vitro study was to prepare and characterize thermoresponsive lipid nanoparticles (TLN) for treating glioblastoma, the most aggressive brain tumor whose treatment is limited by a low blood brain barrier (BBB) permeability of drugs. Thermoresponsive lipids were prepared by mixing liquid and solid fatty acids (0.1 : 1 to 2 : 1 ratio) and lipid mixtures exhibiting a solid-liquid phase transition at 39 °C were identified by plotting melting point against liquid contents. TLN were prepared by a hot melt encapsulation method using mono- or double-surfactant systems. TLN showed desirable size (<270 nm), zeta potential (-35 to -50 mV), spherical morphology and stability by FTIR studies. In the drug release studies, paclitaxel release was slow at 37 °C, however, it was released abruptly at 39 °C due to the faster diffusion rate from liquid state nanoparticles. During cytotoxicity studies, the unloaded TLN were non-toxic whereas paclitaxel loaded TLN showed higher cytotoxicity to glioblastoma cells at 39 °C (69% cell viability after one hour) compared to 37 °C (82% cell viability). The TLN showed higher permeability across an in vitro model of BBB at 39 °C due to a deformable liquid state which can squeeze through the tight junctions of the BBB. In conclusion, this study demonstrated that the TLN can be used as a safe and effective alternative to traditional TDDS with higher potential to target glioblastoma cells across the BBB.
Collapse
Affiliation(s)
- M Rehman
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Martín-Saavedra F, Ruiz-Hernández E, Escudero-Duch C, Prieto M, Arruebo M, Sadeghi N, Deckers R, Storm G, Hennink WE, Santamaría J, Vilaboa N. Lipogels responsive to near-infrared light for the triggered release of therapeutic agents. Acta Biomater 2017; 61:54-65. [PMID: 28801266 DOI: 10.1016/j.actbio.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy into heat, and lysolipid-incorporated TSL (LTSL) loaded with doxorubicin hydrochloride (DOX). NIR irradiation of the resulting hydrogels (referred to as "lipogels") with 808nm laser light increased the temperature of the illuminated areas, leading to the release of the liposomal cargo. Levels of DOX that release from the "smart" composites were dependent on the concentration of NIR nanotransducers loaded in the lipogel, the intensity of the electromagnetic energy deposited and the irradiation regime. Released DOX retained its bioactivity, as shown in cultures of epithelial carcinoma cells. Finally, the developed drug delivery platform was refined by using NIR-photoabsorbers based on copper sulfide NPs to generate completely biodegradable composites as well as through the incorporation of cholesterol (Ch) in LTSL formulation, which lessens leakiness of the liposomal cargo at physiological temperature. This remotely controlled system may suit well for those therapies that require precise control over the dose of delivered drug in a defined spatiotemporal framework. STATEMENT OF SIGNIFICANCE Hydrogels composed of fibrin embedding nanoparticles responsive to near infrared (NIR) energy and thermosensitive liposomes loaded with doxorubicin hydrochloride (DOX), were prepared by in situ polymerization. NIR-light irradiation of these constructs, referred to as "NIR responsive lipogels", results in the controlled release of DOX to the surrounding medium. This technology may use fully degradable components and can preserve the bioactivity of liposomal cargo after remote triggering to finely regulate the dose and bioavailability of delivered payloads. NIR responsive lipogels technology overcomes the limitations of drug release systems based on the combination of liposomes and degradable polymeric materials, which in many cases lead to insufficient release at therapy onset or to overdose during high degradation period.
Collapse
Affiliation(s)
- Francisco Martín-Saavedra
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain; University Hospital La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.
| | - Eduardo Ruiz-Hernández
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Clara Escudero-Duch
- University Hospital La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| | - Martín Prieto
- Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro, Edificio I+D, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| | - Manuel Arruebo
- Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro, Edificio I+D, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| | - Negar Sadeghi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO BOX 80082, 3508 TB Utrecht, The Netherlands.
| | - Roel Deckers
- Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO BOX 80082, 3508 TB Utrecht, The Netherlands.
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO BOX 80082, 3508 TB Utrecht, The Netherlands.
| | - Jesús Santamaría
- Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro, Edificio I+D, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| | - Nuria Vilaboa
- University Hospital La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| |
Collapse
|
24
|
Sheng W, He S, Seare WJ, Almutairi A. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:80901. [PMID: 28776627 PMCID: PMC5544355 DOI: 10.1117/1.jbo.22.8.080901] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/23/2017] [Indexed: 06/01/2023]
Abstract
Photothermal therapy (PTT) involves the application of normally benign light wavelengths in combination with efficient photothermal (PT) agents that convert the absorbed light to heat to ablate selected cancers. The major challenge in PTT is the ability to confine heating and thus direct cellular death to precisely where PT agents are located. The dominant strategy in the field has been to create large libraries of PT agents with increased absorption capabilities and to enhance their delivery and accumulation to achieve sufficiently high concentrations in the tissue targets of interest. While the challenge of material confinement is important for achieving “heat and lethality confinement,” this review article suggests another key prospective strategy to make this goal a reality. In this approach, equal emphasis is placed on selecting parameters of light exposure, including wavelength, duration, power density, and total power supplied, based on the intrinsic properties and geometry of tissue targets that influence heat dissipation, to truly achieve heat confinement. This review highlights significant milestones researchers have achieved, as well as examples that suggest future research directions, in this promising technique, as it becomes more relevant in clinical cancer therapy and other noncancer applications.
Collapse
Affiliation(s)
- Wangzhong Sheng
- University of California, Laboratory for Bioresponsive Materials, Department of Mechanical and Aerospace Engineering, Materials Science Program, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, San Diego, California, United States
| | - Sha He
- University of California, Laboratory for Bioresponsive Materials, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Department of Nanoengineering, La Jolla, San Diego, California, United States
| | | | - Adah Almutairi
- University of California, Laboratory for Bioresponsive Materials, Department of Mechanical and Aerospace Engineering, Materials Science Program, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, San Diego, California, United States
- University of California, Laboratory for Bioresponsive Materials, Department of Nanoengineering, La Jolla, San Diego, California, United States
| |
Collapse
|
25
|
Tan H, Wang H, Chai Y, Yu Y, Hong H, Yang F, Qu X, Liu C. Engineering a favourable osteogenic microenvironment by heparin mediated hybrid coating assembly and rhBMP-2 loading. RSC Adv 2017. [DOI: 10.1039/c6ra27308d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(1) HApNPs are conferred with negative charges by surface modification with heparin. (2) Heparinized HApNPs and polycation CS are assembled to form a hybrid coating. (3) RhBMP-2 is introduced into the coating via the intermolecular binding with heparin.
Collapse
Affiliation(s)
- Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yanjun Chai
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Fei Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| |
Collapse
|
26
|
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm 2016; 515:132-164. [DOI: 10.1016/j.ijpharm.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
|
27
|
Bagherifard S. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1241-1252. [PMID: 27987680 DOI: 10.1016/j.msec.2016.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 02/03/2023]
Abstract
In addition to excellent biocompatibility and mechanical performance, the new generation of bone and craniofacial implants are expected to proactively contribute to the regeneration process and dynamically interact with the host tissue. To this end, integration and sustained delivery of therapeutic agents has become a rapidly expanding area. The incorporated active molecules can offer supplementary features including promoting oteoconduction and angiogenesis, impeding bacterial infection and modulating host body reaction. Major limitations of the current practices consist of low drug stability overtime, poor control of release profile and kinetics as well as complexity of finding clinically appropriate drug dosage. In consideration of the multifaceted cascade of bone regeneration process, this research is moving towards dual/multiple drug delivery, where precise control on simultaneous or sequential delivery, considering the possible synergetic interaction of the incorporated bioactive factors is of utmost importance. Herein, recent advancements in fabrication of synthetic load bearing implants equipped with various drug delivery systems are reviewed. Smart drug delivery solutions, newly developed to provide higher tempo-spatial control on the delivery of the pharmaceutical agents for targeted and stimuli responsive delivery are highlighted. The future trend of implants with bone drug delivery mechanisms and the most common challenges hindering commercialization and the bench to bedside progress of the developed technologies are covered.
Collapse
Affiliation(s)
- Sara Bagherifard
- Politecnico di Milano, Department of Mechanical Engineering, Milan, Italy.
| |
Collapse
|
28
|
Yan F, Duan W, Li Y, Wu H, Zhou Y, Pan M, Liu H, Liu X, Zheng H. NIR-Laser-Controlled Drug Release from DOX/IR-780-Loaded Temperature-Sensitive-Liposomes for Chemo-Photothermal Synergistic Tumor Therapy. Theranostics 2016; 6:2337-2351. [PMID: 27877239 PMCID: PMC5118599 DOI: 10.7150/thno.14937] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
NIR laser-induced photothermal therapy (PTT) through near-infrared agents has demonstrated the great potential in solid tumor ablation. However, the nonuniform heat distribution over tumors from PTT makes it insufficient to kill all tumor cells, resulting in tumor recurrence and inferior outcomes. To improve the tumor treatment efficacy, it is highly desirable to develop the combinational treatment of PTT with other modalities, especially with chemotherapeutic agents. Here we report a smart DOX/IR-780-loaded temperature-sensitive-liposome (DITSL) which can achieve NIR-laser-controlled drug release for chemo-photothermal synergistic tumor therapy. In this system, the liposoluble IR-780 was incorporated into the temperature-sensitive lipid bilayer and the soluble chemotherapeutic doxorubicin (DOX) was encapsulated in the hydrophilic core. The resulting DITSL is proved to be physiologically stable and can provide a fast and laser irradiation-controllable DOX release in the PBS and cellular conditions. We further employed this nanoparticle for tumor treatment, demonstrating significantly higher tumor inhibition efficacy than that of DOX-loaded temperature-sensitive-liposome (DTSL) or IR780-loaded temperature-sensitive-liposome (ITSL) in the in vitro cells and in vivo animals. Histological analysis further revealed much more apoptotic cells, confirming the advantageous anti-tumor effect of DITSL over DTSL or ITSL. Our study provides a promising strategy to realize chemo-photothermal synergistic combination therapy for breast tumors.
Collapse
|
29
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
30
|
Sou K, Chan LY, Lee CLK. Temperature Tracking in a Three-Dimensional Matrix Using Thermosensitive Liposome Platform. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keitaro Sou
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore
- Organization
for University Research Initiatives, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Li Yan Chan
- Centre
for Biomedical and Life Sciences, Department for Technology, Innovation
and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| | - Chi-Lik Ken Lee
- Centre
for Biomedical and Life Sciences, Department for Technology, Innovation
and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| |
Collapse
|
31
|
Quinlan E, Thompson EM, Matsiko A, O'Brien FJ, López-Noriega A. Functionalization of a Collagen-Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration. Adv Healthc Mater 2015; 4:2649-56. [PMID: 26414944 DOI: 10.1002/adhm.201500439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Defects within bones caused by trauma and other pathological complications may often require the use of a range of therapeutics to facilitate tissue regeneration. A number of approaches have been widely utilized for the delivery of such therapeutics via physical encapsulation or chemical immobilization suggesting significant promise in the healing of bone defects. The study focuses on the chemical immobilization of osteostatin, a pentapeptide of the parathyroid hormone (PTHrP107-111), within a collagen-hydroxyapatite scaffold. The chemical attachment method via crosslinking supports as little as 4% release of the peptide from the scaffolds after 21 d whereas non-crosslinking leads to 100% of the peptide being released by as early as 4 d. In vitro characterization demonstrates that this cross-linking method of immobilization supports a pro-osteogenic effect on osteoblasts. Most importantly, when implanted in a critical-sized calvarial defect within a rat, these scaffolds promote significantly greater new bone volume and area compared to nonfunctionalized scaffolds (**p < 0.01) and an empty defect control (***p < 0.001). Collectively, this study suggests that such an approach of chemical immobilization offers greater spatiotemporal control over growth factors and can significantly modulate tissue regeneration. Such a system may be adopted for a range of different proteins and thus offers the potential for the treatment of various complex pathologies that require localized mediation of drug delivery.
Collapse
Affiliation(s)
- Elaine Quinlan
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Emmet M. Thompson
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Adolfo López-Noriega
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
| |
Collapse
|
32
|
Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration:in vitroandin vivocharacteristics. J Biomed Mater Res A 2015; 103:3580-9. [DOI: 10.1002/jbm.a.35499] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
|
33
|
Fu H, Shi K, Hu G, Yang Y, Kuang Q, Lu L, Zhang L, Chen W, Dong M, Chen Y, He Q. Tumor-Targeted Paclitaxel Delivery and Enhanced Penetration Using TAT-Decorated Liposomes Comprising Redox-Responsive Poly(Ethylene Glycol). J Pharm Sci 2015; 104:1160-73. [DOI: 10.1002/jps.24291] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/25/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022]
|