1
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
2
|
Dombrowsky CS, Happel D, Habermann J, Hofmann S, Otmi S, Cohen B, Kolmar H. A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery. Antibodies (Basel) 2024; 13:37. [PMID: 38804305 PMCID: PMC11130931 DOI: 10.3390/antib13020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells.
Collapse
Affiliation(s)
- Carolin Sophie Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sasi Otmi
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Benny Cohen
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT. Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye. ACS Chem Biol 2024; 19:908-915. [PMID: 38525961 PMCID: PMC11186736 DOI: 10.1021/acschembio.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.
Collapse
Affiliation(s)
- JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Joomyung V. Jun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Kulshrestha S, Goel A. Protein therapeutics as an emerging strategy to deal with skin cancer: A short review. Exp Dermatol 2024; 33:e14981. [PMID: 37983960 DOI: 10.1111/exd.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Cancer has turned into a global menace with an exponential increase in the rate of death every year. Amongst all forms of cancers, skin cancer is the one becoming more common day by day because of the increased exposure to ultraviolet rays, chemicals, pollutants, etc. Skin cancer is of three types namely basal cell, squamous cell and melanoma which is one of the most aggressive forms of cancer with a low survival rate and easy relapse. Melanoma is also notorious for being multi-drug resistant which accounts for its low survival rates in it. Many kinds of therapeutics are been practiced in the contemporary world, but among them, protein therapeutics is been emerging as a promising field with multiple molecular pathway targets that have revolutionized the science of oncology. Proteins acts as small-molecule targets for cancer cells by binding to the cell surface receptors. Proteins including bromodomain and extra-terminal domain (BET) and some toxin proteins are been tried on for dealing with melanoma targeting the major pathways including MAPK, NF-κB and PI3K/AKT. The protein therapeutics also targets the tumour microenvironment including myofibrils, lymphatic vessels etc., thus inducing tumour cell death. In the review, several kinds of proteins and their function toward cell death will be highlighted in the context of skin cancer. In addition to this, the review will look into the inhibition of the function of other inflammatory pathways by inflammasomes and cytokines, both of which have a role in preventing cancer.
Collapse
Affiliation(s)
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Palacio-Castañeda V, van de Crommert B, Verploegen E, Overeem M, van Oostrum J, Verdurmen WP. Potent and selective eradication of tumor cells by an EpCAM-targeted Ras-degrading enzyme. Mol Ther Oncolytics 2023; 30:16-26. [PMID: 37485031 PMCID: PMC10362089 DOI: 10.1016/j.omto.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Despite decades of efforts, an urgent need remains to develop tumor cell-selective rat sarcoma (Ras)-targeting therapies that can treat patients with Ras-driven tumors. Here we report modular engineered proteins that degrade Ras selectively in tumor cells that overexpress the tumor cell marker epithelial cell adhesion molecule (EpCAM) by fusing the Ras degrader Ras-Rap1-specific endopeptidase with the translocation domain of the Pseudomonas aeruginosa exotoxin A (ETA) or diphtheria toxin (DT). Redirection to EpCAM is achieved by a designed ankyrin repeat protein. In two-dimensional tumor cell cultures, complete degradation of Ras proteins after 24 h was observed with EpCAM-targeted Ras degraders fused to ETA or DT in EpCAM-overexpressing MCF7 and HCT116 cells, with median inhibition concentration values at sub-nanomolar levels. The viability of EpCAM-low non-cancerous fibroblasts remained unaffected. In a three-dimensional (3D) tumor-on-a-chip system that mimics the natural tumor microenvironment, effective Ras degradation and selective toxicity toward tumor cells, particularly with the ETA-fused constructs, was determined on-chip. To conclude, we demonstrate the potential of modular engineered proteins to kill tumor cells highly selectively by simultaneously exploiting EpCAM as a tumor-specific cell surface molecule as well as Ras as an intracellular oncotarget in a 3D system mimicking the natural tumor microenvironment.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Bas van de Crommert
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Elke Verploegen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Mike Overeem
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Jenny van Oostrum
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Wouter P.R. Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
7
|
Becker L, Plückthun A. DARPins bind their cytosolic targets after having been translocated through the protective antigen pore of anthrax toxin. Sci Rep 2023; 13:8048. [PMID: 37198284 DOI: 10.1038/s41598-023-34647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Intracellular protein-protein interactions in aberrant signaling pathways have emerged as a prime target in several diseases, particularly cancer. Since many protein-protein interactions are mediated by rather flat surfaces, they can typically not be interrupted by small molecules as they require cavities for binding. Therefore, protein drugs might be developed to compete with undesired interactions. However, proteins in general are not able to translocate from the extracellular side to the cytosolic target site by themselves, and thus an efficient protein translocation system, ideally combining efficient translocation with receptor specificity, is in high demand. Anthrax toxin, the tripartite holotoxin of Bacillus anthracis, is one of the best studied bacterial protein toxins and has proven to be a suitable candidate for cell-specific translocation of cargoes in vitro and in vivo. Our group recently developed a retargeted protective antigen (PA) variant fused to different Designed Ankyrin Repeat Proteins (DARPins) to achieve receptor specificity, and we incorporated a receptor domain to stabilize the prepore and prevent cell lysis. This strategy had been shown to deliver high amounts of cargo DARPins fused behind the N-terminal 254 amino acids of Lethal Factor (LFN). Here, we established a cytosolic binding assay, demonstrating the ability of DARPins to refold in the cytosol and bind their target after been translocated by PA.
Collapse
Affiliation(s)
- Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
9
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
10
|
Novel Small Multilamellar Liposomes Containing Large Quantities of Peptide Nucleic Acid Selectively Kill Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14194806. [PMID: 36230729 PMCID: PMC9564164 DOI: 10.3390/cancers14194806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We present, for the first time, the preparation of small (60–90 nm in diameter) liposomes containing extremely large amounts (~8000 molecules per vesicle) of short, cytosine-rich peptide nucleic acid. The outer surface of liposomes wasfunctionalized with scaffold molecules specific to tumor-associated antigen overexpressing in breast cancer. We have shown that targeted liposomesspecifically interact with cancer cells and reduce their viability in sub-nanomolar concentrations. The results presented here can be widely used in cancer therapy based on cytosine-rich PNA oligonucleotides. Abstract Peptide nucleic acid (PNA) may be used in various biomedical applications; however, these are currently limited, due to its low solubility in aqueous solutions. In this study, a methodology to overcome this limitation is demonstrated, as well as the effect of PNA on cell viability. We show that extruding a mixture of natural phospholipids and short (6–22 bases), cytosine-rich PNA through a 100 nm pore size membrane under mild acidic conditions resulted in the formation of small (60–90 nm in diameter) multilamellar vesicles (SMVs) comprising several (3–5) concentric lipid membranes. The PNA molecules, being positively charged under acidic conditions (due to protonation of cytosine bases in the sequence), bind electrostatically to negatively charged phospholipid membranes. The large membrane surface area allowed the encapsulation of thousands of PNA molecules in the vesicle. SMVs were conjugated with the designed ankyrin repeat protein (DARPin_9-29), which interacts with human epidermal growth factor receptor 2 (HER2), overexpressed in human breast cancer. The conjugate was shown to enter HER2-overexpressing cells by receptor-mediated endocytosis. PNA molecules, released from lysosomes, aggregate in the cytoplasm into micron-sized particles, which interfere with normal cell functioning, causing cell death. The ability of DARPin-functionalized SMVs to specifically deliver large quantities of PNA to cancer cells opens a new promising avenue for cancer therapy.
Collapse
|
11
|
Selective targeting of metastatic ovarian cancer using an engineered anthrax prodrug activated by membrane-anchored serine proteases. Proc Natl Acad Sci U S A 2022; 119:e2201423119. [PMID: 35867758 PMCID: PMC9282395 DOI: 10.1073/pnas.2201423119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Collapse
|
12
|
Wang Y, Zeng S, Cui H, Li H, Li Z, Wang J, Chen Q. Reversible Chemical Protein Modification to Endogenous Glutathione and Its Utilities in the Manufacture of Transcellular Pro-Enzymes. Biomacromolecules 2022; 23:2138-2149. [PMID: 35471918 DOI: 10.1021/acs.biomac.2c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins have been perceived as being an intriguing modality of therapeutics for the treatment of intractable diseases in view of their superlative precision and versatility. Nonetheless, proteins' intrinsic characters, particularly their being hydrophilic macromolecules with unmethodical charges, have imposed the exceeding challenge of seeking transcellular trafficking into cells' interiors. To circumvent this drawback, we have attempted to employ triple-functional amine-reactive 4-(2-((2-(((4-nitrophenoxy)carbonyl)oxy)ethyl)disulfaneyl)ethoxy)-4-oxobutanoic acid for the efficient incorporation of the anionic carboxyl moiety into amine-enriched enzymes, resulting in overall negatively charged pro-enzymes. The resulting pro-enzymes could be readily electrostatically assembled with cationic species [for instance: block copolymers of poly(ethylene glycol)-polylysine] into core-shell architectural delivery nanoparticles for their facilitated endocytosis into cells. Noteworthy is the aforementioned carboxylation chemistry designed to allow facile reversal of the pro-enzymes to the original amine groups due to the thiolysis of intermediate disulfide linkage for subsequent cascade reactions in response to the cytosol-enriched glutathione. Therefore, cytosol-selective structural disassembly for the liberation and activation of the pro-enzymes was accomplished. Our subsequent investigations utilizing ribonuclease A and catalase as the model enzymes demonstrated appreciable transcellular transportation of the active enzymes to the cell interiors, exerting overwhelming cytotoxic potencies and H2O2 scavenging capacities, respectively. Hence, we reported an unprecedented redox-stimulated charge reversal strategy in engineering cytosol-activatable pro-enzymes, manifesting a simple and efficient approach in the manufacture of transcellular proteinic therapeutics, which should be highlighted to promote their wide availability for use with diverse functional proteins as molecular biological tools and precision therapeutics.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Shuang Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Hongyan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Qixian Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.,School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
13
|
Tian S, Liu Y, Appleton E, Wang H, Church GM, Dong M. Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based platforms. Cell Rep 2022; 38:110476. [PMID: 35263584 PMCID: PMC8958846 DOI: 10.1016/j.celrep.2022.110476] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/26/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Targeted delivery of therapeutic proteins toward specific cells and across cell membranes remains major challenges. Here, we develop protein-based delivery systems utilizing detoxified single-chain bacterial toxins such as diphtheria toxin (DT) and botulinum neurotoxin (BoNT)-like toxin, BoNT/X, as carriers. The system can deliver large protein cargoes including Cas13a, CasRx, Cas9, and Cre recombinase into cells in a receptor-dependent manner, although delivery of ribonucleoproteins containing guide RNAs is not successful. Delivery of Cas13a and CasRx, together with guide RNA expression, reduces mRNAs encoding GFP, SARS-CoV-2 fragments, and endogenous proteins PPIB, KRAS, and CXCR4 in multiple cell lines. Delivery of Cre recombinase modifies the reporter loci in cells. Delivery of Cas9, together with guide RNA expression, generates mutations at the targeted genomic sites in cell lines and induced pluripotent stem cell (iPSC)-derived human neurons. These findings establish modular delivery systems based on single-chain bacterial toxins for delivery of membrane-impermeable therapeutics into targeted cells.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Yang Liu
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Huan Wang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Palacio-Castañeda V, Brock R, Verdurmen WPR. Generation of Protein-Phosphorodiamidate Morpholino Oligomer Conjugates for Efficient Cellular Delivery via Anthrax Protective Antigen. Methods Mol Biol 2022; 2434:129-141. [PMID: 35213014 PMCID: PMC9703282 DOI: 10.1007/978-1-0716-2010-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) offer great promise as therapeutic agents for translation blocking or splice modulation due to their high stability and affinity for target sequences. However, in spite of their neutral charge as compared to natural oligonucleotides or phosphorothioate analogs, they still show little permeability for cellular membranes, highlighting the need for effective cytosolic delivery strategies. In addition, the implementation of strategies for efficient cellular targeting is highly desirable to minimize side effects and maximize the drug dose at its site of action. Anthrax toxin is a three-protein toxin of which the pore-forming protein anthrax protective antigen (PA) can be redirected to a receptor of choice and lethal factor (LF), one of the two substrate proteins, can be coupled to various cargoes for efficient cytosolic cargo delivery. In this protocol, we describe the steps to produce the proteins and protein conjugates required for cytosolic delivery of PMOs through the cation-selective pore generated by anthrax protective antigen. The method relies on the introduction of a unique cysteine at the C-terminal end of a truncated LF (aa 1-254), high-yield expression of the (truncated) toxin proteins in E. coli, functionalization of a PMO with a maleimide group and coupling of the maleimide-functionalized PMO to the unique cysteine on LF by maleimide-thiol conjugation chemistry. Through co-administration of PA with LF-PMO conjugates, an efficient cytosolic delivery of PMOs can be obtained.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter P R Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Yang NJ, Isensee J, Neel DV, Quadros AU, Zhang HXB, Lauzadis J, Liu SM, Shiers S, Belu A, Palan S, Marlin S, Maignel J, Kennedy-Curran A, Tong VS, Moayeri M, Röderer P, Nitzsche A, Lu M, Pentelute BL, Brüstle O, Tripathi V, Foster KA, Price TJ, Collier RJ, Leppla SH, Puopolo M, Bean BP, Cunha TM, Hucho T, Chiu IM. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2 + DRG sensory neurons. Nat Neurosci 2021; 25:168-179. [PMID: 34931070 DOI: 10.1038/s41593-021-00973-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jörg Isensee
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dylan V Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Andreza U Quadros
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| | | | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Andreea Belu
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | - Victoria S Tong
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Anja Nitzsche
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Mike Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | | | | | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - R John Collier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
17
|
Palacio-Castañeda V, Oude Egberink R, Sait A, Andrée L, Sala BM, Hassani Besheli N, Oosterwijk E, Nilvebrant J, Leeuwenburgh SCG, Brock R, Verdurmen WPR. Mimicking the Biology of Engineered Protein and mRNA Nanoparticle Delivery Using a Versatile Microfluidic Platform. Pharmaceutics 2021; 13:pharmaceutics13111944. [PMID: 34834361 PMCID: PMC8624409 DOI: 10.3390/pharmaceutics13111944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
To investigate the delivery of next-generation macromolecular drugs, such as engineered proteins and mRNA-containing nanoparticles, there is an increasing push towards the use of physiologically relevant disease models that incorporate human cells and do not face ethical dilemmas associated with animal use. Here, we illustrate the versatility and ease of use of a microfluidic platform for studying drug delivery using high-resolution microscopy in 3D. Using this microfluidic platform, we successfully demonstrate the specific targeting of carbonic anhydrase IX (CAIX) on cells overexpressing the protein in a tumor-mimicking chip system using affibodies, with CAIX-negative cells and non-binding affibodies as controls. Furthermore, we demonstrate this system’s feasibility for testing mRNA-containing biomaterials designed to regenerate bone defects. To this end, peptide- and lipid-based mRNA formulations were successfully mixed with colloidal gelatin in microfluidic devices, while translational activity was studied by the expression of a green fluorescent protein. This microfluidic platform enables the testing of mRNA delivery from colloidal biomaterials of relatively high densities, which represents a first important step towards a bone-on-a-chip platform. Collectively, by illustrating the ease of adaptation of our microfluidic platform towards use in distinct applications, we show that our microfluidic chip represents a powerful and flexible way to investigate drug delivery in 3D disease-mimicking culture systems that recapitulate key parameters associated with in vivo drug application.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
| | - Rik Oude Egberink
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
| | - Arbaaz Sait
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
| | - Lea Andrée
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; (L.A.); (N.H.B.); (S.C.G.L.)
| | - Benedetta Maria Sala
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (B.M.S.); (J.N.)
| | - Negar Hassani Besheli
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; (L.A.); (N.H.B.); (S.C.G.L.)
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525 GA Nijmegen, The Netherlands;
| | - Johan Nilvebrant
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (B.M.S.); (J.N.)
| | - Sander C. G. Leeuwenburgh
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; (L.A.); (N.H.B.); (S.C.G.L.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
- Correspondence: (R.B.); (W.P.R.V.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
- Correspondence: (R.B.); (W.P.R.V.)
| |
Collapse
|
18
|
Hirschenberger M, Stadler N, Fellermann M, Sparrer KMJ, Kirchhoff F, Barth H, Papatheodorou P. CRISPA: A Non-viral, Transient Cas9 Delivery System Based on Reengineered Anthrax Toxin. Front Pharmacol 2021; 12:770283. [PMID: 34733166 PMCID: PMC8558532 DOI: 10.3389/fphar.2021.770283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Translating the CRISPR/Cas9 genome editing technology into clinics is still hampered by rather unspecific, unsafe and/or inconvenient approaches for the delivery of its main components - the Cas9 endonuclease and a guide RNA - into cells. Here, we describe the development of a novel transient and non-viral Cas9 delivery strategy based on the translocation machinery of the Bacillus anthracis anthrax toxin, PA (protective antigen). We show that Cas9 variants fused to the N-terminus of the lethal factor or to a hexahistidine tag are shuttled through channels formed by PA into the cytosol of human cells. As proof-of-principle, we applied our new approach, denoted as CRISPA, to knock out lipolysis-stimulated lipoprotein receptor (LSR) in the human colon cancer cell line HCT116 and green-fluorescent protein (GFP) in human embryonic kidney 293T cells stably expressing GFP. Notably, we confirmed that the transporter PA can be adapted to recognize specific host cell-surface receptor proteins and may be optimized for cell type-selective delivery of Cas9. Altogether, CRISPA provides a novel, transient and non-viral way to deliver Cas9 into specific cells. Thus, this system is an additional step towards safe translation of the CRISPR/Cas9 technology into clinics.
Collapse
Affiliation(s)
- Maximilian Hirschenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.,Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Nicole Stadler
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
19
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Yin Y, Yan F, Zhou R, Li M, Ma J, Liu Z, Ma Z. Single-domain antibody screening by isPLA-seq. Life Sci Alliance 2021; 5:5/1/e202101115. [PMID: 34675071 PMCID: PMC8548206 DOI: 10.26508/lsa.202101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
This study describes a high-sensitive, high-throughput single-domain antibody library screening approach, which is applicable for any given interested protein at single-cell resolution by isPLA-seq. Single-domain antibody (sdAb) holds the promising strategies for diverse research and translational applications. Here, we describe a method for the adaptation of the in situ proximity ligation assay (isPLA) followed by sequencing (isPLA-seq) to facilitate screening of a high-sensitive, high-throughput sdAb library for a given protein at subcellular and single-cell resolution. Based on the sequence of complementarity-determining region 3 (CDR3), the recombinant sdAb can be produced for in vitro and in vivo utilities. This method provides a general means to identify the functional measure of sdAb and its complementary epitopes and its potential applications to investigate cellular processes.
Collapse
Affiliation(s)
- Yueyuan Yin
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fei Yan
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ruimin Zhou
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingchen Li
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Becker L, Singh Badwal J, Brandl F, Verdurmen WPR, Plückthun A. Thermodynamic Stability Is a Strong Predictor for the Delivery of DARPins to the Cytosol via Anthrax Toxin. Pharmaceutics 2021; 13:pharmaceutics13081285. [PMID: 34452246 PMCID: PMC8401532 DOI: 10.3390/pharmaceutics13081285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Anthrax toxin has evolved to translocate its toxic cargo proteins to the cytosol of cells carrying its cognate receptor. Cargo molecules need to unfold to penetrate the narrow pore formed by its membrane-spanning subunit, protective antigen (PA). Various alternative cargo molecules have previously been tested, with some showing only limited translocation efficiency, and it may be assumed that these were too stable to be unfolded before passing through the anthrax pore. In this study, we systematically and quantitatively analyzed the correlation between the translocation of various designed ankyrin repeat proteins (DARPins) and their different sizes and thermodynamic stabilities. To measure cytosolic uptake, we used biotinylation of the cargo by cytosolic BirA, and we measured cargo equilibrium stability via denaturant-induced unfolding, monitored by circular dichroism (CD). Most of the tested DARPin cargoes, including target-binding ones, were translocated to the cytosol. Those DARPins, which remained trapped in the endosome, were confirmed by CD to show a high equilibrium stability. We could pinpoint a stability threshold up to which cargo DARPins still get translocated to the cytosol. These experiments have outlined the requirements for translocatable binding proteins, relevant stability measurements to assess translocatable candidates, and guidelines to further engineer this property if needed.
Collapse
Affiliation(s)
- Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
| | - Jasleen Singh Badwal
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
| | - Fabian Brandl
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands;
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
- Correspondence:
| |
Collapse
|
22
|
Palacio-Castañeda V, Dumas S, Albrecht P, Wijgers TJ, Descroix S, Verdurmen WPR. A Hybrid In Silico and Tumor-on-a-Chip Approach to Model Targeted Protein Behavior in 3D Microenvironments. Cancers (Basel) 2021; 13:cancers13102461. [PMID: 34070171 PMCID: PMC8158470 DOI: 10.3390/cancers13102461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Engineered proteins possess a great therapeutic potential, but the development of such therapies is impeded during preclinical studies by the lack of in vitro models that accurately simulate the human physiology. Animal models, on the other hand, also have difficulties predicting human responses, and are ethically concerning. In this study, we employed a hybrid approach where we combined mathematical modeling with 3D in vitro models that mimic aspects of the tumor microenvironment, in order to simulate the delivery of therapeutic proteins targeting cancer cells and to predict the biological activity. By cross-comparing simulated and experimental data from 3D models, we were able to correctly predict the best dose needed to deliver toxic proteins specifically to tumor cells, while leaving the surrounding non-tumor cells untouched. This study shows the potential of combining computational approaches with novel in vitro models to advance the development of protein therapeutics. Abstract To rationally improve targeted drug delivery to tumor cells, new methods combining in silico and physiologically relevant in vitro models are needed. This study combines mathematical modeling with 3D in vitro co-culture models to study the delivery of engineered proteins, called designed ankyrin repeat proteins (DARPins), in biomimetic tumor microenvironments containing fibroblasts and tumor cells overexpressing epithelial cell adhesion molecule (EpCAM) or human epithelial growth factor receptor (HER2). In multicellular tumor spheroids, we observed strong binding-site barriers in combination with low apparent diffusion coefficients of 1 µm2·s−1 and 2 µm2 ·s−1 for EpCAM- and HER2-binding DARPin, respectively. Contrasting this, in a tumor-on-a-chip model for investigating delivery in real-time, transport was characterized by hindered diffusion as a consequence of the lower local tumor cell density. Finally, simulations of the diffusion of an EpCAM-targeting DARPin fused to a fragment of Pseudomonas aeruginosa exotoxin A, which specifically kills tumor cells while leaving fibroblasts untouched, correctly predicted the need for concentrations of 10 nM or higher for extensive tumor cell killing on-chip, whereas in 2D models picomolar concentrations were sufficient. These results illustrate the power of combining in vitro models with mathematical modeling to study and predict the protein activity in complex 3D models.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Simon Dumas
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Philipp Albrecht
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Thijmen J. Wijgers
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Stéphanie Descroix
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
- Correspondence: ; Tel.: +31-24-3614263
| |
Collapse
|
23
|
Torres C, Dumas S, Palacio-Castañeda V, Descroix S, Brock R, Verdurmen WPR. A Computational Investigation of In Vivo Cytosolic Protein Delivery for Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13040562. [PMID: 33921165 PMCID: PMC8071550 DOI: 10.3390/pharmaceutics13040562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to specifically block or degrade cytosolic targets using therapeutic proteins would bring tremendous therapeutic opportunities in cancer therapy. Over the last few years, significant progress has been made with respect to tissue targeting, cytosolic delivery, and catalytic inactivation of targets, placing this aim within reach. Here, we developed a mathematical model specifically built for the evaluation of approaches towards cytosolic protein delivery, involving all steps from systemic administration to translocation into the cytosol and target engagement. Focusing on solid cancer tissues, we utilized the model to investigate the effects of microvascular permeability, receptor affinity, the cellular density of targeted receptors, as well as the mode of activity (blocking/degradation) on therapeutic potential. Our analyses provide guidance for the rational optimization of protein design for enhanced activity and highlight the importance of tuning the receptor affinity as a function of receptor density as well as the receptor internalization rate. Furthermore, we provide quantitative insights into how enzymatic cargoes can enhance the distribution, extent, and duration of therapeutic activity, already at very low catalytic rates. Our results illustrate that with current protein engineering approaches, the goal of delivery of cytosolic delivery of proteins for therapeutic effects is well within reach.
Collapse
Affiliation(s)
- Camilo Torres
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
| | - Simon Dumas
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
| | - Stéphanie Descroix
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
- Correspondence:
| |
Collapse
|
24
|
Abstract
The DARPin® drug platform was established with a vision to expand the medical use of biologics beyond what was possible with monoclonal antibodies. It is based on naturally occurring ankyrin repeat domains that are typically building blocks of multifunctional human proteins. The platform allows for the generation of diverse, well-behaved, multifunctional drug candidates. Recent clinical data illustrate the favorable safety profile of the first DARPin® molecules tested in patients. With the positive phase III results of the most advanced DARPin® drug candidate, abicipar, the DARPin® drug platform is potentially about to achieve its first marketing approval. This review highlights some of the key milestones and decisions encountered when transforming the DARPin® platform from an academic concept to a biotech drug pipeline engine.
Collapse
Affiliation(s)
- Michael T Stumpp
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Keith M Dawson
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - H Kaspar Binz
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland. .,Binz Biotech Consulting GmbH, Lüssirainstrasse 52, 6300, Zug, Switzerland.
| |
Collapse
|
25
|
Shramova E, Proshkina G, Shipunova V, Ryabova A, Kamyshinsky R, Konevega A, Schulga A, Konovalova E, Telegin G, Deyev S. Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers (Basel) 2020; 12:cancers12103014. [PMID: 33081407 PMCID: PMC7602955 DOI: 10.3390/cancers12103014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Targeted therapy of solid tumors represents a great challenge because of heterogeneity of tumor-associated antigen expression. To overcome this obstacle we propose a dual targeting therapy based on protein preparations capable of recognizing different of tumor-associated antigens on a tumor cell producing a directed cytotoxic effect. The dual specific therapy of breast carcinoma-bearing mice using the designed preparations eliminates both the primary tumor and distant metastases. The mono-targeting therapy aimed at single tumor-associated antigen did not suppress metastases at all. The proposed approach can serve as a potential therapeutic strategy that surpasses mono-specific targeting strategies in the anti-cancer efficacy. Abstract We report here a combined anti-cancer therapy directed toward HER2 and EpCAM, common tumor-associated antigens of breast cancer cells. The combined therapeutic effect is achieved owing to two highly toxic proteins—a low immunogenic variant of Pseudomonas aeruginosa exotoxin A and ribonuclease Barnase from Bacillus amyloliquefaciens. The delivery of toxins to cancer cells was carried out by targeting designed ankyrin repeat proteins (DARPins). We have shown that both target agents efficiently accumulate in the tumor. Simultaneous treatment of breast carcinoma-bearing mice with anti-EpCAM fusion toxin based on LoPE and HER2-specific liposomes loaded with Barnase leads to concurrent elimination of primary tumor and metastases. Monotherapy with anti-HER2- or anti-EpCAM-toxins did not produce a comparable effect on metastases. The proposed approach can be considered as a promising strategy for significant improvement of cancer therapy.
Collapse
Affiliation(s)
- Elena Shramova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- Correspondence: (E.S.); (G.P.); Tel.: +7-9169503549 (E.S.); +7-9167997089 (G.P.)
| | - Galina Proshkina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- Correspondence: (E.S.); (G.P.); Tel.: +7-9169503549 (E.S.); +7-9167997089 (G.P.)
| | - Victoria Shipunova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Anastasia Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow, Russia;
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (R.K.); (A.K.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141701 Moscow, Russia
| | - Andrey Konevega
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (R.K.); (A.K.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roscha 1, 188300 Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Aleksey Schulga
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Elena Konovalova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Georgij Telegin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Sergey Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
26
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
27
|
Becker L, Verdurmen WPR, Plückthun A. Reengineering anthrax toxin protective antigen for improved receptor-specific protein delivery. BMC Biol 2020; 18:100. [PMID: 32792013 PMCID: PMC7427085 DOI: 10.1186/s12915-020-00827-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
Background To increase the size of the druggable proteome, it would be highly desirable to devise efficient methods to translocate designed binding proteins to the cytosol, as they could specifically target flat and hydrophobic protein-protein interfaces. If this could be done in a manner dependent on a cell surface receptor, two layers of specificity would be obtained: one for the cell type and the other for the cytosolic target. Bacterial protein toxins have naturally evolved such systems. Anthrax toxin consists of a pore-forming translocation unit (protective antigen (PA)) and a separate protein payload. When engineering PA to ablate binding to its own receptor and instead binding to a receptor of choice, by fusing a designed ankyrin repeat protein (DARPin), uptake in new cell types can be achieved. Results Prepore-to-pore conversion of redirected PA already occurs at the cell surface, limiting the amount of PA that can be administered and thus limiting the amount of delivered payload. We hypothesized that the reason is a lack of a stabilizing interaction with wild-type PA receptor. We have now reengineered PA to incorporate the binding domain of the anthrax receptor CMG2, followed by a DARPin, binding to the receptor of choice. This construct is indeed stabilized, undergoes prepore-to-pore conversion only in late endosomes, can be administered to much higher concentrations without showing toxicity, and consequently delivers much higher amounts of payload to the cytosol. Conclusion We believe that this reengineered system is an important step forward to addressing efficient cell-specific delivery of proteins to the cytosol.
Collapse
Affiliation(s)
- Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Wouter P R Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
28
|
Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol 2020; 3:342. [PMID: 32620833 PMCID: PMC7335062 DOI: 10.1038/s42003-020-1072-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-based affinity reagents (like antibodies or alternative binding scaffolds) offer wide-ranging applications for basic research and therapeutic approaches. However, whereas small chemical molecules efficiently reach intracellular targets, the delivery of macromolecules into the cytosol of cells remains a major challenge; thus cytosolic applications of protein-based reagents are rather limited. Some pathogenic bacteria have evolved a conserved type III secretion system (T3SS) which allows the delivery of effector proteins into eukaryotic cells. Here, we enhance the T3SS of an avirulent strain of Salmonella typhimurium to reproducibly deliver multiple classes of recombinant proteins into eukaryotic cells. The efficacy of the system is probed with both DARPins and monobodies to functionally inhibit the paradigmatic and largely undruggable RAS signaling pathway. Thus, we develop a bacterial secretion system for potent cytosolic delivery of therapeutic macromolecules. To develop a bacterial secretion system for cytosolic delivery of therapeutic macromolecules, Chabloz et al. improve an “effectorless” Salmonella strain and combine it with a plasmid modified to boost the secretion of proteins of interest. With this system, they demonstrate efficient translocation of functional DARPins and monobodies into the cytosol of different eukaryotic cells lines and successfully block the paradigmatic RAS pathway.
Collapse
|
29
|
van den Brand D, van Lith SAM, de Jong JM, Gorris MAJ, Palacio-Castañeda V, Couwenbergh ST, Goldman MRG, Ebisch I, Massuger LF, Leenders WPJ, Brock R, Verdurmen WPR. EpCAM-Binding DARPins for Targeted Photodynamic Therapy of Ovarian Cancer. Cancers (Basel) 2020; 12:E1762. [PMID: 32630661 PMCID: PMC7409335 DOI: 10.3390/cancers12071762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to late detection associated with dissemination throughout the abdominal cavity. Targeted photodynamic therapy (tPDT) aimed at epithelial cell adhesion molecule (EpCAM), overexpressed in over 90% of ovarian cancer metastatic lesions, is a promising novel therapeutic modality. Here, we tested the specificity and activity of conjugates of EpCAM-directed designed ankyrin repeat proteins (DARPins) with the photosensitizer IRDye 700DX in in vitro and in vivo ovarian cancer models. EpCAM-binding DARPins (Ec1: Kd = 68 pM; Ac2: Kd = 130 nM) and a control DARPin were site-specifically functionalized with fluorophores or IRDye 700DX. Conjugation of anti-EpCAM DARPins with fluorophores maintained EpCAM-specific binding in cell lines and patient-derived ovarian cancer explants. Penetration of DARPin Ec1 into tumor spheroids was slower than that of Ac2, indicative of a binding site barrier effect for Ec1. DARPin-IRDye 700DX conjugates killed EpCAM-expressing cells in a highly specific and illumination-dependent fashion in 2D and 3D cultures. Furthermore, they effectively homed to EpCAM-expressing subcutaneous OV90 xenografts in mice. In conclusion, the high activity and specificity observed in preclinical ovarian cancer models, combined with a high specificity in patient material, warrant a further investigation of EpCAM-targeted PDT for ovarian cancer.
Collapse
Affiliation(s)
- Dirk van den Brand
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Sanne A. M. van Lith
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Jelske M. de Jong
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Stijn T. Couwenbergh
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark R. G. Goldman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Inge Ebisch
- Department of Obstetrics and Gynaecology, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands;
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| |
Collapse
|
30
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
31
|
Deprey K, Kritzer JA. Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay. Methods Enzymol 2020; 641:277-309. [PMID: 32713526 PMCID: PMC7872221 DOI: 10.1016/bs.mie.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier for drug development is ensuring molecules can access intracellular targets. This is especially true for biomolecules, which are notoriously difficult to deliver to the cytosol. Many current methods for measuring the internalization of therapeutic biomolecules are largely indirect and qualitative, and they do not offer information about subcellular localization. We recently reported a new assay, called the ChloroAlkane Penetration Assay (CAPA), that addresses some of the drawbacks of existing methods. CAPA is high-throughput, quantitative, and compartment-specific, and can be used to monitor cytosolic penetration over time and under a variety of culture conditions. We have used CAPA to investigate the cytosolic localization of peptides, proteins, and oligonucleotides. In this chapter, we discuss the materials, protocols, and troubleshooting necessary to perform CAPA and appropriately analyze the data. We end with a discussion about the applications and limitations of CAPA, and we speculate on the potential of the assay and its variations.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, MA, United States.
| |
Collapse
|
32
|
Fischer ES, Campbell WA, Liu S, Ghirlando R, Fattah RJ, Bugge TH, Leppla SH. Bismaleimide cross-linked anthrax toxin forms functional octamers with high specificity in tumor targeting. Protein Sci 2019; 28:1059-1070. [PMID: 30942916 PMCID: PMC6511737 DOI: 10.1002/pro.3613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
In recent years, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic, shown to kill tumors in animal models. This has been achieved by modifying protective antigen (PA) so that its activation and toxicity require the presence of two proteases, matrix metalloproteinase (MMP) and urokinase plasminogen activator (uPA), which are upregulated in tumor microenvironments. These therapeutics consist of intercomplementing PA variants, which are individually nontoxic, but form functional toxins upon complementary oligomerization. Here, we have created a dual-protease requiring PA targeting system which utilizes bismaleimide cross-linked PA (CLPA) rather than the intercomplementing PA variants. Three different CLPA agents were tested and, as expected, found to exclusively form octamers. Two of the CLPA agents have in vitro toxicities equal to those of previous intercomplementing agents, while the third CLPA agent had compromised in vitro cleavage and was significantly less cytotoxic. We hypothesize this difference was due to steric hindrance caused by cross-linking two PA monomers in close proximity to the PA cleavage site. Overall, this work advances the development and use of the PA and LF tumor-targeting system as a practical cancer therapeutic, as it provides a way to reduce the drug components of the anthrax toxin drug delivery system from three to two, which may lower the cost and simplify testing in clinical trials. HIGHLIGHT: Previously, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic. Here, we present a version, which utilizes bismaleimide cross-linked protective antigen (PA) rather than intercomplementing PA variants. This advances the development of anthrax toxin as a practical cancer therapeutic as it reduces the components of the drug delivery system to two, which may lower the cost and simplify testing in clinical trials.
Collapse
Affiliation(s)
- Elyse S. Fischer
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Warren A. Campbell
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Shihui Liu
- Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial ResearchBethesdaMaryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMaryland, 20892
| | - Rasem J. Fattah
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial ResearchBethesdaMaryland
| | - Stephen H. Leppla
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| |
Collapse
|
33
|
Schmit NE, Neopane K, Hantschel O. Targeted Protein Degradation through Cytosolic Delivery of Monobody Binders Using Bacterial Toxins. ACS Chem Biol 2019; 14:916-924. [PMID: 31025848 PMCID: PMC7316569 DOI: 10.1021/acschembio.9b00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Monobodies
are small engineered binding proteins that, upon expression
in cells, can inhibit signaling of cytosolic oncoproteins with outstanding
selectivity. Efficacy may be further increased by inducing degradation
of monobody targets through fusion to the von Hippel–Lindau
(VHL) substrate receptor of the Cullin2-E3 ubiquitin ligase complex.
However, potential therapeutic use is currently limited, because of
the inability of monobody proteins to cross cellular membranes. Here,
we use a chimeric bacterial toxin, composed of the Shiga-like toxin
B (Stx2B) subunit and the translocation domain of Pseudomonas
aeruginosa exotoxin A (ETA-II) for delivery of VHL–monobody
protein fusions to target endogenous tyrosine kinases in cancer cells.
Depending on the expression of the Stx2B receptor Gb3 on the cell
surface, we show that monobodies are taken up by an endocytic route,
but are not degraded in lysosomes. Delivery of monobodies fused to
a nuclear localization signal resulted in accumulation in the nucleus,
thereby indirectly, but unequivocally, demonstrating cytosolic delivery.
Delivery of VHL fused to monobodies targeting the Lck tyrosine kinase
in T-cells resulted in reduced Lck protein levels, which was dependent
on the expression of Gb3. This led to the inhibition of proximal signaling
events downstream of the T-cell receptor complex. This work provides
a prime example of the delivery of a stoichiometric protein inhibitor
of an endogenous target protein to cells and inducing its degradation
without the need of genetic manipulation of target cells. It lays
the foundation for further in vivo exploitation of
this delivery system.
Collapse
Affiliation(s)
- Nadine Eliane Schmit
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Katyayanee Neopane
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 2019; 154:143-152. [DOI: 10.1016/j.ymeth.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
|
36
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
37
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
38
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
39
|
Park M, Xu X, Min W, Sugiman-Marangos SN, Beilhartz GL, Adams JJ, Sidhu SS, Grunebaum E, Melnyk RA. Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Mol Pharm 2018; 15:5217-5226. [DOI: 10.1021/acs.molpharmaceut.8b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | | | - Jarret J. Adams
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | |
Collapse
|
40
|
Deyev S, Proshkina G, Baryshnikova O, Ryabova A, Avishai G, Katrivas L, Giannini C, Levi-Kalisman Y, Kotlyar A. Selective staining and eradication of cancer cells by protein-carrying DARPin-functionalized liposomes. Eur J Pharm Biopharm 2018; 130:296-305. [PMID: 29959035 DOI: 10.1016/j.ejpb.2018.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022]
Abstract
Since their discovery, liposomes have been widely employed in biomedical research. These nano-size spherical vesicles consisting one or few phospholipid bilayers surrounding an aqueous core are capable of carrying a wide variety of bioactive compounds, including drugs, peptides, nucleic acids, proteins and others. Despite considerable success achieved in synthesis of liposome constructs containing bioactive compounds, preparation of ligand-targeted liposomes comprising large quantities of encapsulated proteins that are capable of affecting pathological cells still remains a big challenge. Here we described a novel method for preparation of small (80-90 nm in diameter) unilamellar liposomes containing very large quantities (thousands of protein molecules per liposome) of heme-containing cytochrome c, highly fluorescent mCherry and highly toxic PE40 (Pseudomonas aeruginosa Exotoxin A domain). Efficient encapsulation of the proteins was achieved through electrostatic interaction between positively charged proteins (at pH lower than pI) and negatively charged liposome membrane. The proteoliposomes containing large quantities of mCherry or PE40 and functionalized with designed ankyrin repeat protein (DARPin)_9-29, which targets human epidermal growth factor receptor 2 (HER2) were shown to specifically stain and kill in sub-nanomolar concentrations HER2-positive cells, overexpressing HER2, respectively. Specific staining and eradication of the receptor-positive cells demonstrated here makes the DARPin-functionalized liposomes carrying large quantities of fluorescent and/or toxic proteins a promising candidate for tumor detection and therapy.
Collapse
Affiliation(s)
- Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Olga Baryshnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Gavriel Avishai
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Clelia Giannini
- Department of Chemistry, University of Milan, via Golgi 19, 20133 Milan, Italy
| | - Yael Levi-Kalisman
- Institute for Life Sciences, The Hebrew University of Jerusalem, and The Center for Nanoscience and Nanotechnology of the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
41
|
Bioactive Compounds Isolated from Neglected Predatory Marine Gastropods. Mar Drugs 2018; 16:md16040118. [PMID: 29621159 PMCID: PMC5923405 DOI: 10.3390/md16040118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
A diverse range of predatory marine gastropods produce toxins, yet most of these molecules remain uncharacterized. Conus species have received the most attention from researchers, leading to several conopeptides reaching clinical trials. This review aims to summarize what is known about bioactive compounds isolated from species of neglected marine gastropods, especially in the Turridae, Terebridae, Babyloniidae, Muricidae, Buccinidae, Colubrariidae, Nassariidae, Cassidae, and Ranellidae families. Multiple species have been reported to contain bioactive compounds with potential toxic activity, but most of these compounds have not been characterized or even clearly identified. The bioactive properties and potential applications of echotoxins and related porins from the Ranellidae family are discussed in more detail. Finally, the review concludes with a call for research on understudied species.
Collapse
|
42
|
Chiu HY, Bates JA, Helma J, Engelke H, Harz H, Bein T, Leonhardt H. Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus 2018; 9:530-542. [PMID: 30217128 PMCID: PMC6244737 DOI: 10.1080/19491034.2018.1523665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/04/2022] Open
Abstract
Protein transfection is a versatile tool to study or manipulate cellular processes and also shows great therapeutic potential. However, the repertoire of cost effective techniques for efficient and minimally cytotoxic delivery remains limited. Mesoporous silica nanoparticles (MSNs) are multifunctional nanocarriers for cellular delivery of a wide range of molecules, they are simple and economical to synthesize and have shown great promise for protein delivery. In this work we present a general strategy to optimize the delivery of active protein to the nucleus. We generated a bimolecular Venus based optical sensor that exclusively detects active and bioavailable protein for the performance of multi-parameter optimization of protein delivery. In conjunction with cell viability tests we maximized MSN protein delivery and biocompatibility and achieved highly efficient protein transfection rates of 80%. Using the sensor to measure live-cell protein delivery kinetics, we observed heterogeneous timings within cell populations which could have a confounding effect on function studies. To address this problem we fused a split or dimerization dependent protein of interest to chemically induced dimerization (CID) components, permitting control over its activity following cellular delivery. Using the split Venus protein we directly show that addition of a small molecule dimerizer causes synchronous activation of the delivered protein across the entire cell population. This combination of cellular delivery and triggered activation provides a defined starting point for functional studies and could be applied to other protein transfection methods.
Collapse
Affiliation(s)
- Hsin-Yi Chiu
- a Department of Chemistry and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Munich , Germany
| | - Jack A Bates
- b Department of Biology II and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Planegg-Martinsried , Germany
| | - Jonas Helma
- b Department of Biology II and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Planegg-Martinsried , Germany
| | - Hanna Engelke
- a Department of Chemistry and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Munich , Germany
| | - Hartmann Harz
- b Department of Biology II and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Planegg-Martinsried , Germany
| | - Thomas Bein
- a Department of Chemistry and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Munich , Germany
| | - Heinrich Leonhardt
- b Department of Biology II and Center for NanoScience (CeNS) , Ludwig-Maximilians-Universität München (LMU) , Planegg-Martinsried , Germany
| |
Collapse
|
43
|
Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov 2017; 17:197-223. [DOI: 10.1038/nrd.2017.227] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Abstract
Over the past two decades, hundreds of new somatic mutations have been identified in tumours, and a few dozen novel cancer therapeutics that selectively target these mutated oncoproteins have entered clinical practice. This development has resulted in clinical breakthroughs for a few tumour types, but more commonly patients' overall survival has not improved because of the development of drug resistance. Furthermore, only a very limited number of oncoproteins, largely protein kinases, are successfully targeted, whereas most non-kinase oncoproteins inside cancer cells remain untargeted. Engineered small protein inhibitors offer great promise in targeting a larger variety of oncoproteins with better efficacy and higher selectivity. In this article, I focus on a promising class of synthetic binding proteins, termed monobodies, that we have shown to inhibit previously untargetable protein-protein interactions in different oncoproteins. I will discuss the great promise alongside the technical challenges inherent in converting monobodies from potent pre-clinical target validation tools to next-generation protein-based therapeutics.
Collapse
Affiliation(s)
- Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
45
|
Verdurmen WPR, Mazlami M, Plückthun A. A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci Rep 2017; 7:13194. [PMID: 29038564 PMCID: PMC5643320 DOI: 10.1038/s41598-017-13469-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Over many years, a variety of delivery systems have been investigated that have the capacity to shuttle macromolecular cargoes, especially proteins, into the cytosol. Due to the lack of an objective way to quantify cytosolic delivery, relative delivery efficiencies of the various transport systems have remained unclear. Here, we demonstrate the use of the biotin ligase assay for a quantitative comparison of protein transport to the cytosol via cell-penetrating peptides, supercharged proteins and bacterial toxins in four different cell lines. The data illustrate large differences in both the total cellular internalization, which denotes any intracellular location including endosomes, and in the cytosolic uptake of the transport systems, with little correlation between the two. Also, we found significant differences between the cell lines. In general, protein transport systems based on cell-penetrating peptides show a modest total uptake, and mostly do not deliver cargo to the cytosol. Systems based on bacterial toxins show a modest receptor-mediated internalization but an efficient delivery to the cytosol. Supercharged proteins, on the contrary, are not receptor-specific and lead to massive total internalization into endosomes, but only low amounts end up in the cytosol.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marigona Mazlami
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
46
|
Beilhartz GL, Sugiman-Marangos SN, Melnyk RA. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochem Pharmacol 2017; 142:13-20. [DOI: 10.1016/j.bcp.2017.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
|
47
|
Deyev S, Proshkina G, Ryabova A, Tavanti F, Menziani MC, Eidelshtein G, Avishai G, Kotlyar A. Synthesis, Characterization, and Selective Delivery of DARPin-Gold Nanoparticle Conjugates to Cancer Cells. Bioconjug Chem 2017; 28:2569-2574. [PMID: 28806065 DOI: 10.1021/acs.bioconjchem.7b00410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that the designed ankyrin repeat protein (DARPin)_9-29, which specifically targets human epidermal growth factor receptor 2 (HER 2), binds tightly to gold nanoparticles (GNPs). Binding of the protein strongly increases the colloidal stability of the particles. The results of experimental analysis and molecular dynamics simulations show that approximately 35 DARPin_9-29 molecules are bound to the surface of a 5 nm GNP and that the binding does not involve the receptor-binding domain of the protein. The confocal fluorescent microscopy studies show that the DARPin-coated GNP conjugate specifically interacts with the surface of human cancer cells overexpressing epidermal growth factor receptor 2 (HER2) and enters the cells by endocytosis. The high stability under physiological conditions and high affinity to the receptors overexpressed by cancer cells make conjugates of plasmonic gold nanostructures with DARPin molecules promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya St, 16/10, Moscow 117997, Russia.,National Research Tomsk Polytechnic University , 30 av. Lenina, Tomsk, 634050 Russia
| | - Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences , 38 Vavilova St, Moscow 119991, Russia
| | - Francesco Tavanti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia , Via Campi 103, 41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia , Via Campi 103, 41125 Modena, Italy
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Gavriel Avishai
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
48
|
Guillard S, Kolasinska-Zwierz P, Debreczeni J, Breed J, Zhang J, Bery N, Marwood R, Tart J, Overman R, Stocki P, Mistry B, Phillips C, Rabbitts T, Jackson R, Minter R. Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nat Commun 2017; 8:16111. [PMID: 28706291 PMCID: PMC5519984 DOI: 10.1038/ncomms16111] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Ras mutations are the oncogenic drivers of many human cancers and yet there are still no approved Ras-targeted cancer therapies. Inhibition of Ras nucleotide exchange is a promising new approach but better understanding of this mechanism of action is needed. Here we describe an antibody mimetic, DARPin K27, which inhibits nucleotide exchange of Ras. K27 binds preferentially to the inactive Ras GDP form with a Kd of 4 nM and structural studies support its selectivity for inactive Ras. Intracellular expression of K27 significantly reduces the amount of active Ras, inhibits downstream signalling, in particular the levels of phosphorylated ERK, and slows the growth in soft agar of HCT116 cells. K27 is a potent, non-covalent inhibitor of nucleotide exchange, showing consistent effects across different isoforms of Ras, including wild-type and oncogenic mutant forms. Ras is mutated in many cancers, but so far no drug targeting Ras is in clinical use despite great efforts. Here the authors structurally and functionally characterize a DARPin that potently inhibits the nucleotide exchange of Ras, which might facilitate the development of Ras-targeted therapies.
Collapse
Affiliation(s)
- Sandrine Guillard
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Paulina Kolasinska-Zwierz
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Jason Breed
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Jing Zhang
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Nicolas Bery
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Rose Marwood
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Jon Tart
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Ross Overman
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Pawel Stocki
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Bina Mistry
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Christopher Phillips
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Terence Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ronald Jackson
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Ralph Minter
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
49
|
Verdurmen WPR, Mazlami M, Plückthun A. A Biotin Ligase-Based Assay for the Quantification of the Cytosolic Delivery of Therapeutic Proteins. Methods Mol Biol 2017; 1575:223-236. [PMID: 28255884 DOI: 10.1007/978-1-4939-6857-2_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The efficient delivery of external proteins from the external milieu to the cytosol of mammalian cells has great potential for both scientific investigations and future therapies. However, when assessing the cellular uptake of proteins, it is often difficult to distinguish between proteins that are stuck in the endosomes and those that have escaped into the cytosol. Here, we describe a method employing the prokaryotic enzyme biotin ligase that overcomes this problem and which can be employed for a highly sensitive quantification of cytosolic protein delivery.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Marigona Mazlami
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
50
|
Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol Sci 2016; 37:993-1008. [PMID: 27836202 PMCID: PMC6238641 DOI: 10.1016/j.tips.2016.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|