1
|
Sun W, Chai X, Zhang Y, Yu T, Wang Y, Zhao W, Liu Y, Yin D, Zhang C. Combination Using Magnetic Iron Oxide Nanoparticles and Magnetic Field for Cancer Therapy. CHEM REC 2024; 24:e202400179. [PMID: 39607378 DOI: 10.1002/tcr.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Iron oxide nanoparticles (MNPs) demonstrate notable benefits in magnetic induction, attributed to their distinctive physical and chemical attributes. Emerging cancer treatment utilizing magnetic fields have also gathered increasing attention in the biomedical field. However, the defects of difficult dispersion and poor biocompatibility of MNPs seriously hinder their application. In order to overcome its inherent defects and maximize the therapeutic potential of MNPs, various functionalized MNPs have been developed, and numerous combined treatment methods based on MNPs have been widely studied. In this review, we compare and analyze the common nanoparticles based on MNPs with different sizes, shapes, and functional modifications. Additionally, we introduced the therapeutic mechanisms of the strategies, such as magnetically controlled targeting, magnetic hyperthermia, and magneto-mechanical effect, which based on the unique magnetic induction capabilities of MNPs. Finally, main challenges of MNPs as smart nanomaterials were also discussed. This review seeks to offer a thorough overview of MNPs in biomedicine and a new sight for their application in tumor treatment.
Collapse
Affiliation(s)
- Wenjun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Xiaoxia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yuan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Tongyao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yuhua Wang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Wenzhe Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yanhua Liu
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China
| |
Collapse
|
2
|
Shahsavari S, Rad MB, Hajiaghajani A, Rostami M, Hakimian F, Jafarzadeh S, Hasany M, Collingwood JF, Aliakbari F, Fouladiha H, Bardania H, Otzen DE, Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed Pharmacother 2024; 181:117665. [PMID: 39541790 DOI: 10.1016/j.biopha.2024.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Safe and effective cancer therapy requires a suitable nanocarrier that can target particular sites, such as cancer cells, in a selective manner. With the tremendous growth in nanotechnology, liposomes, among various competing nanocarriers, have shown promising advances in cancer therapy. Magnetic nanoparticles and metal ions are wide-reaching candidates for conferring magnetic properties and for incorporation into liposomes. Combining liposomes with magnetic structures enables construction of magnetoresponsive liposomes, allowing stimuli-responsiveness to an alternating magnetic field, magnetic targeting, and tracking by magnetic resonance imaging, which could all occur in parallel. This review presents a comprehensive analysis of the practical advances and novel aspects of design, synthesis and engineering magnetoresponsive liposomes, emphasizing their diverse properties for various applications. Our work explores the innovative uses of these structures, extending beyond drug delivery to include smart contrast agents, cell labeling, biosensing, separation, and filtering. By comparing new findings with earlier studies, we showcase significant improvements in efficiency and uncover new potentials, setting a new benchmark for future research in the field of magnetoresponsive liposomes.
Collapse
Affiliation(s)
- Shayan Shahsavari
- Iran Nanotechnology Innovation Council, Nanoclub Elites Association, Tehran, Iran
| | - Mohammad Behnam Rad
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amirhossein Hajiaghajani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | | | - Fatemeh Hakimian
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Lyngby 2800 Kgs, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | - Farhang Aliakbari
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran; Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamideh Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark.
| | - Dina Morshedi
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran.
| |
Collapse
|
3
|
Stavilă C, Herea DD, Zară MC, Stoian G, Minuti AE, Labușcă L, Grigoraș M, Chiriac H, Lupu N, Petrovici A, Aniță A, Aniță D. Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102766. [PMID: 38901809 DOI: 10.1016/j.nano.2024.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Remote magneto-mechanical actuation (MMA) of magnetic nanoparticles (MNP) is emerging as a promising therapy method in oncology. However, translation to the clinic faces the challenge of whole-body action and the reluctance about indiscriminate mechanical action of the nanoparticles on tumor and healthy cells. Here, we show how the MMA method based on magnetically-rotated gold-coated MNP boosts only the activity of an unbound antitumor drug, without physical damage of cells via MNP. Therefore, in clinical practice, the effect of antitumor drug can be safely increased systemically while maintaining drug concentrations at current doses.
Collapse
Affiliation(s)
- Cristina Stavilă
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania; "Alexandru Ioan Cuza" University, 11 Carol I Boulevard, 700506 Iași, Romania
| | - Dumitru Daniel Herea
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania.
| | - Mihaela Camelia Zară
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania.
| | - George Stoian
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania
| | - Anca Emanuela Minuti
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania
| | - Luminița Labușcă
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania
| | - Marian Grigoraș
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania
| | - Horia Chiriac
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania
| | - Nicoleta Lupu
- National Institute of Research and Development for Technical Physics - IFT Iasi, 47 Mangeron Boulevard, 700050 Iasi, Romania
| | - Adriana Petrovici
- Faculty of Veterinary Sciences, University of Life Sciences, 700490 Iasi, Romania; Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, 700490 Iasi, Romania
| | - Adriana Aniță
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, 700490 Iasi, Romania; Department of Public Health, Faculty of Veterinary Sciences, University of Life Sciences, 700490 Iasi, Romania
| | - Dragos Aniță
- Faculty of Veterinary Sciences, University of Life Sciences, 700490 Iasi, Romania; Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, 700490 Iasi, Romania
| |
Collapse
|
4
|
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024; 307:122530. [PMID: 38493672 DOI: 10.1016/j.biomaterials.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.
Collapse
Affiliation(s)
- Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Aodi Jiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxue Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Goršak T, Jovičić EJ, Tratnjek L, Križaj I, Sepulveda B, Nogues J, Kreft ME, Petan T, Kralj S, Makovec D. The efficient magneto-mechanical actuation of cancer cells using a very low concentration of non-interacting ferrimagnetic hexaferrite nanoplatelets. J Colloid Interface Sci 2024; 657:778-787. [PMID: 38081112 DOI: 10.1016/j.jcis.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Magneto-mechanical actuation (MMA) using the low-frequency alternating magnetic fields (AMFs) of magnetic nanoparticles internalized into cancer cells can be used to irreparably damage these cells. However, nanoparticles in cells usually agglomerate, thus greatly augmenting the delivered force compared to single nanoparticles. Here, we demonstrate that MMA also decreases the cell viability, with the MMA mediated by individual, non-interacting nanoparticles. The effect was demonstrated with ferrimagnetic (i.e., permanently magnetic) barium-hexaferrite nanoplatelets (NPLs, ∼50 nm wide and 3 nm thick) with a unique, perpendicular orientation of the magnetization. Two cancer-cell lines (MDA-MB-231 and HeLa) are exposed to the NPLs in-vitro under different cell-culture conditions and actuated with a uniaxial AMF. TEM analyses show that only a small number of NPLs internalize in the cells, always situated in membrane-enclosed compartments of the endosomal-lysosomal system. Most compartments contain 1-2 NPLs and only seldom are the NPLs found in small groups, but never in close contact or mutually oriented. Even at low concentrations, the single NPLs reduce the cell viability when actuated with AMFs, which is further increased when the cells are in starvation conditions. These results pave the way for more efficient in-vivo MMA at very low particle concentrations.
Collapse
Affiliation(s)
- Tanja Goršak
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Eva Jarc Jovičić
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia; Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Larisa Tratnjek
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Borja Sepulveda
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Josep Nogues
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Wei X, Li Y, Chen H, Gao R, Ning P, Wang Y, Huang W, Chen E, Fang L, Guo X, Lv C, Cheng Y. A Lysosome-Targeted Magnetic Nanotorquer Mechanically Triggers Ferroptosis for Breast Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302093. [PMID: 38095513 PMCID: PMC10916606 DOI: 10.1002/advs.202302093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/27/2023] [Indexed: 03/07/2024]
Abstract
Targeting ferroptosis has attracted exponential attention to eradicate cancer cells with high iron-dependent growth. Increasing the level of intracellular labile iron pool via small molecules and iron-containing nanomaterials is an effective approach to induce ferroptosis but often faces insufficient efficacy due to the fast drug metabolism and toxicity issues on normal tissues. Therefore, developing a long-acting and selective approach to regulate ferroptosis is highly demanded in cancer treatment. Herein, a lysosome-targeted magnetic nanotorquer (T7-MNT) is proposed as the mechanical tool to dynamically induce the endogenous Fe2+ pool outbreak for ferroptosis of breast cancer. T7-MNTs target lysosomes via the transferrin receptor-mediated endocytosis in breast cancer cells. Under the programmed rotating magnetic field, T7-MNTs generate torques to trigger endogenous Fe2+ release by disrupting the lysosomal membrane. This magneto-mechanical manipulation can induce oxidative damage and antioxidant defense imbalance to boost frequency- and time-dependent lipid peroxidization. Importantly, in vivo studies show that T7-MNTs can efficiently trigger ferroptosis under the magnetic field and play as a long-acting physical inducer to boost ferrotherapy efficacy in combination with RSL3. It is anticipated that this dynamic targeted strategy can be coupled with current ferroptosis inducers to achieve enhanced efficacy and inspire the design of mechanical-based ferroptosis inducers for cancer treatment.
Collapse
Affiliation(s)
- Xueyan Wei
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Yingze Li
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Haotian Chen
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Rui Gao
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Peng Ning
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Yingying Wang
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Wanxin Huang
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Erzhen Chen
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Lan Fang
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer CenterShanghai200072China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe HospitalHubei University of MedicineShiyanHubei442000China
| | - Cheng Lv
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| | - Yu Cheng
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
7
|
Veselov MM, Efremova MV, Prusov AN, Klyachko NL. Up- and Down-Regulation of Enzyme Activity in Aggregates with Gold-Covered Magnetic Nanoparticles Triggered by Low-Frequency Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:411. [PMID: 38470742 DOI: 10.3390/nano14050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
The modern global trend toward sustainable processes that meet the requirements of "green chemistry" provides new opportunities for the broad application of highly active, selective, and specific enzymatic reactions. However, the effective application of enzymes in industrial processes requires the development of systems for the remote regulation of their activity triggered by external physical stimuli, one of which is a low-frequency magnetic field (LFMF). Magnetic nanoparticles (MNPs) transform the energy of an LFMF into mechanical forces and deformations applied to enzyme molecules on the surfaces of MNPs. Here, we demonstrate the up- and down-regulation of two biotechnologically important enzymes, yeast alcohol dehydrogenase (YADH) and soybean formate dehydrogenase (FDH), in aggregates with gold-covered magnetic nanoparticles (GCMNPs) triggered by an LFMF. Two types of aggregates, "dimeric" (with the enzyme attached to several GCMNPs simultaneously), with YADH or FDH, and "monomeric" (the enzyme attached to only one GCMNP), with FDH, were synthesized. Depending on the aggregate type ("dimeric" or "monomeric"), LFMF treatment led to a decrease (down-regulation) or an increase (up-regulation) in enzyme activity. For "dimeric" aggregates, we observed 67 ± 9% and 47 ± 7% decreases in enzyme activity under LFMF exposure for YADH and FDH, respectively. Moreover, in the case of YADH, varying the enzyme or the cross-linking agent concentration led to different magnitudes of the LFMF effect, which was more significant at lower enzyme and higher cross-linking agent concentrations. Different responses to LFMF exposure depending on cofactor presence were also demonstrated. This effect might result from a varying cofactor binding efficiency to enzymes. For the "monomeric" aggregates with FDH, the LFMF treatment caused a significant increase in enzyme activity; the magnitude of this effect depended on the cofactor type: we observed up to 40% enzyme up-regulation in the case of NADP+, while almost no effect was observed in the case of NAD+.
Collapse
Affiliation(s)
- Maxim M Veselov
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V Efremova
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andrey N Prusov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
9
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
10
|
Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev 2023; 42:601-627. [PMID: 36826760 PMCID: PMC10584728 DOI: 10.1007/s10555-023-10086-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Every sixth person in the world dies due to cancer, making it the second leading severe cause of death after cardiovascular diseases. According to WHO, cancer claimed nearly 10 million deaths in 2020. The most common types of cancers reported have been breast (lung, colon and rectum, prostate cases), skin (non-melanoma) and stomach. In addition to surgery, the most widely used traditional types of anti-cancer treatment are radio- and chemotherapy. However, these do not distinguish between normal and malignant cells. Additional treatment methods have evolved over time for early detection and targeted therapy of cancer. However, each method has its limitations and the associated treatment costs are quite high with adverse effects on the quality of life of patients. Use of individual atoms or a cluster of atoms (nanoparticles) can cause a paradigm shift by virtue of providing point of sight sensing and diagnosis of cancer. Nanoparticles (1-100 nm in size) are 1000 times smaller in size than the human cell and endowed with safer relocation capability to attack mechanically and chemically at a precise location which is one avenue that can be used to destroy cancer cells precisely. This review summarises the extant understanding and the work done in this area to pave the way for physicians to accelerate the use of hybrid mode of treatments by leveraging the use of various nanoparticles.
Collapse
Affiliation(s)
- Jaya Verma
- School of Engineering, London South Bank University, London, SE10AA UK
| | - Caaisha Warsame
- School of Engineering, London South Bank University, London, SE10AA UK
| | | | | | - Eiman Aleem
- School of Applied Sciences, Division of Human Sciences, Cancer Biology and Therapy Research Group, London South Bank University, London, SE10AA UK
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE10AA UK
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007 India
| |
Collapse
|
11
|
Usvaliev AD, Belogurova NG, Pokholok KV, Finko AV, Prusov AN, Golovin DY, Miroshnikov KA, Golovin YI, Klyachko NL. E. coli Cell Lysis Induced by Lys394 Enzyme Assisted by Magnetic Nanoparticles Exposed to Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2023; 15:1871. [PMID: 37514057 PMCID: PMC10384812 DOI: 10.3390/pharmaceutics15071871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The spreading of microbial pathogens with more and more resistance to traditional low-molecular antibiotic agents demands new approaches to antibacterial therapy. The employment of bacteriophage enzymes capable of breaking bacterial cell walls has attracted much interest within this context. The specific features of the morphology of Gram-negative bacteria prevent the effective direct usage of lytic enzymes and require assistance from additional helpers to facilitate cell lysis. The current work is devoted to the study of boosting the lysis of Escherichia coli (E. coli) JM 109 and MH 1 strains induced by Lys394 bacteriophage endolysin by means of rod-like (56 × 13 nm) magnetic nanoparticles (MNPs) activated by a non-heating low-frequency magnetic field (LF MF) with a frequency of 50 Hz and a flux density of 68.5 mT in a pulse-pause mode (1 s on and 0.3 s off). According to theoretical assumptions, the mechanism of MNP assistance is presumably based upon the disordering of the outer membrane that facilitates enzyme permeation into peptidoglycans to its substrate. It is found that the effect of the LF MF reaches an almost a twofold acceleration of the enzyme reaction, resulting in almost 80 and 70%, respectively, of lysed E. coli JM 109 and MH 1 cells in 21 min. An increase in the membrane permeability was proven by two independent experiments employing β-lactamase periplasmic enzyme leakage and Nile Red (NR) hydrophobic dye fluorescence. It is shown that the outer membrane disordering of E. coli caused by exposure to LF MF nanoparticle movement leads to almost complete (more than 80%) β-lactamase release out of the cells' periplasm to the buffer suspension. Experiments with NR (displaying fluorescence in a non-polar medium only) reveal a drastic reduction in NR fluorescence intensity, reaching a change of an order of magnitude when exposed to LF MF. The data obtained provide evidence of changes in the bacterial cell wall structure. The result shown open up the prospects of non-heating LF MF application in enhancing enzyme activity against Gram-negative pathogens.
Collapse
Affiliation(s)
- Azizbek D Usvaliev
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | | | - Alexander V Finko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey N Prusov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Dmitry Yu Golovin
- Institute of Nanomaterials and Nanotechnologies, G.R. Derzhavin Tambov State University, Tambov 392000, Russia
| | - Konstantin A Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Yuri I Golovin
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Nanomaterials and Nanotechnologies, G.R. Derzhavin Tambov State University, Tambov 392000, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
13
|
Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv Colloid Interface Sci 2023; 317:102930. [PMID: 37290380 DOI: 10.1016/j.cis.2023.102930] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Liposomes and polymersomes are colloidal vesicles that are self-assembled from lipids and amphiphilic polymers, respectively. Because of their ability to encapsulate both hydrophilic and hydrophobic therapeutics, they are of great interest in drug delivery research. Today, the applications of liposomes and polymersomes have expanded to a wide variety of complex therapeutic molecules, including nucleic acids, proteins and enzymes. Thanks to their chemical versatility, they can be tailored to different drug delivery applications to achieve maximum therapeutic index. This review article evaluates liposomes and polymersomes from a perspective that takes into account the physical and biological barriers that reduce the efficiency of the drug delivery process. In this context, the design approaches of liposomes and polymersomes are discussed with representative examples in terms of their physicochemical properties (size, shape, charge, mechanical), targeting strategies (passive and active) and response to different stimuli (pH, redox, enzyme, temperature, light, magnetic field, ultrasound). Finally, the challenges limiting the transition from laboratory to practice, recent clinical developments, and future perspectives are addressed.
Collapse
Affiliation(s)
- Seyithan Kansız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
14
|
Beltran-Huarac J, Yamaleyeva DN, Dotti G, Hingtgen S, Sokolsky-Papkov M, Kabanov AV. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19877-19891. [PMID: 37040569 PMCID: PMC10143622 DOI: 10.1021/acsami.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Engineered cells used as smart vehicles for delivery of secreted therapeutic proteins enable effective treatment of cancer and certain degenerative, autoimmune, and genetic disorders. However, current cell-based therapies use mostly invasive tools for tracking proteins and do not allow for controlled secretion of therapeutic proteins, which could result in unconstrained killing of surrounding healthy tissues or ineffective killing of host cancer cells. Regulating the expression of therapeutic proteins after success of therapy remains elusive. In this study, a noninvasive therapeutic approach mediated by magneto-mechanical actuation (MMA) was developed to remotely regulate the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein, which is secreted by transduced cells. Stem cells, macrophages, and breast cancer cells were transduced with a lentiviral vector encoding the SGpL2TR protein. SGpL2TR comprises TRAIL and GpLuc domains optimized for cell-based applications. Our approach relies on the remote actuation of cubic-shape highly magnetic field responsive superparamagnetic iron oxide nanoparticles (SPIONs) coated with nitrodopamine PEG (ND-PEG), which are internalized within the cells. Cubic ND-PEG-SPIONs actuated by superlow frequency alternating current magnetic fields can translate magnetic forces into mechanical motion and in turn spur mechanosensitive cellular responses. Cubic ND-PEG-SPIONs were artificially designed to effectively operate at low magnetic field strengths (<100 mT) retaining approximately 60% of their saturation magnetization. Compared to other cells, stems cells were more sensitive to the interaction with actuated cubic ND-PEG-SPIONs, which clustered near the endoplasmic reticulum (ER). Luciferase, ELISA, and RT-qPCR analyses revealed a marked TRAIL downregulation (secretion levels were depleted down to 30%) when intracellular particles at 0.100 mg/mL Fe were actuated by magnetic fields (65 mT and 50 Hz for 30 min). Western blot studies indicated actuated, intracellular cubic ND-PEG-SPIONs can cause mild ER stress at short periods (up to 3 h) of postmagnetic field treatment thus leading to the unfolded protein response. We observed that the interaction of TRAIL polypeptides with ND-PEG can also contribute to this response. To prove the applicability of our approach, we used glioblastoma cells, which were exposed to TRAIL secreted from stem cells. We demonstrated that in the absence of MMA treatment, TRAIL essentially killed glioblastoma cells indiscriminately, but when treated with MMA, we were able to control the cell killing rate by adjusting the magnetic doses. This approach can expand the capabilities of stem cells to serve as smart vehicles for delivery of therapeutic proteins in a controlled manner without using interfering and expensive drugs, while retaining their potential to regenerate damaged tissue after treatment. This approach brings forth new alternatives to regulate protein expression noninvasively for cell therapy and other cancer therapies.
Collapse
Affiliation(s)
- Juan Beltran-Huarac
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Dina N. Yamaleyeva
- Joint
UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gianpietro Dotti
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shawn Hingtgen
- Division
of Pharmacoengineering and Molecular Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marina Sokolsky-Papkov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander V. Kabanov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Ueda K, Ma C, Izumiya M, Kuroda C, Ishida H, Uemura T, Saito N, Aoki K, Haniu H. Biocompatibility Evaluation of Carbon Nanohorns in Bone Tissues. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:244. [PMID: 36677997 PMCID: PMC9866001 DOI: 10.3390/nano13020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
With the advent of nanotechnology, the use of nanoparticles as drug delivery system (DDS) has attracted great interest. We aimed to apply carbon nanohorns (CNHs) as DDS in the development of new treatments for bone diseases. We evaluated the in vitro and in vivo cellular responses of CNHs in bone-related cells compared with carbon blacks (CBs), which are similar in particle size but differ in surface and structural morphologies. Although in vitro experiments revealed that both CNHs and CBs were incorporated into the lysosomes of RAW264-induced osteoclast-like cells (OCs) and MC3T3-E1 osteoblast-like cells (OBs), no severe cytotoxicity was observed. CNHs reduced the tartrate-resistant acid phosphatase activity and expression of the differentiation marker genes in OCs at noncytotoxic concentrations, whereas the alkaline phosphatase activity and differentiation of OBs increased. Under calcification of OBs, CNHs increased the number of calcified nodules and were intra- and extracellularly incorporated into calcified vesicles to form crystal nuclei. The in vivo experiments showed significant promotion of bone regeneration in the CNH group alone, with localized CNHs being found in the bone matrix and lacunae. The suppression of OCs and promotion of OBs suggested that CNHs may be effective against bone diseases and could be applied as DDS.
Collapse
Affiliation(s)
- Katsuya Ueda
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Chuang Ma
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Makoto Izumiya
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Chika Kuroda
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube, Yamaguchi 755-8505, Japan
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Takeshi Uemura
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Hisao Haniu
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
- Department of Orthopedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
16
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
17
|
Suzuki S, Satoh A. The behavior and heat generation effect of a magnetic rod-like particle suspension in an alternating and a rotating magnetic field. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2151523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seiya Suzuki
- Graduate School of Akita Prefectural University, Yurihonjo, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
18
|
Kang MA, Fang J, Paragodaarachchi A, Kodama K, Yakobashvili D, Ichiyanagi Y, Matsui H. Magnetically Induced Brownian Motion of Iron Oxide Nanocages in Alternating Magnetic Fields and Their Application for Efficient siRNA Delivery. NANO LETTERS 2022; 22:8852-8859. [PMID: 36346801 PMCID: PMC9879328 DOI: 10.1021/acs.nanolett.2c02691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Hyperthermia of superparamagnetic nanoparticles driven by Néel relaxation in an alternating magnetic field (AMF) has been studied in biomedical areas; however, Brownian motion, induced by another magnetic relaxation mechanism, has not been explored extensively despite its potential in intracellular mechanoresponsive applications. We investigated whether superparamagnetic cage-shaped iron oxide nanoparticles (IO-nanocages), previously demonstrated to carry payloads inside their cavities for drug delivery, can generate Brownian motion by tuning the nanoparticle size at 335 kHz AMF frequency. The motivation of this work is to examine the magnetically driven Brownian motion for the delivery of nanoparticles allowing escape from endosomes before digestion in lysosomes and efficient delivery of siRNA cargoes to the cytoplasm. Superconducting quantum interference device (SQUID) measurements reveal the nanocage size dependence of Brownian relaxation, and a magnetic Brownian motion of 20 nm IO-nanocages improved the efficiency of siRNA delivery while endosomal membranes were observed to be compromised to release IO-nanocages in AMFs during the delivery process.
Collapse
Affiliation(s)
- Min A Kang
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York10016, United States
| | - Justin Fang
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of City University of New York, New York, New York10016, United States
| | - Aloka Paragodaarachchi
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of City University of New York, New York, New York10016, United States
| | - Keita Kodama
- Department of Physics, Graduate School of Science and Engineering, Yokohama National University, Yokohama, Kanagawa240-8501, Japan
| | - Daniela Yakobashvili
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York10065, United States
| | - Yuko Ichiyanagi
- Department of Physics, Graduate School of Science and Engineering, Yokohama National University, Yokohama, Kanagawa240-8501, Japan
| | - Hiroshi Matsui
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of City University of New York, New York, New York10016, United States
- Department of Biochemistry, Weill Cornell Medical College, 413 East 69th Street, New York, New York10021, United States
| |
Collapse
|
19
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Wang P, Chen C, Wang Q, Chen H, Chen C, Xu J, Wang X, Song T. Tumor inhibition via magneto-mechanical oscillation by magnetotactic bacteria under a swing MF. J Control Release 2022; 351:941-953. [DOI: 10.1016/j.jconrel.2022.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
|
21
|
Cholujova D, Koklesova L, Lukacova Bujnakova Z, Dutkova E, Valuskova Z, Beblava P, Matisova A, Sedlak J, Jakubikova J. In vitro and ex vivo anti-myeloma effects of nanocomposite As 4S 4/ZnS/Fe 3O 4. Sci Rep 2022; 12:17961. [PMID: 36289430 PMCID: PMC9606304 DOI: 10.1038/s41598-022-22672-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles in medicine can integrate actively targeted imaging agents and drug delivery vehicles, and combining multiple types of therapeutics in a single particle has numerous advantages, especially in multiple myeloma. MM is an incurable hematological disorder characterized by clonal proliferation of plasma cells in the bone marrow. In this study, we evaluated the anti-myeloma activity of 3 nanocomposites (3NPs): As4S4/ZnS/Fe3O4 (1:4:1), As4S4/ZnS/Fe3O4 with folic acid (FA), and As4S4/ZnS/Fe3O4 with FA and albumin with reduced survival MM cell lines and primary MM samples by each of 3NP. Cytotoxic effects of 3NPs were associated with caspase- and mitochondria-dependent apoptosis induction and reduced c-Myc expression. Modulation of cell cycle regulators, such as p-ATM/ATM and p-ATR/ATR, and increases in p-Chk2, cyclin B1, and histones were accompanied by G2/M arrest triggered by 3NPs. In addition, 3NPs activated several myeloma-related signaling, including JNK1/2/3, ERK1/2 and mTOR. To overcome BM microenvironment-mediated drug resistance, nanocomposites retained its anti-MM activity in the presence of stroma. 3NPs significantly decreased the stem cell-like side population in MM cells, even in the context of stroma. We observed strong synergistic effects of 3NPs combined with lenalidomide, pomalidomide, or melphalan, suggesting the potential of these combinations for future clinical studies.
Collapse
Affiliation(s)
- Danka Cholujova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.419303.c0000 0001 2180 9405Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84511 Slovakia
| | - Lenka Koklesova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.7634.60000000109409708Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Slovakia
| | - Zdenka Lukacova Bujnakova
- grid.419303.c0000 0001 2180 9405Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, Košice, 04001 Slovakia
| | - Erika Dutkova
- grid.419303.c0000 0001 2180 9405Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, Košice, 04001 Slovakia
| | - Zuzana Valuskova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Patricia Beblava
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Anna Matisova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Jan Sedlak
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Jana Jakubikova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.419303.c0000 0001 2180 9405Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84511 Slovakia
| |
Collapse
|
22
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
23
|
Nikitin AA, Ivanova AV, Semkina AS, Lazareva PA, Abakumov MA. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int J Mol Sci 2022; 23:11134. [PMID: 36232435 PMCID: PMC9569787 DOI: 10.3390/ijms231911134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The magneto-mechanical approach is a powerful technique used in many different applications in biomedicine, including remote control enzyme activity, cell receptors, cancer-selective treatments, mechanically-activated drug releases, etc. This approach is based on the use of a combination of magnetic nanoparticles and external magnetic fields that have led to the movement of such nanoparticles with torques and forces (enough to change the conformation of biomolecules or even break weak chemical bonds). However, despite many theoretical and experimental works on this topic, it is difficult to predict the magneto-mechanical effects in each particular case, while the important results are scattered and often cannot be translated to other experiments. The main reason is that the magneto-mechanical effect is extremely sensitive to changes in any parameter of magnetic nanoparticles and the environment and changes in the parameters of the applied magnetic field. Thus, in this review, we (1) summarize and propose a simplified theoretical explanation of the main factors affecting the efficiency of the magneto-mechanical approach; (2) discuss the nature of the MNP-mediated mechanical forces and their order of magnitude; (3) show some of the main applications of the magneto-mechanical approach in the control over the properties of biological systems.
Collapse
Affiliation(s)
- Aleksey A. Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anna V. Ivanova
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
24
|
Ko MJ, Hong H, Choi H, Kang H, Kim D. Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Min Jun Ko
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunjun Choi
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
- College of Medicine Korea University Seoul 02841 Republic of Korea
| | - Dong‐Hyun Kim
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
- Department of Biomedical Engineering McCormick School of Engineering Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago Illinois 60611 USA
| |
Collapse
|
25
|
Yap YK, Oh PC, Chew TL, Asif J. Influence of alternating magnetic field's frequency and exposure time on distribution of
α‐Fe
2
O
3
/
TiO
2
fillers for gas separation membranes: Quantitative approach. J Appl Polym Sci 2022. [DOI: 10.1002/app.53093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun Kee Yap
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
| | - Pei Ching Oh
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
- CO2 Research Centre (CO2RES), Institute of Contaminant Management, Department of Chemical Engineering Universiti Teknologi Petronas Bandar Seri Iskandar Malaysia
| | - Thiam Leng Chew
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia
- CO2 Research Centre (CO2RES), Institute of Contaminant Management, Department of Chemical Engineering Universiti Teknologi Petronas Bandar Seri Iskandar Malaysia
| | - Jamil Asif
- Department of Chemical, Polymer and Composite Materials Engineering University of Engineering and Technology Lahore (New‐Campus) Lahore Pakistan
| |
Collapse
|
26
|
Okada K, Satoh A. Aggregation phenomena and regime change in a magnetic cubic particle suspension in an alternating magnetic field via quasi-two-dimensional Brownian dynamics. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2096511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Kazuya Okada
- Department of Mechanical Engineering, Saitama Institute of Technology, Fukaya, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
27
|
Veselov M, Uporov IV, Efremova MV, Le-Deygen IM, Prusov AN, Shchetinin IV, Savchenko AG, Golovin YI, Kabanov AV, Klyachko NL. Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS OMEGA 2022; 7:20644-20655. [PMID: 35755395 PMCID: PMC9219078 DOI: 10.1021/acsomega.2c00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Enzymes conjugated to magnetic nanoparticles (MNPs) undergo changes in the catalytic activity of the non-heating low-frequency magnetic field (LFMF). We apply in silico simulations by molecular dynamics (MD) and in vitro spectroscopic analysis of the enzyme kinetics and secondary structure to study α-chymotrypsin (CT) conjugated to gold-coated iron oxide MNPs. The latter are functionalized by either carboxylic or amino group moieties to vary the points of enzyme attachment. The MD simulation suggests that application of the stretching force to the CT globule by its amino or carboxylic groups causes shrinkage of the substrate-binding site but little if any changes in the catalytic triad. Consistent with this, in CT conjugated to MNPs by either amino or carboxylic groups, LFMF alters the Michaelis-Menten constant but not the apparent catalytic constant k cat (= V max/[E]o). Irrespective of the point of conjugation to MNPs, the CT secondary structure was affected with nearly complete loss of α-helices and increase in the random structures in LFMF, as shown by attenuated total reflection Fourier transformed infrared spectroscopy. Both the catalytic activity and the protein structure of MNP-CT conjugates restored 3 h after the field exposure. We believe that such remotely actuated systems can find applications in advanced manufacturing, nanomedicine, and other areas.
Collapse
Affiliation(s)
- Maxim
M. Veselov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Igor V. Uporov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V. Efremova
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - Irina M. Le-Deygen
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Igor V. Shchetinin
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
| | | | - Yuri I. Golovin
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- G.R.
Derzhavin Tambov State University, Tambov 392000, Russia
| | - Alexander V. Kabanov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| | - Natalia L. Klyachko
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| |
Collapse
|
28
|
Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022; 5:278-298. [PMID: 35592431 PMCID: PMC9112416 DOI: 10.1021/acsptsci.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Achieving synergism, often by combination therapy via codelivery of chemotherapeutic agents, remains the mainstay of treating multidrug-resistance cases in cancer and microbial strains. With a typical core-shell architecture and surface functionalization to ensure facilitated targeting of tissues, nanocarriers are emerging as a promising platform toward gaining such synergism. Co-encapsulation of disparate theranostic agents in nanocarriers-from chemotherapeutic molecules to imaging or photothermal modalities-can not only address the issue of protecting the labile drug payload from a hostile biochemical environment but may also ensure optimized drug release as a mainstay of synergistic effect. However, the fate of co-encapsulated molecules, influenced by temporospatial proximity, remains unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement, aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward accomplishing such synergism through reciprocity.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Yamanouchi T, Satoh A. Improvement of trapping performance of magnetic particles by magnetic multi-poles via Brownian dynamics simulations of magnetic rod-like particles in a Hagen-Poiseuille flow. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2067503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
30
|
Hillion A, Hallali N, Clerc P, Lopez S, Lalatonne Y, Noûs C, Motte L, Gigoux V, Carrey J. Real-Time Observation and Analysis of Magnetomechanical Actuation of Magnetic Nanoparticles in Cells. NANO LETTERS 2022; 22:1986-1991. [PMID: 35191311 DOI: 10.1021/acs.nanolett.1c04738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The origin of cell death in the magnetomechanical actuation of cells induced by magnetic nanoparticle motion under low-frequency magnetic fields is still elusive. Here, a miniaturized electromagnet fitted under a confocal microscope is used to observe in real time cells specifically targeted by superparamagnetic nanoparticles and exposed to a low-frequency rotating magnetic field. Our analysis reveals that the lysosome membrane is permeabilized in only a few minutes after the start of magnetic field application, concomitant with lysosome movements toward the nucleus. Those events are associated with disorganization of the tubulin microtubule network and a change in cell morphology. This miniaturized electromagnet will allow a deeper insight into the physical, molecular, and biological process occurring during the magnetomechanical actuation of magnetic nanoparticles.
Collapse
Affiliation(s)
- Arnaud Hillion
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
| | - Nicolas Hallali
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
| | - Pascal Clerc
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers, 31432 Toulouse, France
| | - Sara Lopez
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers, 31432 Toulouse, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, F-75018 Paris, France
| | - Camille Noûs
- Laboratoire Cogitamus, Université de Toulouse III, 31000 Toulouse, France
| | - Laurence Motte
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, F-75018 Paris, France
| | - Véronique Gigoux
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers, 31432 Toulouse, France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
| |
Collapse
|
31
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
32
|
Okada K, Satoh A. Quasi-two-dimensional Brownian dynamics simulations of the regime change in the aggregate structures of cubic haematite particles in a rotating magnetic field. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2038297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kazuya Okada
- Department of Mechanical Engineering, Saitama Institute of Technology, Fukaya, Japan
| | - Akira Satoh
- Department of Mechanical Engineering, Akita Prefectural University, Yurihonjo, Japan
| |
Collapse
|
33
|
Cell Behavioral Changes after the Application of Magneto-Mechanical Activation to Normal and Cancer Cells. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In vitro cell exposure to nanoparticles, depending on the applied concentration, can help in the development of theranostic tools to better detect and treat human diseases. Recent studies have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the behavior of cancer cells. In this work, the viability rate of MNP’s-manipulated cancerous (MCF-7, MDA-MB-231) and non-cancerous (MCF-10A) cells was investigated in three different types of low-frequency magnetic fields: static, pulsed, and rotating field mode. In the non-cancerous cell line, the cell viability decreased mostly in cells with internalized MNPs and those treated with the pulsed field mode. In both cancer cell lines, the pulsed field mode was again the optimum magnetic field, which together with internalized MNPs caused a large decrease in cells’ viability (50–55% and 70% in MCF-7 and MDA-MB-231, respectively) while the static and rotating field modes maintained the viability at high levels. Finally, F-actin staining was used to observe the changes in the cytoskeleton and DAPI staining was performed to reveal the apoptotic alterations in cells’ nuclei before and after magneto-mechanical activation. Subsequently, reduced cell viability led to a loss of actin stress fibers and apoptotic nuclear changes in cancer cells subjected to MNPs triggered by a pulsed magnetic field.
Collapse
|
34
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
35
|
Lopez S, Hallali N, Lalatonne Y, Hillion A, Antunes JC, Serhan N, Clerc P, Fourmy D, Motte L, Carrey J, Gigoux V. Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields. NANOSCALE ADVANCES 2022; 4:421-436. [PMID: 36132704 PMCID: PMC9417452 DOI: 10.1039/d1na00474c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
The destruction of cells using the mechanical activation of magnetic nanoparticles with low-frequency magnetic fields constitutes a recent and interesting approach in cancer therapy. Here, we showed that superparamagnetic iron oxide nanoparticles as small as 6 nm were able to induce the death of pancreatic cancer-associated fibroblasts, chosen as a model. An exhaustive screening of the amplitude, frequency, and type (alternating vs. rotating) of magnetic field demonstrated that the best efficacy was obtained for a rotating low-amplitude low-frequency magnetic field (1 Hz and 40 mT), reaching a 34% ratio in cell death induction; interestingly, the cell death was not maximized for the largest amplitudes of the magnetic field. State-of-the-art kinetic Monte-Carlo simulations able to calculate the torque undergone by assemblies of magnetic nanoparticles explained these features and were in agreement with cell death experiments. Simulations showed that the force generated by the nanoparticles once internalized inside the lysosome was around 3 pN, which is in principle not large enough to induce direct membrane disruption. Other biological mechanisms were explored to explain cell death: the mechanical activation of magnetic nanoparticles induced lysosome membrane permeabilization and the release of the lysosome content and cell death was mediated through a lysosomal pathway depending on cathepsin-B activity. Finally, we showed that repeated rotating magnetic field exposure halted drastically the cell proliferation. This study established a proof-of-concept that ultra-small nanoparticles can disrupt the tumor microenvironment through mechanical forces generated by mechanical activation of magnetic nanoparticles upon low-frequency rotating magnetic field exposure, opening new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Sara Lopez
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Nicolas Hallali
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 F-93000 Bobigny France
- Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris F-93009 Bobigny France
| | - Arnaud Hillion
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
| | - Joana C Antunes
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 F-93000 Bobigny France
| | - Nizar Serhan
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Pascal Clerc
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Daniel Fourmy
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| | - Laurence Motte
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 F-93000 Bobigny France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
| | - Véronique Gigoux
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), CNRS-UPS-INSA UMR5215 135 Avenue de Rangueil F-31077 Toulouse France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers 1 Avenue du Professeur Jean Poulhes F-31432 Toulouse France
| |
Collapse
|
36
|
Yao J, Yao C, Zhang A, Xu X, Wu A, Yang F. Magnetomechanical force: an emerging paradigm for therapeutic applications. J Mater Chem B 2022; 10:7136-7147. [DOI: 10.1039/d2tb00428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces, which play an profound role in cell fate regulation, have prompted the rapid development and popularization of mechanobiology. More recently, magnetic fields in combination with intelligent materials featuring...
Collapse
|
37
|
Seo Y, Ghazanfari L, Master A, Vishwasrao HM, Wan X, Sokolsky-Papkov M, Kabanov AV. Poly(2-oxazoline)-magnetite NanoFerrogels: Magnetic field responsive theranostic platform for cancer drug delivery and imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 39:102459. [PMID: 34530163 PMCID: PMC8665074 DOI: 10.1016/j.nano.2021.102459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Combining diagnosis and treatment approaches in one entity is the goal of theranostics for cancer therapy. Magnetic nanoparticles have been extensively used as contrast agents for nuclear magnetic resonance imaging as well as drug carriers and remote actuation agents. Poly(2-oxazoline)-based polymeric micelles, which have been shown to efficiently solubilize hydrophobic drugs and drug combinations, have high loading capacity (above 40% w/w) for paclitaxel. In this study, we report the development of novel theranostic system, NanoFerrogels, which is designed to capitalize on the magnetic nanoparticle properties as imaging agents and the poly(2-oxazoline)-based micelles as drug loading compartment. We developed six formulations with magnetic nanoparticle content of 0.3%-12% (w/w), with the z-average sizes of 85-130 nm and ξ-potential of 2.7-28.3 mV. The release profiles of paclitaxel from NanoFerrogels were notably dependent on the degree of dopamine grafting on poly(2-oxazoline)-based micelles. Paclitaxel loaded NanoFerrogels showed efficacy against three breast cancer lines which was comparable to free paclitaxel. They also showed improved tumor and lymph node accumulation and signal reduction in vivo (2.7% in tumor; 8.5% in lymph node) compared to clinically approved imaging agent ferumoxytol (FERAHEME®) 24 h after administration. NanoFerrogels responded to super-low frequency alternating current magnetic field (50 kA m-1, 50 Hz) which accelerated drug release from paclitaxel-loaded NanoFerrogels or caused death of cells loaded with NanoFerrogels. These proof-of-concept experiments demonstrate that NanoFerrogels have potential as remotely actuated theranostic platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Youngee Seo
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lida Ghazanfari
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alyssa Master
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hemant M Vishwasrao
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Xiaomeng Wan
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
38
|
Burmistrov IA, Veselov MM, Mikheev AV, Borodina TN, Bukreeva TV, Chuev MA, Starchikov SS, Lyubutin IS, Artemov VV, Khmelenin DN, Klyachko NL, Trushina DB. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2021; 14:65. [PMID: 35056960 PMCID: PMC8777611 DOI: 10.3390/pharmaceutics14010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Collapse
Affiliation(s)
- Ivan A. Burmistrov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
| | - Alexander V. Mikheev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N. Borodina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Tatiana V. Bukreeva
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- National Research Centre ‘‘Kurchatov Institute”, 123182 Moscow, Russia
| | - Michael A. Chuev
- Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia;
| | - Sergey S. Starchikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Igor S. Lyubutin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Dmitry N. Khmelenin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Daria B. Trushina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
39
|
Thébault C, Marmiesse M, Naud C, Pernet-Gallay K, Billiet E, Joisten H, Dieny B, Carrière M, Hou Y, Morel R. Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis. NANOSCALE ADVANCES 2021; 3:6213-6222. [PMID: 36133951 PMCID: PMC9418695 DOI: 10.1039/d1na00461a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/21/2021] [Indexed: 05/03/2023]
Abstract
In nanomedicine, treatments based on physical mechanisms are more and more investigated and are promising alternatives for challenging tumor therapy. One of these approaches, called magneto-mechanical treatment, consists in triggering cell death via the vibration of anisotropic magnetic particles, under a low frequency magnetic field. In this work, we introduce a new type of easily accessible magnetic microparticles (MMPs) and study the influence of their surface functionalization on their ability to induce such an effect, and its mechanism. We prepared anisotropic magnetite microparticles by liquid-phase ball milling of a magnetite powder. These particles are completely different from the often-used SPIONs: they are micron-size, ferromagnetic, with a closed-flux magnetic structure reminiscent of that of vortex particles. The magnetic particles were covered with a silica shell, and grafted with PEGylated ligands with various physicochemical properties. We investigated both bare and coated particles' in vitro cytotoxicity, and compared their efficiency to induce U87-MG human glioblastoma cell apoptosis under a low frequency rotating magnetic field (RMF). Our results indicated that (1) the magneto-mechanical treatment with bare MMPs induces a rapid decrease in cell viability whereas the effect is slower with PEGylated particles; (2) the number of apoptotic cells after magneto-mechanical treatment is higher with PEGylated particles; (3) a lower frequency of RMF (down to 2 Hz) favors the apoptosis. These results highlight a difference in the cell death mechanism according to the properties of particles used - the rapid cell death observed with the bare MMPs indicates a death pathway via necrosis, while PEGylated particles seem to favor apoptosis.
Collapse
Affiliation(s)
- C Thébault
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - M Marmiesse
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - C Naud
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - K Pernet-Gallay
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences Grenoble France
| | - E Billiet
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - H Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, LETI 38000 Grenoble France
| | - B Dieny
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - M Carrière
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - Y Hou
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - R Morel
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| |
Collapse
|
40
|
Trilli J, Caramazza L, Paolicelli P, Casadei MA, Liberti M, Apollonio F, Petralito S. The Impact of Bilayer Rigidity on the Release from Magnetoliposomes Vesicles Controlled by PEMFs. Pharmaceutics 2021; 13:pharmaceutics13101712. [PMID: 34684003 PMCID: PMC8538647 DOI: 10.3390/pharmaceutics13101712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Stimuli-sensitive nanocarriers have recently been developed as a powerful tool in biomedical applications such as drug delivery, detection, and gene transfer techniques. Among the external triggers investigated, low intensity magnetic fields represent a non-invasive way to remotely control the release of compounds from a magneto-sensitive carrier. Magnetoliposomes (MLs), i.e., liposomes entrapping magnetic nanoparticles (MNPs), are studied due to their capacity to transport hydrophobic and hydrophilic agents, their easy production, and due to the ability of MNPs to respond to a magnetic actuation determining the triggered release of the encapsulated compounds. Here we investigated the design and optimization of the MLs to obtain an efficient on-demand release of the transported compounds, due to the magneto-mechanical actuation induced by applying low-intensity pulsed electromagnetic fields (PEMFs). In particular we studied the effect of the bilayer packing on the ability of MLs, with oleic acid-coated MNPs encapsulated in the bilayer, to respond to PEMFs application. Three kinds of MLs are produced with an increasing rigidity of the bilayer, defined as Liquid Disorder, Liquid Order, and Gel MLs and the delivery of a hydrophilic dye (as a model drug) is investigated. Results demonstrate the efficacy of the magnetic trigger on high-ordered bilayers, which are unable to dampen the perturbation produced by MNPs motion.
Collapse
Affiliation(s)
- Jordan Trilli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (J.T.); (P.P.); (M.A.C.); (S.P.)
| | - Laura Caramazza
- ICEmB at DIET, Sapienza University of Rome, 00184 Rome, Italy or (L.C.); (M.L.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (J.T.); (P.P.); (M.A.C.); (S.P.)
| | - Maria Antonietta Casadei
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (J.T.); (P.P.); (M.A.C.); (S.P.)
| | - Micaela Liberti
- ICEmB at DIET, Sapienza University of Rome, 00184 Rome, Italy or (L.C.); (M.L.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Francesca Apollonio
- ICEmB at DIET, Sapienza University of Rome, 00184 Rome, Italy or (L.C.); (M.L.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Correspondence:
| | - Stefania Petralito
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (J.T.); (P.P.); (M.A.C.); (S.P.)
| |
Collapse
|
41
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
42
|
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2255. [PMID: 34578570 PMCID: PMC8470408 DOI: 10.3390/nano11092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The review discusses the theoretical, experimental and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical activation (NMMA), the MNPs are used as mediators that localize and apply force to such target biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without significant heating. It is shown that NMMA can become a biophysical platform for a family of therapy methods including the addressed delivery and controlled release of therapeutic agents from transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of 3D scanning of the NMMA region with the size of several mm to several cm over object internals has been described.
Collapse
Affiliation(s)
- Yuri I. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Dmitry Yu. Golovin
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
| | - Ksenia Yu. Vlasova
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Azizbek D. Usvaliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
| | - Alexander V. Kabanov
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia; (Y.I.G.); (D.Y.G.)
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.Y.V.); (M.M.V.); (A.D.U.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Voronin DV, Abalymov AA, Svenskaya YI, Lomova MV. Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. Int J Mol Sci 2021; 22:9149. [PMID: 34502059 PMCID: PMC8430748 DOI: 10.3390/ijms22179149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The increased research activity aiming at improved delivery of pharmaceutical molecules indicates the expansion of the field. An efficient therapeutic delivery approach is based on the optimal choice of drug-carrying vehicle, successful targeting, and payload release enabling the site-specific accumulation of the therapeutic molecules. However, designing the formulation endowed with the targeting properties in vitro does not guarantee its selective delivery in vivo. The various biological barriers that the carrier encounters upon intravascular administration should be adequately addressed in its overall design to reduce the off-target effects and unwanted toxicity in vivo and thereby enhance the therapeutic efficacy of the payload. Here, we discuss the main parameters of remote-controlled drug delivery systems: (i) key principles of the carrier selection; (ii) the most significant physiological barriers and limitations associated with the drug delivery; (iii) major concepts for its targeting and cargo release stimulation by external stimuli in vivo. The clinical translation for drug delivery systems is also described along with the main challenges, key parameters, and examples of successfully translated drug delivery platforms. The essential steps on the way from drug delivery system design to clinical trials are summarized, arranged, and discussed.
Collapse
Affiliation(s)
- Denis V. Voronin
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Leninsky Prospekt 65, 119991 Moscow, Russia
| | - Anatolii A. Abalymov
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Yulia I. Svenskaya
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| | - Maria V. Lomova
- Science Medical Center, Saratov State University, Astrakhanskaya St. 83, 410012 Saratov, Russia; (A.A.A.); (Y.I.S.); (M.V.L.)
| |
Collapse
|
44
|
Day NB, Wixson WC, Shields CW. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021; 11:2172-2196. [PMID: 34522583 PMCID: PMC8424374 DOI: 10.1016/j.apsb.2021.03.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.
Collapse
Key Words
- BW, body weight
- Biomaterials
- CpG, cytosine-phosphate-guanine
- DAMP, damage associated molecular pattern
- Drug delivery
- EPR, enhanced permeability and retention
- FFR, field free region
- HS-TEX, heat-stressed tumor cell exosomes
- HSP, heat shock protein
- ICD, immunogenic cell death
- IVIS, in vivo imaging system
- Immunotherapy
- MICA, MHC class I-related chain A
- MPI, magnetic particle imaging
- Magnetic hyperthermia
- Magnetic nanoparticles
- Microrobotics
- ODNs, oligodeoxynucleotides
- PARP, poly(adenosine diphosphate-ribose) polymerase
- PDMS, polydimethylsiloxane
- PEG, polyethylene glycol
- PLGA, poly(lactic-co-glycolic acid)
- PNIPAM, poly(N-isopropylacrylamide)
- PVA, poly(vinyl alcohol)
- SDF, stromal cell derived-factor
- SID, small implantable device
- SLP, specific loss power
Collapse
Affiliation(s)
- Nicole B Day
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - William C Wixson
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - C Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
45
|
Non-magnetic shell coating of magnetic nanoparticles as key factor of toxicity for cancer cells in a low frequency alternating magnetic field. Colloids Surf B Biointerfaces 2021; 206:111931. [PMID: 34171621 DOI: 10.1016/j.colsurfb.2021.111931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
This work is devoted to studying the effects of non-magnetic shell coating on nanoparticles in a low frequency alternating magnetic field (LF AMF) on tumor cells in vitro. Two types of iron oxide nanoparticles with the same magnetic core with and without silica shells were synthesized. Nanoparticles with silica shells significantly decreased the viability of PC3 cancer cells in a low frequency alternating magnetic field according to the cytotoxicity test, unlike uncoated nanoparticles. We showed that cell death results from the intracellular membrane integrity failure, and the calcium ions concentration increase with the subsequent necrosis. Transmission electron microscopy images showed that the uncoated silica nanoparticles are primarily found in an aggregated form in cells. We believe that uncoated nanoparticles lose their colloidal stability in an acidic endosomal environment after internalization into the cell due to surface etching and the formation of aggregates. As a result, they encounter high endosomal macromolecular viscosity and become unable to rotate efficiently. We assume that effective rotation of nanoparticles causes cell death. In turn, silica shell coating increases nanoparticles stability, preventing aggregation in endosomes. Thus, we propose that the colloidal stability of magnetic nanoparticles inside cells is one of the key factors for effective magneto-mechanical actuation.
Collapse
|
46
|
Das R, Masa JA, Kalappattil V, Nemati Z, Rodrigo I, Garaio E, García JÁ, Phan MH, Srikanth H. Iron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1380. [PMID: 34073685 PMCID: PMC8225017 DOI: 10.3390/nano11061380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/31/2022]
Abstract
Magnetic interactions can play an important role in the heating efficiency of magnetic nanoparticles. Although most of the time interparticle magnetic interactions are a dominant source, in specific cases such as multigranular nanostructures intraparticle interactions are also relevant and their effect is significant. In this work, we have prepared two different multigranular magnetic nanostructures of iron oxide, nanorings (NRs) and nanotubes (NTs), with a similar thickness but different lengths (55 nm for NRs and 470 nm for NTs). In this way, we find that the NTs present stronger intraparticle interactions than the NRs. Magnetometry and transverse susceptibility measurements show that the NTs possess a higher effective anisotropy and saturation magnetization. Despite this, the AC hysteresis loops obtained for the NRs (0-400 Oe, 300 kHz) are more squared, therefore giving rise to a higher heating efficiency (maximum specific absorption rate, SARmax = 110 W/g for the NRs and 80 W/g for the NTs at 400 Oe and 300 kHz). These results indicate that the weaker intraparticle interactions in the case of the NRs are in favor of magnetic hyperthermia in comparison with the NTs.
Collapse
Affiliation(s)
- Raja Das
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group, 167 Hoang Ngan, Hanoi 13313, Vietnam
| | | | - Vijaysankar Kalappattil
- Department of Physics, University of South Florida (USF), Tampa, FL 33620, USA; (V.K.); (Z.N.); (M.-H.P.)
| | - Zohreh Nemati
- Department of Physics, University of South Florida (USF), Tampa, FL 33620, USA; (V.K.); (Z.N.); (M.-H.P.)
| | - Irati Rodrigo
- Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain;
| | - Eneko Garaio
- Departamento de Física Aplicada, Universidad Pública de Navarra (UPN), 31006 Pamplona, Spain;
| | - José Ángel García
- Departamento de Física, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain;
| | - Manh-Huong Phan
- Department of Physics, University of South Florida (USF), Tampa, FL 33620, USA; (V.K.); (Z.N.); (M.-H.P.)
| | - Hariharan Srikanth
- Department of Physics, University of South Florida (USF), Tampa, FL 33620, USA; (V.K.); (Z.N.); (M.-H.P.)
| |
Collapse
|
47
|
Orel VB, Syvak LA, Orel VE. Remote control of magnetic nanocomplexes for delivery and destruction of cancer cells. J Biomater Appl 2021; 36:872-881. [PMID: 33840254 DOI: 10.1177/08853282211005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.
Collapse
|
48
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
49
|
Nikitin AA, Yurenya AY, Zatsepin TS, Aparin IO, Chekhonin VP, Majouga AG, Farle M, Wiedwald U, Abakumov MA. Magnetic Nanoparticles as a Tool for Remote DNA Manipulations at a Single-Molecule Level. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14458-14469. [PMID: 33740372 DOI: 10.1021/acsami.0c21002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Remote control of cells and single molecules by magnetic nanoparticles in nonheating external magnetic fields is a perspective approach for many applications such as cancer treatment and enzyme activity regulation. However, the possibility and mechanisms of direct effects of small individual magnetic nanoparticles on such processes in magneto-mechanical experiments still remain unclear. In this work, we have shown remote-controlled mechanical dissociation of short DNA duplexes (18-60 bp) under the influence of nonheating low-frequency alternating magnetic fields using individual 11 nm magnetic nanoparticles. The developed technique allows (1) simultaneous manipulation of millions of individual DNA molecules and (2) evaluation of energies of intermolecular interactions in short DNA duplexes or in other molecules. Finally, we have shown that DNA duplexes dissociation is mediated by mechanical stress and produced by the movement of magnetic nanoparticles in magnetic fields, but not by local overheating. The presented technique opens a new avenue for high-precision manipulation of DNA and generation of biosensors for quantification of energies of intermolecular interaction.
Collapse
Affiliation(s)
- Aleksey A Nikitin
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anton Yu Yurenya
- M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Timofei S Zatsepin
- M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Ilya O Aparin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Vladimir P Chekhonin
- Department of Medical Nanobiotechnology, N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander G Majouga
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Maxim A Abakumov
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Department of Medical Nanobiotechnology, N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
50
|
Abstract
Iron-based nanomaterials have appeared in various cancer treatments owing to their promising functions and safety. Various sophisticated iron-based nanomaterials have been designed to exhibit great therapeutic effects through different strategies. Given the rapid progression, there is a great need to integrate the recent advances to learn about the latest innovation in this field. In this review, we classified the strategies of iron-based nanomaterials for cancer treatment into the following categories: immunotherapy, ferroptosis, magnetic hyperthermia and magneto-mechanical destruction. On the one hand, we discussed the underlining mechanism of iron-based nanomaterials in these therapies and applications; on the other hand, we analyzed the feasible combination of these applications and other therapies. Finally, the current challenges and expectation of iron-based nanomaterials in this field were highlighted.
Collapse
Affiliation(s)
- Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China. University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | |
Collapse
|