1
|
Yang XY, Luo ZQ, Fang D, Chen QB, Peng N, Fang HM, Zou T. Hollow Copper Sulfide Nanocubes Loaded with Pt(IV) Complexes for Cancer Multimodal Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22875-22886. [PMID: 39418176 DOI: 10.1021/acs.langmuir.4c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chemotherapy (CT) can significantly inhibit tumor growth, metastasis, and recurrence during cancer therapy. People have widely used platinum drugs in cancer treatment. However, as most chemotherapeutic drugs, platinum drugs still have shortcomings such as poor solubility, low cell uptake, nonspecific distribution, multidrug resistance, and adverse side effects. Therefore, we synthesized hollow copper sulfide (CuS) nanocubes with photothermal and photodynamic properties as carriers for Pt(IV) drugs. Hollow CuS nanocubes have attracted considerable interest in the field of cancer photothermal therapy (PTT) using multiple biological windows. Under near-infrared (NIR) laser irradiation, Cu2+ can be reduced into Cu+ in the presence of hydrogen peroxide in the tumor microenvironment. The resulting Cu+ can be used for photodynamic therapy (PDT), which can perform a Fenton-like reaction under acidic conditions (pH 5.5-6.5) and catalyze hydrogen peroxide to produce ·OH in the tumor microenvironment. In addition, compared with Pt(II) drugs, Pt(IV) drugs not only have lower systemic toxicity but also consume glutathione (GSH), thereby increasing reactive oxygen species (ROS) levels in tumor cells and effectively promoting PDT. In this study, we oxidized ethylenediamine platinum chloride to its tetravalent state, loaded the Pt(IV) complexes using hollow CuS nanocubes, and modified the surfaces of the nanoparticles with PEG to improve the EPR effect. The Pt(IV)-loaded hollow CuS nanocubes modified with PEG (Pt(IV)-CuS@PEG) are expected to be used for tumor chemo/photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zi-Qiang Luo
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dan Fang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Quan-Bing Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Hong-Ming Fang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
3
|
Deng Q, Lin P, Gu H, Zhuang X, Wang F. Silk Protein-Based Nanoporous Microsphere for Controllable Drug Delivery through Self-Assembly in Ionic Liquid System. Biomacromolecules 2024; 25:1527-1540. [PMID: 38307005 DOI: 10.1021/acs.biomac.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ionic liquids (ILs) showed a promising application prospect in the field of biomedicine due to their unique recyclability, modifiability, and structure adjustability. In this study, nanoporous microsphere of silk protein and blending with poly(d,l-lactic acid) as model drug delivery was fabricated, respectively, through an IL-induced self-assembly method. Their morphology, structure, and thermal properties were comparably investigated through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, X-ray diffraction, and thermogravimetric analyses, and the interaction mechanisms were also discussed to elucidate the effect of structure on drug delivery kinetics. The pure protein exhibited a bigger nanopore size in the microsphere compared to the composite one, facilitating more effective drug loading up to 88.7%. However, drug release was over 53.5% for the composite during initial 4 h, while pure protein was only about half of the composite. Both of them exhibited sustained slow release after 24 h and anticancer efficacy. Furthermore, the favorable compatibility between drug and microsphere vehicle was found and experienced improved thermal stability upon encapsulation, which could protect the drug molecules in high temperature at 200 °C. When the protein and its composite self-assembled to microspheres in ILs due to electrostatic and hydrophobic interaction, the drug could be infiltrated into the nanoporous matrix through biophysical action, and the protein structure displayed reversible transition during delivery. The sustained slow release from pure SF was attributed to the high β-sheet block action and strong drug-protein interactions, whose strength could be tuned through blending poly(d,l-lactic acid) with protein. These findings indicated that the SF-based nanoporous microspheres formed from IL self-assembled system are an ideal and potential drug delivery vehicle which can be incorporated into various biomaterials in the future.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
5
|
Zhang X, He Z. Cell Membrane Coated pH-Responsive Intelligent Bionic Delivery Nanoplatform for Active Targeting in Photothermal Therapy. Int J Nanomedicine 2023; 18:7729-7744. [PMID: 38115989 PMCID: PMC10729683 DOI: 10.2147/ijn.s436940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Aim To produce pH-responsive bionic high photothermal conversion nanoparticles actively targeting tumors for sensitizing photothermal therapy (PTT). Materials and Methods The bionic nanoparticles (ICG-PEI@HM NPs) were prepared by electrostatic adsorption of indocyanine green (ICG) coupled to polyethyleneimine (PEI) and modified with tumor cell membranes. In vitro and in vivo experiments were conducted to investigate the efficacy of ICG-PEI@HM-mediated PTT. Results The intelligent responsiveness of ICG-PEI@HM to pH promoted the accumulation of ICG and enhanced the PTT performance of ICG-PEI@HM NPs. Compared with free ICG, NPs exhibited great photothermal stability, cellular uptake, and active tumor targeting for PTT. Conclusion ICG-PEI@HM NPs can enhance the efficacy of PTT and can be used as a new strategy for the construction of photothermal agents.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining No.1 People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Zelai He
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College & Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| |
Collapse
|
6
|
Song J, Chen L, Yuan Z, Gong X. Elevation of serum human epididymis protein 4 (HE4) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) as predicting factors for the occurrence of acute kidney injury on chronic kidney disease: a single-center retrospective self-control study. Front Pharmacol 2023; 14:1269311. [PMID: 37753112 PMCID: PMC10518407 DOI: 10.3389/fphar.2023.1269311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Objectives: To evaluate whether novel biomarkers of renal injury, serum HE4 and NT-proBNP could predict acute kidney injury (AKI) on chronic kidney disease (CKD) (A on C) and assess the specificity and efficiency of serum creatinine (SCr), HE4 and NT-proBNP in identifying potential AKI. Meanwhile, the potential early-warning value of HE4 and NT-proBNP in CKD patients was explored. Methods: We performed a single-center, retrospective cohort study of 187 adult CKD patients. 32 AKI (grades 1-2) patients with pre-existing CKD (stages 3-5) were Group 1, 59 patients of CKD (stages 4-5) were Group 2. Another 96 patients of CKD (stages 1-3) were Group 3. All patients received general treatments, Group 1 patients received Chinese herb formulation (Chuan Huang Fang-Ⅱ, CHF-Ⅱ) simultaneously. These 155 CKD (stages 1-5) without AKI patients were observed for descriptive analysis. Results: HE4 in Group 1 (860.63 ± 385.40) was higher than that in Group 2 (673.86 ± 283.58) before treatments. BUN, SCr, UA, NGAL, IL18, HE4 and NT-proBNP in Group 1 were lower, while eGFR was higher (p < 0.01, after vs. before treatments). In Group 1, both HE4 and NT-proBNP were positively correlated with SCr (respectively r = 0.549, 0.464) before treatments. The diagnostic performance of serum HE4 and NT-proBNP for A on C was 351.5 pmol/L, 274.5 pg/mL as the optimal cutoff value Area Under Curve (AUC) 0.860 (95% CI: 0.808 - 0.913, p < 0.001), [AUC 0.775 (95% CI: 0.697 - 0.853, p < 0.001), with a sensitivity and specificity of 100% and 66.5%, 87.5% and 48.8%, respectively]. In Group 2, serum HE4 was correlated with SCr (r = 0.682, p < 0.01) before treatments. Serum HE4 and NT-proBNP were elevated in advanced CKD stages, and were increased as CKD stages progressed with statistical significance. Conclusion: This work indicated serum HE4 and NT-proBNP should elevate in A on C and CKD patients, HE4 is positively correlated with the disease severity, and patients with higher HE4 and NT-proBNP usually have poorer prognosis. Thus, serum HE4 and NT-proBNP are impactful predictors of A on C. Additionally, serum HE4 and NT-proBNP have the potential to evaluate clinical efficacy of A on C.
Collapse
Affiliation(s)
| | | | | | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Farheen M, Akhter MH, Chitme H, Akhter MS, Tabassum F, Jaremko M, Emwas AH. Harnessing Folate-Functionalized Nasal Delivery of Dox-Erlo-Loaded Biopolymeric Nanoparticles in Cancer Treatment: Development, Optimization, Characterization, and Biodistribution Analysis. Pharmaceuticals (Basel) 2023; 16:207. [PMID: 37259356 PMCID: PMC9959140 DOI: 10.3390/ph16020207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 08/15/2023] Open
Abstract
The aim of the present study is to develop Doxorubicin-Erlotinib nanoparticles (Dox-Erlo NPs) and folate-armored Dox-Erlo-NP conjugates for targeting glioma cancer. Glioma is one of the most common progressive cancerous growths originating from brain glial cells. However, the blood-brain barrier (BBB) is only semi-permeable and is highly selective as to which compounds are let through; designing compounds that overcome this constraint is therefore a major challenge in the development of pharmaceutical agents. We demonstrate that the NP conjugates studied in this paper may ameliorate the BBB penetration and enrich the drug concentration in the target bypassing the BBB. NPs were prepared using a biopolymer with a double-emulsion solvent evaporation technique and functionalized with folic acid for site-specific targeting. Dox-Erlo NPs and Dox-Erlo-NP conjugates were extensively characterized in vitro for various parameters. Dox-Erlo NPs and Dox-Erlo-NP conjugates incurred a z-average of 95.35 ± 10.25 nm and 110.12 ± 9.2 nm, respectively. The zeta potentials of the Dox-Erlo NPs and Dox-Erlo-NP conjugates were observed at -18.1 mV and -25.1 mV, respectively. A TEM image has shown that the NPs were well-dispersed, uniform, de-aggregated, and consistent. A hemolytic assay confirmed hemocompatibility with the developed formulation and that it can be safely administered. Dox-Erlo-NP conjugates significantly reduced the number of viable cells to 24.66 ± 2.08% and 32.33 ± 2.51% in U87 and C6 cells, respectively, and IC50 values of 3.064 µM and 3.350 µM in U87 and C6 cells were reported after 24 h, respectively. A biodistribution study revealed that a significant concentration of Dox and Erlo were estimated in the brain relative to drug suspension. Dox-Erlo-NP conjugates were also stable for three months. The findings suggest that the developed Dox-Erlo-NP conjugates may be a promising agent for administration in glioma therapy.
Collapse
Affiliation(s)
- Ms Farheen
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Havagiray Chitme
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Sayeed Akhter
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private College, Buraydah 51418, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Rani R, Malik P, Dhania S, Mukherjee TK. Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment. Pharmaceutics 2023; 15:227. [PMID: 36678856 PMCID: PMC9860911 DOI: 10.3390/pharmaceutics15010227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) currently occupies the second rank in cancer-related global female deaths. Although consistent awareness and improved diagnosis have reduced mortality in recent years, late diagnosis and resistant response still limit the therapeutic efficacy of chemotherapeutic drugs (CDs), leading to relapse with consequent invasion and metastasis. Treatment with CDs is indeed well-versed but it is badly curtailed with accompanying side effects and inadequacies of site-specific drug delivery. As a result, drug carriers ensuring stealth delivery and sustained drug release with improved pharmacokinetics and biodistribution are urgently needed. Core-shell mesoporous silica nanoparticles (MSNPs) have recently been a cornerstone in this context, attributed to their high surface area, low density, robust functionalization, high drug loading capacity, size-shape-controlled functioning, and homogeneous shell architecture, enabling stealth drug delivery. Recent interest in using MSNPs as drug delivery vehicles has been due to their functionalization and size-shape-driven versatilities. With such insights, this article focuses on the preparation methods and drug delivery mechanisms of MSNPs, before discussing their emerging utility in BC treatment. The information compiled herein could consolidate the database for using inorganic nanoparticles (NPs) as BC drug delivery vehicles in terms of design, application and resolving post-therapy complications.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Sunena Dhania
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Tapan Kumar Mukherjee
- Institute of Biotechnology (AIB), Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
10
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
11
|
Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Jampilek J, Kralova K. Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy. Pharmaceutics 2022; 14:2706. [PMID: 36559200 PMCID: PMC9783038 DOI: 10.3390/pharmaceutics14122706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
According to the WHO, cancer caused almost 10 million deaths worldwide in 2020, i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large, there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was the introduction of gentler antineoplastics for targeted therapy-tyrosine kinase inhibitors (TKIs). Although they have undoubtedly revolutionized oncology and hematology, they have significant side effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic and safety profiles, and being more resistant to the development of drug resistance, high expectations are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This review provides an insight into the history of chemotherapy, a brief overview of the development of TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug delivery systems of TKIs obtained in vitro and in vivo.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
13
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
14
|
Wang Z, Guo X, Hao L, Zhang X, Lin Q, Sheng R. Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6476. [PMID: 36143789 PMCID: PMC9504105 DOI: 10.3390/ma15186476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
For achieving successful chemotherapy against cancer, designing biocompatible drug delivery systems (DDSs) with long circulation times, high cellular endocytosis efficiency, and targeted drug release is of upmost importance. Herein, a well-defined PEG-b-P(MASSChol-co-MANBoc) block copolymer bearing redox-sensitive cholesteryl-side group was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization (with non-redox PEG-b-P(MACCChol-co-MAN-DCA) as the reference), and 1,2-dicarboxylic-cyclohexene acid (DCA) was then grafted onto the hydrophobic block to endow it with charge-convertible characteristics under a tumor microenvironment. The amphiphilic copolymer could be assembled into polymeric spherical micelles (SSMCs) with polyethylene glycol (PEG) as the corona/shell, and anti-cancer drug doxorubicin (DOX) was successfully encapsulated into the micellar core via strong hydrophobic and electrostatic interactions. This nanocarrier showed high stability in the physiological environment and demonstrated "smart" surface charge conversion from negative to positive in the slightly acidic environment of tumor tissues (pH 6.5~6.8), as determined by dynamic light scattering (DLS). Moreover, the cleavage of a disulfide bond linking the cholesterol grafts under an intracellular redox environment (10 mM GSH) resulted in micellar dissociation and accelerated drug release, with the non-redox-responsive micelles (CCMCs) as the control. Additionally, a cellular endocytosis and tumor proliferation inhibition study against MCF-7 tumor cells demonstrated the enhanced endocytosis and tumor cell inhibitory efficiency of dual-responsive SSMCs/DOX nanomedicines, revealing potentials as multifunctional nanoplatforms for effective oncology treatment.
Collapse
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Campus da Penteada, Universidade da Madeira, 9000390 Funchal, Madeira, Portugal
| |
Collapse
|
15
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
16
|
Mohaghegh S, Tarighatnia A, Omidi Y, Barar J, Aghanejad A, Adibkia K. Multifunctional Magnetic Nanoparticles for MRI-guided Co-delivery of Erlotinib and L-Asparaginase to Ovarian Cancer. J Microencapsul 2022; 39:394-408. [PMID: 35748819 DOI: 10.1080/02652048.2022.2094487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM(S) The use of magnetic nanoparticles (MNPs) in biomedical applications has been wildly opted due to their unique properties. The objective of this study was to evaluate the effects of aptamer-armed MNPs in ovarian cancer treatment and as T2 weighted MRI contrast agent. METHODS Here, we designed MNPs loaded with erlotinib (ERL/SPION-Val-PEG) and conjugated them with anti-mucin16 (MUC16) aptamer to introduce new image-guided nanoparticles (NPs) for targeted drug delivery as well as non-invasive magnetic resonance imaging (MRI) contrast agents. Also, the combination of our nanosystem (NS) along with L-Asparaginase (L-ASPN) led to synergistic effects in terms of reducing cell viability in ovarian cancer cells, which could suggest a novel combination therapy. RESULTS The mean size of our NS was about 63.4 ± 3.4 nm evaluated by DLS analysis and its morphology was confirmed using TEM. Moreover, the functional groups, as well as magnetic properties of our NS, were examined by FT-IR and VSM tests, respectively. The loading efficacy of erlotinib on MNPs was about 80% and its release reached 70.85% over 7 days in the pH value of 5.4. The MR images and flow cytometry results revealed that the cellular uptake of ERL/SPION-Val-PEG-MUC16 NPs in cells with MUC16 overexpression was considerably higher than unarmed NPs. In addition, T2-weight MR images of ovarian cancer-bearing mice indicated significant signal intensity changes at the tumor site 4 h after intravenous injection compared to the non-target MNPs. CONCLUSIONS Our data suggest ERL/SPION-Val-PEG NPs as an image-guided co-drug delivery system for ovarian cancer.
Collapse
Affiliation(s)
- Seraj Mohaghegh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Florida, USA
| | - Jaleh Barar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Li J, Sun R, Xu H, Wang G. Integrative Metabolomics, Proteomics and Transcriptomics Analysis Reveals Liver Toxicity of Mesoporous Silica Nanoparticles. Front Pharmacol 2022; 13:835359. [PMID: 35153799 PMCID: PMC8829009 DOI: 10.3389/fphar.2022.835359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
As pharmaceutical excipients, mesoporous silica nanoparticles (MSNs) have attracted considerable concern based on potential risks to the public. The impact of MSNs on biochemical metabolism is poorly understood, and few studies have compared the effects of MSNs administered via different routes. To evaluate the hepatotoxicity of MSNs, metabolomics, proteomics and transcriptomic analyses were performed in mice after intravenous (20 mg/kg/d) or oral ad-ministration (200 mg/kg/d) of MSNs for 10 days. Intravenous injection induced significant hepatic injury based on pathological inspection and increased the levels of AST/ALT and the inflammatory factors IL-6, IL-1β and TNF-a. Omics data suggested intravenous administration of MSNs perturbed the following metabolites: succinate, hypoxanthine, GSSG, NADP+, NADPH and 6-phosphogluconic acid. In addition, increases in GPX, SOD3, G6PD, HK, and PFK at proteomic and transcriptomic levels suggested elevation of glycolysis and pentose phosphate pathway, synthesis of glutathione and nucleotides, and antioxidative pathway activity, whereas oxidative phosphorylation, TCA and mitochondrial energy metabolism were reduced. On the other hand, oral administration of MSNs disturbed inflammatory factors and metabolites of ribose-5-phosphate, 6-phosphogluconate, GSSG, and NADP+ associated with the pentose phosphate pathway, glutathione synthesis and oxidative stress albeit to a lesser extent than intravenous injection despite the administration of a ten-fold greater dose. Overall, systematic biological data suggested that intravenous injection of nanoparticles of pharmaceutical excipients substantially affected hepatic metabolism function and induced oxidative stress and inflammation, whereas oral administration exhibited milder effects compared with intravenous injection.
Collapse
Affiliation(s)
- Jing Li
- Lab of Nano-Biology Technology, School of Physics and Electronics, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Xu
- Lab of Nano-Biology Technology, School of Physics and Electronics, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
20
|
Lee Y, Lee D, Park E, Jang SY, Cheon SY, Han S, Koo H. Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. J Nanobiotechnology 2021; 19:411. [PMID: 34876140 PMCID: PMC8650405 DOI: 10.1186/s12951-021-01160-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Combination therapy using more than one drug can result in a synergetic effect in clinical treatment of cancer. For this, it is important to develop an efficient drug delivery system that can contain multiple drugs and provide high accumulation in tumor tissue. In particular, simultaneous and stable loading of drugs with different chemical properties into a single nanoparticle carrier is a difficult problem. RESULTS We developed rhamnolipid-coated double emulsion nanoparticles containing doxorubicin and erlotinib (RL-NP-DOX-ERL) for efficient drug delivery to tumor tissue and combination chemotherapy. The double emulsion method enabled simultaneous loading of hydrophilic DOX and hydrophobic ERL in the NPs, and biosurfactant RL provided stable surface coating. The resulting NPs showed fast cellular uptake and synergetic tumor cell killing in SCC7 cells. In real-time imaging, they showed high accumulation in SCC7 tumor tissue in mice after intravenous injection. Furthermore, enhanced tumor suppression was observed by RL-NP-DOX-ERL in the same mouse model compared to control groups using free drugs and NPs containing a single drug. CONCLUSIONS The developed RL-NP-DOX-ERL provided efficient delivery of DOX and ERL to tumor tissue and successful tumor therapy with a synergetic effect. Importantly, this study demonstrated the promising potential of double-emulsion NPs and RL coating for combination therapy.
Collapse
Affiliation(s)
- Yeeun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea
| | - Eunyoung Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea
| | - Seok-Young Jang
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea
| | - Seo Young Cheon
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea
| | - Seongryeong Han
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| |
Collapse
|
21
|
García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021; 177:113953. [PMID: 34474094 DOI: 10.1016/j.addr.2021.113953] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Over the last years, respiratory diseases represent a clinical concern, being included among the leading causes of death in the world due to the lack of effective lung therapies, mainly ascribed to the pulmonary barriers affecting the delivery of drugs to the lungs. In this way, nanomedicine has arisen as a promising approach to overcome the limitations of current therapies for pulmonary diseases. The use of nanoparticles allows enhancing drug bioavailability at the target site while minimizing undesired side effects. Despite different approaches have been developed for pulmonary delivery of drugs, including the use of polymers, lipid-based nanoparticles, and inorganic nanoparticles, more efforts are required to achieve effective pulmonary drug delivery. This review provides an overview of the clinical challenges in main lung diseases, as well as highlighted the role of nanomedicine in achieving efficient pulmonary drug delivery. Drug delivery into the lungs is a complex process limited by the anatomical, physiological and immunological barriers of the respiratory system. We discuss how nanomedicine can be useful to overcome these pulmonary barriers and give insights for the rational design of future nanoparticles for enhancing lung treatments. We also attempt herein to display more in detail the potential of mesoporous silica nanoparticles (MSNs) as promising nanocarrier for pulmonary drug delivery by providing a comprehensive overview of their application in lung delivery to date while discussing the use of these particles for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
22
|
Feng Y, Quinnell SP, Lanzi AM, Vegas AJ. Alginate-Based Amphiphilic Block Copolymers as a Drug Codelivery Platform. NANO LETTERS 2021; 21:7495-7504. [PMID: 34495662 PMCID: PMC8768502 DOI: 10.1021/acs.nanolett.1c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Structured nanoassemblies are biomimetic structures that are enabling applications from nanomedicine to catalysis. One approach to achieve these spatially organized architectures is utilizing amphiphilic diblock copolymers with one or two macromolecular backbones that self-assemble in solution. To date, the impact of alternating backbone architectures on self-assembly and drug delivery is still an area of active research limited by the strategies used to synthesize these multiblock polymers. Here, we report self-assembling ABC-type alginate-based triblock copolymers with the backbones of three distinct biomaterials utilizing a facile conjugation approach. This "polymer mosaic" was synthesized by the covalent attachment of alginate with a PLA/PEG diblock copolymer. The combination of alginate, PEG, and PLA domains resulted in an amphiphilic copolymer that self-assembles into nanoparticles with a unique morphology of alginate domain compartmentalization. These particles serve as a versatile platform for co-encapsulation of hydrophilic and hydrophobic small molecules, their spatiotemporal release, and show potential as a drug delivery system for combination therapy.
Collapse
Affiliation(s)
- Yunpeng Feng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sean P. Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Alison M. Lanzi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Corresponding Author: Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States;
| |
Collapse
|
23
|
Doxorubicin-Loaded Mixed Micelles Using Degradable Graft and Diblock Copolymers to Enhance Anticancer Sensitivity. Cancers (Basel) 2021; 13:cancers13153816. [PMID: 34359717 PMCID: PMC8345050 DOI: 10.3390/cancers13153816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In this study, a long-circulating and pH responsive mixed micellar system was assembled with a degradable graft copolymer, poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(d,l-lactide), and a diblock copolymer, methoxy poly(ethylene glycol)-b-poly(d,l-lactide) to load with the anticancer agent doxorubicin. The in vitro results indicate that the micellar system display high biosafety and intracellular drug-releasing behavior in cancer cells. Furthermore, the in vivo results show that the high stability of the mixed micelles leads to a high tumor accumulation and hence an excellent inhibition of tumor growth. This mixed micellar system, comprising degradable diblock and graft copolymers enables one to increase cancer cells’ sensitivity toward doxorubicin (Dox) and is feasible for further clinical use in cancer therapy. Abstract In this study, a graft copolymer, poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(d,l-lactide), and a diblock copolymer, methoxy poly(ethylene glycol)-b-poly(d,l-lactide), were assembled into a mixed micellar system to encapsulate the anticancer drug doxorubicin (Dox). This mixed micellar system possesses the hydrophobic lactide segment of both copolymers, which reinforces its stability in physiological milieus; the histidine molecules appended on the graft copolymer provide the desired pH-responsive behavior to release Dox during internalization in cancer cells. The results demonstrate that the two copolymers were successfully prepared, and their ratios in the mixed micelles were optimized on the basis of the results of the stability tests. Under acidic conditions, the mixed micelles swell and are able to release their payloads. Therefore, the in vitro results indicate that the Dox in the mixed micelles is released effectively in response to the environmental pH of the mimetic internalization process, increasing cancer cells’ sensitivity toward Dox. The mixed micelles display low cytotoxicity due to the degradability of the polymers. The in vivo images show that the high stability of the mixed micelles ensures a high tumor accumulation. This selective tumor accumulation results in an excellent inhibition of in vivo tumor growth and a high rate of apoptosis in cancerous tissues, with low toxicity. This highly stable, mixed micellar system with a pH-dependent drug release, which enables the precise delivery of drugs to the tumor lesions, is feasible to employ clinically in cancer therapy.
Collapse
|
24
|
Cheng F, Pan Q, Gao W, Pu Y, Luo K, He B. Reversing Chemotherapy Resistance by a Synergy between Lysosomal pH-Activated Mitochondrial Drug Delivery and Erlotinib-Mediated Drug Efflux Inhibition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29257-29268. [PMID: 34130450 DOI: 10.1021/acsami.1c03196] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial drug delivery has attracted increasing attention in various mitochondrial dysfunction-associated disorders such as cancer owing to the important role of energy production. Herein, we report a lysosomal pH-activated mitochondrial-targeting polymer nanoparticle to overcome drug resistance by a synergy between mitochondrial delivery of doxorubicin (DOX, an anticancer drug) and erlotinib-mediated inhibition of drug efflux. The obtained nanoparticles, DE-NPs could maintain negative charge and have long blood circulation while undergoing charge reversal at lysosomal pH after internalization by cancer cells. Thereafter, the acidity-activated polycationic and hydrophobic polypeptide domains boost lysosomal escape and mitochondrial-targeting drug delivery, leading to mitochondrial dysfunction, ATP suppression, and cell apoptosis. Moreover, the suppressed ATP supply and erlotinib enabled dual inhibition of drug efflux by DOX-resistant MCF-7/ADR cells, leading to significantly augmented intracellular DOX accumulation and a synergistic anticancer effect with a 17-fold decrease of IC50 relative to DOX. In vivo antitumor study demonstrates that DE-NPs efficiently suppressed the tumor burden in MCF-7/ADR tumor-bearing mice and led to negligible toxicity. This work establishes that a combination of mitochondrial drug delivery and drug efflux inhibition could be a promising strategy for combating multidrug resistance.
Collapse
Affiliation(s)
- Furong Cheng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Center for Translational Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University, Richmond 23219, Virginia, United States
| | - Qingqing Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Sun Q, Zhu Y, Du J. Recent progress on charge-reversal polymeric nanocarriers for cancer treatments. Biomed Mater 2021; 16. [PMID: 33971642 DOI: 10.1088/1748-605x/abffb5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Nanocarriers (NCs) for delivery anticancer therapeutics have been under development for decades. Although great progress has been achieved, the clinic translation is still in the infancy. The key challenge lies in the biological barriers which lie between the NCs and the target spots, including blood circulation, tumor penetration, cellular uptake, endo-/lysosomal escape, intracellular therapeutics release and organelle targeting. Each barrier has its own distinctive microenvironment and requires different surface charge. To address this challenge, charge-reversal polymeric NCs have been a hot topic, which are capable of overcoming each delivery barrier, by reversing their charges in response to certain biological stimuli in the tumor microenvironment. In this review, the triggering mechanisms of charge reversal, including pH, enzyme and redox approaches are summarized. Then the corresponding design principles of charge-reversal NCs for each delivery barrier are discussed. More importantly, the limitations and future prospects of charge-reversal NCs in clinical applications are proposed.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| |
Collapse
|
26
|
Xuan M, Liang J, Li J, Wu W. Multi-functional lipopeptide micelles as a vehicle for curcumin delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Deng M, Guo R, Zang S, Rao J, Li M, Tang X, Xia C, Li M, Zhang Z, He Q. pH-Triggered Copper-Free Click Reaction-Mediated Micelle Aggregation for Enhanced Tumor Retention and Elevated Immuno-Chemotherapy against Melanoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18033-18046. [PMID: 33834754 DOI: 10.1021/acsami.1c02567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural killer (NK) cell-based immunotherapy presents a promising antitumor strategy and holds potential for combination with chemotherapy. However, the suppressed NK cell activity and poor tumor retention of therapeutics hinder the efficacy. To activate NK cell-based immuno-chemotherapy and enhance the tumor retention, we proposed a pH-responsive self-aggregated nanoparticle for the codelivery of chemotherapeutic doxorubicin (DOX) and the transforming growth factor-β (TGF-β)/Smad3 signaling pathway inhibitor SIS3. Polycaprolactone-poly(ethylene glycol) (PCL-PEG2000) micelles modified with dibenzylcyclooctyne (DBCO) or azido (N3) and coated with acid-cleavable PEG5000 were established. This nanoplatform, namely, M-DN@DOX/SIS3, could remain well dispersed in the neutral systemic circulation, while quickly respond to the acidic tumor microenvironment and intracellular lysosomes, triggering copper-free click reaction-mediated aggregation, leading to the increased tumor accumulation and reduced cellular efflux. In addition, the combination of DOX with SIS3 facilitated by the aggregation strategy resulted in potent inhibition of melanoma tumor growth and significantly increased NK cells, NK cell cytokines, and antitumor T cells in the tumor. Taken together, our study offered a new concept of applying copper-free click chemistry to achieve nanoparticle aggregation and enhance tumor retention, as well as a promising new combined tumor treatment approach of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Miao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jingdong Rao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Mengmeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xian Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
28
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
29
|
Cheng F, Peng X, Meng G, Pu Y, Luo K, He B. Poly(ester-thioether) microspheres co-loaded with erlotinib and α-tocopheryl succinate for combinational therapy of non-small cell lung cancer. J Mater Chem B 2021; 8:1728-1738. [PMID: 32022097 DOI: 10.1039/c9tb02840d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polymer microspheres are attracting wide attention in localized cancer therapy owing to the excellent biocompatibility and drug loading capacity, controllable biodegradation speeds, and minimized systemic toxicity. Herein, we presented poly(ester-thioether) microspheres, porous and nonporous, as drug depots for localized therapy of non-small cell lung cancer (NSCLC). Specifically, erlotinib and α-tocopheryl succinate (α-TOS), which are respectively an epidermal growth factor receptor (EGFR) inhibitor and mitochondria destabilizer, were efficiently loaded into porous and nonporous poly(ester-thioether) microspheres for the treatment of EGFR-overexpressing NSCLC (A549 cells). The poly(ester-thioether) microspheres significantly improved the bioavailability of both erlotinib and α-TOS in comparison to the free drug combination, realizing synergistic inhibition of A549 cells both in vitro and in vivo. The porous microspheres displayed faster degradation and drug release than the nonporous counterpart, thereby showing better anticancer efficacy. Overall, our study reported a new anticancer strategy of erlotinib and α-TOS combination for therapy of NSCLC, and established that poly(ester-thioether) microspheres could be a robust and biodegradable reservoir for drug delivery and localized cancer therapy.
Collapse
Affiliation(s)
- Furong Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. and Center for Translational Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Guolong Meng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
30
|
Chen R, Huang Y, Wang L, Zhou J, Tan Y, Peng C, Yang P, Peng W, Li J, Gu Q, Sheng Y, Wang Y, Shao G, Zhang Q, Sun Y. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci 2021; 9:2279-2294. [PMID: 33538278 DOI: 10.1039/d0bm01904f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-functionalized targeted nanocarriers to deliver chemotherapeutics have been widely explored. However, it remains highly desirable to understand and apply the antitumor potential of antibodies integrated in hybrid composite nanoplatforms. Herein, mesoporous silica nanoparticles, a supported lipid bilayer and cetuximab were integrated to fabricate a hybrid nanoplatform for effectively encapsulating and selectively delivering 5-fluorouracil (5-FU) against colorectal cancer (CRC) cells. The specially designed nanoplatform exhibited superior properties, such as satisfying size distribution, dispersity and stability, drug encapsulation, controlled release, and cellular uptake. Interestingly, the modification of cetuximab onto nanoplatforms without drug loading can significantly inhibit the migration and invasion of CRC cells through suppressing the epidermal growth factor receptor (EGFR)-associated signaling pathway. Furthermore, delivery of 5-FU by using this nanoplatform can remarkably induce cytotoxicity, cell cycle arrest, and cell apoptosis for CRC cells with high EGFR expression. Overall, this nanostructured platform can dramatically improve the tumor killing effects of encapsulated chemotherapeutics and present antimigration effects derived from the antibody modified on it. Moreover, in vivo biodistribution experiments demonstrated the superior tumor targeting ability of the targeted nanoparticles. Thus, this targeted nanoplatform has substantial potential in combinational therapy of antibodies and chemotherapy agents against colorectal cancer.
Collapse
Affiliation(s)
- Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fumoto S, Nishida K. Co-delivery Systems of Multiple Drugs Using Nanotechnology for Future Cancer Therapy. Chem Pharm Bull (Tokyo) 2021; 68:603-612. [PMID: 32611997 DOI: 10.1248/cpb.c20-00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer treatments have improved significantly during the last decade but are not yet satisfactory. Combination therapy is often administered to improve efficacy and safety. Drug delivery systems can also improve efficacy and safety. To control the spatiotemporal distribution of drugs, nanotechnology involving liposomes, solid lipid nanoparticles, and polymeric micelles has been developed. Co-delivery systems of multiple drugs are a promising approach to combat cancer. Synergistic effects and reduced side effects are expected from the use of co-delivery systems. In this review, we summarize various co-delivery systems for multiple drugs, including small-molecule drugs, nucleic acids, genes, and proteins. Co-delivery of drugs with different properties is relatively difficult, but some researchers have succeeded in developing such co-delivery systems. Environment-responsive carrier designs can control the release of cargos. Although their preparation is more complicated than that of mono-delivery systems, co-delivery systems can simplify clinical procedures and improve patient QOL.
Collapse
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
32
|
Jin Y, Wang Y, Liu X, Zhou J, Wang X, Feng H, Liu H. Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5205-5215. [PMID: 33268983 PMCID: PMC7701144 DOI: 10.2147/dddt.s260253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Purpose Prodrug technology-based combination drug therapy has been exploited as a promising treatment strategy to achieve synergistic lung cancer therapy, reduce drug dose, and decrease side effects. In the present study, we synthesized a pH and glutathione (GSH) sensitive prodrug, cisplatin (CIS) and doxorubicin (DOX) conjugates (CIS-DOXp). CIS-DOXp was loaded by nanocarriers and delivered into the tumor site. Methods pH and GSH sensitive CIS-DOX prodrug (CIS-DOXp) was synthesized by conjugating GSH responsive CIS prodrug with pH sensitive DOX prodrug. CIS-DOXp-loaded nanocarriers (CIS-DOXp NC) were prepared using emulsification and solvent evaporation method. The morphology, particle size, polydispersity index (PDI) and zeta potential of nanocarriers were measured. In vitro cytotoxicity of nanocarriers and the corresponding free drugs was examined using the MTT assay. In vivo anti-tumor efficiency and biodistribution behaviors were evaluated on lung cancer mice models. Results The size, PDI, zeta potential, CIS loading efficiency, and DOX loading efficiency of CIS-DOXp NC were 128.6 ± 3.2 nm, 0.196 ± 0.021, 15.7 ± 1.7 mV, 92.1 ± 2.1%, and 90.4 ± 1.8%, respectively. The best cell killing ability (the lowest combination index of 0.57) was found at the combination ratio of 1:3 (CIS:DOX, w/w) in the drugs co-loaded formulations, indicating the strongest synergism effect. CIS-DOXp NC showed the best tumor inhibition efficiency (79.9%) in mice with negligible body weight lost. Conclusion CIS-DOXp NC could be applied as a promising system for the synergistic chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Yi Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Xiguang Liu
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Jing Zhou
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Xintong Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Hui Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Hong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
33
|
Zhao X, Chen J, Qiu M, Li Y, Glass Z, Xu Q. Imidazole‐Based Synthetic Lipidoids for In Vivo mRNA Delivery into Primary T Lymphocytes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuewei Zhao
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Jinjin Chen
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Min Qiu
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Yamin Li
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Zachary Glass
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| |
Collapse
|
34
|
Gregory JV, Vogus DR, Barajas A, Cadena MA, Mitragotri S, Lahann J. Programmable Delivery of Synergistic Cancer Drug Combinations Using Bicompartmental Nanoparticles. Adv Healthc Mater 2020; 9:e2000564. [PMID: 32959525 DOI: 10.1002/adhm.202000564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Indexed: 12/27/2022]
Abstract
Delivery of multiple therapeutics has become a preferred method of treating cancer, albeit differences in the biodistribution and pharmacokinetic profiles of individual drugs pose challenges in effectively delivering synergistic drug combinations to and at the tumor site. Here, bicompartmental Janus nanoparticles comprised of domains are reported with distinct bulk properties that allow for independent drug loading and release. Programmable drug release can be triggered by a change in the pH value and depends upon the bulk properties of the polymers used in the respective compartments, rather than the molecular structures of the active agents. Bicompartmental nanoparticles delivering a synergistic combination of lapatinib and paclitaxel result in increased activity against HER2+ breast cancer cells. Surprisingly, the dual drug loaded particles also show significant efficacy toward triple negative breast cancer, even though this cancer model is unresponsive to lapatinib alone. The broad versatility of the nanoparticle platform allows for rapid exploration of a wide range of drug combinations where both their relative drug ratios and temporal release profiles can be optimized.
Collapse
Affiliation(s)
- Jason V. Gregory
- Biointerfaces Institute and Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Douglas R. Vogus
- John A Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Alexandra Barajas
- Department of Chemical Engineering University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Melissa A. Cadena
- Department of Biomedical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Samir Mitragotri
- John A Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Department of Biomedical Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
35
|
Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2020; 29:131-154. [PMID: 32815741 DOI: 10.1080/1061186x.2020.1812614] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs) are a particular example of innovative nanomaterials for the development of drug delivery systems. MSNPs have recently received more attention for biological and pharmaceutical applications due to their capability to deliver therapeutic agents. Due to their unique structure, they can function as an effective carrier for the delivery of therapeutic agents to mitigate diseases progress, reduce inflammatory responses and consequently improve cancer treatment. The potency of MSNPs for the diagnosis and management of various diseases has been studied. This literature review will take an in-depth look into the properties of various types of MSNPs (e.g. shape, particle and pore size, surface area, pore volume and surface functionalisation), and discuss their characteristics, in terms of cellular uptake, drug delivery and release. MSNPs will then be discussed in terms of their therapeutic applications (passive and active tumour targeting, theranostics, biosensing and immunostimulative), biocompatibility and safety issues. Also, emerging trends and expected future advancements of this carrier will be provided.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Molecular Design and Synthesis Discipline, Queensland University of Technology, Brisbane, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Sitah Al Harthi
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Dawadmi, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
36
|
Wei Z, Wang H, Xin G, Zeng Z, Li S, Ming Y, Zhang X, Xing Z, Li L, Li Y, Zhang B, Zhang J, Niu H, Huang W. A pH-Sensitive Prodrug Nanocarrier Based on Diosgenin for Doxorubicin Delivery to Efficiently Inhibit Tumor Metastasis. Int J Nanomedicine 2020; 15:6545-6560. [PMID: 32943867 PMCID: PMC7480473 DOI: 10.2147/ijn.s250549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The metastasis, one of the biggest barriers in cancer therapy, is the leading cause of tumor deterioration and recurrence. The anti.-metastasis has been considered as a feasible strategy for clinical cancer management. It is well known that diosgenin could inhibit tumor metastasis and doxorubicin (DOX) could induce tumor apoptosis. However, their efficient delivery remains challenging. PURPOSE To address these issues, a novel pH-sensitive polymer-prodrug based on diosgenin nanoparticles (NPs) platform was developed to enhance the efficiency of DOX delivery (DOX/NPs) for synergistic therapy of cutaneous melanoma, the most lethal form of skin cancer with high malignancy, early metastasis and high mortality. METHODS AND RESULTS The inhibitory effect of DOX/NPs on tumor proliferation and migration was superior to that of NPs or free DOX. What is more, DOX/NPs could combine mitochondria-associated metastasis and apoptosis with unique internalization pathway of carrier to fight tumors. In addition, biodistribution experiments proved that DOX/NPs could efficiently accumulate in tumor sites through enhancing permeation and retention (EPR) effect compared with free DOX. Importantly, the data from in vivo experiment revealed that DOX/NPs without heart toxicity significantly inhibited tumor metastasis by exerting synergistic therapeutic effect, and reduced tumor volume and weight by inducing apoptosis. CONCLUSION The nanocarrier DOX/NPs with satisfying pharmaceutical characteristics based on the establishment of two different functional agents is a promising strategy for synergistically enhancing effects of cancer therapy.
Collapse
Affiliation(s)
- Zeliang Wei
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Haibo Wang
- Textile Institute, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhi Zeng
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiaoyu Zhang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Youping Li
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Boli Zhang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Junhua Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- College of Mathematics, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
37
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
38
|
Zhao X, Chen J, Qiu M, Li Y, Glass Z, Xu Q. Imidazole‐Based Synthetic Lipidoids for In Vivo mRNA Delivery into Primary T Lymphocytes. Angew Chem Int Ed Engl 2020; 59:20083-20089. [DOI: 10.1002/anie.202008082] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Xuewei Zhao
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Jinjin Chen
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Min Qiu
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Yamin Li
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Zachary Glass
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155 USA
| |
Collapse
|
39
|
Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnology 2020; 18:116. [PMID: 32847586 PMCID: PMC7449082 DOI: 10.1186/s12951-020-00679-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The management of metastatic cancer remains a major challenge in cancer therapy worldwide. The targeted delivery of chemotherapeutic drugs through rationally designed formulations is one potential therapeutic option. Notably, excipient-free nanodispersions that are entirely composed of pharmaceutically active molecules have been evaluated as promising candidates for the next generation of drug formulations. Formulated from the self-assembly of drug molecules, these nanodispersions enable the safe and effective delivery of therapeutic drugs to local disease lesions. Here, we developed a novel and green approach for preparing nanoparticles via the self-assembly of rhein (RHE) and doxorubicin (DOX) molecules, named RHE/DOX nanoparticles (RD NPs); this assembly was associated with the interaction force and did not involve any organic solvents. RESULTS According to molecular dynamics (MD) simulations, DOX molecules tend to assemble around RHE molecules through intermolecular forces. This intermolecular retention of DOX was further improved by the nanosizing effect of RD NPs. Compared to free DOX, RD NPs exerted a slightly stronger inhibitory effect on 4T1 cells in the scratch healing assay. As a dual drug-loaded nanoformulation, the efficacy of RD NPs against tumor cells in vitro was synergistically enhanced. Compared to free DOX, the combination of DOX and RHE in nanoparticles exerted a synergistic effect with a combination index (CI) value of 0.51 and showed a stronger ability to induce cell apoptosis. Furthermore, the RD NP treatment not only effectively suppressed primary tumor growth but also significantly inhibited tumor metastasis both in vitro and in vivo, with a better safety profile. CONCLUSIONS The generation of pure nanodrugs via a self-assembly approach might hold promise for the development of more efficient and novel excipient-free nanodispersions, particularly for two small molecular antitumor drugs that potentially exert synergistic antiproliferative effects on metastatic breast cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
40
|
Belhadj Z, He B, Deng H, Song S, Zhang H, Wang X, Dai W, Zhang Q. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles 2020; 9:1806444. [PMID: 32944191 PMCID: PMC7480498 DOI: 10.1080/20013078.2020.1806444] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/07/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022] Open
Abstract
A long-term and huge challenge in nanomedicine is the substantial uptake and rapid clearance mediated by the mononuclear phagocyte system (MPS), which enormously hinders the development of nanodrugs. Inspired by the natural merits of extracellular vesicles, we therefore developed a combined "eat me/don't eat me" strategy in an effort to achieve MPS escape and efficient drug delivery. Methodologically, cationized mannan-modified extracellular vesicles derived from DC2.4 cells were administered to saturate the MPS (eat me strategy). Then, nanocarriers fused to CD47-enriched exosomes originated from human serum were administered to evade phagocytosis by MPS (don't eat me strategy). The nanocarriers were also loaded with antitumor drugs and functionalized with a novel homing peptide to promote the tumour tissue accumulation and cancer cell uptake (eat me strategy). The concept was proven in vitro as evidenced by the reduced endocytosis of macrophages and enhanced uptake by tumour cells, whereas prolonged circulation time and increased tumour accumulation were demonstrated in vivo. Specially, the strategy induced a 123.53% increase in tumour distribution compared to conventional nanocarrier. The study both shed light on the challenge overcoming of phagocytic evasion and provided a strategy for significantly improving therapeutic outcomes, potentially permitting active drug delivery via targeted nanomedicines.
Collapse
Affiliation(s)
- Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
41
|
Liu M, Tu J, Feng Y, Zhang J, Wu J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J Nanobiotechnology 2020; 18:114. [PMID: 32811502 PMCID: PMC7437073 DOI: 10.1186/s12951-020-00677-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Diacid metabolite as the stable form of norcantharidin (DM-NCTD) derived from Chinese blister beetle (Mylabris spp.). The previous studies reported that DM-NCTD could enhance ABT-737-triggered cell viability inhibition and apoptosis in hepatocellular carcinoma (HCC) cell lines. To translate this synergistic therapy into in vivo anticancer treatment, a folate receptor-targeted lipid bilayer-supported chlorodimethyloctadecylsilane-modified mesoporous silica nanoparticle (FA-LB-CHMSN) with DM-NCTD loaded in CHMSN and ABT-737 in lipid bilayer was prepared, which could promote the cancer cell uptake of the drugs through folate receptor-mediated endocytosis. The structure and the properties of the nanoparticle were evaluated. FA-LB-CHMSN with DM-NCTD/ABT-737 loaded induced apparent tumor cell apoptosis and showed remarkably tumor inhibition in H22 tumor-bearing mice model, with significant cellular apoptosis in the tumor and no obvious toxicity to the tissues. We expect that this nanoparticle could be of interest in both biomaterial investigations for HCC treatment and the combination of chemotherapeutic drugs for synergistic therapies.
Collapse
Affiliation(s)
- Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jue Tu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P. R. China.,Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.
| | - Jing Wu
- Zhejiang Pharmaceutical College, Ningbo, P. R. China.
| |
Collapse
|
42
|
Zhou LY, Zhu YH, Wang XY, Shen C, Wei XW, Xu T, He ZY. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput Struct Biotechnol J 2020; 18:1980-1999. [PMID: 32802271 PMCID: PMC7403891 DOI: 10.1016/j.csbj.2020.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/05/2023] Open
Abstract
Zwitterions consist of equal molar cationic and anionic moieties and thus exhibit overall electroneutrality. Zwitterionic materials include phosphorylcholine, sulfobetaine, carboxybetaine, zwitterionic amino acids/peptides, and other mix-charged zwitterions that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability and low interfacial energy, zwitterionic materials have become ideal choices for designing therapeutic vectors to prevent undesired biosorption especially nonspecific biomacromolecules during circulation, which was termed antifouling capability. And along with their great biocompatibility, low cytotoxicity, negligible immunogenicity, systematic stability and long circulation time, zwitterionic materials have been widely utilized for the delivery of drugs and therapeutic genes. In this review, we first summarized the possible antifouling mechanism of zwitterions briefly, and separately introduced the features and advantages of each type of zwitterionic materials. Then we highlighted their applications in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers and stressed the multifunctional role they played in therapeutic gene delivery.
Collapse
Affiliation(s)
- Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiao-Yu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
43
|
Truong DH, Le VKH, Pham TT, Dao AH, Pham TPD, Tran TH. Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902242. [PMID: 31846230 DOI: 10.1002/smll.201902242] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
One appealing concept in the field of hybrid materials is related to the design of gated materials. These materials are prepared in such a way that the release of chemical or biochemical species from voids of porous supports to a solution is triggered upon the application of external stimuli. Such gated materials are mainly composed of two subunits: i) a porous inorganic scaffold in which a cargo is stored, and ii) certain molecular or supramolecular entities, grafted onto the external surface, that can control mass transport from the interior of the pores. On the basis of this concept, a large number of examples are developed in the past ten years. A comprehensive overview of gated materials used in drug delivery applications in in vivo models from 2016 to date is thus given here.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria, Valencia, Spain
| |
Collapse
|
45
|
Zhou X, Shi K, Hao Y, Yang C, Zha R, Yi C, Qian Z. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy. Asian J Pharm Sci 2020; 15:26-41. [PMID: 32175016 PMCID: PMC7066044 DOI: 10.1016/j.ajps.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Oral tyrosine kinase inhibitors (TKIs) against epidermal growth factor receptor (EGFR) family have been introduced into the clinic to treat human malignancies for decades. Despite superior properties of EGFR-TKIs as small molecule targeted drugs, their applications are still restricted due to their low solubility, capricious oral bioavailability, large requirement of daily dose, high binding tendency to plasma albumin and initial/acquired drug resistance. Nanotechnology is a promising tool to improve efficacy of these drugs. Through non-oral routes. Various nanotechnology-based delivery approaches have been developed for providing efficient delivery of EGFR-TKIs with a better pharmacokinetic profile and tissue-targeting ability. This review aims to indicate the advantage of nanocarriers for EGFR-TKIs delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Qian
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
46
|
Harwansh RK, Deshmukh R, Barkat MA, Rahman MA. Bioinspired Polymeric-based Core-shell Smart Nano-systems. Pharm Nanotechnol 2019; 7:181-205. [PMID: 31486750 DOI: 10.2174/2211738507666190429104550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
Smart nanosystems (SNs) have the potential to revolutionize drug delivery. Conventional drug delivery systems have poor drug-loading, early burst release, limited therapeutic effects, etc. Thus, to overcome these problems, researchers have taken advantage of the host-guest interactions as bioinspired nanosystems which can deliver nanocarriers more efficiently with the maximum drug loading capacity and improved therapeutic efficacy as well as bioavailability. SNs employ nanomaterials to form cage molecules by entrapping new nanocarriers called smart nanosystems in their cargo and design. The activities of SNs are based on responsive materials that interact with the stimuli either by changing their properties or conformational structures. The aptitude of living systems to respond to stimuli and process information has encouraged researchers to build up integrated nanosystems exhibiting similar function and therapeutic response. Various smart materials, including polymers, have been exhaustively employed in fabricating different stimuli-responsive nanosystems which can deliver bioactive molecules to a specific site for a certain period with minimal side effects. SNs have been widely explored to deliver diverse kinds of therapeutic agents ranging from bioactive compounds, genes, and biopharmaceuticals like proteins and peptides, to diagnostic imaging agents for biomedical applications. Nanotechnology-based different nanosystems are promising for health care issues. The advancement of SNs with physical science and engineering technology in synthesizing nanostructures and their physicochemical characterization should be exploited in medicine and healthcare for reducing mortality rate, morbidity, disease prevalence and general societal burden.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura -281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura -281406, India
| | - Md Abul Barkat
- Department of Pharmaceutics, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurgaon, India
| | | |
Collapse
|
47
|
Liu Y, Dai R, Wei Q, Li W, Zhu G, Chi H, Guo Z, Wang L, Cui C, Xu J, Ma K. Dual-Functionalized Janus Mesoporous Silica Nanoparticles with Active Targeting and Charge Reversal for Synergistic Tumor-Targeting Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44582-44592. [PMID: 31682097 DOI: 10.1021/acsami.9b15434] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Janus nanoparticles with an anisotropic feature concentrated multiple properties on a single carrier, providing synergistic effects. In this study, dual-functionalized Janus nanoparticles (HA-JMSN/DOX-DMMA) were constructed with a tumor-targeting ligand (hyaluronic acid, HA) modified on the one side and a charge reversal group (2,3-dimethylmaleic anhydride, DMMA) on the other side. The drug release of HA-JMSN/DOX-DMMA was positively correlated with the acidity of the environment. The cytotoxicity and cell uptake of HA-JMSN/DOX-DMMA were superior to the isotropous nanoparticles. The endocytosis pathway of HA-JMSN/DOX-DMMA involved the clathrin-mediated endocytosis (HA) and the micropinocytosis (DMMA) at the same time, which indicated that they both participated in the interaction between nanoparticles and tumor cells. After being injected intravenously in mice, the distribution of HA-JMSN/DOX-DMMA in tumor was enhanced significantly. The antitumor therapy study in vivo showed that HA-JMSN/DOX-DMMA inhibited tumor growth and improved the survival rate of tumor-bearing mice effectively. In general, HA-JMSN/DOX-DMMA could take the synergistic effect of active targeting and charge reversal to deliver drug in tumor cells and kill them efficiently, which was a promising antitumor nanodrug.
Collapse
Affiliation(s)
| | | | - Qiuyu Wei
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102112. [PMID: 31669083 DOI: 10.1016/j.nano.2019.102112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 10/03/2019] [Indexed: 01/31/2023]
Abstract
Combination therapy has emerged as an efficient way to deliver chemotherapeutics for treatment of glioblastoma. It provides collaborative approach of targeting cancer cells by acting via multiple mechanisms, thereby reducing drug resistance. However, the presence of impermeable blood brain barrier (BBB) restricts the delivery of chemotherapeutic drugs into the brain. To overcome this limitation, we designed a dual functionalized liposomes by modifying their surface with transferrin (Tf) and a cell penetrating peptide (CPP) for receptor and adsorptive mediated transcytosis, respectively. In this study, we used two different CPPs (based on physicochemical properties) and investigated the influence of insertion of CPP to Tf-liposomes on biocompatibility, cellular uptake, and transport across the BBB both in vitro and in vivo. The biodistribution profile of Tf-CPP liposomes showed more than 10 and 2.7 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively as compared to free drugs with no signs of toxicity.
Collapse
Affiliation(s)
- Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
49
|
Cao Z, Li D, Wang J, Xiong M, Yang X. Direct Nucleus-Targeted Drug Delivery Using Cascade pH e /Photo Dual-Sensitive Polymeric Nanocarrier for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902022. [PMID: 31318147 DOI: 10.1002/smll.201902022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The cell nucleus-targeted delivery of therapeutic agents plays a critical role in cancer therapy, since the biological target of many anticancer therapeutics is the cell nucleus. However, multiple physiological barriers limit the delivery efficiency of free drugs, resulting in unsatisfactory therapeutic effects. Herein, thioketal crosslinked polyphosphoester-based nanoparticles with a tumor acidity (pHe )-sensitive transactivator of transcription (TAT) peptide (DA-masked TAT-decorating reactive oxygen species (ROS)-sensitive Ce6/DOX-loaded hyperbranched nanoparticles (D TRCD)) are explored for cascade nucleus-targeted drug delivery. Following administration, D TRCD experiences prolonged circulation by masking the targeting effect of its TAT peptide and then achieves enhanced tumor cell uptake and improved translocation into the perinuclear region by reactivating the TAT targeting capability in tumor tissue. Subsequently, ROS generated by D TRCD under 660 nm laser not only disrupts the nuclear membrane to allow entry into the nuclei but also triggers intracellular release of the payload in the nuclei. As evidenced by in vivo experiments, such pHe /photo dual-sensitive polymeric nanocarriers offer remarkable therapeutic effects, efficiently suppressing tumor growth. This multistage cascade nucleus-targeted drug delivery concept provides new avenues to develop nucleus-targeted drug delivery systems.
Collapse
Affiliation(s)
- Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Dongdong Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Junxia Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Menghua Xiong
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| |
Collapse
|
50
|
Zahiri M, Babaei M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery. J Cell Physiol 2019; 235:1036-1050. [DOI: 10.1002/jcp.29019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mahsa Zahiri
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medicinal Chemistry, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|