1
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
2
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
3
|
Yan Yan, Jiang X, Wang X, Liu B, Ding H, Jiang M, Yang Z, Dai Y, Ding D, Yu H, Zhang S, Liu J, Sha M, Lui C, Qiu Y, Lu H, Hu Q. CCL28 mucosal expression in SARS-CoV-2-infected patients with diarrhea in relation to disease severity. J Infect 2020; 82:e19-e21. [PMID: 32871180 PMCID: PMC7833095 DOI: 10.1016/j.jinf.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China; The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China; Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufeng Jiang
- Unit B11 of Lung Department, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xu Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bin Liu
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hui Ding
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mengjun Jiang
- Center of Clinical Laboratory, The People's Hospital of Wuxi, Wuxi, China
| | - Zhenkun Yang
- Center of Clinical Laboratory, The People's Hospital of Wuxi, Wuxi, China
| | - Yaping Dai
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Difei Ding
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hui Yu
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shiliang Zhang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun Liu
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingchao Sha
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunyan Lui
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanwang Qiu
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China; Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi (Wuxi Infectious Disease Hospital), Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom.
| |
Collapse
|
4
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
5
|
Hine BC, Hunt PW, Colditz IG. Production and active transport of immunoglobulins within the ruminant mammary gland. Vet Immunol Immunopathol 2019; 211:75-84. [DOI: 10.1016/j.vetimm.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
|
6
|
Liu J, Ren Z, Wang H, Zhao Y, Wilker PR, Yu Z, Sun W, Wang T, Feng N, Li Y, Wang H, Ji X, Li N, Yang S, He H, Qin C, Gao Y, Xia X. Influenza virus-like particles composed of conserved influenza proteins and GPI-anchored CCL28/GM-CSF fusion proteins enhance protective immunity against homologous and heterologous viruses. Int Immunopharmacol 2018; 63:119-128. [PMID: 30081250 DOI: 10.1016/j.intimp.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/01/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Influenza viruses cause significant morbidity and mortality and pose a substantial threat to public health. Vaccination represents the principle means of preventing influenza virus infection. Current vaccine approaches are hindered by the need to routinely reformulate vaccine compositions in an effort to account for the progressive antigenic changes that occur as influenza viruses circulate in the human population. In this study, we evaluated chimeric virus-like particle (cVLP) vaccines containing conserved elements of influenza proteins (HL5M2e (HA stem gene with 5M2e gene inserted) and NP), with or without glycosylphosphatidylinositol-anchored CCL28 (GPI-CCL28) and/or GM-CSF (GPI-GM-CSF) fusion proteins as molecular adjuvants. cVLPs elicited strong humoral and cellular immune responses against homologous and heterologous viruses, and improved survival following lethal challenge with both homologous and heterologous viruses. Inclusion of GPI-anchored adjuvants in cVLP vaccines augmented the generation of influenza-specific humoral and cellular immune responses in mice in comparison to the non-adjuvanted cVLP vaccines. VLPs containing GPI-anchored adjuvants reduced morbidity and improved survival to lethal challenge with homologous and heterologous influenza viruses. This work suggests that VLP vaccines incorporating conserved influenza virus proteins and GPI-anchored molecular adjuvants may serve as a platform for a broadly protective "universal" influenza vaccine.
Collapse
Affiliation(s)
- Jing Liu
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medicine, Kaifeng 475004, China; Henan University, Kaifeng, Hennan Province, China
| | - Hongmei Wang
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Peter R Wilker
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Zhijun Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Xianliang Ji
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | - Chuan Qin
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xianzhu Xia
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
McCraw DM, Gallagher JR, Torian U, Myers ML, Conlon MT, Gulati NM, Harris AK. Structural analysis of influenza vaccine virus-like particles reveals a multicomponent organization. Sci Rep 2018; 8:10342. [PMID: 29985483 PMCID: PMC6037804 DOI: 10.1038/s41598-018-28700-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza virus continues to be a major health problem due to the continually changing immunodominant head regions of the major surface glycoprotein, hemagglutinin (HA). However, some emerging vaccine platforms designed by biotechnology efforts, such as recombinant influenza virus-like particles (VLPs) have been shown to elicit protective antibodies to antigenically different influenza viruses. Here, using biochemical analyses and cryo-electron microscopy methods coupled to image analysis, we report the composition and 3D structural organization of influenza VLPs of the 1918 pandemic influenza virus. HA molecules were uniformly distributed on the VLP surfaces and the conformation of HA was in a prefusion state. Moreover, HA could be bound by antibody targeting conserved epitopes in the stem region of HA. Taken together, our analysis suggests structural parameters that may be important for VLP biotechnology such as a multi-component organization with (i) an outer component consisting of prefusion HA spikes on the surfaces, (ii) a VLP membrane with HA distribution permitting stem epitope display, and (iii) internal structural components.
Collapse
Affiliation(s)
- Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Mallory L Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Michael T Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Neetu M Gulati
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies. Sci Rep 2018; 8:7807. [PMID: 29773829 PMCID: PMC5958130 DOI: 10.1038/s41598-018-25960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are correlated with passive HIV/SHIV protection and are desirable components of a HIV protective immunity. In the current study, we have designed a sequential-immunization strategy with a panel of envelope glycoprotein (Env)-enriched virus-like particles (VLPs) from various HIV-1 clades (A-E) to elicit bnAbs with high breadth and potency of neutralization in rabbits. We have compared this regimen with repetitive immunizations of individual Env (subtype B) VLPs or a mixture of various Env VLPs. Our results demonstrate that the sequential immunization group of animals induced significantly higher IgG endpoint titers against respective HIV Env (autologous) antigen than other control groups. Animals vaccinated sequentially showed an increase in the antibody endpoint titers and IgG antibody secreting cells (ASCs) against Con-S Env protein. Sequential immunizations with various Env VLPs promoted antibody avidity indices and enhanced bnAb responses against a panel of HIV pseudotyped virions including some of the tier 3 pseudostrains. Sequential immunizations with various VLPs displaying "native-like" HIV-1 Envs elicited bnAb responses with increased breadth and potency of neutralization.
Collapse
|
9
|
Luo Y, Mohan T, Zhu W, Wang C, Deng L, Wang BZ. Sequential Immunizations with heterosubtypic virus-like particles elicit cross protection against divergent influenza A viruses in mice. Sci Rep 2018; 8:4577. [PMID: 29545521 PMCID: PMC5854580 DOI: 10.1038/s41598-018-22874-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Seasonal influenza vaccines have proven to be effective against well-matched viruses in healthy adults. However, rapid accumulation of mutations in the main antigenic surface proteins of influenza can compromise the efficiency of flu vaccines. Occasionally, influenza pandemics arise and present a different type of challenge to current seasonal vaccines. Novel vaccination strategies that can educate the host immune system to generate immune responses focusing on conserved epitopes on theses antigenic surface proteins are crucial for controlling and limiting influenza epidemics and pandemics. In this study, we have sequentially vaccinated mice with heterosubtypic influenza HA virus-like particles (VLPs) harboring H1, H8, and H13 from the HA phylogenetic group 1, or H3, H4, and H10 from the HA phylogenetic group 2, or in various combinations. The immunized animals were fully protected when challenged with lethal doses of heterosubtypic viruses from either phylogenetic group. Our vaccination approach demonstrates a promising strategy for the development of a ‘universal influenza vaccine’.
Collapse
Affiliation(s)
- Yuan Luo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303-5090, USA
| | - Teena Mohan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303-5090, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303-5090, USA
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303-5090, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303-5090, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303-5090, USA.
| |
Collapse
|
10
|
Mohan T, Zhu W, Wang Y, Wang BZ. Applications of chemokines as adjuvants for vaccine immunotherapy. Immunobiology 2017; 223:477-485. [PMID: 29246401 DOI: 10.1016/j.imbio.2017.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Vaccinations are expected to aid in building immunity against pathogens. This objective often requires the addition of an adjuvant with certain vaccine formulations containing weakly immunogenic antigens. Adjuvants can improve antigen processing, presentation, and recognition, thereby improving the immunogenicity of a vaccine by simulating and eliciting an immune response. Chemokines are a group of small chemoattractant proteins that are essential regulators of the immune system. They are involved in almost every aspect of tumorigenesis, antitumor immunity, and antimicrobial activity and also play a critical role in regulating innate and adaptive immune responses. More recently, chemokines have been used as vaccine adjuvants due to their ability to modulate lymphocyte development, priming and effector functions, and enhance protective immunity. Chemokines that are produced naturally by the body's own immune system could serve as potentially safer and more reliable adjuvant options versus synthetic adjuvants. This review will primarily focus on chemokines and their immunomodulatory activities against various infectious diseases and cancers.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Ye Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Mohan T, Deng L, Wang BZ. CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. Int Immunopharmacol 2017; 51:165-170. [PMID: 28843907 PMCID: PMC5755716 DOI: 10.1016/j.intimp.2017.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
Chemokines are an extensive family of small proteins which, in conjunction with their receptors, guide the chemotactic activity of various immune cells throughout the body. CCL28, β- or CC chemokine, is involved in the host immunity at various epithelial and mucosal linings. The unique roles of CCL28 in several facets of immune responses have attracted considerable attention and may represent a promising approach to combat various infections. CCL28 displays a broad spectrum of antimicrobial activity against gram-negative and gram-positive bacteria, as well as fungi. Here, we will summarize various research findings regarding the antimicrobial activity of CCL28 and the relevant mechanisms behind it. We will explore how the structure of CCL28 is involved with this activity and how this function may have evolved. CCL28 displays strong homing capabilities for B and T cells at several mucosal and epithelial sites, and orchestrates the trafficking and functioning of lymphocytes. The chemotactic and immunomodulatory features of CCL28 through the interactions with its chemokine receptors, CCR10 and CCR3, will also be discussed in detail. Thus, in this review, we emphasize the dual properties of CCL28 and suggest its role as an anchoring point bridging the innate and adaptive immunity. Chemokines play a vital role in cell migration in response to a chemical gradient by a process known as chemotaxis. CCL28 is a β- or CC chemokine that is involved in host immunity through the interactions with its chemokine receptors, CCR10 and CCR3. CCL28 is constitutively expressed in a wide variety of tissues including exocrine glands and is inducible through inflammation and infections. CCL28 has been shown to exhibit broad spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and some fungi. CCL28 displays strong homing capabilities for B and T cells and orchestrates the trafficking and functioning of lymphocytes. In this review, we emphasize the antimicrobial and immunomodulatory feature of CCL28 and its role as bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, SE, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Mohan T, Berman Z, Luo Y, Wang C, Wang S, Compans RW, Wang BZ. Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses. Sci Rep 2017; 7:40226. [PMID: 28067290 PMCID: PMC5220311 DOI: 10.1038/srep40226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Influenza virus is a significant cause of morbidity and mortality, with worldwide seasonal epidemics. The duration and quality of humoral immunity and generation of immunological memory to vaccines is critical for protective immunity. In the current study, we examined the long-lasting protective efficacy of chimeric VLPs (cVLPs) containing influenza HA and GPI-anchored CCL28 as antigen and mucosal adjuvant, respectively, when immunized intranasally in mice. We report that the cVLPs induced significantly higher and sustainable levels of virus-specific antibody responses, especially IgA levels and hemagglutination inhibition (HAI) titers, more than 8-month post-vaccination compared to influenza VLPs without CCL28 or influenza VLPs physically mixed with sCCL28 (soluble) in mice. After challenging the vaccinated animals at month 8 with H3N2 viruses, the cVLP group also demonstrated strong recall responses. On day 4 post-challenge, we measured increased antibody levels, ASCs and HAI titers with reduced viral load and inflammatory responses in the cVLP group. The animals vaccinated with the cVLP showed 20% cross-protection against drifted (Philippines) and 60% protection against homologous (Aichi) H3N2 viruses. Thus, the results suggest that the GPI-anchored CCL28 induces significantly higher mucosal antibody responses, involved in providing long-term cross-protection against H3N2 influenza virus when compared to other vaccination groups.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Zachary Berman
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Yuan Luo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Shelly Wang
- Department of Microbiology & Immunology, School of Medicine Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Richard W. Compans
- Department of Microbiology & Immunology, School of Medicine Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Heider S, Dangerfield JA, Metzner C. Biomedical applications of glycosylphosphatidylinositol-anchored proteins. J Lipid Res 2016; 57:1778-1788. [PMID: 27542385 PMCID: PMC5036375 DOI: 10.1194/jlr.r070201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine.
Collapse
Affiliation(s)
- Susanne Heider
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Christoph Metzner
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|