1
|
Ekmekcioglu A, Gok O, Oz-Arslan D, Erdal MS, Yagan Uzuner Y, Muftuoglu M. Mitochondria-Targeted Liposomes for Drug Delivery to Tumor Mitochondria. Pharmaceutics 2024; 16:950. [PMID: 39065647 PMCID: PMC11280384 DOI: 10.3390/pharmaceutics16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The special bilayer structure of mitochondrion is a promising therapeutic target in the diagnosis and treatment of diseases such as cancer and metabolic diseases. Nanocarriers such as liposomes modified with mitochondriotropic moieties can be developed to send therapeutic molecules to mitochondria. In this study, DSPE-PEG-TPP polymer conjugate was synthesized and used to prepare mitochondria-targeted liposomes (TPPLs) to improve the therapeutic index of chemotherapeutic agents functioning in mitochondria and reduce their side effects. Doxorubicin (Dox) loaded-TPPL and non-targeted PEGylated liposomes (PPLs) were prepared and compared based on physicochemical properties, morphology, release profile, cellular uptake, mitochondrial localization, and anticancer effects. All formulations were spherically shaped with appropriate size, dispersity, and zeta potential. The stability of the liposomes was favorable for two months at 4 °C. TPPLs localize to mitochondria, whereas PPLs do not. The empty TPPLs and PPLs were not cytotoxic to HCT116 cells. The release kinetics of Dox-loaded liposomes showed that Dox released from TPPLs was higher at pH 5.6 than at pH 7.4, which indicates a higher accumulation of the released drug in the tumor environment. The half-maximal inhibitory concentration of Dox-loaded TPPLs and PPLs was 1.62-fold and 1.17-fold lower than that of free Dox due to sustained drug release, respectively. The reactive oxygen species level was significantly increased when HCT116 cells were treated with Dox-loaded TPPLs. In conclusion, TPPLs may be promising carriers for targeted drug delivery to tumor mitochondria.
Collapse
Affiliation(s)
- Aysegul Ekmekcioglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Ozgul Gok
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Devrim Oz-Arslan
- School of Medicine, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Meryem Sedef Erdal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey;
| | - Yasemin Yagan Uzuner
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Meltem Muftuoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
2
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Ma C, Zhong X, Liu R, Yang X, Xie Z, Zhang Y, Xu Y, Wang H, He C, Du G, Gong T, Sun X. Co-delivery of oxaliplatin prodrug liposomes with Bacillus Calmette-Guérin for chemo-immunotherapy of orthotopic bladder cancer. J Control Release 2024; 365:640-653. [PMID: 38042374 DOI: 10.1016/j.jconrel.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
To reduce recurrence rate after transurethral resection of bladder tumor, long-term intravesical instillations of Bacillus Calmette-Guérin (BCG) and/or chemotherapeutic drugs is the standard treatment for non-muscle invasive bladder carcinoma. However, the main challenges of intravesical therapy, such as short retention time and poor permeability of drugs in the bladder, often require frequent and high-dose administrations, leading to significant adverse effects and financial burden for patients. Aiming at addressing these challenges, we developed a novel approach, in which the cell-penetrating peptide modified oxaliplatin prodrug liposomes and a low-dose BCG were co-delivered via a viscous chitosan solution (LRO-BCG/CS). LRO-BCG/CS addressed these challenges by significantly improving the retention capability and permeability of chemotherapy agents across the bladder wall. Then, oxaliplatin triggered the immunogenic cell death, and the combination of BCG simultaneously further activated the systemic anti-tumor immune response in the MB49 orthotopic bladder tumor model. As a result, LRO-BCG/CS demonstrated superior anti-tumor efficacy and prolonged the survival time of tumor-bearing mice significantly, even at relatively low doses of oxaliplatin and BCG. Importantly, this combinational chemo-immunotherapy showed negligible side effects, offering a promising and well-tolerated therapeutic strategy for bladder cancer patients.
Collapse
Affiliation(s)
- Cheng Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaojia Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Marchenko IV, Trushina DB. Local Drug Delivery in Bladder Cancer: Advances of Nano/Micro/Macro-Scale Drug Delivery Systems. Pharmaceutics 2023; 15:2724. [PMID: 38140065 PMCID: PMC10747982 DOI: 10.3390/pharmaceutics15122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Treatment of bladder cancer remains a critical unmet need and requires advanced approaches, particularly the development of local drug delivery systems. The physiology of the urinary bladder causes the main difficulties in the local treatment of bladder cancer: regular voiding prevents the maintenance of optimal concentration of the instilled drugs, while poor permeability of the urothelium limits the penetration of the drugs into the bladder wall. Therefore, great research efforts have been spent to overcome these hurdles, thereby improving the efficacy of available therapies. The explosive development of nanotechnology, polymer science, and related fields has contributed to the emergence of a number of nanostructured vehicles (nano- and micro-scale) applicable for intravesical drug delivery. Moreover, the engineering approach has facilitated the design of several macro-sized depot systems (centimeter scale) capable of remaining in the bladder for weeks and months. In this article, the main rationales and strategies for improved intravesical delivery are reviewed. Here, we focused on analysis of colloidal nano- and micro-sized drug carriers and indwelling macro-scale devices, which were evaluated for applicability in local therapy for bladder cancer in vivo.
Collapse
Affiliation(s)
- Irina V. Marchenko
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Daria B. Trushina
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
7
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
8
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
9
|
Cheng D, Wen Z, Chen H, Lin S, Zhang W, Tang X, Wu W. Hepatocyte-targeting and tumor microenvironment-responsive liposomes for enhanced anti-hepatocarcinoma efficacy. Drug Deliv 2022; 29:2995-3008. [PMID: 36104946 PMCID: PMC9487930 DOI: 10.1080/10717544.2022.2122635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To increase the antitumor drug concentration in the liver tumor site and improve the therapeutic effects, a functionalized liposome (PPP-LIP) with tumor targetability and enhanced internalization after matrix metalloproteinase-2 (MMP2)-triggered cell-penetrating peptide (TATp) exposure was modified with myrcludex B (a synthetic HBV preS-derived lipopeptide endowed with compelling liver tropism) for liver tumor-specific delivery. After intravenous administration, PPP-LIP was mediated by myrcludex B to reach the hepatocyte surface. The MMP2-overexpressing tumor microenvironment deprotected PEG, exposing it to TATp, facilitating tumor penetration and subsequent efficient destruction of tumor cells. In live imaging of small animals and cellular uptake, PPP-LIP was taken up much more than typical unmodified liposomes in the ICR mouse liver and liver tumor cells. Hydroxycamptothecin (HCPT)-loaded PPP-LIP showed a better antitumor effect than commercially available HCPT injections among MTT, three-dimensional (3 D) tumor ball, and tumor-bearing nude mouse experiments. Our findings indicated that PPP-LIP nanocarriers could be a promising tumor-targeted medication delivery strategy for treating liver cancers with elevated MMP2 expression.
Collapse
Affiliation(s)
- Dongliang Cheng
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Hui Chen
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shiyuan Lin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Xin Tang
- School of Public Health, Guilin Medical University, Guilin, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
10
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
11
|
Ren C, Xu X, Yan D, Gu M, Zhang J, Zhang H, Han C, Kong L. Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors. Acta Biomater 2022; 146:465-477. [PMID: 35526738 DOI: 10.1016/j.actbio.2022.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
With the development of redox-related therapy modalities in cancer therapy, photodynamic therapy (PDT) has gradually become the most widely used type in the clinic. However, the hypoxic tumor microenvironment restricted the curative effect of PDT. Here, a strategic hypoxia relief nanodrug delivery system (SHRN) with a synergetic strategy was designed to alleviate tumor hypoxia on the basis of PDT. Specifically, the oxygen producer MnO2, oxygen consumption inhibitor atovaquone (ATO) and photosensitizer hypericin (HY) were loaded in SHRN. MnO2 reacted with excess H2O2 in the tumor microenvironment to increase oxygen generation, while ATO inhibited electron transfer in the aerobic respiratory chain to decrease oxygen consumption. Then, HY utilized this sufficient oxygen to produce ROS under irradiation to enhance the PDT effect. In vitro and in vivo assays confirmed that SHRN exhibits powerful and overall antitumor PDT effects. This formulation may provide an alternative strategy for the development of PDT effects in hypoxic tumor microenvironments. STATEMENT OF SIGNIFICANCE: We constructed a strategic hypoxia relief nanodrug delivery system (SHRN) with a synergetic strategy to alleviate tumor hypoxia on the basis of photodynamic therapy (PDT). This work uniquely aimed at not only increased O2 generation in hypoxic tumor microenvironment but also reduced O2 consumption. Moreover, we designed a nanodrug delivery system to enhance the tumor permeability of SHRN. In vitro and in vivo assays all confirmed that SHRN exhibited powerful and overall antitumor effects. This formulation may provide an alternative strategy for the development of the PDT effect in hypoxic solid tumor.
Collapse
|
12
|
Jiao B, Liu K, Gong H, Ding Z, Xu X, Ren J, Zhang G, Yu Q, Gan Z. Bladder cancer selective chemotherapy with potent NQO1 substrate co-loaded prodrug nanoparticles. J Control Release 2022; 347:632-648. [PMID: 35618186 DOI: 10.1016/j.jconrel.2022.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Currently, clinical intravesical instillation chemotherapy has been greatly compromised by the toxicological and physiological factors. New formulations that can specifically and efficiently kill bladder cancer cells are in urgent need to overcome the low residence efficiency and dose limiting toxicity of current ones. The combination of mucoadhesive nanocarriers and cancer cell selective prodrugs can to great extent address these limitations. However, the insignificant endogenous stimulus difference between cancer cells and normal cells in most cases and the high local drug concentration make it essential to develop new drugs with broader selectivity-window. Herein, based on the statistically different NQO1 expression between cancerous and normal bladder tissues, the reactive oxygen species (ROS) activatable epirubicin prodrug and highly potent NQO1 substrate, KP372-1, was co-delivered using a GSH-responsive mucoadhesive nanocarrier. After endocytosis, epirubicin could be promptly activated by the NQO1-dependent ROS production caused by KP372-1, thus specifically inhibiting the proliferation of bladder cancer cells. Since KP372-1 is much more potent than some commonly used NQO1 substrates, for example, β-lapachone, the cascade drug activation could occur under much lower drug concentration, thus greatly lowering the toxicity in normal cells and broadening the selectivity-window during intravesical bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Binbin Jiao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Kunpeng Liu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haitao Gong
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Xu
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Ren
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Guan Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Urology, China-Japan Friendship Hospital, Beijing, China.
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
13
|
Zhao X, Deng Y, Xue X, Liao L, Zhou M, Peng C, Li Y. Research Progress of Quercetin Delivery Systems. Curr Pharm Des 2022; 28:727-742. [PMID: 35301946 DOI: 10.2174/1381612828666220317141923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Quercetin is the main dietary flavonoid with a wide range of pharmacological activities. However, the poor gastrointestinal absorption and low bioavailability of quercetin curtails its clinical applications.. Enhancement the bioavailability of quercetin focuses on the application of delivery systems technologies such as microparticle delivery systems, solid dispersions, encapsulation, phospholipid complexes, and hydrogels , which have been systematically reviewed .And theirapplications in vitro and in vivo animal experiments also been described, promoting the development and optimization of drug delivery system for clinical applications.
Collapse
Affiliation(s)
- Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Ying Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Li Liao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| |
Collapse
|
14
|
Lu D, Yang T, Tang N, Li C, Song Y, Wang L, Wong WY, Yin SF, Xing Y, Kambe N, Qiu R. A pH-Dependent rhodamine fluorophore with antiproliferative activity of bladder cancer in Vitro/Vivo and apoptosis mechanism. Eur J Med Chem 2022; 236:114293. [DOI: 10.1016/j.ejmech.2022.114293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023]
|
15
|
Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104632. [PMID: 34936204 DOI: 10.1002/smll.202104632] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/04/2021] [Indexed: 05/21/2023]
Abstract
Multiple biological barriers must be considered in the design of nanomedicines, including prolonged blood circulation, efficient accumulation at the target site, effective penetration into the target tissue, selective uptake of the nanoparticles into target cells, and successful endosomal escape. However, different particle sizes, surface chemistries, and sometimes shapes are required to achieve the desired transport properties at each step of the delivery process. In response, this review highlights recent developments in the design of switchable nanoparticles whose size, surface chemistry, shape, or a combination thereof can be altered as a function of time, a disease-specific microenvironment, and/or via an externally applied stimulus to enable improved optimization of nanoparticle properties in each step of the delivery process. The practical use of such nanoparticles in chemotherapy, bioimaging, photothermal therapy, and other applications is also discussed.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, China
| | - E Coulter Montague
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| | - Angela Pollinzi
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
16
|
Li Y, Zhou Y, Wang T, Long K, Zhang Y, Wang W. Photoenhanced cytosolic protein delivery based on a photocleavable group-modified dendrimer. NANOSCALE 2021; 13:17784-17792. [PMID: 34668505 DOI: 10.1039/d1nr04430c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous recently developed therapies have highlighted the advantages of using proteins as therapeutics. However, in many protein delivery systems, the complicated carrier designs, low loading content, and off-targeting effects have limited their clinical applications. Here we report a photoresponsive protein-binding moiety and use it to prepare a simple nanoscale protein delivery system with high delivery efficiency and photoenhanced cellular uptake of proteins. The carrier was prepared by modifying a photocleavable molecule, DEACM, onto the surface of a cationic dendrimer, poly(amidoamine). DEACM simultaneously contributed to protein binding, self-assembly, and photocontrollability of the system. The multi-functional DEACM enabled the simplicity of the protein delivery system, which does not require complex organic synthesis or protein modification. The high delivery efficiency, high serum tolerance, and photoenhanced cellular uptake have been proved with functional proteins, presenting the potential for delivering protein therapeutics.
Collapse
Affiliation(s)
- Yafei Li
- State Key Laboratory of Pharmaceutical Biotechnology & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine & Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Yang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine & Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine & Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine & Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine & Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology & Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine & Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Koga K, Tagami T, Ozeki T. Gold nanoparticle-coated thermosensitive liposomes for the triggered release of doxorubicin, and photothermal therapy using a near-infrared laser. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Yang HY, Meng Du J, Jang MS, Mo XW, Sun XS, Lee DS, Lee JH, Fu Y. CD44-Targeted and Enzyme-Responsive Photo-Cross-Linked Nanogels with Enhanced Stability for In Vivo Protein Delivery. Biomacromolecules 2021; 22:3590-3600. [PMID: 34286578 DOI: 10.1021/acs.biomac.1c00653] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the biggest challenges of the protein delivery system is to realize stable and high protein encapsulation efficiency in blood circulation and rapid release of protein in the targeted tumor cells. To overcome these hurdles, we fabricated enzyme-responsive photo-cross-linked nanogels (EPNGs) through UV-triggered chemical cross-linking of cinnamyloxy groups in the side chain of PEGylation hyaluronic acid (HA) for CD44-targeted transport of cytochrome c (CC). The EPNGs showed high loading efficiency and excellent stability in different biological media. Notably, CC leakage effectively suppressed under physiological conditions but accelerated release in the presence of hyaluronidase, an overexpressed enzyme in tumor cells. Moreover, thiazolylblue tetrazolium bromide (MTT) results indicated that the vacant EPNGs showed excellent nontoxicity, while CC-loaded EPNGs exhibited higher killing efficiency to CD44-positive A549 cells than to CD44-negative HepG2 cells and free CC. Confocal images confirmed that CC-loaded EPNGs could effectively be internalized by CD44-mediated endocytosis pathway and rapidly escape from the endo/lysosomal compartment. Human lung tumor-bearing mice imaging assays further revealed that CC-loaded EPNGs actively target tumor locations. Remarkably, CC-loaded EPNGs also exhibited enhanced antitumor activity with negligible systemic toxicity. These results implied that these EPNGs have appeared as stable and promising nanocarriers for tumor-targeting protein delivery.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Jia Meng Du
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Wang Mo
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| |
Collapse
|
19
|
Zhang S, Li G, Deng D, Dai Y, Liu Z, Wu S. Fluorinated Chitosan Mediated Synthesis of Copper Selenide Nanoparticles with Enhanced Penetration for Second Near‐Infrared Photothermal Therapy of Bladder Cancer. ADVANCED THERAPEUTICS 2021; 4:2100043. [DOI: 10.1002/adtp.202100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Shaohua Zhang
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China
| | - Guangzhi Li
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
| | - Dashi Deng
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
| | - Yizhi Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Song Wu
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
- Teaching Center of Shenzhen Luohu Hospital Shantou University Medical College Shantou 515000 China
- Department of Urology and Guangdong Key Laboratory of Urology The First Affiliated Hospital of Guangzhou Medical University Guangzhou 510230 China
| |
Collapse
|
20
|
AlSawaftah N, Pitt WG, Husseini GA. Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacol Transl Sci 2021; 4:1028-1049. [PMID: 34151199 PMCID: PMC8205246 DOI: 10.1021/acsptsci.1c00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/31/2022]
Abstract
The delivery of chemotherapeutics to solid tumors using smart drug delivery systems (SDDSs) takes advantage of the unique physiology of tumors (i.e., disordered structure, leaky vasculature, abnormal extracellular matrix (ECM), and limited lymphatic drainage) to deliver anticancer drugs with reduced systemic side effects. Liposomes are the most promising of such SDDSs and have been well investigated for cancer therapy. To improve the specificity, bioavailability, and anticancer efficacy of liposomes at the diseased sites, other strategies such as targeting ligands and stimulus-sensitive liposomes have been developed. This review highlights relevant surface functionalization techniques and stimuli-mediated drug release for enhanced delivery of anticancer agents at tumor sites, with a special focus on dual functionalization and design of multistimuli responsive liposomes.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| | - William G. Pitt
- Chemical
Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| |
Collapse
|
21
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Kim CR, Jang EB, Hong SH, Yoon YE, Huh BK, Kim SN, Kim MJ, Moon HS, Choy YB. Indwelling urinary catheter assembled with lidocaine-loaded polymeric strand for local sustained alleviation of bladder discomfort. Bioeng Transl Med 2021; 6:e10218. [PMID: 34027100 PMCID: PMC8126825 DOI: 10.1002/btm2.10218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/03/2023] Open
Abstract
Indwelling urinary catheters (IUCs) are used in clinical settings to assist detrusor contraction in hospitalized patients. However, an inserted IUC often causes catheter-related bladder discomfort. To resolve this, we propose an IUC coupled with local, sustained release of an anesthetic drug, lidocaine. For this, a thin strand composed of poly (lactic-co-glycolic acid) and lidocaine was separately prepared as a drug delivery carrier, which was then wound around the surface of the IUC to produce the drug-delivery IUC. Our results revealed that the drug-delivery IUC could exert the pain-relief effects for up to 7 days when placed in the bladder of living rats. Cystometrogram tests indicated that the drug-delivery IUC could significantly relieve bladder discomfort compared with the IUC without lidocaine. Furthermore, the expression of pain-related inflammatory markers, such as nerve growth factor, cyclooxygenase-2, and interleukin-6 in the biopsied bladder tissues was significantly lower when the drug-delivery IUC was used. Therefore, we conclude that an IUC simply assembled with a drug-loaded polymer strand can continuously release lidocaine to allow for the relief of bladder discomfort during the period of IUC insertion.
Collapse
Affiliation(s)
- Cho Rim Kim
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Eun Bi Jang
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science & EngineeringHanyang UniversitySeoulRepublic of Korea
| | - Seong Hwi Hong
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Eun Yoon
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Se Na Kim
- Institute of Medical & Biological Engineering, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Min Ji Kim
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hong Sang Moon
- Department of Urology, College of MedicineHanyang UniversitySeoulRepublic of Korea
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
- Institute of Medical & Biological Engineering, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Biomedical EngineeringSeoul National University, College of MedicineSeoulRepublic of Korea
| |
Collapse
|
23
|
Feng Y, Qin G, Chang S, Jing Z, Zhang Y, Wang Y. Antitumor Effect of Hyperoside Loaded in Charge Reversed and Mitochondria-Targeted Liposomes. Int J Nanomedicine 2021; 16:3073-3089. [PMID: 33953556 PMCID: PMC8091078 DOI: 10.2147/ijn.s297716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Hyperoside (HYP), a flavonol glycoside compound, has been shown to significantly inhibit the proliferation of malignant tumors. Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Objective We report a novel dual-functional liposome system possessing both extracellular charge reversal and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of cancer cells. Methods L-lysine was used as a linker to connect 2,3-dimethylmaleic anhydride (DMA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a new compound, DSPE-Lys-DMA (DLD). Then, DLD was mixed with other commercially available lipids to form charge reversed and mitochondria-targeted liposomes (DLD-Lip). The size, morphology, zeta potential, serum stability, and protein adsorption of the HYP loaded DLD-Lip (HYP/DLD-Lip) were measured. The release profile, cellular uptake, in vitro and in vivo toxicity, and anticancer activity of HYP/DLD-Lip were investigated. Results The results showed that the mean diameter of the liposomes was less than 200 nm. The zeta potential of the liposomes was negative at pH 7.4. However, the zeta potential was positive at weak acidic pH values with the cleavage of the DMA amide. The charge reversion of HYP/DLD-Lip facilitated the cellular internalization and mitochondrial accumulation for enhanced antitumor effect. The strongest tumor growth inhibition (TGI 88.79%) without systemic toxicity was observed in DLD/HYP-Lips-treated CBRH-7919 tumor xenograft BALB/C mice. Conclusion The charge reversed and mitochondria-targeted liposomes represented a promising anticancer drug delivery system for enhanced anticancer therapeutic efficacy.
Collapse
Affiliation(s)
- Yufei Feng
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Guozhao Qin
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Shuyuan Chang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Zhongxu Jing
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yanyan Zhang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yanhong Wang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
24
|
Jain P, Kathuria H, Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol Ther 2021; 226:107871. [PMID: 33915179 DOI: 10.1016/j.pharmthera.2021.107871] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Bladder cancer is the 10th most commonly occurring malignancy worldwide with a 75% of 5-year survival rate, while it ranks 13th among the deaths occurring due to cancer. The majority of bladder cancer cases are diagnosed at an early stage and 70% are of non-invasive grade. However, 70% of these cases develop chemoresistance and progress to the muscle invasive stage. Conventional chemotherapy treatments are unsuccessful in curbing chemoresistance, bladder cancer progression while having an adverse side effect, which is mainly due to off-target drug distribution. Therefore, new drug delivery strategies, new therapeutics and therapies or their combination are being explored to develop better treatments. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to bladder cancer cells. This review discusses the recent discovery of new therapeutics (chemotherapeutics, immunotherapeutic, and gene therapies), recent developments in the delivery of therapeutics using nano drug delivery systems, and the combination treatments with FDA-approved therapies, i.e., hyperthermia and photodynamic therapy. We also discussed the potential of other novel drug delivery systems that are minimally explored in bladder cancer. Lastly, we discussed the clinical status of therapeutics and therapies for bladder cancer. Overall, this review can provide a summary of available treatments for bladder cancer, and also provide opportunities for further development of drug delivery systems for better management of bladder cancer.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Republic of Singapore; Nusmetic Pvt Ltd, Makerspace, i4 building, 3 Research Link Singapore, 117602, Republic of Singapore.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| |
Collapse
|
25
|
Setayesh-Mehr Z, Poorsargol M. Toxic proteins application in cancer therapy. Mol Biol Rep 2021; 48:3827-3840. [PMID: 33895972 DOI: 10.1007/s11033-021-06363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Ribosome inactivating proteins (RIPs) as family of anti-cancer drugs recently received much attention due to their interesting anti-cancer mechanism. In spite of small drugs, RIPs use the large-size effect (LSE) to prevent the efflux process governed by drug resistance transporters (DRTs) which prevents inside of the cells against drug transfection. There are many clinical translation obstacles that severely restrict their applications especially their delivery approach to the tumor cells. As the main goal of this review, we will focus on trichosanthin (TCS) and gelonin (Gel) and other types, especially scorpion venom-derived RIPs to clarify that they are struggling with what types of bio-barriers and these challenges could be solved in cancer therapy science. Then, we will try to highlight recent state-of-the-arts in delivery of RIPs for cancer therapy.
Collapse
Affiliation(s)
- Zahra Setayesh-Mehr
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Mahdiye Poorsargol
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
26
|
Polymeric Lipid Hybrid Nanoparticles as a Delivery System Enhance the Antitumor Effect of Emodin in Vitro and in Vivo. J Pharm Sci 2021; 110:2986-2996. [PMID: 33864779 DOI: 10.1016/j.xphs.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023]
Abstract
This study aimed to evaluate the therapeutic efficacy of Emodin-loaded polymer lipid hybrid nanoparticles (E-PLNs) for breast cancer. The size, Zeta potential, surface morphology, encapsulation efficiency, stability, in vitro drug release of E-PLNs prepared by the nanoprecipitation method were characterized. The uptake, in-vitro cytotoxicities and apoptosis of free drug, E-PLNs were investigated against MCF-7 cells. The efficacy of E-PLNs in tumor bearing nude mice has also been studied.The average particle size of the experimentally prepared E-PLNs was (122.7±1.79) nm, and the encapsulation rate was 72.8%. Compared with free Emodin (EMO), E-PLNs showed greater toxicity to MCF-7 cells by promoting the uptake of EMO, and can promote the early apoptosis of MCF-7 cells. In addition to the morphological changes of apoptotic cells, the ratio of Bax/Bcl-2 was significantly increased, which indicated that E-PLNs can induce apoptosis in MCF-7 cells to achieve anticancer effect. Finally, E-PLNs significantly inhibited tumor growth by more than 60%, which may be related to its passive targeting effect on tumor site. Our results suggest that E-PLNs have shown good anti-breast cancer effect than free EMO. Moreover, the effect of E-PLNs on MCF-7 cells is mainly related to the induction of apoptosis.
Collapse
|
27
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
28
|
Han Y, Zhou J, Hu Y, Lin Z, Ma Y, Richardson JJ, Caruso F. Polyphenol-Based Nanoparticles for Intracellular Protein Delivery via Competing Supramolecular Interactions. ACS NANO 2020; 14:12972-12981. [PMID: 32997490 DOI: 10.1021/acsnano.0c04197] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intracellular delivery of proteins is a promising strategy for regulating cellular behavior and therefore has attracted interest for biomedical applications. Despite the emergence of various nanoparticle-based intracellular delivery approaches, it remains challenging to engineer a versatile delivery system capable of responding to various physiological triggers without the need for complex chemical synthesis of the delivery system. Herein, we develop a template-mediated supramolecular assembly strategy to synthesize protein-polyphenol nanoparticles (NPs) capable of endosomal escape and subsequent protein release in the cytosol. These NPs are stable in serum and undergo surface charge reversal from negative to positive in acidic environments, leading to spontaneous endosomal escape. In the cytosol, endogenous small peptides and amino acids with relatively high charge densities, such as glutathione, trigger NP disassembly through competitive supramolecular interactions, thereby releasing functional bioactive proteins, as validated using cytochrome C and β-galactosidase. The versatility of the present strategy in terms of nanoparticle size, protein type, and functional protein delivery makes this a promising platform for potential application in the field of protein therapeutics.
Collapse
Affiliation(s)
- Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yutian Ma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Sun R, Liu X, Li G, Wang H, Luo Y, Huang G, Wang X, Zeng G, Liu Z, Wu S. Photoactivated H 2 Nanogenerator for Enhanced Chemotherapy of Bladder Cancer. ACS NANO 2020; 14:8135-8148. [PMID: 32479062 DOI: 10.1021/acsnano.0c01300] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen gas can mitigate oxidative stress in many diseases and is regarded to be safe and free of side effects. Inspired by a metalloenzyme in a variety of microorganisms, here, we propose a photoactivated H2 nanogenerator that comprises a fluorinated chitosan (FCS), a chemotherapeutic drug (gemcitabine, GEM), and a catalyst of H2 production ([FeFe]TPP) that can form self-assembled [FeFe]TPP/GEM/FCS nanoparticles (NPs). The [FeFe]TPP/GEM/FCS NPs exhibit excellent transmucosal and tumor cell penetration capacities after intravesical instillation into the bladder and can efficiently produce H2 gas in situ upon 660 nm laser irradiation, which significantly enhances the efficacy of hydrogen chemotherapy of cancer in vitro and in vivo. Moreover, we discover that H2 gas in hydrogen chemotherapy can inhibit mitochondrial function, hinder ATP synthesis, and cause a reduction of the P-gp efflux pump function, which finally attenuates P-gp protein drug transport capacity in cancer cells. This photoactivated H2 evolution in situ to improve the therapeutic efficacy of chemotherapy of bladder cancer may present an effective hydrogen chemotherapy strategy for cancer treatment.
Collapse
Affiliation(s)
- Rui Sun
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xiaocen Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
| | - Hui Wang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Yongxiang Luo
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
| | - Guixiao Huang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xisheng Wang
- Department of Urology, Longhua District Central Hospital, Shenzhen 518110, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
30
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Xu X, Liu K, Jiao B, Luo K, Ren J, Zhang G, Yu Q, Gan Z. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer. J Control Release 2020; 324:493-504. [PMID: 32243980 DOI: 10.1016/j.jconrel.2020.03.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
Chemotherapy is the standard of care for bladder cancer after transurethral resection of the tumor. However, the rapid excretion of clinically used formulations of anticancer drugs make the common intravesical instillation chemotherapy far from efficient. Therefore, improving the muco-adhesion and penetrability of chemotherapeutic drugs became the key factors in the post-surgery treatment of superficial bladder cancers. Here, a reduction sensitive vehicle was developed to deliver the reactive oxygen species activated prodrug of gambogic acid for treatment of orthotopic bladder cancer. The positively charged chitosan can significantly enhance the adhesion and permeability of prodrug within the bladder wall. Moreover, by utilizing the different glutathione and ROS level between cancer cells and normal cells, the dual responsive nanoparticle can selectively and rapidly deliver drug in bladder cancer cells, and thus can significantly inhibit the proliferation of bladder cancer cells in an orthotopic superficial bladder cancer model without causing damage to normal cells. This work demonstrates that the smart prodrug nanomedicine may act as a promising drug-delivery system for local chemotherapy of bladder cancer with unprecedented clinical benefits.
Collapse
Affiliation(s)
- Xin Xu
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kunpeng Liu
- The State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binbin Jiao
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kejun Luo
- The State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Ren
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Guan Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; Peking University China-Japan Friendship School Clinical Medicine, Beijing 100029, China.
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
32
|
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10:4557-4588. [PMID: 32292515 PMCID: PMC7150471 DOI: 10.7150/thno.38069] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, much progress has been motivated in stimuli-responsive nanocarriers, which could response to the intrinsic physicochemical and pathological factors in diseased regions to increase the specificity of drug delivery. Currently, numerous nanocarriers have been engineered with physicochemical changes in responding to external stimuli, such as ultrasound, thermal, light and magnetic field, as well as internal stimuli, including pH, redox potential, hypoxia and enzyme, etc. Nanocarriers could respond to stimuli in tumor microenvironments or inside cancer cells for on-demanded drug delivery and accumulation, controlled drug release, activation of bioactive compounds, probes and targeting ligands, as well as size, charge and conformation conversion, etc., leading to sensing and signaling, overcoming multidrug resistance, accurate diagnosis and precision therapy. This review has summarized the general strategies of developing stimuli-responsive nanocarriers and recent advances, presented their applications in drug delivery, tumor imaging, therapy and theranostics, illustrated the progress of clinical translation and made prospects.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, 610041, China
| |
Collapse
|
33
|
Liu J, Wan Y, Li S, Qiu H, Jiang Y, Ma X, Zhou S, Cheng W. Identification of aberrantly methylated differentially expressed genes and associated pathways in endometrial cancer using integrated bioinformatic analysis. Cancer Med 2020; 9:3522-3536. [PMID: 32170852 PMCID: PMC7221444 DOI: 10.1002/cam4.2956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer (EC) is a fatal female reproductive tumor. Bioinformatic tools are increasingly developed to screen out molecular targets related to EC. In this study, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17025 and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40032 were obtained from Gene Expression Omnibus (GEO). “limma” package and Venn diagram tool were used to identify hub genes. FunRich was used for functional analysis. Retrieval of Interacting Genes Database (STRING) was used to analyze protein‐protein interaction (PPI) complex. Cancer Genome Atlas (TCGA), GEPIA, immunohistochemistry staining, and ROC curve analysis were carried out for validation. Univariate and multivariate regression analyses were performed to predict the risk score. Compound muscle action potential (CMap) was used to find potential drugs. GSEA was also done. We retrieved seven oncogenes which were upregulated and hypomethylated and 12 tumor suppressor genes (TSGs) which were downregulated and hypermethylated. The upregulated and hypomethylated genes were strikingly enriched in term “immune response” while the downregulated and hypermethylated genes were mainly focused on term “aromatic compound catabolic process.” TCGA and GEPIA were used to screen out EDNRB, CDO1, NDN, PLCD1, ROR2, ESPL1, PRAME, and PTTG1. Among them, ESPL1 and ROR2 were identified by Cox regression analysis and were used to construct prognostic risk model. The result showed that ESPL1 was a negative independent prognostic factor. Cmap identified aminoglutethimide, luteolin, sulfadimethoxine, and maprotiline had correlation with EC. GSEA results showed that “hedgehog signaling pathway” was enriched. This research inferred potential aberrantly methylated DEGs and dysregulated pathways may participate in EC development and firstly reported eight hub genes, including EDNRB, CDO1, NDN, PLCD1, ROR2, ESPL1, PRAME, and PTTG1 that could be used to predict EC prognosis. Aminoglutethimide and luteolin may be used to fight against EC.
Collapse
Affiliation(s)
- JinHui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - YiCong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - HuaiDe Qiu
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ShuLin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - WenJun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Shi M, Zhang J, Huang Z, Chen Y, Pan S, Hu H, Qiao M, Chen D, Zhao X. Stimuli-responsive release and efficient siRNA delivery in non-small cell lung cancer by a poly(l-histidine)-based multifunctional nanoplatform. J Mater Chem B 2020; 8:1616-1628. [PMID: 32010914 DOI: 10.1039/c9tb02764e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Small interfering RNA (siRNA) has extensive potential for the treatment of non-small cell lung cancer (NSCLC). While both cationic lipids and polymers have demonstrated promise to facilitate siRNA encapsulation, they can also hamper cytosolic siRNA release and induce severe cytotoxicity. To address these issues, a unique polymer hybrid nanoparticle (NP) nanoplatform was developed for multistage siRNA delivery based on both pH-responsive and endo/lysosomal escape characteristics, which was formed via a combination of an electrostatic interactions between the copolymer methoxy poly(ethylene glycol)-poly(l-histidine)-poly(sulfadimethoxine) (mPEG-PHis-PSD, shortened to PHD), dendritic poly-l-lysine (PLL) and PLK1 siRNA (shortened to siPLK1). The biological composition of the proton sponge effect polymer of the PHis chain, which was in position to make efficient endo/lysosomal escape, and the pH-responsive polymer of the PSD fragment, which could accelerate the release of siPLK1. In the present study, the NP illustrated excellent physiochemical properties and rapid endo/lysosomal escape in vitro. Besides this, compared with the PD/PLL/siRNA formulation, the PHD/PLL/siRNA NP indicated higher cellular uptake, and higher cell cytotoxicity in vitro. The in vivo results demonstrated that the PHD/PLL/siRNA NP exhibited the strongest tumor growth inhibition rate and ideal safety compared with the control and other siPLK1-treated formulations, which can be mainly attributed to pH-induced instantaneous dissociation and efficient endo/lysosomal escape arising from the PHD copolymer. Consequently, the above evidence indicates that the PHD/PLL/siRNA NP is a favorable gene delivery system and provides a potential strategy for siRNA delivery.
Collapse
Affiliation(s)
- Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Ziyuan Huang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Yuying Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Shuang Pan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Liaoning Province, China.
| |
Collapse
|
35
|
Fan J, Liu Y, Liu L, Huang Y, Li X, Huang W. A Multifunction Lipid-Based CRISPR-Cas13a Genetic Circuit Delivery System for Bladder Cancer Gene Therapy. ACS Synth Biol 2020; 9:343-355. [PMID: 31891494 DOI: 10.1021/acssynbio.9b00349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The treatment of bladder cancer has recently shown minimal progress. Gene therapy mediated by CRISPR provides a new option for bladder cancer treatment. In this study, we developed a versatile liposome system to deliver the CRISPR-Cas13a gene circuits into bladder cancer cells. After in vitro studies and intravesical perfusion studies in mice, this system showed five advantages: (1) CRISPR-Cas13a, a transcriptional targeting and cleavage tool for gene expression editing, did not affect the stability of the cell genome; (2) the prepared liposome systems were targeted to hVEGFR2, which is always highly expressed in bladder cancer cells; (3) the CRISPR-Cas13a sequence was driven by an artificial tumor specific promoter to achieve further targeting; (4) a near-infrared photosensitizer released using near-infrared light was introduced to control the delivery system; and (5) the plasmids were constructed with three crRNA tandem sequences to achieve multiple targeting and wider therapeutic results. This tumor cell targeting lipid delivery system with near-infrared laser-controlled ability provided a versatile strategy for CRISPR-Cas13a based gene therapy of bladder cancer.
Collapse
Affiliation(s)
- Jing Fan
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
- Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Lisa Liu
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Yikun Huang
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Xuemei Li
- Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| |
Collapse
|
36
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
37
|
Affiliation(s)
- Hui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,Department of Urinary Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuchuan Hou
- Department of Urinary Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
38
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
39
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2020; 7:872. [PMID: 31998680 PMCID: PMC6965326 DOI: 10.3389/fchem.2019.00872] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C. van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J. Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
40
|
Liu S, Wang L, Zhao B, Wang Z, Wang Y, Sun B, Liu Y. Doxorubicin-loaded Cu 2S/Tween-20 nanocomposites for light-triggered tumor photothermal therapy and chemotherapy. RSC Adv 2020; 10:26059-26066. [PMID: 35519742 PMCID: PMC9055350 DOI: 10.1039/d0ra03069d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations. With the development of nanotechnology, new therapeutic methods based on nanomaterials such as photothermal therapy (PTT) have also emerged. PTT takes advantage of the poor thermal tolerance of tumor cells and uses the heat generated by photothermal reagents to kill tumor cells. A transition metal sulfide represented as Cu2S is an ideal photothermal reagent because of its easy preparation, high extinction coefficient and photothermal conversion efficiency. Surface modification of nanoparticles (NPs) is also necessary, which not only can reduce toxicity and improve colloidal stability, but also can provide the possibility of further chemotherapeutic drug loading. In this work, we report the fabrication of Tween-20 (Tw20)-modified and doxorubicin (Dox)-loaded Cu2S NPs (Cu2S/Dox@Tw20 NPs), which significantly improves the performance in tumor therapy. Apart from the enhancement of colloidal stability and biocompatibility, the drug loading rate of Dox in Tw20 reaches 11.3%. Because of the loading of Dox, Cu2S/Dox@Tw20 NPs exhibit chemotherapeutic behaviors and the tumor inhibition rate is 76.2%. Further combined with a near-infrared laser, the high temperature directly leads to the apoptosis of a large number of tumor cells, while the release of chemotherapeutic drugs under heat can not only continue to kill residual tumor cells, but also inhibit tumor recurrence. Therefore, with the combination of PTT and chemotherapy, the tumor was completely eliminated. Both hematological analysis and histopathological analysis proved that our experiments are safe. In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations.![]()
Collapse
Affiliation(s)
- Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yinyu Wang
- School of Stomatology
- Baicheng Medical College
- Baicheng
- P. R. China
| | - Bin Sun
- Department of Oral and Maxillofacial Surgery
- School and Hospital of Stomatology
- Jilin University
- Changchun
- P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
41
|
Tao K, Liu S, Wang L, Qiu H, Li B, Zhang M, Guo M, Liu H, Zhang X, Liu Y, Hou Y, Zhang H. Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer. Biomater Sci 2020; 8:342-352. [PMID: 31724659 DOI: 10.1039/c9bm01377f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Folate-modified vincristine-loaded polydopamine-coated Fe3O4 superparticles are designed as multifunctional nanomaterials for the imaging and treatment of bladder cancer.
Collapse
|
42
|
Asrorov AM, Gu Z, Min KA, Shin MC, Huang Y. Advances on Tumor-Targeting Delivery of Cytotoxic Proteins. ACS Pharmacol Transl Sci 2019; 3:107-118. [PMID: 32259092 DOI: 10.1021/acsptsci.9b00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 12/11/2022]
Abstract
Great attention has been paid to cytotoxic proteins (e.g., ribosome-inactivating proteins, RIPs) possessing high anticancer activities; unlike small drugs, cytotoxic proteins can effectively retain inside the cells and avoid drug efflux mediated by multidrug resistance transporters due to the large-size effect. However, the clinical translation of these proteins is severely limited because of various biobarriers that hamper their effective delivery to tumor cells. Hence, in order to overcome these barriers, many smart drug delivery systems (DDS) have been developed. In this review, we will introduce two representative type I RIPs, trichosanthin (TCS) and gelonin (Gel), and overview the major biobarriers for protein-based cancer therapy. Finally, we outline advances on the development of smart DDS for effective delivery of these cytotoxic proteins for various applications in cancer treatment.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83, M. Ulughbek Street, Tashkent 100125, Uzbekistan
| | - Zeyun Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
43
|
Yang HY, Li Y, Jang MS, Fu Y, Wu T, Lee JH, Lee DS. Green preparation of pH-responsive and dual targeting hyaluronic acid nanogels for efficient protein delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
45
|
Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr Polym 2019; 224:115174. [DOI: 10.1016/j.carbpol.2019.115174] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
|
46
|
Yoon HY, Chang IH, Goo YT, Kim CH, Kang TH, Kim SY, Lee SJ, Song SH, Whang YM, Choi YW. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. Int J Nanomedicine 2019; 14:6249-6268. [PMID: 31496684 PMCID: PMC6689153 DOI: 10.2147/ijn.s216432] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose To develop an intravesical instillation system for the treatment of bladder cancer, rapamycin (Rap) was encapsulated into liposomes and then homogeneously dispersed throughout a poloxamer 407 (P407)-based hydrogel. Methods Rap-loaded conventional liposomes (R-CL) and folate-modified liposomes (R-FL) were prepared using a film hydration method and pre-loading technique, and characterized by particle size, drug entrapment efficiency, and drug loading. The cellular uptake behavior in folate receptor-expressing bladder cancer cells was observed by flow cytometry and confocal laser scanning microscopy using a fluorescent probe. In vitro cytotoxic effects were evaluated using MTT assay, colony forming assay, and Western blot. For in vivo intravesical instillation, Rap-loaded liposomes were dispersed in P407-gel, generating R-CL/P407 and R-FL/P407. Gel-forming capacities and drug release were evaluated. Using the MBT2/Luc orthotopic bladder cancer mouse model, in vivo antitumor efficacy was evaluated according to regions of interest (ROI) measurement. Results R-CL and R-FL were successfully prepared, at approximately <160 nm, 42% entrapment efficiency, and 57 μg/mg drug loading. FL cellular uptake was enhanced over 2-fold than that of CL; folate receptor-mediated endocytosis was confirmed using a competitive assay with folic acid pretreatment. In vitro cytotoxic effects increased dose-dependently. Rap-loaded liposomes inhibited mTOR signaling and induced autophagy in urothelial carcinoma cells. With gelation time of <30 seconds and gel duration of >12 hrs, both R-CL/P407 and R-FL/P407 preparations transformed into gel immediately after instillation into the mouse bladder. Drug release from the liposomal gel was erosion controlled. In orthotopic bladder cancer mouse model, statistically significant differences in ROI values were found between R-CL/P407 and R-FL/P407 groups at day 11 (P=0.0273) and day 14 (P=0.0088), indicating the highest tumor growth inhibition by R-FL/P407. Conclusion Intravesical instillation of R-FL/P407 might represent a good candidate for bladder cancer treatment, owing to its enhanced retention and FR-targeting.
Collapse
Affiliation(s)
- Ho Yub Yoon
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - In Ho Chang
- College of Medicine, Chung-ang University , Seoul, Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - Tae Hoon Kang
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - Soo-Yeon Kim
- Research Institute, National Cancer Center , Goyang, Korea
| | - Sang Jin Lee
- Research Institute, National Cancer Center , Goyang, Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung University , Busan, Korea
| | - Young Mi Whang
- College of Medicine, Chung-ang University , Seoul, Korea
| | | |
Collapse
|
47
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria‐Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901699] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiyan Yuan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat-sen University Guangzhou 510275 China
| | - Xin Mao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiaofeng Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Si Si Liew
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM)Nanjing Tech University 30 South Puzhu Road Nanjing 21816 China
| | - Shao Q. Yao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
48
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria-Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019; 58:7657-7661. [PMID: 30994955 DOI: 10.1002/anie.201901699] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Mitochondria are key organelles in mammalian cells whose dysfunction is linked to various diseases. Drugs targeting mitochondrial proteins provide a highly promising strategy for potential therapeutics. Methods for the delivery of small-molecule drugs to the mitochondria are available, but these are not suitable for macromolecules, such as proteins. Herein, we report the delivery of native proteins and antibodies to the mitochondria using biodegradable silica nanoparticles (BS-NPs). The modification of the nanoparticle surface with triphenylphosphonium (TPP) and cell-penetrating poly(disulfide)s (CPD) facilitated their rapid intracellular uptake with minimal endolysosomal trapping, providing sufficient time for effective mitochondrial localization followed by glutathione-triggered biodegradation and of native, functional proteins into the mitochondria.
Collapse
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaofeng Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
49
|
Biocompatibility and effectiveness of paclitaxel-encapsulated micelle using phosphoester compounds as a carrier for cancer treatment. Colloids Surf B Biointerfaces 2019; 177:356-361. [DOI: 10.1016/j.colsurfb.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
50
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2019. [PMID: 31998680 DOI: 10.3389/fchem.2019.00872/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|