1
|
Dhara TK, Khawas S, Sharma N. Lipid nanoparticles for pulmonary fibrosis: A comprehensive review. Pulm Pharmacol Ther 2024; 87:102319. [PMID: 39216596 DOI: 10.1016/j.pupt.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive and irreversible ailment associated with the proliferation of fibroblast and accumulation of extracellular matrix (ECM) with gradual scarring of lung tissue. Despite several research studies, the treatments available are not efficient enough for the reversal of the disease and are constantly in progress. No drugs other than Pirfenidone and Nintedanib have been approved for the treatment of IPF, necessitating the exploration of novel therapeutic strategies. Recently, lipid-based nanoparticles (LNPs) have drawn more attention because of their potential to enhance the solubility of drugs, cross biological barriers of the lungs and specifically target lung fibrotic tissues, overcoming various challenges in treating IPF. LNPs offer a versatile platform to encapsulate a wide range of drugs, both hydrophilic and lipophilic, improving their bioavailability, allowing sustained release and reducing toxicity, which radiates their significant role in addressing the complexities of IPF. This review summarizes the pathogenesis and conventional treatment of idiopathic pulmonary fibrosis, along with their drawbacks. The review focuses on different types of lipid-based nanoparticles that have been tested in the treatment of idiopathic pulmonary fibrosis, including nanoemulsions, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, niosomes and lipid-polymer hybrid nanoparticles. The review also highlights the future prospects that can offer a potential approach for developing novel strategies to treat idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Tushar Kanti Dhara
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sayak Khawas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Gai J, Liu L, Zhang X, Guan J, Mao S. Impact of the diseased lung microenvironment on the in vivo fate of inhaled particles. Drug Discov Today 2024; 29:104019. [PMID: 38729235 DOI: 10.1016/j.drudis.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.
Collapse
Affiliation(s)
- Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liu Liu
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
3
|
Ediriweera GR, Butcher NJ, Kothapalli A, Zhao J, Blanchfield JT, Subasic CN, Grace JL, Fu C, Tan X, Quinn JF, Ascher DB, Whittaker MR, Whittaker AK, Kaminskas LM. Lipid sulfoxide polymers as potential inhalable drug delivery platforms with differential albumin binding affinity. Biomater Sci 2024; 12:2978-2992. [PMID: 38683548 DOI: 10.1039/d3bm02020g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 μM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Neville J Butcher
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ashok Kothapalli
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher N Subasic
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - James L Grace
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - John F Quinn
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael R Whittaker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
4
|
Ibrahim JP, Dao N, Haque S, Phipps S, Whittaker MR, Kaminskas LM. Hydrogenated Soy Phosphatidylcholine Liposomes Stimulate Differential Expression of Chemokines And Cytokines by Rat Alveolar Macrophages In Vitro. J Pharm Sci 2024; 113:1395-1400. [PMID: 38460572 DOI: 10.1016/j.xphs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Liposomes are being developed as inhalable drug delivery systems, but concerns remain about their impact on the lungs. To better understand the impact of liposomes and their physicochemical properties on alveolar macrophages, the cytokine and chemokine expression profile of rat alveolar Nr8383 macrophages exposed to 0.1 and 1 mg/ml hydrogenated soy phosphatidylcholine (HSPC) liposomes was examined. Expression patterns varied considerably between liposomes in a concentration-dependent manner, with both anti- and pro-inflammatory chemokines/cytokines produced. Uncharged liposomes induce the greatest production of cytokines and chemokines, followed by PEGylated liposomes. The most significant increase in cytokine/chemokine expression was seen for IL-2 (up to 24-fold), IL-4 (up to 5-fold), IL-18 and VEGF (up to 10-fold), while liposome exposure significantly reduced MIP1 expression (5-fold). In summary, we demonstrate that liposome surface properties promote variable patterns of cytokine and chemokine secretion by alveolar macrophages. This suggests that the type of liposome employed may influence the type of immune response generated in the lung and by extension, dictate how inhaled liposomal nanomedicines affect the lungs response to inhaled toxicants and local infections.
Collapse
Affiliation(s)
- Jibriil P Ibrahim
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Nam Dao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, 3052, Australia
| | - Shadabul Haque
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, 3052, Australia
| | - Simon Phipps
- Respiratory Immunology, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
5
|
Kaminskas LM, Butcher NJ, Subasic CN, Kothapalli A, Haque S, Grace JL, Morsdorf A, Blanchfield JT, Whittaker AK, Quinn JF, Whittaker MR. Lipidated brush-PEG polymers as low molecular weight pulmonary drug delivery platforms. Expert Opin Drug Deliv 2024; 21:151-167. [PMID: 38248870 DOI: 10.1080/17425247.2024.2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Nanomedicines are being actively developed as inhalable drug delivery systems. However, there is a distinct utility in developing smaller polymeric systems that can bind albumin in the lungs. We therefore examined the pulmonary pharmacokinetic behavior of a series of lipidated brush-PEG (5 kDa) polymers conjugated to 1C2, 1C12 lipid or 2C12 lipids. METHODS The pulmonary pharmacokinetics, patterns of lung clearance and safety of polymers were examined in rats. Permeability through monolayers of primary human alveolar epithelia, small airway epithelia and lung microvascular endothelium were also investigated, along with lung mucus penetration and cell uptake. RESULTS Polymers showed similar pulmonary pharmacokinetic behavior and patterns of lung clearance, irrespective of lipid molecular weight and albumin binding capacity, with up to 30% of the dose absorbed from the lungs over 24 h. 1C12-PEG showed the greatest safety in the lungs. Based on its larger size, 2C12-PEG also showed the lowest mucus and cell membrane permeability of the three polymers. While albumin had no significant effect on membrane transport, the cell uptake of C12-conjugated PEGs were increased in alveolar epithelial cells. CONCLUSION Lipidated brush-PEG polymers composed of 1C12 lipid may provide a useful and novel alternative to large nanomaterials as inhalable drug delivery systems.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Ashok Kothapalli
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Shadabul Haque
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Alexander Morsdorf
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, University of Queensland, St Lucia, QLD, Australia
| | - John F Quinn
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
6
|
Subasic CN, Butcher NJ, Simpson F, Minchin RF, Kaminskas LM. Dose-Dependent Effect of Phenothiazines as Dynamin II Inhibitors on the Uptake of PEGylated Liposomes by Endocytic Cells and In Vivo Pharmacokinetics of PEGylated Liposomal Doxorubicin in Rats. Mol Pharm 2023; 20:4468-4477. [PMID: 37548597 DOI: 10.1021/acs.molpharmaceut.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dynamin II (dynII) plays a significant role in the internalization pathways of endocytic cells, by allowing membrane invaginations to "bud off". An important class of dynII inhibitors that are used clinically are phenothiazines, such as prochlorperazine (PCZ). PCZ is an antipsychotic drug but is also currently in clinical trials at higher concentrations as an adjuvant in cancer patients that increases the efficacy of monoclonal antibodies at high intravenous doses. It is unknown, however, whether high-dose dynII inhibitors have the potential to alter the pharmacokinetics of co-administered chemotherapeutic nanomedicines that are largely cleared via the mononuclear phagocyte system. This work therefore sought to investigate the impact of clinically relevant concentrations of phenothiazines, PCZ and thioridazine, on in vitro liposome endocytosis and in vivo liposome pharmacokinetics after PCZ infusion in rats. The uptake of fluorescently labeled PEGylated liposomes into differentiated and undifferentiated THP-1 and RAW246.7 cells, and primary human peripheral white blood cells, was investigated via flow cytometry after co-incubation with dynII inhibitors. The IV pharmacokinetics of PEGylated liposomes were also investigated in rats after a 20 min infusion with PCZ. Phenothiazines and dyngo4a reduced the uptake of PEGylated liposomes by THP-1 and RAW264.7 cells in a concentration-dependent manner in vitro. However, dynII inhibitors did not alter the mean uptake of liposomes by human peripheral white blood cells, but endocytic white cells from some donors exhibited sensitivity to phenothiazine exposure. When a clinically relevant dose of PCZ was co-administered with PEGylated liposomal doxorubicin (Caelyx/Doxil) in rats, the pharmacokinetics and biodistribution of liposomes were unaltered. These data suggest that while clinically relevant doses of dynII inhibitors can inhibit the uptake of liposomes by endocytic cells in vitro, they are unlikely to significantly affect the pharmacokinetics of long-circulating, co-administered liposomes.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, St Lucia QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
7
|
Ibrahim JP, Butcher NJ, Kothapalli A, Subasic CN, Blanchfield JT, Whittaker AK, Whittaker MR, Kaminskas LM. Utilization of endogenous albumin trafficking pathways in the lungs has potential to modestly increase the lung interstitial access and absorption of drug delivery systems after inhaled administration. Expert Opin Drug Deliv 2023; 20:1145-1155. [PMID: 37535434 DOI: 10.1080/17425247.2023.2244881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Drug delivery systems typically show limited access to the lung interstitium and absorption after pulmonary delivery. The aim of this work was to undertake a proof-of-concept investigation into the potential of employing endogenous albumin and albumin absorption mechanisms in the lungs to improve lung interstitial access and absorption of inhaled drug delivery systems that bind albumin. METHODS The permeability of human albumin (HSA) through monolayers of primary human alveolar epithelia, small airway epithelia, and microvascular endothelium were investigated. The pulmonary pharmacokinetics of bovine serum albumin (BSA) was also investigated in efferent caudal mediastinal lymph duct-cannulated sheep after inhaled aerosol administration. RESULTS Membrane permeability coefficient values (Papp) of HSA increased in the order alveolar epithelia CONCLUSION Drug delivery systems that bind endogenous albumin may show a modest increase in lung permeability and absorption after inhaled delivery compared to systems that do not efficiently bind albumin.
Collapse
Affiliation(s)
- Jibriil P Ibrahim
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Ashok Kothapalli
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, University of Queensland, St Lucia, QLD, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Julia Altube M, Perez N, Lilia Romero E, José Morilla M, Higa L, Paula Perez A. Inhaled lipid nanocarriers for pulmonary delivery of glucocorticoids: previous strategies, recent advances and key factors description. Int J Pharm 2023:123146. [PMID: 37330156 DOI: 10.1016/j.ijpharm.2023.123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In view of the strong anti-inflammatory activity of glucocorticoids (GC) they are used in the treatment of almost all inflammatory lung diseases. In particular, inhaled GC (IGC) allow high drug concentrations to be deposited in the lung and may reduce the incidence of adverse effects associated with systemic administration. However, rapid absorption through the highly absorbent surface of the lung epithelium may limit the success of localized therapy. Therefore, inhalation of GC incorporated into nanocarriers is a possible approach to overcome this drawback. In particular, lipid nanocarriers, which showed high pulmonary biocompatibility and are well known in the pharmaceutical industry, have the best prospects for pulmonary delivery of GC by inhalation. This review provides an overview of the pre-clinical applications of inhaled GC-lipid nanocarriers based on several key factors that will determine the efficiency of local pulmonary GC delivery: 1) stability to nebulization, 2) deposition profile in the lungs, 3) mucociliary clearance, 4) selective accumulation in target cells, 5) residence time in the lung and systemic absorption and 6) biocompatibility. Finally, novel preclinical pulmonary models for inflammatory lung diseases are also discussed.
Collapse
Affiliation(s)
- María Julia Altube
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - María José Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Leticia Higa
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled Lipid Nanoparticles Alleviate Established Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300545. [PMID: 37058092 DOI: 10.1002/smll.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Pulmonary fibrosis, a sequela of lung injury resulting from severe infection such as severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) infection, is a kind of life-threatening lung disease with limited therapeutic options. Herein, inhalable liposomes encapsulating metformin, a first-line antidiabetic drug that has been reported to effectively reverse pulmonary fibrosis by modulating multiple metabolic pathways, and nintedanib, a well-known antifibrotic drug that has been widely used in the clinic, are developed for pulmonary fibrosis treatment. The composition of liposomes made of neutral, cationic or anionic lipids, and poly(ethylene glycol) (PEG) is optimized by evaluating their retention in the lung after inhalation. Neutral liposomes with suitable PEG shielding are found to be ideal delivery carriers for metformin and nintedanib with significantly prolonged retention in the lung. Moreover, repeated noninvasive aerosol inhalation delivery of metformin and nintedanib loaded liposomes can effectively diminish the development of fibrosis and improve pulmonary function in bleomycin-induced pulmonary fibrosis by promoting myofibroblast deactivation and apoptosis, inhibiting transforming growth factor 1 (TGFβ1) action, suppressing collagen formation, and inducing lipogenic differentiation. Therefore, this work presents a versatile platform with promising clinical translation potential for the noninvasive inhalation delivery of drugs for respiratory disease treatment.
Collapse
Affiliation(s)
- Dongjun Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ang Zhao
- Department of medical affair, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Zhang M, Jiang H, Wu L, Lu H, Bera H, Zhao X, Guo X, Liu X, Cun D, Yang M. Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J Control Release 2022; 352:422-437. [PMID: 36265740 DOI: 10.1016/j.jconrel.2022.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
With specific and inherent mRNA cleaving activity, small interfering RNA (siRNA) has been deemed promising therapeutics to reduce the exacerbation rate of asthma by inhibiting the expression and release of proinflammatory cytokines from airway epithelial cells (AECs). To exert the therapeutic effects of siRNA drugs, nano-formulations with high efficiency and safety are required to deliver these nucleic acids to the target cells. Herein, we exploited novel inhaled lipid nanoparticles (LNPs) targeting intercellular adhesion molecule-1 (ICAM-1) receptors on the apical side of AECs. This delivery system is meant to enhance the specific delivery efficiency of siRNA in AECs to prevent the expression of proinflammatory cytokines in AECs and the concomitant symptoms in parallel. A cyclic peptide that resembles part of the capsid protein of rhinovirus and binds to ICAM-1 receptors was initially conjugated with cholesterol and subsequently assembled with ionizable cationic lipids to form the LNPs (Pep-LNPs) loaded with siRNA against thymic stromal lymphopoietin (TSLP siRNA). The obtained Pep-LNPs were subjected to thorough characterization and evaluations in vitro and in vivo. Pep-LNPs significantly enhanced cellular uptake and gene silencing efficiency in human epithelial cells expressing ICAM-1 in vitro, exhibited AEC-specific delivery and improved the gene silencing effect in ovalbumin-challenged asthmatic mice after pulmonary administration. More importantly, Pep-LNPs remarkably downregulated the expression of TSLP in AECs, effectively alleviated inflammatory cell infiltration, and reduced the secretion of other proinflammatory cytokines, including IL-4 and IL-13, as well as mucus production in asthmatic mice. This study demonstrates that Pep-LNPs are safe and efficient to deliver siRNA drugs to asthmatic AECs and could potentially alleviate allergic asthma by inhibiting the overexpression of proinflammatory cytokines in the airway.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, 713212, India
| | - Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Shen L, Lv X, Yang X, Deng S, Liu L, Zhou J, Zhu Y, Ma H. Bufotenines-loaded liposome exerts anti-inflammatory, analgesic effects and reduce gastrointestinal toxicity through altering lipid and bufotenines metabolism. Biomed Pharmacother 2022; 153:113492. [DOI: 10.1016/j.biopha.2022.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
|
12
|
Ibrahim JP, Haque S, Bischof RJ, Whittaker AK, Whittaker MR, Kaminskas LM. Liposomes are Poorly Absorbed via Lung Lymph After Inhaled Administration in Sheep. Front Pharmacol 2022; 13:880448. [PMID: 35721215 PMCID: PMC9201389 DOI: 10.3389/fphar.2022.880448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Enhancing the delivery of therapeutic agents to the lung lymph, including drugs, transfection agents, vaccine antigens and vectors, has the potential to significantly improve the treatment and prevention of a range of lung-related illnesses. One way in which lymphatic delivery can be optimized is via the use of nanomaterial-based carriers, such as liposomes. After inhaled delivery however, there is conflicting information in the literature regarding whether nanomaterials can sufficiently access the lung lymphatics to have a therapeutic benefit, in large part due to a lack of reliable quantitative pharmacokinetic data. The aim of this work was to quantitatively evaluate the pulmonary lymphatic pharmacokinetics of a model nanomaterial-based drug delivery system (HSPC liposomes) in caudal mediastinal lymph duct cannulated sheep after nebulized administration to the lungs. Liposomes were labelled with 3H-phosphatidylcholine to facilitate evaluation of pharmacokinetics and biodistribution in biological samples. While nanomaterials administered to the lungs may access the lymphatics via direct absorption from the airways or after initial uptake by alveolar macrophages, only 0.3 and 0.001% of the 3H-lipid dose was recovered in lung lymph fluid and lymph cell pellets (containing immune cells) respectively over 5 days. This suggests limited lymphatic access of liposomes, despite apparent pulmonary bioavailability of the 3H-lipid being approximately 17%, likely a result of absorption of liberated 3H-lipid after breakdown of the liposome in the presence of lung surfactant. Similarly, biodistribution of 3H in the mediastinal lymph node was insignificant after 5 days. These data suggest that liposomes, that are normally absorbed via the lymphatics after interstitial administration, do not access the lung lymphatics after inhaled administration. Alternate approaches to maximize the lung lymphatic delivery of drugs and other therapeutics need to be identified.
Collapse
Affiliation(s)
- Jibriil P Ibrahim
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Shadabul Haque
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Robert J Bischof
- School of Science, Psychology and Sport, Federation University, Berwick, VIC, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Michael R Whittaker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond) 2022; 17:913-934. [PMID: 35451334 DOI: 10.2217/nnm-2021-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammatory lung disorders have become one of the fastest growing global healthcare concerns, with more than 500 million annual cases of disorders such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Owing to environmental changes and socioeconomic disparity, the numbers are expected to grow even more in years to come. The therapeutic strategies and approved drugs currently employed in the management of inflammatory lung disorders show dose-dependent resistance and pharmacokinetic limitations. This review comprehensively discusses lipid-based pulmonary nanomedicine as a potential platform to overcome these barriers while ensuring site-specific drug delivery and minimal side effects in nontargeted tissues for the management of noninfectious inflammatory lung disorders.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Parmar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
14
|
Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, Rojas S, Barrios-Esteban S, Csaba N, Horcajada P, Remuñán-López C. Microencapsulated Isoniazid-Loaded Metal-Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs. Molecules 2021; 26:molecules26216408. [PMID: 34770817 PMCID: PMC8587908 DOI: 10.3390/molecules26216408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal–organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.
Collapse
Affiliation(s)
- Cristina Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Estefanía Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Sheila Barrios-Esteban
- Nanobiofar Group-Natural Polymers and Biomimetics (NPNB) Group, Center of Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Galicia, Spain
| | - Noemi Csaba
- Nanobiofar Group-Natural Polymers and Biomimetics (NPNB) Group, Center of Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Galicia, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Carmen Remuñán-López
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
15
|
Subasic CN, Kuilamu E, Cowin G, Minchin RF, Kaminskas LM. The pharmacokinetics of PEGylated liposomal doxorubicin are not significantly affected by sex in rats or humans, but may be affected by immune dysfunction. J Control Release 2021; 337:71-80. [PMID: 34245788 DOI: 10.1016/j.jconrel.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
PEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the 3H-labelled liposome. In general, the pharmacokinetics of doxorubicin and the 3H-liposome did not differ significantly between male and female rats when corrected for body surface area. Female rats did, however, show significantly higher doxorubicin concentrations in lymph compared to male rats. With the exception of serum testosterone concentrations in males, none of the physiological parameters evaluated correlated with plasma clearance. Further, reanalysis of published human data that formerly reported sex-differences in PLD plasma clearance similarly revealed no significant differences in PLD plasma clearance between males and females with solid tumours, but increased plasma clearance in patients with Kaposi's sarcoma (generally HIV+/immunocompromised). These data suggest that with the exception of lymphatic exposure, there are unlikely to be significant sex effects in the pharmacokinetics of liposomes, but immune function may contribute to inter individual variability.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Esther Kuilamu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, Saqallah FG, Wahab HA. Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals (Basel) 2021; 14:725. [PMID: 34451824 PMCID: PMC8400724 DOI: 10.3390/ph14080725] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths, responsible for approximately 18.4% of all cancer mortalities in both sexes combined. The use of systemic therapeutics remains one of the primary treatments for LC. However, the therapeutic efficacy of these agents is limited due to their associated severe adverse effects, systemic toxicity and poor selectivity. In contrast, pulmonary delivery of anticancer drugs can provide many advantages over conventional routes. The inhalation route allows the direct delivery of chemotherapeutic agents to the target LC cells with high local concertation that may enhance the antitumor activity and lead to lower dosing and fewer systemic toxicities. Nevertheless, this route faces by many physiological barriers and technological challenges that may significantly affect the lung deposition, retention, and efficacy of anticancer drugs. The use of lipid-based nanocarriers could potentially overcome these problems owing to their unique characteristics, such as the ability to entrap drugs with various physicochemical properties, and their enhanced permeability and retention (EPR) effect for passive targeting. Besides, they can be functionalized with different targeting moieties for active targeting. This article highlights the physiological, physicochemical, and technological considerations for efficient inhalable anticancer delivery using lipid-based nanocarriers and their cutting-edge role in LC treatment.
Collapse
Affiliation(s)
- Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark;
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Fadi G. Saqallah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| |
Collapse
|
17
|
Scolari IR, Volpini X, Fanani ML, La Cruz-Thea BD, Natali L, Musri MM, Granero GE. Exploring the Toxicity, Lung Distribution, and Cellular Uptake of Rifampicin and Ascorbic Acid-Loaded Alginate Nanoparticles as Therapeutic Treatment of Lung Intracellular Infections. Mol Pharm 2021; 18:807-821. [PMID: 33356316 DOI: 10.1021/acs.molpharmaceut.0c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.
Collapse
Affiliation(s)
- Ivana R Scolari
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Ximena Volpini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - María L Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba X5000HUA, Argentina
| | - Benjamín De La Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Melina M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gladys E Granero
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
18
|
Wu L, Wu LP, Wu J, Sun J, He Z, Rodríguez-Rodríguez C, Saatchi K, Dailey LA, Häfeli UO, Cun D, Yang M. Poly(lactide- co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3722-3737. [PMID: 33439616 DOI: 10.1021/acsami.0c21259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pulmonary delivery of small interfering RNA (siRNA)-based drugs is promising in treating severe lung disorders characterized by the upregulated expression of disease-causing genes. Previous studies have shown that the sustained siRNA release in vitro can be achieved from polymeric matrix nanoparticles based on poly(lactide-co-glycolide) (PLGA) loaded with lipoplexes (LPXs) composed of cationic lipid and anionic siRNA (lipid-polymer hybrid nanoparticles, LPNs). Yet, the in vivo efficacy, potential for prolonging the pharmacological effect, disposition, and safety of LPNs after pulmonary administration have not been investigated. In this study, siRNA against enhanced green fluorescent protein (EGFP-siRNA) was either assembled with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) to form LPX or co-entrapped with DOTAP in PLGA nanoparticles to form LPNs. The disposition and clearance of LPXs and LPNs in mouse lungs were studied after intratracheal administration by using single-photon emission computed tomography/computed tomography (SPECT/CT) and gamma counting. Fluorescence spectroscopy, Western blot, and confocal laser scanning microscopy were used to evaluate the silencing of the EGFP expression mediated by the LPXs and LPNs after intratracheal administration to transgenic mice expressing the EGFP gene. The in vivo biocompatibility of LPXs and LPNs was investigated by measuring the cytokine level, total cell counts in bronchoalveolar lavage fluid, and observing the lung tissue histology section. The results showed that the silencing of the EGFP expression mediated by LPNs after pulmonary administration was both prolonged and enhanced as compared to LPXs. This may be attributed to the sustained release characteristics of PLGA, and the prolonged retention in the lung tissue of the colloidally more stable LPNs in comparison to LPXs, as indicated by SPECT/CT. The presence of PLGA effectively alleviated the acute inflammatory effect of cationic lipids to the lungs. This study suggests that PLGA-based LPNs may present an effective formulation strategy to mediate sustained gene silencing effects in the lung via pulmonary administration.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Lin-Ping Wu
- Drug Discovery Pipeline, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Jingya Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC V6T 1Z1, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
19
|
Marasini N, Fu C, Fletcher NL, Subasic C, Er G, Mardon K, Thurecht KJ, Whittaker AK, Kaminskas LM. The Impact of Polymer Size and Cleavability on the Intravenous Pharmacokinetics of PEG-Based Hyperbranched Polymers in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2452. [PMID: 33302413 PMCID: PMC7762536 DOI: 10.3390/nano10122452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
A better understanding of the impact of molecular size and linkers is important for PEG-based hyperbranched polymers (HBPs) intended as tailored drug delivery vehicles. This study aimed to evaluate the effects of crosslinker chemistry (cleavable disulphide versus non-cleavable ethylene glycol methacrylate (EGDMA) linkers) and molecular weight within the expected size range for efficient renal elimination (22 vs. 48 kDa) on the intravenous pharmacokinetic and biodistribution properties of 89Zr-labelled HBPs in rats. All HBPs showed similar plasma pharmacokinetics over 72 h, despite differences in linker chemistry and size. A larger proportion of HBP with the cleavable linker was eliminated via the urine and faeces compared to a similar-sized HBP with the non-cleavable linker, while size had no impact on the proportion of the dose excreted. The higher molecular weight HBPs accumulated in organs of the mononuclear phagocyte system (liver and spleen) more avidly than the smaller HBP. These results suggest that HBPs within the 22 to 48 kDa size range show no differences in plasma pharmacokinetics, but distinct patterns of organ biodistribution and elimination are evident.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Nicholas L. Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- ARC Training Centre for innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- Centre for Advance Imaging, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Christopher Subasic
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Gerald Er
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
| | - Karine Mardon
- Centre for Advance Imaging, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- ARC Training Centre for innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
- Centre for Advance Imaging, The University of Queensland, St Lucia 4072, Queensland, Australia;
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Queensland, Australia; (C.F.); (N.L.F.); (G.E.); (K.J.T.); (A.K.W.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Lisa M. Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia;
| |
Collapse
|
20
|
Efficacy of Levofloxacin Loaded Nonionic Surfactant Vesicles (Niosomes) in a Model of Pseudomonas aeruginosa Infected Sprague Dawley Rats. Adv Pharmacol Pharm Sci 2020; 2020:8815969. [PMID: 33179011 PMCID: PMC7609151 DOI: 10.1155/2020/8815969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/05/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
This study examined the effectiveness of niosomes loaded with levofloxacin in treating Pseudomonas aeruginosa (American Type Culture Collection—ATCC 27853) infections in Sprague Dawley rats since these infections are becoming more common and resistant to treatment. Levofloxacin entrapped in niosomes was prepared using the thin-film hydration method and was assessed for in vitro release and stability. Three groups of six (6) animals were infected with a lethal dose of Pseudomonas aeruginosa via the intraperitoneal (Ip) route. At six (6) hours postinfection, the animals were treated with either drug-free niosomes (control), free levofloxacin (conventional), or levofloxacin trapped in niosomes (Ip) at a dose of 7.5 mg/kg/once daily. Blood was collected via tail snips on days 0, 1, 3, 5, 7, and 10 for complete blood counts and viable bacterial counts (CFU/μl). At day 10, the animals were sacrificed, and the kidney, liver, and spleen were harvested for bacterial counts. The niosomes showed a sustained drug release profile and were most stable at 4°C. All animals in the control group succumbed to the infection; one animal from the conventional group died, and all niosome treated animals survived at day 10. The mean lymphocyte count (×109) was lower for the niosome (7.258 ± 1.773) versus conventional group (17.684 ± 10.008) (p < 0.03) at day ten (10). Neutrophil counts (×109) were lower for the niosome (2.563 ± 1.609) versus conventional (6.2 ± 6.548) (p < 0.02) groups. Though CFUs in the bloodstream were comparable for both treatment groups, the niosome treated group showed a significant reduction of CFUs in the liver, kidney, and spleen versus the conventional group (1.33 ± 2.074) vs (5.8 ± 3.74) (p < 0.043), (1.5 ± 2.35) vs (9.6 ± 8.65) (p < 0.038) and (3.8 4.71) vs (25.6 14.66) (p < 0.007), respectively. These findings indicate that niosome is promising as a drug delivery system in treating systemic infections, but further work using niosomes with surface modification is recommended.
Collapse
|
21
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Haque S, Pouton CW, McIntosh MP, Ascher DB, Keizer DW, Whittaker MR, Kaminskas LM. The impact of size and charge on the pulmonary pharmacokinetics and immunological response of the lungs to PLGA nanoparticles after intratracheal administration to rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102291. [PMID: 32841737 DOI: 10.1016/j.nano.2020.102291] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Polylactide-co-glycolide (PLGA) nanoparticles are one of the most commonly explored biodegradable polymeric drug carriers for inhaled delivery. Despite their advantages as inhalable nanomedicine scaffolds, we still lack a complete understanding of the kinetics and major pathways by which these materials are cleared from the lungs. This information is important to evaluate their safety over prolonged use and enable successful clinical translation. This study aimed to determine how the size and charge of 3H-labeled PLGA nanoparticles affect the kinetics and mechanisms by which they are cleared from the lungs and their safety in the lungs. The results showed that lung clearance kinetics and retention patterns were more significantly defined by particle size, whereas lung clearance pathways were largely influenced by particle charge. Each of the nanoparticles caused transient inflammatory changes in the lungs after a single dose that reflected lung retention times.
Collapse
Affiliation(s)
- Shadabul Haque
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - David B Ascher
- Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - David W Keizer
- Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne, VIC, Australia.
| | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
23
|
Hibbitts AJ, Ramsey JM, Barlow J, MacLoughlin R, Cryan SA. In Vitro and In Vivo Assessment of PEGylated PEI for Anti-IL-8/CxCL-1 siRNA Delivery to the Lungs. NANOMATERIALS 2020; 10:nano10071248. [PMID: 32605011 PMCID: PMC7407419 DOI: 10.3390/nano10071248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Inhalation offers a means of rapid, local delivery of siRNA to treat a range of autoimmune or inflammatory respiratory conditions. This work investigated the potential of a linear 10 kDa Poly(ethylene glycol) (PEG)-modified 25 kDa branched polyethyleneimine (PEI) (PEI-LPEG) to effectively deliver siRNA to airway epithelial cells. Following optimization with anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA, PEI and PEI-LPEG anti-IL8 siRNA nanoparticles were assessed for efficacy using polarised Calu-3 human airway epithelial cells and a twin stage impinger (TSI) in vitro lung model. Studies were then advanced to an in vivo lipopolysaccharide (LPS)-stimulated rodent model of inflammation. In parallel, the suitability of the siRNA-loaded nanoparticles for nebulization using a vibrating mesh nebuliser was assessed. The siRNA nanoparticles were nebulised using an Aerogen® Pro vibrating mesh nebuliser and characterised for aerosol output, droplet size and fine particle fraction. Only PEI anti-IL8 siRNA nanoparticles were capable of significant levels of IL-8 knockdown in vitro in non-nebulised samples. However, on nebulization through a TSI, only PEI-PEG siRNA nanoparticles demonstrated significant decreases in gene and protein expression in polarised Calu-3 cells. In vivo, both anti-CXCL-1 (rat IL-8 homologue) nanoparticles demonstrated a decreased CXCL-1 gene expression in lung tissue, but this was non-significant. However, PEI anti-CXCL-1 siRNA-treated rats were found to have significantly less infiltrating macrophages in their bronchoalveolar lavage (BAL) fluid. Overall, the in vivo gene and protein inhibition findings indicated a result more reminiscent of the in vitro bolus delivery rather than the in vitro nebulization data. This work demonstrates the potential of nebulised PEI-PEG siRNA nanoparticles in modulating pulmonary inflammation and highlights the need to move towards more relevant in vitro and in vivo models for respiratory drug development.
Collapse
Affiliation(s)
- Alan J. Hibbitts
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
| | - Joanne M. Ramsey
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
| | - James Barlow
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
- Aerogen Ltd. Galway Business Park, Galway H91 HE94, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; (A.J.H.); (J.M.R.); (R.M.)
- Trinity Centre for Biomedical Engineering, Trinity College, Dublin D02 R590, Ireland
- Correspondence: ; Tel.: +353-14022741
| |
Collapse
|
24
|
Zhang T, Wang R, Li M, Bao J, Chen Y, Ge Y, Jin Y. Comparative study of intratracheal and oral gefitinib for the treatment of primary lung cancer. Eur J Pharm Sci 2020; 149:105352. [PMID: 32315772 DOI: 10.1016/j.ejps.2020.105352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Oral gefitinib tablets are widely applied for the treatment of non-small cell lung cancer (NSCLC) though its broad distribution in the body may result in weak therapeutic efficiency and undesired side effects. Here, liposomal gefitinib dry powder inhalers (LGDs) were prepared using the injection-lyophilization method. LGDs were rough porous particles under a scanning electron microscope, which can be rapidly rehydrated to liposomes. LGDs and gefitinib powders were separately intratracheally (i.t.) administered into the lungs of primary lung cancer rats, while powdered gefitinib tablets were orally administered. Gefitinib was rapidly absorbed from the lung after i.t. administration of LGDs. The maximal gefitinib concentration in the circulation and the area under curve (AUC) of i.t. LGDs were higher than those of i.t. gefitinib powders and oral gefitinib. More importantly, much higher concentration and longer retention of gefitinib in the lung were shown after i.t. administration of LGDs and gefitinib powders but remarkably less drug distribution in the liver compared to oral gefitinib. LGDs showed higher therapeutic effect on rat primary lung cancer than i.t. gefitinib powders and oral gefitinib with reduction of inflammation, weak lung injury, and high apoptosis. Combination of inhalation and liposomes of anticancer drugs is a promising strategy for treatment of primary lung cancer.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Jianwei Bao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Bengbu Medical College, Bengbu 233030, China
| | - Yanming Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yuanyuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Anhui Medical University, Hefei 230001, China; Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
25
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|