1
|
Meany EL, Klich JH, Jons CK, Mao T, Chaudhary N, Utz A, Baillet J, Song YE, Saouaf OM, Ou BS, Williams SC, Eckman N, Irvine DJ, Appel E. Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602305. [PMID: 39026835 PMCID: PMC11257424 DOI: 10.1101/2024.07.05.602305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Messenger RNA (mRNA) delivered in lipid nanoparticles (LNPs) rose to the forefront of vaccine candidates during the COVID-19 pandemic due in part to scalability, adaptability, and potency. Yet there remain critical areas for improvements of these vaccines in durability and breadth of humoral responses. In this work, we explore a modular strategy to target mRNA/LNPs to antigen presenting cells with an injectable polymer-nanoparticle (PNP) hydrogel depot technology which recruits key immune cells and forms an immunological niche in vivo. We characterize this niche on a single cell level and find it is highly tunable through incorporation of adjuvants like MPLAs and 3M-052. Delivering commercially available SARS-CoV-2 mRNA vaccines in PNP hydrogels improves the durability and quality of germinal center reactions, and the magnitude, breadth, and durability of humoral responses. The tunable immune niche formed within PNP hydrogels effectively skews immune responses based on encapsulated adjuvants, creating opportunities to precisely modulate mRNA/LNP vaccines for various indications from infectious diseases to cancers.
Collapse
|
2
|
Mancini F, Caradonna V, Alfini R, Aruta MG, Vitali CG, Gasperini G, Piccioli D, Berlanda Scorza F, Rossi O, Micoli F. Testing S. sonnei GMMA with and without Aluminium Salt-Based Adjuvants in Animal Models. Pharmaceutics 2024; 16:568. [PMID: 38675229 PMCID: PMC11054012 DOI: 10.3390/pharmaceutics16040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Shigellosis is one of the leading causes of diarrheal disease in low- and middle-income countries, particularly in young children, and is more often associated with antimicrobial resistance. Therefore, a preventive vaccine against shigellosis is an urgent medical need. We have proposed Generalised Modules for Membrane Antigens (GMMA) as an innovative delivery system for Shigella sonnei O-antigen, and an Alhydrogel formulation (1790GAHB) has been extensively tested in preclinical and clinical studies. Alhydrogel has been used as an adsorbent agent with the main purpose of reducing potential GMMA systemic reactogenicity. However, the immunogenicity and systemic reactogenicity of this GMMA-based vaccine formulated with or without Alhydrogel have never been compared. In this work, we investigated the potential adjuvant effect of aluminium salt-based adjuvants (Alhydrogel and AS37) on S. sonnei GMMA immunogenicity in mice and rabbits, and we found that S. sonnei GMMA alone resulted to be strongly immunogenic. The addition of neither Alhydrogel nor AS37 improved the magnitude or the functionality of vaccine-elicited antibodies. Interestingly, rabbits injected with either S. sonnei GMMA adsorbed on Alhydrogel or S. sonnei GMMA alone showed a limited and transient body temperature increase, returning to baseline values within 24 h after each vaccination. Overall, immunisation with unadsorbed GMMA did not raise any concern for animal health. We believe that these data support the clinical testing of GMMA formulated without Alhydrogel, which would allow for further simplification of GMMA-based vaccine manufacturing.
Collapse
Affiliation(s)
- Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Valentina Caradonna
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | | | | | | | | | - Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), 53100 Siena, Italy
| |
Collapse
|
3
|
Siram K, Lathrop SK, Abdelwahab WM, Tee R, Davison CJ, Partlow HA, Evans JT, Burkhart DJ. Co-Delivery of Novel Synthetic TLR4 and TLR7/8 Ligands Adsorbed to Aluminum Salts Promotes Th1-Mediated Immunity against Poorly Immunogenic SARS-CoV-2 RBD. Vaccines (Basel) 2023; 12:21. [PMID: 38250834 PMCID: PMC10818338 DOI: 10.3390/vaccines12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Despite the availability of effective vaccines against COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide, pressing the need for new vaccines with improved breadth and durability. We developed an adjuvanted subunit vaccine against SARS-CoV-2 using the recombinant receptor-binding domain (RBD) of spikes with synthetic adjuvants targeting TLR7/8 (INI-4001) and TLR4 (INI-2002), co-delivered with aluminum hydroxide (AH) or aluminum phosphate (AP). The formulations were characterized for the quantities of RBD, INI-4001, and INI-2002 adsorbed onto the respective aluminum salts. Results indicated that at pH 6, the uncharged RBD (5.73 ± 4.2 mV) did not efficiently adsorb to the positively charged AH (22.68 ± 7.01 mV), whereas it adsorbed efficiently to the negatively charged AP (-31.87 ± 0.33 mV). Alternatively, pre-adsorption of the TLR ligands to AH converted it to a negatively charged particle, allowing for the efficient adsorption of RBD. RBD could also be directly adsorbed to AH at a pH of 8.1, which changed the charge of the RBD to negative. INI-4001 and INI-2002 efficiently to AH. Following vaccination in C57BL/6 mice, both aluminum salts promoted Th2-mediated immunity when used as the sole adjuvant. Co-delivery with TLR4 and/or TLR7/8 ligands efficiently promoted a switch to Th1-mediated immunity instead. Measurements of viral neutralization by serum antibodies demonstrated that the addition of TLR ligands to alum also greatly improved the neutralizing antibody response. These results indicate that the addition of a TLR7/8 and/or TLR4 agonist to a subunit vaccine containing RBD antigen and alum is a promising strategy for driving a Th1 response and neutralizing antibody titers targeting SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David J. Burkhart
- Center for Translational Medicine, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA; (K.S.); (S.K.L.); (W.M.A.); (R.T.); (C.J.D.); (H.A.P.); (J.T.E.)
| |
Collapse
|
4
|
Liu B, Zhang J, Liu Z, Wang P, Zhang Y, He H, Yin T, Gou J, Tang X. Research on the preparation process of the cytarabine/daunorubicin dual-encapsulation liposome and its physicochemical properties and performances in vitro/vivo. Int J Pharm 2023; 646:123500. [PMID: 37820944 DOI: 10.1016/j.ijpharm.2023.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
As the only Food and Drug Administration (FDA)-approved dual-encapsulation liposome injection for treating Acute myeloid leukemia (AML), CPX-351 outperforms the standard chemotherapy treatment "DA 7 + 3″ in terms of clinical effectiveness. Although research on dual-loaded liposomes has increased in recent years, little attention has been paid to their preparation, which can affect their quality, efficacy, and safety. This study explored various preparation processes to create the cytarabine/daunorubicin co-loaded liposome (the Cyt/Daun liposome) and eventually settled on two methods: the sequential loading approach, thin film hydration-extrusion-copper ion gradient, and the simultaneous encapsulation technique, copper ion gradient-concentration gradient. Different preparation methods resulted in different particle sizes and encapsulation efficiencies; the two aforementioned preparation processes generated dual-loaded liposomes with comparable physicochemical properties. The sequential encapsulation technique was selected for the subsequent research owing to its higher encapsulation efficiency prior to purification; the prepared Cyt/Daun liposomes had small and uniform particle size (108.6 ± 1.02 nm, Polydispersity index (PDI) 0.139 ± 0.01), negative charge (-(60.2 ± 1.15) mV), high drug encapsulation efficiency (Cyt 88.2 ± 0.24 %, Duan 94.2 ± 0.45 %) and good plasma stability. To improve its storage stability, the Cyt/Daun liposome was lyophilized (-40 °C for 4 h, maintained for 130 min, and dried for 1200 min) using sucrose-raffinose (mass ratio 7:3; glycolipid ratio 4:1, w/w) as a lyoprotectant. The lyophilized liposomes were purple cakes, redissolved rapidly with insignificant alterations in particle size and encapsulation efficiency, and possessed well storage stability. The pharmacokinetic and tissue distribution studies demonstrated that the Cyt/Daun liposome could achieve long circulation and maintain synergic proportions of drugs within 24 h, increasing the accumulation of drugs at tumor sites. Furthermore, the in vitro/in vivo pharmacodynamic studies confirmed its good anti-tumor activity and safety.
Collapse
Affiliation(s)
- Boyuan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jiaoyang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Zixu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Ping Wang
- School of Pharmacy, Jilin University, Changchun 130021, Jilin, PR China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
5
|
Narayan B, Verma SK, Singh S, Gupta MK, Kumar S. Protective antigen of Bacillus anthracis in combination with TLR4 or TLR5 agonist confers superior protection against lethal challenge in mouse model. Microbes Infect 2023; 25:105183. [PMID: 37437686 DOI: 10.1016/j.micinf.2023.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The immunogenicity and protective ability of recombinant PA (rPA) with two innate immune system modulators, i.e., monophosphoryl lipid A (MPLA), a TLR4 agonist, and recombinant flagellin C (FliC), a TLR5 agonist, were studied in the mouse model. BALB/c mice were inoculated with three doses of rPA + alum (Alum group), rPA + FliC + alum (FliC group), rPA + MPLA + alum (MPLA group), or only alum adjuvant (Alum alone group). Significant increases in anti-PA IgG titers were observed in the Alum, FliC and MPLA groups when compared to control Alum alone group. Similarly, a significant enhancement of proinflammatory (TNF-α, IL-1β), Th1 (IFN-γ, IL-12(p70), IL-2) and Th2 (IL-10, IL-4) cytokines were also noticed in Alum, FliC and MPLA groups compared to Alum alone group. The rPA-specific IgG and cytokine responses in MPLA and FliC groups were significantly higher than the Alum group, suggesting enhancement of immune response by these TLR agonists. MPLA was also found to skew the IgG1:IgG2a ratio towards IgG2a. At a challenge dose of 25 LD50, complete protection was observed in mice of MPLA group whereas lesser protection was observed in FliC (87%) and Alum (50%) groups. Therefore, we suggest the use of MPLA in further development of rPA based anthrax vaccines.
Collapse
Affiliation(s)
- Bineet Narayan
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Sandeep Singh
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Mahendra K Gupta
- School of Studies in Botany and Microbiology, Jiwaji University, Gwalior, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
6
|
Mashhadi Abolghasem Shirazi M, Sadat SM, Haghighat S, Roohvand F, Arashkia A. Alum and a TLR7 agonist combined with built-in TLR4 and 5 agonists synergistically enhance immune responses against HPV RG1 epitope. Sci Rep 2023; 13:16801. [PMID: 37798448 PMCID: PMC10556035 DOI: 10.1038/s41598-023-43965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
To relieve the limitations of the human papillomavirus (HPV) vaccines based on L1 capsid protein, vaccine formulations based on RG1 epitope of HPV L2 using various built-in adjuvants are under study. Herein, we describe design and construction of a rejoined peptide (RP) harboring HPV16 RG1 epitope fused to TLR4/5 agonists and a tetanus toxoid epitope, which were linked by the (GGGS)3 linker in tandem. In silico analyses indicated the proper physicochemical, immunogenic and safety profile of the RP. Docking analyses on predicted 3D model suggested the effective interaction of TLR4/5 agonists within RP with their corresponding TLRs. Expressing the 1206 bp RP-coding DNA in E. coli produced a 46 kDa protein, and immunization of mice by natively-purified RP in different adjuvant formulations indicated the crucial role of the built-in adjuvants for induction of anti-RG1 responses that could be further enhanced by combination of TLR7 agonist/alum adjuvants. While the TLR4/5 agonists contributed in the elicitation of the Th2-polarized immune responses, combination with TLR7 agonist changed the polarization to the balanced Th1/Th2 immune responses. Indeed, RP + TLR7 agonist/alum adjuvants induced the strongest immune responses that could efficiently neutralize the HPV pseudoviruses, and thus might be a promising formulation for an inexpensive and cross-reactive HPV vaccine.
Collapse
Affiliation(s)
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
7
|
Crouse B, Miller SM, Muelken P, Hicks L, Vigliaturo JR, Marker CL, Guedes AGP, Pentel PR, Evans JT, LeSage MG, Pravetoni M. A TLR7/8 agonist increases efficacy of anti-fentanyl vaccines in rodent and porcine models. NPJ Vaccines 2023; 8:107. [PMID: 37488109 PMCID: PMC10366150 DOI: 10.1038/s41541-023-00697-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- HealthPartners Institute, Research and Evaluation Division, 8170 33rd Ave S, Bloomington, MN, 55425, USA
| | - Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Peter Muelken
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Luvo Bioscience, 7500W. Henrietta Road, Rush, NY, 14543, USA
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Paul R Pentel
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Mark G LeSage
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Medication Development for Substance Use Disorders, Seattle, WA, USA.
| |
Collapse
|
8
|
Peletta A, Lemoine C, Courant T, Collin N, Borchard G. Meeting vaccine formulation challenges in an emergency setting: Towards the development of accessible vaccines. Pharmacol Res 2023; 189:106699. [PMID: 36796463 DOI: 10.1016/j.phrs.2023.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.
Collapse
Affiliation(s)
- Allegra Peletta
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Thomas Courant
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| |
Collapse
|
9
|
Gao Q, Ma R, Shi L, Wang S, Liang Y, Zhang Z. Anti-glycation and anti-inflammatory activities of anthocyanins from purple vegetables. Food Funct 2023; 14:2034-2044. [PMID: 36723267 DOI: 10.1039/d2fo03645b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anthocyanins may be effective bioactive constituents to reduce the potential risk of chronic diseases induced by glycation and inflammation. In the present study, the anti-glycation and anti-inflammatory activities of anthocyanins derived from purple cabbage (PCA), purple sweet potato (PSP), purple corn (PCO) and gynura bicolor (GB) were evaluated. According to the results from the bovine serum albumin (BSA)-fructose and BSA-methylglyoxal (MGO) model, the inhibition effects of anthocyanins on non-enzymatic glycosylation not only acted on the intermediate stage, but also played a certain role in the entire non-enzymatic glycosylation process, among which anthocyanins from PCA exhibited the best inhibitory effect. The anthocyanins from all four purple vegetables could trap MGO effectively (p > 0.05). The anthocyanins also presented a good inhibitory effect on amyloid beta peptide (Aβ)1-42 fibrillation, even better than that of aminoguanidine (AG), in a thermal induction assay. Furthermore, anthocyanins from PCA, PSP, PCO and GB showed significant anti-inflammatory effects, inhibiting pro-inflammatory factor (i.e., NO and TNF-α) production, among which the anthocyanins from PCA and PSP exhibited a higher inhibition effect than the others. This is probably due to the suppression of the TLR4-mediated MyD88 signaling pathway in the lipopolysaccharide (LPS)-induced BV2 cells based on the western blot analysis. Anthocyanins from purple vegetables could be used as a value-added food ingredient for the food industry. Food fortification with anthocyanins might be a promising way to protect humans against various chronic diseases caused by glycation and inflammation.
Collapse
Affiliation(s)
- Qingchao Gao
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Rong Ma
- College of agriculture and animal husbandry, Qinghai University, Xining, 810016, China
| | - Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Shulin Wang
- College of agriculture and animal husbandry, Qinghai University, Xining, 810016, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| |
Collapse
|
10
|
Yin W, Deng B, Xu Z, Wang H, Ma F, Zhou M, Lu Y, Zhang J. Formulation and Evaluation of Lipidized Imiquimod as an Effective Adjuvant. ACS Infect Dis 2023; 9:378-387. [PMID: 36688646 DOI: 10.1021/acsinfecdis.2c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adjuvants are essential for the induction of robust immune responses against vaccine antigens. Small-molecule TLR7 agonists hold high potential for this purpose. In this communication, imiquimod (IMQ) bearing a cholesterol lipid moiety derivative, IMQ-Chol, was designed and synthesized as a vaccine adjuvant, which could release parent IMQ molecules in aqueous conditions via amide bond hydrolysis. We performed a series of immunological evaluations by cooperating with the inactivated foot-and-mouth disease virus (FMDV). All of the results confirmed that IMQ-Chol could stimulate the body for a prolonged time to produce strong humoral and cellular immunity with a balanced Th1/Th2 immune response through a TLR7-related MAPK pathway. In addition, the results of the proof-of-concept vaccine indicated IMQ-Chol had a good effect on preventing and treating FMD in pigs.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China
| | - Zeyu Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China
| | - Mingxu Zhou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing210014, P. R. China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, P. R. China
| |
Collapse
|
11
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
12
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Hao Y, Li H, Ge X, Liu Y, Li X, Liu Y, Chen H, Zhang S, Zou J, Huang L, Zhao F, Kang D, De Geest BG, Zhang Z. Tumor-Selective Activation of Toll-Like Receptor 7/8 Agonist Nano-Immunomodulator Generates Safe Anti-Tumor Immune Responses upon Systemic Administration. Angew Chem Int Ed Engl 2022; 61:e202214992. [PMID: 36331428 DOI: 10.1002/anie.202214992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Agonists of innate pattern recognition receptors such as toll-like receptors (TLRs) prime adaptive anti-tumor immunity and hold promise for cancer immunotherapy. However, small-molecule TLR agonists cause immune-related adverse effects (irAEs) after systemic administration. Herein, we report a polymeric nano-immunomodulator (cN@SS-IMQ) that is inactive until it is selectively metabolized to an active immunostimulant within the tumor. cN@SS-IMQ was obtained via self-assembly of a cyclo(Arg-Gly-Asp-D-Phe-Lys)-modified amphiphilic copolymeric prodrug. Upon systemic administration, cN@SS-IMQ preferentially accumulated at tumor sites and responded to high intracellular glutathione levels to release native imidazoquinolines for dendritic cell maturation, thereby enhancing the infiltration of T lymphocytes. Collectively, cN@SS-IMQ tends to activate the immune system without irAEs, thus suggesting its promising potential for safe systemic targeting delivery.
Collapse
Affiliation(s)
- Yanyun Hao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Ge
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xia Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yutong Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shiying Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lingling Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
14
|
Barman S, Borriello F, Brook B, Pietrasanta C, De Leon M, Sweitzer C, Menon M, van Haren SD, Soni D, Saito Y, Nanishi E, Yi S, Bobbala S, Levy O, Scott EA, Dowling DJ. Shaping Neonatal Immunization by Tuning the Delivery of Synergistic Adjuvants via Nanocarriers. ACS Chem Biol 2022; 17:2559-2571. [PMID: 36028220 PMCID: PMC9486804 DOI: 10.1021/acschembio.2c00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Adjuvanted nanocarrier-based vaccines hold substantial potential for applications in novel early-life immunization strategies. Here, via mouse and human age-specific in vitro modeling, we identified the combination of a small-molecule STING agonist (2'3'-cyclic GMP-AMP, cGAMP) and a TLR7/8 agonist (CL075) to drive the synergistic activation of neonatal dendritic cells and precision CD4 T-helper (Th) cell expansion via the IL-12/IFNγ axis. We further demonstrate that the vaccination of neonatal mice with quadrivalent influenza recombinant hemagglutinin (rHA) and an admixture of two polymersome (PS) nanocarriers separately encapsulating cGAMP (cGAMP-PS) and CL075 (CL075-PS) drove robust Th1 bias, high frequency of T follicular helper (TFH) cells, and germinal center (GC) B cells along with the IgG2c-skewed humoral response in vivo. Dual-loaded cGAMP/CL075-PSs did not outperform admixed cGAMP-PS and CL075-PS in vivo. These data validate an optimally designed adjuvantation system via age-selected small-molecule synergy and a multicomponent nanocarrier formulation as an effective approach to induce type 1 immune responses in early life.
Collapse
Affiliation(s)
- Soumik Barman
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Francesco Borriello
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Department
of Translational Medical Sciences and Center for Basic and Clinical
Immunology Research (CISI), University of
Naples Federico II, Naples 80131, Italy
- WAO
Center of Excellence, Naples 80131, Italy
| | - Byron Brook
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Carlo Pietrasanta
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, NICU, Milan 20122, Italy
- Department
of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Maria De Leon
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Cali Sweitzer
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Manisha Menon
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Simon D. van Haren
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Dheeraj Soni
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Yoshine Saito
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Etsuro Nanishi
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Sijia Yi
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Chicago, Illinois 60208, United States
| | - Sharan Bobbala
- Department
of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ofer Levy
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT & Harvard, Cambridge, Massachusetts 02142, United States
| | - Evan A. Scott
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Chicago, Illinois 60208, United States
| | - David J. Dowling
- Precision
Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Zhang A, Li D, Song C, Jing H, Li H, Mi J, Zhang G, Jin S, Ren X, Huangfu H, Shi D, Chen R. Evaluation of different combination of pam2CSK4, poly (I:C) and imiquimod enhance immune responses to H9N2 avian influenza antigen in dendritic cells and duck. PLoS One 2022; 17:e0271746. [PMID: 35853030 PMCID: PMC9295992 DOI: 10.1371/journal.pone.0271746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Current commercial H9 avian influenza viruses (AIVs) vaccines cannot provide satisfactory antibody titers and protective immunity against AIVs in duck. Toll like receptors (TLR) ligand as AIVs adjuvants can activate dendritic cells to improve immune responses in multiple animals, while the studies were absent in duck. Therefore, we investigated TLR ligands pam2CSK4, poly (I:C) and/or imiquimod enhance immune responses to inactivated H9N2 avian influenza antigen (H9N2 IAIV) in peripheral blood monocyte-derived dendritic cells (MoDCs) and duck. In vitro, we observed that transcription factor NF-κB, Th1/Th2 type cytokines (IFN-γ, IL-2 and IL-6) and the ability of catching H9N2 IAIV antigen were significantly up-regulated when H9N2 IAIV along with TLR ligands (pam2CSK4, poly (I:C) and imiquimod, alone or combination) in duck MoDCs. Also, the best enhancement effects were showed in combination of pam2CSK4, poly (I:C) and imiquimod group, whereas IFN-α showed no significant enhancement in all experimental groups. In vivo, the results demonstrated that the percentages of CD4+/ CD8+ T lymphocytes, the levels of Th1/Th2 type cytokines and H9N2 HI titers were significant enhanced in combination of pam2CSK4, poly (I:C) and imiquimod group. However, pam2CSK4 alone or combining with imiquimod showed no enhancement or additive effects on Th1 cytokines (IFN-γ and IL-2), Th2 cytokines (IL-6) and HI titers in Muscovy duck, respectively. Taken together, our results concluded that not all TLR ligands showed enhancement of immune responses to H9N2 IAIV in duck. The combination of poly (I:C), imiquimod and pam2CSK4 that can be an effectively adjuvant candidate for H9N2 AIVs inactivated vaccine in duck, which provide novel insights in explore waterfowl vaccine.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Huannong (Zhaoqing) Institute of Biotechnology Co. Ltd., Zhaoqing, Guangdong, China
- Henan Poultry Disease Prevention and Control Engineering Technology Research Center, Zhengzhou, Henan, China
- * E-mail: (RC); (AZ)
| | - Deyin Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Chao Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Huiyuan Jing
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Hongfei Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Junxian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guizhi Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shuangxing Jin
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Poultry Disease Prevention and Control Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Xiaoli Ren
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Heping Huangfu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Dongmei Shi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Ruiai Chen
- Huannong (Zhaoqing) Institute of Biotechnology Co. Ltd., Zhaoqing, Guangdong, China
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
- * E-mail: (RC); (AZ)
| |
Collapse
|
16
|
Short KK, Lathrop SK, Davison CJ, Partlow HA, Kaiser JA, Tee RD, Lorentz EB, Evans JT, Burkhart DJ. Using Dual Toll-like Receptor Agonism to Drive Th1-Biased Response in a Squalene- and α-Tocopherol-Containing Emulsion for a More Effective SARS-CoV-2 Vaccine. Pharmaceutics 2022; 14:1455. [PMID: 35890352 PMCID: PMC9318334 DOI: 10.3390/pharmaceutics14071455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
A diversity of vaccines is necessary to reduce the mortality and morbidity of SARS-CoV-2. Vaccines must be efficacious, easy to manufacture, and stable within the existing cold chain to improve their availability around the world. Recombinant protein subunit vaccines adjuvanted with squalene-based emulsions such as AS03™ and MF59™ have a long and robust history of safe, efficacious use with straightforward production and distribution. Here, subunit vaccines were made with squalene-based emulsions containing novel, synthetic toll-like receptor (TLR) agonists, INI-2002 (TLR4 agonist) and INI-4001 (TLR7/8 agonist), using the recombinant receptor-binding domain (RBD) of SARS-CoV-2 S protein as an antigen. The addition of the TLR4 and TLR7/8 agonists, alone or in combination, maintained the formulation characteristics of squalene-based emulsions, including a sterile filterable droplet size (<220 nm), high homogeneity, and colloidal stability after months of storage at 4, 25, and 40 °C. Furthermore, the addition of the TLR agonists skewed the immune response from Th2 towards Th1 in immunized C57BL/6 mice, resulting in an increased production of IgG2c antibodies and a lower antigen-specific production of IL-5 with a higher production of IFNγ by lymphocytes. As such, incorporating TLR4 and TLR7/8 agonists into emulsions leveraged the desirable formulation and stability characteristics of emulsions and can induce Th1-type humoral and cell-mediated immune responses to combat the continued threat of SARS-CoV-2.
Collapse
Affiliation(s)
- Kristopher K. Short
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stephanie K. Lathrop
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Clara J. Davison
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Haley A. Partlow
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Johnathan A. Kaiser
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rebekah D. Tee
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Elizabeth B. Lorentz
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - David J. Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; (K.K.S.); (S.K.L.); (C.J.D.); (H.A.P.); (J.A.K.); (R.D.T.); (E.B.L.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
17
|
Sharma BK, Ramakrishan S, Kaliappan A, Singh M, Kumar A, Dandapat S, Dey S, Chellappa MM. Evaluation of a Lipopolysaccharide and Resiquimod Combination as an Adjuvant with Inactivated Newcastle Disease Virus Vaccine in Chickens. Vaccines (Basel) 2022; 10:vaccines10060894. [PMID: 35746503 PMCID: PMC9229813 DOI: 10.3390/vaccines10060894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Various toll-like receptor (TLR) agonists have shown potential as adjuvants with different vaccines in both human and livestock species, including chickens. Our previous studies on combination of lipopolysaccharide (LPS; TLR4 agonist) and resiquimod (R-848; TLR7 agonist) showed the synergistic up-regulation of pro-inflammatory Th1 and Th2 cytokines in chicken peripheral blood mononuclear cells (PMBCs). Hence, the present study aimed to explore the combined adjuvant effect of LPS and R-848 with inactivated Newcastle disease virus (NDV) vaccine in chickens. Two weeks-old SPF chickens were immunized with inactivated NDV vaccine along with a combination of LPS and R-848 as an adjuvant with suitable control groups. A booster dose was given two weeks later. Antibody responses were assessed by enzyme linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) test, while cell-mediated immune responses were analyzed by a lymphocyte transformation test (LTT) and flow cytometry following vaccination. Two weeks post-booster, the birds were challenged with a velogenic strain of NDV, and protection against clinical signs, mortality and virus shedding was analyzed. The results indicated that inactivated NDV vaccine with R-848 induced significantly higher humoral and cellular immune responses with 100% protection against mortality and viral shedding following a virulent NDV challenge. However, the combination of LPS and R-848 along with inactivated NDV vaccine produced poor humoral and cellular immune responses and could not afford protection against challenge infection and virus shedding when compared to the vaccine-alone group, indicating the deleterious effects of the combination on antigen-specific immune responses. In conclusion, the combination of LPS and R-848 showed the inhibitory effects on antigen-specific humoral, cellular and protective immune responses when used as an adjuvant with inactivated NDV vaccines in chickens. This inhibitory effect might have occurred due to systemic cytokine storm. A nanoparticle-based delivery of the combination of LPS and R-848 for slow and sustained release could be tried as an alternative method to explore the synergistic effect of the combination as an adjuvant in chickens.
Collapse
Affiliation(s)
- Bal Krishnan Sharma
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Saravanan Ramakrishan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
- Correspondence: ; Tel.: +91-941-246-3498
| | - Abinaya Kaliappan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Mithilesh Singh
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| |
Collapse
|
18
|
Cao X, Zhang Q, Zhu Y, Li S, Cai Y, Li P, Liu D, Leng Y, Ye S, Xu Z, Li H, Shen B, Liao Q, Liu L, Xie Z. Structural Characterization and Immunoenhancing Effects of a Polysaccharide from the Soft Coral Lobophytum sarcophytoides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:203-215. [PMID: 35175461 DOI: 10.1007/s10126-022-10099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on the soft coral Lobophytum sarcophytoides (Lobophytum sp.) are mainly about small molecules, and there has been no systematic research on polysaccharides. In the study, a novel polysaccharide (LCPs-1-A) with immunoenhancing functions was successfully extracted and purified from the soft coral Lobophytum sp. After preliminary analysis, our data indicated that LCPs-1-A was composed of glucose and had a molecular weight of 4.90 × 106 Da. Moreover, our findings showed that LCPs-1-A could promote the proliferation and phagocytosis of RAW264.7 cells, stimulate the production of NO and ROS, and increase the mRNA expression of IL-1β, IL-6, and TNF-α, which indicated that LCPs-1-A had a good immunoenhancing activity. Through further studies, we found that LCPs-1-A might play an immunoenhancing role through the TLR4/NF-κB signaling pathway. Therefore, our results demonstrated that LCPs-1-A might be a natural immunostimulant for use in medical and food industries.
Collapse
Affiliation(s)
- Xueqin Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yanglu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yun Leng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Simin Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Baochun Shen
- School of Pharmacy, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
19
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
20
|
Xie L, Huang Z, Meng H, Shi X, Xie J. Immunomodulation effect of polysaccharides from liquid fermentation of Monascus purpureus 40269 via membrane TLR-4 to activate the MAPK and NF-κB signaling pathways. Int J Biol Macromol 2022; 201:480-491. [DOI: 10.1016/j.ijbiomac.2022.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
|
21
|
Wang H, Yang X, hu C, Huang C, Wang H, Zhu D, Zhang L. Programmed polymersomes with spatio-temporal delivery of antigen and dual-adjuvants for efficient dendritic cells-based cancer immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021; 13:pharmaceutics13122060. [PMID: 34959344 PMCID: PMC8706843 DOI: 10.3390/pharmaceutics13122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Agonists for toll-like receptors (TLRs) have shown promising activities against cancer. In the present study, a squalene-based nanoemulsion (NE) was loaded with resiquimod, a TLR7/8 agonist for therapeutic delivery. R848 NE was developed and characterized for long-term stability. In vitro and in vivo antitumor immunity of R848 NE were also evaluated in combination with SD-101, a CpG-containing TLR9 agonist. In vitro studies demonstrated strong long-term stability and immune responses to R848 NE. When combined with SD-101, strong antitumor activity was observed in MC38 murine colon carcinoma model with over 80% tumor growth inhibition. The combination treatment showed a 4-fold increase in systemic TNFa production and a 2.6-fold increase in Cd8a expression in tumor tissues, suggesting strong cell-mediated immune responses against the tumor. The treatment not only demonstrated a strong antitumor immunity by TLR7/8 and TLR9 activations but also induced PD-L1 upregulation in tumors, suggesting a potential therapeutic synergy with immune checkpoint inhibitors.
Collapse
|
23
|
Atalis A, Dixon JB, Roy K. Soluble and Microparticle-Based Delivery of TLR4 and TLR9 Agonists Differentially Modulate 3D Chemotaxis of Bone Marrow-Derived Dendritic Cells. Adv Healthc Mater 2021; 10:e2001899. [PMID: 33928762 PMCID: PMC9211062 DOI: 10.1002/adhm.202001899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/12/2021] [Indexed: 12/30/2022]
Abstract
Vaccines are commonly administered subcutaneously or intramuscularly, and local immune cells, notably dendritic cells (DCs), play a significant role in transporting vaccine antigens and adjuvants to draining lymph nodes. Here, it is compared how soluble and biomaterial-mediated delivery of Toll-like receptor (TLR)-targeted adjuvants, monophosphoryl lipid A (MPLA, TLR4 ligand) and 5'-C-phosphate-G-3' DNA (CpG DNA, TLR9 ligand), modulate 3D chemotaxis of bone marrow-derived dendritic cells (BMDCs) toward lymphatic chemokine gradients. Within microfluidic devices containing 3D collagen-based matrices to mimic tissue conditions, soluble MPLA increases BMDC chemotaxis toward gradients of CCL19 and CCL21, while soluble CpG has no effect. Delivering CpG on poly(lactic-co-glycolic) acid microparticles (MPs) enhances BMDC chemotaxis compared to MPLA-encapsulated MPs, and when co-delivered, MPLA and CpG do not synergistically enhance BMDC migration. It is concluded that supplementing granulocyte-macrophage colony stimulating factor-derived BMDC culture with interleukin-4 is necessary to induce CCR7 expression and chemotaxis of BMDCs. Different cell subsets in BMDC culture upregulate CCR7 in response to soluble versus biomaterial-loaded MPLA and CpG, and CCR7 expression does not consistently correlate with functional migration. The results show both adjuvant type and delivery method influence chemotaxis of DCs, and these findings uncover new directions for the rational design of vaccine formulations.
Collapse
Affiliation(s)
- Alexandra Atalis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - J Brandon Dixon
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M), Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
25
|
Massena CJ, Lathrop SK, Davison CJ, Schoener R, Bazin HG, Evans JT, Burkhart DJ. A tractable covalent linker strategy for the production of immunogenic antigen-TLR7/8L bioconjugates. Chem Commun (Camb) 2021; 57:4698-4701. [PMID: 33977971 PMCID: PMC9118693 DOI: 10.1039/d1cc00795e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Despite the ease of production and improved safety profiles of recombinant vaccines, the inherently low immunogenicity of unadjuvanted proteins remains an impediment to their widespread adoption. The covalent tethering of TLR agonists to antigenic proteins offers a unique approach to co-deliver both constituents to the same cell-enhancing vaccine efficacy while minimizing reactogenicity. However, the paucity of simple and effective linker chemistries continues to hamper progress. Here, we present a modular, PEG-based linker system compatible with even extremely lipophilic and challenging TLR7/8 agonists. To advance the field and address previous obstacles, we offer the most straightforward and antigen-preserving linker system to date. These antigen-adjuvant conjugates enhance antigen-specific immune responses in mice, demonstrating the power of our approach within the context of modern vaccinology.
Collapse
Affiliation(s)
- C J Massena
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - S K Lathrop
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - C J Davison
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - R Schoener
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - H G Bazin
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - J T Evans
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| | - D J Burkhart
- Dept. of Biomedical & Pharmaceutical Sciences, University of Montana, 32 Campus Dr, Missoula, MT 59812, USA.
| |
Collapse
|
26
|
Pradhan P, Toy R, Jhita N, Atalis A, Pandey B, Beach A, Blanchard EL, Moore SG, Gaul DA, Santangelo PJ, Shayakhmetov DM, Roy K. TRAF6-IRF5 kinetics, TRIF, and biophysical factors drive synergistic innate responses to particle-mediated MPLA-CpG co-presentation. SCIENCE ADVANCES 2021; 7:eabd4235. [PMID: 33523878 PMCID: PMC7806213 DOI: 10.1126/sciadv.abd4235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Innate immune responses to pathogens are driven by co-presentation of multiple pathogen-associated molecular patterns (PAMPs). Combinations of PAMPs can trigger synergistic immune responses, but the underlying molecular mechanisms of synergy are poorly understood. Here, we used synthetic particulate carriers co-loaded with monophosphoryl lipid A (MPLA) and CpG as pathogen-like particles (PLPs) to dissect the signaling pathways responsible for dual adjuvant immune responses. PLP-based co-delivery of MPLA and CpG to GM-CSF-driven mouse bone marrow-derived antigen-presenting cells (BM-APCs) elicited synergistic interferon-β (IFN-β) and interleukin-12p70 (IL-12p70) responses, which were strongly influenced by the biophysical properties of PLPs. Mechanistically, we found that MyD88 and interferon regulatory factor 5 (IRF5) were necessary for IFN-β and IL-12p70 production, while TRIF signaling was required for the synergistic response. Both the kinetics and magnitude of downstream TRAF6 and IRF5 signaling drove the synergy. These results identify the key mechanisms of synergistic Toll-like receptor 4 (TLR4)-TLR9 co-signaling in mouse BM-APCs and underscore the critical role of signaling kinetics and biophysical properties on the integrated response to combination adjuvants.
Collapse
Affiliation(s)
- P Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - R Toy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - N Jhita
- Lowance Center of Human Immunology, Department of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - A Atalis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - B Pandey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - A Beach
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - E L Blanchard
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - S G Moore
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - D A Gaul
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - P J Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - D M Shayakhmetov
- Lowance Center of Human Immunology, Department of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - K Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
27
|
Pu Y, Liu Z, Zhong C, Zhang X, Bao Y. Immunomodulatory effects of a polysaccharide from Solanum nigrum Linne through TLR4-MyD88 signaling pathway. Int Immunopharmacol 2020; 88:106973. [DOI: 10.1016/j.intimp.2020.106973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
|
28
|
Kocabas BB, Almacioglu K, Bulut EA, Gucluler G, Tincer G, Bayik D, Gursel M, Gursel I. Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response. J Control Release 2020; 328:587-595. [PMID: 32971199 DOI: 10.1016/j.jconrel.2020.09.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Nucleic acid-based pattern recognition receptor agonists are effective adjuvants and immunotherapeutic agents. Rather than single applications, ligand combinations could synergistically potentiate immune responses by elevating cytokine and chemokine production via triggering multiple signaling pathways. However, short half-lives of such labile ligands due to nuclease attack and limited cellular uptake due to their structure significantly hamper their in vivo performances. More importantly, simultaneous delivery and activity presentation of protein antigen and nucleic acid ligands critically limit the clinical development of these constructs. In this work, we approached this problem by co-encapsulating a model antigen ovalbumin along with TLR9 and STING ligands within liposomes, a well-established drug delivery system that enables payload stability and enhanced cellular activity upon internalization. Moreover, by loading dual ligands we postulated to achieve heightened Th-1 immune response that would yield pronounced protective vaccine efficacy. We show that, pH-sensitive liposomes co-encapsulating CpG ODN and cGAMP induced synergistic innate immune response by elevating type I and type II interferon levels. Most importantly, this vaccine formulation led to ~70% regression of established melanoma tumor. pH-sensitive liposomal vaccine administration elevated IgG2c/IgG1 antibody ratio, indicative of augmented OVA-specific Th1-biased immunity. Importantly, while the frequency of tumor-specific IFN-γ producing CD8+ T-cells was significantly increased, the M2-type anti-inflammatory macrophage levels were decreased in the tumor bed. In conclusion, our strategy induces reversal of immunosuppressive tumor microenvironment, while enhancing effective anti-tumor immune-response. We propose that this could be coupled with standard therapies during combating tumor eradication.
Collapse
Affiliation(s)
- Banu Bayyurt Kocabas
- Thorlab. Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Kubra Almacioglu
- Thorlab. Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Esin Alpdundar Bulut
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Gozde Gucluler
- Thorlab. Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Gizem Tincer
- Thorlab. Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Ihsan Gursel
- Thorlab. Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800 Ankara, Turkey.
| |
Collapse
|
29
|
Progress in the Development of Universal Influenza Vaccines. Viruses 2020; 12:v12091033. [PMID: 32957468 PMCID: PMC7551969 DOI: 10.3390/v12091033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict—all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.
Collapse
|
30
|
Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020; 8:5241-5259. [PMID: 32996922 DOI: 10.1039/d0bm01158d] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging anti-tumor immunotherapy has made significant progress in clinical application. However, single immunotherapy is not effective for all anti-tumor treatments, owing to the low objective response rate and the risk of immune-related side effects. Meanwhile, photothermal therapy (PTT) has attracted significant attention because of its non-invasiveness, spatiotemporal controllability and small side effects. Combining PTT with immunotherapy overcomes the issue that single photothermal therapy cannot eradicate tumors with metastasis and recurrence. However, it improves the therapeutic effect of immunotherapy, as the photothermal therapy usually promotes release of tumor-related antigens, triggers immune response by the immunogenic cell death (ICD), thereby, endowing unique synergistic mechanisms for cancer therapy. This review summarizes recent research advances in utilizing nanomedicines for PTT in combination with immunotherapy to improve the outcome of cancer treatment. The strategies include immunogenic cell death, immune agonists and cancer vaccines, immune checkpoint blockades and tumor specific monoclonal antibodies, and small-molecule immune inhibitors. The combination of synergized PTT-immunotherapy with other therapeutic strategies is also discussed.
Collapse
Affiliation(s)
- Tongyi Shang
- The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | | | | | | |
Collapse
|
31
|
Gradinati V, Baruffaldi F, Abbaraju S, Laudenbach M, Amin R, Gilger B, Velagaleti P, Pravetoni M. Polymer-mediated delivery of vaccines to treat opioid use disorders and to reduce opioid-induced toxicity. Vaccine 2020; 38:4704-4712. [PMID: 32439214 DOI: 10.1016/j.vaccine.2020.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022]
Abstract
Vaccines offer a potential strategy to treat opioid use disorders (OUD) and to reduce the incidence of opioid-related overdoses. Vaccines induce opioid-specific polyclonal antibodies that selectively and effectively bind the target opioid and prevent its distribution across the blood-brain barrier. Because antibody-mediated reduction of drug distribution to the brain reduces drug-induced behavior and toxicity, vaccine efficacy depends on the quantity and quality of the antibody response. This study tested whether polymer-mediated delivery could improve vaccine efficacy against opioids as well as eliminate the need for booster injections normally required for a successful immunization. A series of novel biodegradable biocompatible thermogelling pentablock co-polymers were used to formulate a candidate vaccine against oxycodone in mice and rats. Polymer-based delivery of the anti-oxycodone vaccine was equally or more effective than administration in aluminum adjuvant in generating oxycodone-specific antibodies and in reducing oxycodone-induced effects and oxycodone distribution to the brain in mice and rats. The composition and release kinetics of the polymer formulations determined vaccine efficacy. Specifically, a formulation consisting of three simultaneous injections of the anti-oxycodone vaccine formulated in three different polymers with slow, intermediate, and fast release kinetics was more effective than an immunization regimen consisting of three sequential injections with the vaccine adsorbed on aluminum. The novel three-phased polymer vaccine formulation was effective in blocking oxycodone-induced antinociception, respiratory depression and bradycardia in rats.
Collapse
Affiliation(s)
- Valeria Gradinati
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States
| | | | | | - Megan Laudenbach
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Rasidul Amin
- Symmetry Biosciences, Raleigh, NC, United States
| | - Brian Gilger
- North Carolina State University, NC, United States
| | | | - Marco Pravetoni
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States; University of Minnesota, Center for Immunology, Minneapolis, MN, United States.
| |
Collapse
|