1
|
Elbordiny MM, Ahmed SA, El-Sebaay AS, Attia Attia Y, Saudy HS, Abd-Elrahman SH. Potentiality of chitosan/titanium oxide nanocomposite for removing iron and chromium from hydrous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66796-66807. [PMID: 39641843 DOI: 10.1007/s11356-024-35455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
The present study involved the preparation of a nano-polymer based on shrimp wastes as a biodegradable chitosan nanoparticle (Cs) incorporated into titanium oxide nanoparticles (TiO2) in an aqueous medium and carried on the specific polymer to form thin films. The spectroscopic properties of chitosan/TiO2/Polymer thin films were estimated by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The fabricated films were then examined for their potential to eliminate iron (Fe) and chromium (Cr) from solutions. The adsorption efficiency was also evaluated along various contact times. In general, the results illustrated that the heavy metals removal increases with increasing the different ratios of chitosan and TiO2 nanoparticles incorporated in polymer thin films. Removal efficiency increased with an increase in contact time. More than 70% of Fe and Cr ions were removed in the first 30 min of contact time using different thin films examined. The maximum removal for metal ions after 90 min for the pest thin film (0.08 TiO2) was 97.1 and 88.8% for Fe and Cr, whereas the lowest thin film removal efficiency (PVC) was 29.5 and 8.07% for Fe and Cr, respectively. In conclusion, the fabricated thin film composed of polyvinylidene chloride and chitosan plus 0.08 g titanium oxide nanoparticles had a heavy metal removal capacity three times greater than that of basic polyvinylidene chloride.
Collapse
Affiliation(s)
- Mahmoud Mohamed Elbordiny
- Department of Soil and Water, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt
| | | | - Abdellatif Saleh El-Sebaay
- Department of Soil and Water, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt
| | - Yasser Attia Attia
- Department of Measurements, Photochemistry and Agriculture Applications, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12613, Egypt
| | - Hani Saber Saudy
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.
| | - Shaimaa Hassan Abd-Elrahman
- Department of Soil and Water, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt
| |
Collapse
|
2
|
Swift T, Hoskins R, Kalinichenko M, Katsikogianni M, Daigneault M, Rimmer S. Photophysical, thermal and imaging studies on vancomycin functional branched poly( N-isopropyl acrylamide) of differing degrees of branching containing nile red for detection of Gram-positive bacteria. J Mater Chem B 2024; 12:11996-12006. [PMID: 39450488 PMCID: PMC11503812 DOI: 10.1039/d4tb01544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Highly branched poly(N-isopropyl acrylamide) additives chain end functionalised with vancomycin have been designed to agglutinate and report on targetted Gram-positive strains of bacteria (S. aureus). These branched systems selectively desolvate with temperature or binding interactions depending on their chain architecture. We have prepared samples with three different degrees of branching which have incorporated Nile red acrylate as a low concentration of co-monomer to report upon their solution properties. A linear analogue polymer functionalised with vancomycin along the chain instead of the termini is presented as a control which does not bind to targeted bacteria. These samples were analysed by diffusion NMR spectrometry (DOSY), calorimetry, fluorescence lifetime measurements, optical microscopy and scanning electron microscopy to gain a full understanding of their solution properties. The branched polymers are shown conclusively to have a core-shell structure, where the chain ends are expressed from the desolvated globule even above the lower critical solution temperature - as demonstrated by NMR measurements. The level of desolvation is critically dependent on the degree of branching, and as a result we have found intermediate structures provide optimal body temperature bacterial sensing as a consequence of the Nile red reporting dye.
Collapse
Affiliation(s)
- Thomas Swift
- School of Chemistry and Biosciences, University of Bradford, BD7 1DP, UK.
| | | | | | | | | | - Stephen Rimmer
- School of Chemistry and Biosciences, University of Bradford, BD7 1DP, UK.
| |
Collapse
|
3
|
Li Z, Wang X, Wan W, Zhang N, Zhang L, Wang X, Lin K, Yang J, Hao J, Tian F. Rational design of pH-responsive nano-delivery system with improved biocompatibility and targeting ability from cellulose nanocrystals via surface polymerization for intracellular drug delivery. Int J Biol Macromol 2024; 281:136435. [PMID: 39414191 DOI: 10.1016/j.ijbiomac.2024.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Cellulose nanocrystals (CNCs), derived from diverse sources and distinguished by their inherent biodegradability, excellent biocompatibility, and facile cellular engulfment due to their rod-like structure, hold great promise as carriers for the development of nano-delivery systems. In this work, highly efficient rod-like CNCs were employed as substrates for grafting glycidyl onto their surfaces through ring-opening polymerization, forming hyperbranched polymers with superior cell uptake properties. Subsequently, 4-vinylbenzeneboronic acid (VB) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) were employed as monomers in the polymerization process to fabricate a pH-responsive targeted nano-delivery system, denoted as CNCs-VB-PEGMA, via single electron transfer reactive radical polymerization (SET-LRP) reaction. The CNCs-VB-PEGMA was successfully prepared and used for the loading of curcumin (Cur) to form a pH-responsive nano-delivery system (CNCs-VB-PEGMA-Cur), and the loading rate of Cur was as high as 70.0 %. Studies showed that this drug delivery system could actively targeting liver cancer cells with the 2D cells model and 3D tumor microsphere model, showing efficient liver cancer cell-killing ability. Collectively, the CNCs-VB-PEGMA drug delivery system has potential applications in liver cancer therapy as an actively targeting and pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Ziqi Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Jiangxi 330103, PR China
| | - Xi Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Weimin Wan
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Na Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Limeng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoye Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jia Hao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Fei Tian
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Liu CK, Su FY, Juang TY, Liu YC. Sustained antibacterial release of zwitterionic globular hyperbranched polymer dots intercalated into layered double hydroxides. RSC Adv 2024; 14:31694-31703. [PMID: 39376522 PMCID: PMC11456918 DOI: 10.1039/d4ra05587j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
This study introduces zwitterionic hyperbranched polymer (HBP) dots intercalated into layered double hydroxides (LDHs) for sustained antibacterial release. The proposed zwitterionic HBPs possess a three-dimensional spherical structure; unconventional blue fluorescent luminescence; water solubility; abundant COOH, amine, and amide functional groups; anionic exchangeability for intercalating into LDH interlayers; and sustained-release antibacterial activity. The intercalation for the layered nanomaterials was determined by adding different weight ratios of HBPs to Mg-Al LDHs to investigate the changes in the interlayer distance. X-ray diffraction revealed that the LDH layer spacing increased from 8.6 to 25.5 Å, effectively expanding the interlayer spacing with increasing HBP intercalation. Additionally, Fourier-transform infrared spectroscopy revealed the functional groups of the intercalated nanohybrids. Because the peripheral functional groups of HBPs are amino (-NH2) groups, preliminary evaluations revealed that pristine HBPs exhibited antibacterial properties. We further examined the antibacterial properties of the HBP/LDH nanohybrids. The results showed that HBPs combined with LDHs' controllable release properties can effectively achieve long-term sustained antibacterial release.
Collapse
Affiliation(s)
- Chun-Kuei Liu
- Department of Chemical Engineering, National Chung Hsing University 145 Xingda Rd., South Dist. Taichung 40227 Taiwan +886-4-22854734 +886-4-22853769
| | - Fang-Yi Su
- Department of Chemical Engineering, National Chung Hsing University 145 Xingda Rd., South Dist. Taichung 40227 Taiwan +886-4-22854734 +886-4-22853769
| | - Tzong-Yuan Juang
- Department of Cosmeceutics, China Medical University Taichung 40402 Taiwan +886-4-22053366-5312
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University 145 Xingda Rd., South Dist. Taichung 40227 Taiwan +886-4-22854734 +886-4-22853769
| |
Collapse
|
5
|
Wei Y, Wen G, Balafouti A, Pispas S, Li H. Ultrafine Network-Like Monolayer Structures of Amphiphilic Hyperbranched Copolymers Revealed by the Relative Aggregation Number Method. J Phys Chem B 2024; 128:8605-8612. [PMID: 39169655 DOI: 10.1021/acs.jpcb.4c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The aggregation behavior of two amphiphilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-lauryl methacrylate] (H-[P(OEGMA-co-LMA)]) at the air/water interface was investigated by using the Langmuir film balance technique and atomic force microscopy (AFM). At the air/water interface, H-[P(OEGMA-co-LMA)] copolymers spontaneously form the ultrafine network-like monolayer structures of micelles; each micelle consists of a tiny hydrophobic core of one or two carbon backbones and lauryl side groups and a short hydrophilic shell of oligo(ethylene glycol) (OEG) side groups, and the micellar cores are connected by the branching agent ethylene glycol dimethacrylate (EGDMA). These ultrafine micellar structures are successfully revealed by our relative aggregation number method presented in this work, which is based on our previous relative mass method and methylene number method. The surface pressure-molecular area isotherms of POEGMA29%-PLMA71% (weight percent) and POEGMA69%-PLMA31% are condensed and expanded, respectively, because the density/number of OEG side groups in the former shells is smaller than that in the latter case. Upon monolayer compression, the isotherms of the former are classified into regions I-IV, whereas those of the latter are classified into regions II and III based on their different variation trends of surface pressure. Subphase pH has little influence on the isotherms of the two copolymers because the stretching degrees of hydrophilic OEG side groups in the shells are probably limited by the connected cores, which is different from the large effects in our previous block copolymers containing POEGMA or poly[oligo(ethylene glycol) acrylate] blocks. Under neutral and alkaline conditions, in region III, the mean molecular area (mmA) values of the isotherms of the two copolymers at 20 °C are smaller than those at 10 °C due to the collapse of the OEG side groups above 15 °C. Furthermore, the isotherms of POEGMA69%-PLMA31% move to larger mmA values at 30 °C due to the increased thermal mobility and stretching degrees of more OEG side groups.
Collapse
Affiliation(s)
- Yuqing Wei
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635, Greece
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
6
|
Li W, Wu H, Huang Y, Yao Y, Hou Y, Teng Q, Cai M, Wu J. Ultra-Fast-Healing Glassy Hyperbranched Plastics Capable of Restoring 26.4 MPa Tensile Strength within One Minute at Room Temperature. Angew Chem Int Ed Engl 2024; 63:e202408250. [PMID: 38839568 DOI: 10.1002/anie.202408250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The growing concern regarding widespread plastic pollution has propelled the development of sustainable self-healing plastics. Although considerable efforts have been dedicated to fabricating self-healing plastics, achieving rapid healing at room temperature is extremely challenging. Herein, we have developed an ultra-fast-healing glassy polyurethane (UGPU) by designing a hyperbranched molecular structure with a high density of multiple hydrogen bonds (H-bonds) on compliant acyclic heterochains and introducing trace water to form water bridge across the fractured surfaces. The compliant acyclic heterochains allow the dense multiple hydrogen bonds to form a frozen network, enabling tensile strength of up to 70 MPa and storage modulus of 2.5 GPa. The hyperbranched structure can drive the reorganization of the H-bonding network through the high mobility of the branched chains and terminals, thereby leading to self-healing ability at room temperature. Intriguingly, the presence of trace water vapor facilitates the formation of activated layers and the rearrangement of networks across the fractured UGPU sections, thereby enabling ultra-fast self-healing at room temperature. Consequently, the restored tensile strength after healing for 1 minute achieves a historic-record of 26.4 MPa. Furthermore, the high transparency (>90 %) and ultra-fast healing property of UGPU make it an excellent candidate for advanced optical and structural materials.
Collapse
Affiliation(s)
- Weihang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haitao Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yue Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yihang Yao
- Nanostructures for Electronics & Electromechanics Laboratory, School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiancheng Teng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Minjie Cai
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
7
|
Zhao Y, Fan Q, Liu Y, Liu J, Zhu M, Wang X, Shen L. Self-Assembly of Three-Dimensional Hyperbranched Magnetic Composites and Application in High-Turbidity Water Treatment. Molecules 2024; 29:3639. [PMID: 39125045 PMCID: PMC11314458 DOI: 10.3390/molecules29153639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In order to improve dispersibility, polymerization characteristics, chemical stability, and magnetic flocculation performance, magnetic Fe3O4 is often assembled with multifarious polymers to realize a functionalization process. Herein, a typical three-dimensional configuration of hyperbranched amino acid polymer (HAAP) was employed to assemble it with Fe3O4, in which we obtained three-dimensional hyperbranched magnetic amino acid composites (Fe3O4@HAAP). The characterization of the Fe3O4@HAAP composites was analyzed, for instance, their size, morphology, structure, configuration, chemical composition, charged characteristics, and magnetic properties. The magnetic flocculation of kaolin suspensions was conducted under different Fe3O4@HAAP dosages, pHs, and kaolin concentrations. The embedded assembly of HAAP with Fe3O4 was constructed by the N-O bond according to an X-ray photoelectron energy spectrum (XPS) analysis. The characteristic peaks of -OH (3420 cm-1), C=O (1728 cm-1), Fe-O (563 cm-1), and N-H (1622 cm-1) were observed in the Fourier transform infrared spectrometer (FTIR) spectra of Fe3O4@HAAP successfully. In a field emission scanning electron microscope (FE-SEM) observation, Fe3O4@HAAP exhibited a lotus-leaf-like morphological structure. A vibrating sample magnetometer (VSM) showed that Fe3O4@HAAP had a relatively low magnetization (Ms) and magnetic induction (Mr); nevertheless, the ferromagnetic Fe3O4@HAAP could also quickly respond to an external magnetic field. The isoelectric point of Fe3O4@HAAP was at 8.5. Fe3O4@HAAP could not only achieve a 98.5% removal efficiency of kaolin suspensions, but could also overcome the obstacles induced by high-concentration suspensions (4500 NTU), high pHs, and low fields. The results showed that the magnetic flocculation of kaolin with Fe3O4@HAAP was a rapid process with a 91.96% removal efficiency at 0.25 h. In an interaction energy analysis, both the UDLVO and UEDLVO showed electrostatic repulsion between the kaolin particles in the condition of a flocculation distance of <30 nm, and this changed to electrostatic attraction when the separation distance was >30 nm. As Fe3O4@ HAAP was employed, kaolin particles could cross the energy barrier more easily; thus, the fine flocs and particles were destabilized and aggregated further. Rapid magnetic separation was realized under the action of an external magnetic field.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Chemistry & Chemical Engineering, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Qianlong Fan
- School of Chemistry & Chemical Engineering, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinhua Liu
- School of Chemistry & Chemical Engineering, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Junhui Liu
- School of Chemistry & Chemical Engineering, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Mengcheng Zhu
- School of Chemistry & Chemical Engineering, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xuan Wang
- School of Chemistry & Chemical Engineering, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Ling Shen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
8
|
Hao D, Guo X, Zhu X, Wei C, Gao L, Wang X. Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters. Des Monomers Polym 2024; 27:62-86. [PMID: 39077753 PMCID: PMC11285245 DOI: 10.1080/15685551.2024.2376842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.
Collapse
Affiliation(s)
- Dongyan Hao
- School of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, Shaanxi, China
| | - Xiaoxiao Guo
- BioHong Corporation of Xi′an, Product development department, Xi′an, Shaanxi, China
| | - Xing Zhu
- College of Bioresources Chemical and Material Engineering, Shaanxi University of Science and Technology, Xi′an, Shaanxi, China
| | - Chao Wei
- College of Bioresources Chemical and Material Engineering, Shaanxi University of Science and Technology, Xi′an, Shaanxi, China
| | - Lanchang Gao
- School of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, Shaanxi, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Material Engineering, Shaanxi University of Science and Technology, Xi′an, Shaanxi, China
| |
Collapse
|
9
|
Guerassimoff L, Ferrere M, Bossion A, Nicolas J. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization. Chem Soc Rev 2024; 53:6511-6567. [PMID: 38775004 PMCID: PMC11181997 DOI: 10.1039/d2cs01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/18/2024]
Abstract
Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
10
|
Chen W, Liu P. Dendritic polymer prodrug-based unimolecular micelles for pH-responsive co-delivery of doxorubicin and camptothecin with synergistic controlled drug release effect. Colloids Surf B Biointerfaces 2024; 238:113906. [PMID: 38615388 DOI: 10.1016/j.colsurfb.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Combination chemotherapy has been recognized as a more powerful strategy for tumor treatment rather than the single chemotherapy. However, the interactive mechanism of the two hydrophobic chemotherapeutic drugs has not been explored by now. Aiming for a better synergistic effect, such interactive mechanism was investigated in the present work, by designing CPT@DOX-DPUTEA-PEG nanomedicine with encapsulated camptothecin (CPT) and conjugated doxorubicin (DOX). The synergistic controlled drug release effect was found for the two drugs loaded on the different sites of the dendritic polyurethane core. Synergism was achieved on the HepG2 cells with a combination index (CI) of 0.58 in the in vitro cellular experiments. The results demonstrated the promising application of the unimolecular micelles-based nanomedicine with independently loading of two hydrophobic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Feng Y, Bian J, Yu G, Zhao P, Yue J. Quaternary ammonium-tethered hyperbranched polyurea nanoassembly synergized with antibiotics for enhanced antimicrobial efficacy. Biomater Sci 2024; 12:1185-1196. [PMID: 38226542 DOI: 10.1039/d3bm01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The effective transportation of antibiotics to bacteria embedded within a biofilm consisting of a dense matrix of extracellular polymeric substances is still a challenge in the treatment of bacterial biofilm associated infections. Here, we developed an antibiotic nanocarrier constructed from quaternary ammonium-tethered hyperbranched polyureas (HPUs-QA), which showed high loading capacity for a model antibiotic, rifampicin, and high efficacy in the transportation of rifampicin to biofilms. The rifampicin-loaded HPUs-QA nanoassembly (HPUs-Rif/QA) demonstrated a synergistic antimicrobial effect in killing planktonic bacteria and eradicating the corresponding biofilms. Compared to the treatment of bacteria-infected chronic wounds by either HPUs-QA or rifampicin alone, HPUs-Rif/QA showed superior efficacy in promoting wound healing by more effectively inhibiting bacteria colonization. This study highlights the potential of the HPUs-QA nanoassembly in synergistic action with antibiotics for the treatment of biofilm associated infections.
Collapse
Affiliation(s)
- Yanwen Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiang Bian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Guoyi Yu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Pei Zhao
- Laboratory Animal Center, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
14
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
15
|
Inphonlek S, Ruksakulpiwat C, Ruksakulpiwat Y. The Effect of Silver Nanoparticles/Titanium Dioxide in Poly(acrylic acid- co-acrylamide)-Modified, Deproteinized, Natural Rubber Composites on Dye Removal. Polymers (Basel) 2023; 16:92. [PMID: 38201757 PMCID: PMC10780644 DOI: 10.3390/polym16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This work aims to enhance the dye-removal performance of prepared poly(acrylic acid-co-acrylamide)-modified, deproteinized, natural rubber ((PAA-co-PAM)-DPNR) through incorporation with silver nanoparticles/titanium dioxide. The (PAA-co-PAM)-DPNR was prepared by emulsion-graft copolymerization with a grafting efficiency of 10.20 ± 2.33 to 54.26 ± 1.55%. The composites based on (PAA-co-PAM)-DPNR comprising silver nanoparticles and titanium dioxide ((PAA-co-PAM)-DPNR/Ag-TiO2) were then prepared by latex compounding using the fixed concentration of AgNO3 (0.5 phr) and varying concentrations of TiO2 at 1.0, 2.5, and 5.0 phr. The formation of silver nanoparticles was obtained by heat and applied pressure. The composites had a porous morphology as they allowed water to diffuse in their structure, allowing the high specific area to interact with dye molecules. The incorporation of silver nanoparticles/titanium dioxide improved the compressive modulus from 1.015 ± 0.062 to 2.283 ± 0.043 KPa. The (PAA-co-PAM)-DPNR/Ag-TiO2 composite with 5.0 phr of TiO2 had a maximum adsorption capacity of 206.42 mg/g, which increased by 2.02-fold compared to (PAA-co-PAM)-DPNR. The behavior of dye removal was assessed with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model. These composites can maintain their removal efficiency above 90% for up to five cycles. Thus, these composites could have the potential for dye-removal applications.
Collapse
Affiliation(s)
- Supharat Inphonlek
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
16
|
Balafouti A, Forys A, Trzebicka B, Gerardos AM, Pispas S. Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7702. [PMID: 38138846 PMCID: PMC10745097 DOI: 10.3390/ma16247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
This manuscript presents the synthesis of hyperbranched amphiphilic poly (lauryl methacrylate-co-tert-butyl methacrylate-co-methacrylic acid), H-P(LMA-co-tBMA-co-MAA) copolymers via reversible addition fragmentation chain transfer (RAFT) copolymerization of tBMA and LMA, and their post-polymerization modification to anionic amphiphilic polyelectrolytes. The focus is on investigating whether the combination of the hydrophobic characters of LMA and tBMA segments, as well as the polyelectrolyte and hydrophilic properties of MAA segments, both distributed within a unique hyperbranched polymer chain topology, would result in intriguing, branched copolymers with the potential to be applied in nanomedicine. Therefore, we studied the self-assembly behavior of these copolymers in aqueous media, as well as their ability to form complexes with cationic proteins, namely lysozyme (LYZ) and polymyxin (PMX). Various physicochemical characterization techniques, including size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H-NMR), verified the molecular characteristics of these well-defined copolymers, whereas light scattering and fluorescence spectroscopy techniques revealed promising nanoparticle (NP) self- and co-assembly properties of the copolymers in aqueous media.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
| |
Collapse
|
17
|
Kalinova R, Mladenova K, Petrova S, Doumanov J, Dimitrov I. Solvent-Free Synthesis of Multifunctional Block Copolymer and Formation of DNA and Drug Nanocarriers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2936. [PMID: 37999289 PMCID: PMC10675335 DOI: 10.3390/nano13222936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The synthesis of well-defined multifunctional polymers is of great importance for the development of complex materials for biomedical applications. In the current work, novel and multi-amino-functional diblock copolymer for potential gene and drug delivery applications was successfully synthesized. A highly efficient one-step and quantitative modification of an alkyne-functional polycarbonate-based precursor was performed, yielding double hydrophilic block copolymer with densely grafted primary amine side groups. The obtained positively charged block copolymer co-associated with DNA, forming stable and biocompatible nanosized polyplexes. Furthermore, polyion complex (PIC) micelles with tunable surface charge and decorated with cell targeting moieties were obtained as a result of direct mixing in aqueous media of the multi-amino-functional block copolymer and a previously synthesized oppositely charged block copolymer bearing disaccharide end-group. The obtained well-defined nanosized PIC-micelles were loaded with the hydrophobic drug curcumin. Both types of nanoaggregates (polyplexes and PIC-micelles) were physico-chemically characterized. Moreover, initial in vitro evaluations were performed to assess the nanocarriers' potential for biomedical applications.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Academician Georgi Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Academician Georgi Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
Kurmaz SV, Perepelitsina EO, Vasiliev SG, Avilova IA, Khodos II, Kurmaz VA, Chernyaev DA, Soldatova YV, Filatova NV, Faingold II. Macromolecular Design and Engineering of New Amphiphilic N-Vinylpyrrolidone Terpolymers for Biomedical Applications. Int J Mol Sci 2023; 24:15170. [PMID: 37894851 PMCID: PMC10607074 DOI: 10.3390/ijms242015170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
New amphiphilic VP-(di)methacrylate terpolymers of different monomer compositions and topologies have been synthesized by radical polymerization in toluene without any growth regulator of polymer chains. Their structures and properties in solid state and water solution were studied by double-detector size-exclusion chromatography; IR-, 1H, and 13C NMR-spectroscopy; DLS, TEM, TG, and DSC methods. The composition of the VP-AlkMA-TEGDM monomer mixture has been established to regulate the topology of the resulting macromolecules. The studied terpolymers presented on TEM images as individual low-contrast particles and their conglomerates of various sizes with highly ordered regions; in general, they are amorphous structures. None of the terpolymers demonstrated cytotoxic effects for noncancerous Vero and tumor HeLa cells. Hydrophobic D-α-tocopherol (TP) was encapsulated in terpolymer nanoparticles (NPs), and its antioxidant activity was evaluated by ABTS (radical monocation 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) or DPPH (2,2'-diphenyl-1-picrylhydrazyl) methods. The reaction efficiency depends on the TP-NP type. The IC50 values for the decolorization reaction of ABTS•+ and DPPH inhibition in the presence of initial and encapsulated TP were obtained.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Evgenia O. Perepelitsina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Sergey G. Vasiliev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Irina A. Avilova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Igor I. Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Vladimir A. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Dmitry A. Chernyaev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (E.O.P.); (S.G.V.); (I.A.A.); (V.A.K.); (D.A.C.); (Y.V.S.); (N.V.F.); (I.I.F.)
| |
Collapse
|
19
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
20
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Pacini A, Nitti A, Vitale M, Pasini D. Polylactic-Containing Hyperbranched Polymers through the CuAAC Polymerization of Aromatic AB 2 Monomers. Int J Mol Sci 2023; 24:ijms24087620. [PMID: 37108783 PMCID: PMC10145021 DOI: 10.3390/ijms24087620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We report on the synthesis and characterization of a novel class of hyperbranched polymers, in which a copper(I)-catalyzed alkyne azide cycloaddition (CuAAC) reaction (the prototypical "click" reaction) is used as the polymerization step. The AB2 monomers bear two azide functionalities and one alkyne functionality, which have been installed onto a 1,3,5 trisubstituted benzene aromatic skeleton. This synthesis has been optimized in terms of its purification strategies, with an eye on its scalability for the potential industrial applications of hyperbranched polymers as viscosity modifiers. By taking advantage of the modularity of the synthesis, we have been able to install short polylactic acid fragments as the spacing units between the complementary reactive azide and alkyne functionalities, aiming to introduce elements of biodegradability into the final products. The hyperbranched polymers have been obtained with good molecular weights and degrees of polymerization and branching, testifying to the effectiveness of the synthetic design. Simple experiments on glass surfaces have highlighted the possibility of conducting the polymerizations and the formation of the hyperbranched polymers directly in thin films at room temperature.
Collapse
Affiliation(s)
- Aurora Pacini
- Department of Chemistry, INSTM Research Unit, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Andrea Nitti
- Department of Chemistry, INSTM Research Unit, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Marcello Vitale
- IVM Chemicals s.r.l., Viale della Stazione 3, 27020 Parona, Italy
| | - Dario Pasini
- Department of Chemistry, INSTM Research Unit, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
22
|
Balafouti A, Pispas S. Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds. Pharmaceutics 2023; 15:pharmaceutics15041198. [PMID: 37111683 PMCID: PMC10140914 DOI: 10.3390/pharmaceutics15041198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The synthesis of novel copolymers using one-step reversible addition-fragmentation chain transfer (RAFT) copolymerization of biocompatible methacrylic acid (MAA), lauryl methacrylate (LMA), and difunctional ethylene glycol dimethacrylate (EGDMA) as a branching agent is reported. The obtained amphiphilic hyperbranched H-P(MAA-co-LMA) copolymers are molecularly characterized by size exclusion chromatography (SEC), FTIR, and 1H-NMR spectroscopy, and subsequently investigated in terms of their self-assembly behavior in aqueous media. The formation of nanoaggregates of varying size, mass, and homogeneity, depending on the copolymer composition and solution conditions such as concentration or pH variation, is demonstrated by light scattering and spectroscopic techniques. Furthermore, drug encapsulation properties are studied by incorporating the low bioavailability drug, curcumin, in the nano-aggregate hydrophobic domains, which can also act as a bioimaging agent. The interaction of polyelectrolyte MAA units with model proteins is described to examine protein complexation capacity relevant to enzyme immobilization strategies, as well as explore copolymer self-assembly in simulated physiological media. The results confirm that these copolymer nanosystems could provide competent biocarriers for imaging and drug or protein delivery/enzyme immobilization applications.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
23
|
Aslani R, Namazi H. Fabrication of a new photoluminescent and pH-responsive nanocomposite based on a hyperbranched polymer prepared from amino acid for targeted drug delivery applications. Int J Pharm 2023; 636:122804. [PMID: 36889416 DOI: 10.1016/j.ijpharm.2023.122804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
In this study, the Fe3O4 nanoparticles were encapsulated in the hyperbranched poly L-lysine citramid (HBPLC). The Fe3O4-HBPLC nanocomposite modified with L-arginine and quantum dots (QDs) to obtain Fe3O4-HBPLC-Arg/QDs as a new photoluminescent and magnetic nanocarrier for the pH-responsive release and targeted delivery of Doxorubicin (DOX). The prepared magnetic nanocarrier was fully characterized using different techniques. Its various potential as a magnetic nanocarrier was evaluated. The in-vitro drug release studies exhibited that the prepared nanocomposite has pH-responsive behavior. The antioxidant study revealed good antioxidant properties of the nanocarrier. Also, the nanocomposite revealed excellent photoluminescence with a quantum yield of 48.5 %. Cellular uptake studies showed that Fe3O4-HBPLC-Arg/QD has high cell uptake in MCF-7 cells and can be used for bioimaging applications. In-vitro cytotoxicity, colloidal stability, and enzymatic degradability studies revealed that the prepared nanocarrier is non-toxic (with cell viability of 94%), stabile and biodegradable (about 37%). The nanocarrier was hemocompatible with 8% hemolysis. Also, according to the apoptosis and MTT assays, the Fe3O4-HBPLC-Arg/QD-DOX induced greater toxicity and cellular apoptosis against breast cancer cells about 47.0 %.
Collapse
Affiliation(s)
- Robab Aslani
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
24
|
Rational design of poly-L-glutamic acid-palbociclib conjugates for pediatric glioma treatment. J Control Release 2023; 355:385-394. [PMID: 36746338 DOI: 10.1016/j.jconrel.2023.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Brain tumors represent the second most common cause of pediatric cancer death, with malignant gliomas accounting for ∼75% of pediatric deaths. Palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has shown promise in phase I clinical trials of pediatric patients with progressive/refractory brain tumors using the oral administration route; however, pharmacokinetic limitations and toxicity issues remain. We synthesized a family of well-defined linear and star-shaped polyglutamate (PGA)-palbociclib conjugates using redox-sensitive self-immolative linkers to overcome limitations associated with free palbociclib. Exhaustive characterization of this conjugate family provided evidence for a transition towards the formation of more organized conformational structures upon increased drug loading. We evaluated the activity of conjugates in patient-derived glioblastoma and diffuse intrinsic pontine glioma cells, which display differing reducing environments due to differential glutathione expression levels. We discovered that microenvironmental parameters and the identified conformational changes determined palbociclib release kinetics and therapeutic output; furthermore, we identified a star-shaped PGA-palbociclib conjugate with low drug loading as an optimal therapeutic approach in diffuse intrinsic pontine glioma cells.
Collapse
|
25
|
Kapil K, Szczepaniak G, Martinez MR, Murata H, Jazani AM, Jeong J, Das SR, Matyjaszewski K. Visible-Light-Mediated Controlled Radical Branching Polymerization in Water. Angew Chem Int Ed Engl 2023; 62:e202217658. [PMID: 36645871 DOI: 10.1002/anie.202217658] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Hyperbranched polymethacrylates were synthesized by green-light-induced atom transfer radical polymerization (ATRP) under biologically relevant conditions in the open air. Sodium 2-bromoacrylate (SBA) was prepared in situ from commercially available 2-bromoacrylic acid and used as a water-soluble inibramer to induce branching during the copolymerization of methacrylate monomers. As a result, well-defined branched polymethacrylates were obtained in less than 30 min with predetermined molecular weights (36 000<Mn <170 000), tunable degree of branching, and low dispersity values (1.14≤Đ≤1.33). Moreover, the use of SBA inibramer enabled the synthesis of bioconjugates with a well-controlled branched architecture.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.,Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Pranav U, Malhotra M, Pathan S, Jayakannan M. Structural Engineering of Star Block Biodegradable Polymer Unimolecular Micelles for Drug Delivery in Cancer Cells. ACS Biomater Sci Eng 2023; 9:743-759. [PMID: 36579913 DOI: 10.1021/acsbiomaterials.2c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present investigation reports the structural engineering of biodegradable star block polycaprolactone (PCL) to tailor-make aggregated micelles and unimolecular micelles to study their effect on drug delivery aspects in cancer cell lines. Fully PCL-based star block copolymers were designed by varying the arm numbers from two to eight while keeping the arm length constant throughout. Multifunctional initiators were exploited for stepwise solvent-free melt ring-opening polymerization of ε-caprolactone and γ-substituted caprolactone to construct star block copolymers having a PCL hydrophobic core and a carboxylic PCL hydrophilic shell, respectively. A higher arm number and a higher degree of branching in star polymers facilitated the formation of unimolecular micelles as opposed to the formation of conventional multimicellar aggregates in lower arm analogues. The dense core of the unimolecular micelles enabled them to load high amounts of the anticancer drug doxorubicin (DOX, ∼12-15%) compared to the aggregated micelles (∼3-4%). The star unimolecular micelle completely degraded leading to 90% release of the loaded drug upon treatment with the lysosomal esterase enzyme in vitro. The anticancer efficacies of these DOX-loaded unimolecular micelles were tested in a breast cancer cell line (MCF-7), and their IC50 values were found to be much lower compared to those of aggregated micelles. Time-dependent cellular uptake studies by confocal microscopy revealed that unimolecular micelles were readily taken up by the cells, and enhancement of the drug concentration was observed at the intracellular level up to 36 h. The present work opens new synthetic strategies for building a next-generation biodegradable unimolecular micellar nanoplatform for drug delivery in cancer research.
Collapse
Affiliation(s)
- Upendiran Pranav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| |
Collapse
|
27
|
Abdollahi A, Ghasemi B, Nikzaban S, Sardari N, Jorjeisi S, Dashti A. Dual-Color Photoluminescent Functionalized Nanoparticles for Static-Dynamic Anticounterfeiting and Encryption: First Collaboration of Spiropyran and Coumarin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7466-7484. [PMID: 36705276 DOI: 10.1021/acsami.2c22532] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Increasing the security of anticounterfeiting materials has been the most important challenge in recent years, and the development of dual-color photoluminescent inks with multi-level security, static/dynamic emission, and dynamic color change is an important solution to overcome this problem. In this study, the multi-functionalized copolymer nanoparticles containing different functional groups (with a concentration of 20 wt %), including ester, carboxylic acid, hydroxyl, epoxide, amide, and amine groups were synthesized successfully by the emulsion polymerization method. The results showed that the particle size and morphology of nanoparticles are affected by the polarity of functional groups. The prepared multi-functionalized copolymer nanoparticles were modified physically with spiropyran (photochromic and red fluorescence emission) and coumarin (cyan emission) derivatives to develop dual-color photoluminescent polymer nanoparticles with application in static-dynamic photoluminescent anticounterfeiting inks, which have multi-level security. The investigation of optical properties indicates that the kinetics of photochromism and photoluminescence properties of samples containing spiropyran is dependent on the local polarity on the surface of polymer nanoparticles. Hence, an increase in the polarity (functionalization with amide, carboxylic acid, and hydroxyl groups) has resulted in fast photochromism, high-intensity photoluminescence emission and increased the efficiency of the photoswitchable color change of emission from cyan to pink. Dual-color photoluminescent anticounterfeiting inks were prepared by mixing polymer nanoparticles containing spiropyran with polymer nanoparticles containing coumarin, in different ratios (1:1, 1:3, 1:5, 1:8, and 1:10). Obtained results showed that prepared samples have cyan emission under UV light of 254 nm (static mode), and a dynamic photoswitching of fluorescence emission from cyan to pink (as a function of irradiation time) was also observed under UV-light irradiation of 365 nm, which is well known as a dynamic mode of emission. The responsivity and intensity of dynamic photoluminescence emission are dependent on the local polarity of the surface functional groups, in which the samples based on amide functionalized copolymer nanoparticles displayed high-intensity emission in the static mode and high-intensity photoswitchable dual-color emission in the dynamic mode, in the case of all ratios of colloid solution mixtures. Printing security tags on cellulose paper by dual-color photoluminescent inks indicates advantages such as maximum printability, resolution, brightness, and static-dynamic photoluminescence emission with high intensity for inks based on amide functionalized nanoparticles. The static-dynamic dual-color photoluminescent anticounterfeiting ink with unique properties and multi-level security was reported for the first time by the collaboration of spiropyran and coumarin. This study can open a new approach and window to the future of advanced and high-security anticounterfeiting technologies.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Bita Ghasemi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad91779-48974, Iran
| | - Soma Nikzaban
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Saba Jorjeisi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Ali Dashti
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad91779-48974, Iran
| |
Collapse
|
28
|
Arkas M, Vardavoulias M, Kythreoti G, Giannakoudakis DA. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023; 15:524. [PMID: 36839847 PMCID: PMC9966633 DOI: 10.3390/pharmaceutics15020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | | - Georgia Kythreoti
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | |
Collapse
|
29
|
Rodrigues PR, Wang X, Li Z, Lyu J, Wang W, Vieira RP. A new nano hyperbranched β-pinene polymer: Controlled synthesis and nonviral gene delivery. Colloids Surf B Biointerfaces 2023; 222:113032. [PMID: 36463608 DOI: 10.1016/j.colsurfb.2022.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Recently, an extensive research effort has been directed toward the improvement of nonviral transfection vectors, such as polymeric materials. The macromolecular structure of polymers has a substantial effect on their transfection efficacy. In this context, the modern advances in polymer production techniques, such as the deactivation-enhanced radical atom transfer polymerization (DE-ATRP), have been fundamental for the synthesis of controlled architecture nanomaterials. In this study, hyperbranched poly(β-pinene)-PDMAEMA-PEGDMA nanometric copolymers were synthesised at high conversion via DE-ATRP using different concentrations of β-pinene for gene delivery applications. The structural characterization and the biological performance of the materials were investigated. The copolymers' molar mass (10,434-16,438 mol l-1), dispersity, and conversion (90-95%) varied significantly with β-pinene proportion on the polymerizations. The polymer-gene complexes generated (280-110 nm) presented excellent solution stability due to the β-pinene segment on the copolymers. Gene delivery and transfection were highly dependent on the copolymer composition. The copolymers containing the highest β-pinene proportions exhibited the best results with high transfection effectivity. In conclusion, the incorporation of β-pinene in DMAEMA-PEGMA copolymer formulations is a renewable option to improve the materials' branching ratio, polyplex stability, and gene delivery performance without causing cytotoxic effects.
Collapse
Affiliation(s)
- Plínio R Rodrigues
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, Albert Einstein St. N. 500, 13083-852 Campinas, São Paulo, Brazil; Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Zishan Li
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Roniérik P Vieira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, Albert Einstein St. N. 500, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
30
|
Zhao C, Wen S, Pan J, Wang K, Ji Y, Huang D, Zhao B, Chen W. Robust Construction of Supersmall Zwitterionic Micelles Based on Hyperbranched Polycarbonates Mediates High Tumor Accumulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2725-2736. [PMID: 36598373 DOI: 10.1021/acsami.2c20056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite the numerous advantages of nanomedicines, their therapeutic efficacy is hampered by biological barriers, including fast in vivo clearance, poor tumor accumulation, inefficient penetration, and cellular uptake. Herein, cross-linked supersmall micelles based on zwitterionic hyperbranched polycarbonates can overcome these challenges for efficiently targeted drug delivery. Biodegradable acryloyl/zwitterion-functionalized hyperbranched polycarbonates are synthesized by a one-pot sequential reaction of Michael-type addition and ring-opening polymerization, followed by controlled modification with carboxybetaine thiol. Cross-linked supersmall zwitterionic micelles (X-CBMs) are readily prepared by straightforward self-assembly and UV cross-linking. X-CBMs exhibit prolonged blood circulation because of their cross-linked structure and zwitterion decoration, which resist protein corona formation and facilitate escaping RES recognition. Combined with the advantage of supersmall size (7.0 nm), X-CBMs mediate high tumor accumulation and deep penetration, which significantly enhance the targeted antitumor outcome against the 4T1 tumor model by administration of the paclitaxel (PTX) formulation (X-CBM@PTX).
Collapse
Affiliation(s)
- Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Jingfang Pan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Yicheng Ji
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
31
|
Rafiee Z, Bodaghi A, Omidi S. Fabrication of a photo- and pH-sensitive micelle by self-assembly of azobenzene polyglycerol for anticancer drug delivery. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Bal-Öztürk A, Tietilu ŞD, Yücel O, Erol T, Akgüner ZP, Darıcı H, Alarcin E, Emik S. Hyperbranched polymer-based nanoparticle drug delivery platform for the nucleus-targeting in cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
34
|
Hayes G, Remzi Becer C. Hyperbranched poly(2-oxazoline)s via bisfunctional crosslinker. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Electrospun Fibers: Versatile Approaches for Controlled Release Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning has been one of the most attractive methods of fiber fabrication in the last century. A lot of studies have been conducted, especially in tissue engineering and drug delivery using electrospun fibers. Loading many different drugs and bioactive agents on or within these fibers potentiates the efficacy of such systems; however, there are still no commercial products with this technology available in the market. Various methods have been developed to improve the mechanical and physicochemical behavior of structures toward more controllable delivery systems in terms of time, place, or quantity of release. In this study, most frequent methods used for the fabrication of controlled release electrospun fibers have been reviewed. Although there are a lot of achievements in the fabrication of controlled release fibers, there are still many challenges to be solved to reach a qualified, reproducible system applicable in the pharmaceutical industry.
Collapse
|
36
|
Sumohan Pillai A, Alexander A, Sri Varalakshmi G, Manikantan V, Allben Akash B, Enoch IV. Cyclodextrin and folate functionalized polymer nanocarriers: Chain length dependent properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Functionalized Hyperbranched Aliphatic Polyester Polyols: Synthesis, Properties and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Amoxicillin encapsulated in the N-2-hydroxypropyl trimethyl ammonium chloride chitosan and N,O-carboxymethyl chitosan nanoparticles: Preparation, characterization, and antibacterial activity. Int J Biol Macromol 2022; 221:613-622. [PMID: 36089095 DOI: 10.1016/j.ijbiomac.2022.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/23/2022]
Abstract
This is a report on the encapsulation amoxicillin (AMX) in the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N,O-carboxymethyl chitosan (CMCS) nanoparticles (NPs) for biomedical applications. The N-2-HACC/CMCS NPs have broad-spectrum antibacterial properties. In order to achieve sustained and slow drug release, improve drug transport efficiency and bioavailability, prolong drug residence time, and reduce pollution, we synthesized highly efficient, easily absorbed and rapidly degradable nano-formulation veterinary antibiotics in this study. The N-2-HACC/CMCS NPs were used for the encapsulation of AMX, and the cytocompatibility, in vitro release, in vivo drug release kinetics and antimicrobial activity of N-2-HACC/CMCS/AMX NPs were investigated. The NPs displayed a round shape and smooth surface, and the NPs allowed the sustained release of AMX at a much slower rate than that of non-coated AMX. The NPs exhibited excellent cytocompatibility and the antimicrobial activity against Escherichia coli, Acinetobacter baumannii, Streptococcus pneumoniae and Staphylococcus aureus. Moreover, the NPs could store at 4 °C, -20 °C and 25 ± 5 °C for 30 d. These results suggested that the N-2-HACC/CMCS NPs could be availed as a candidate for drug delivery carrier to achieve sustained and slow release, improve bioavailability, prolong residence time at the target site, and reduce the dosage of drug.
Collapse
|
39
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
40
|
Molecular Dynamics Simulations of Essential Oil Ingredients Associated with Hyperbranched Polymer Drug Carriers. Polymers (Basel) 2022; 14:polym14091762. [PMID: 35566930 PMCID: PMC9105242 DOI: 10.3390/polym14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Our work concerns the study of four candidate drug compounds of the terpenoid family, found as essential oil ingredients in species of the Greek endemic flora, namely carvacrol, p-cymene, γ-terpinene, and thymol, via the simulation method of molecular dynamics. Aquatic solutions of each compound, as well as a solution of all four together in realistic (experimental) proportions, are simulated at atmospheric pressure and 37 °C using an OPLS force field combined with TIP3P water. As verified, all four compounds exhibit a strong tendency to phase-separate, thereby calling for the use of carrier molecules as aids for the drug to circulate in the blood and enter the cells. Systems of two such carrier molecules, the hyperbranched poly(ethylene imine) (HBPEI) polyelectrolyte and hyperbranched polyglycerol (HPG), are examined in mixtures with carvacrol, the most abundant among the four compounds, at a range of concentrations, as well as with all four compounds present in natural proportions. Although a tendency of the terpenoids to cluster separately persists at high concentrations, promising association effects are observed for all drug–polymer ratios. HBPEI systems tend to form diffuse structures comprising small mixed clusters as well as freely floating polymer and essential oil molecules, a finding attributed to the polymer–polymer electrostatic repulsions, which here are only partially screened by the counterions. On the other hand, the electrically neutral HPG molecules cluster together with essential oil species to form a single nanodroplet. Currently, terpenoid–polymer clusters near lipid bilayer membranes are being studied to determine the propensity of the formed complexes to enter cell membranes.
Collapse
|
41
|
Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-Targeted Nanocarrier for Cancer Therapy. Front Pharmacol 2022; 12:800481. [PMID: 35431911 PMCID: PMC9008230 DOI: 10.3389/fphar.2021.800481] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a cell surface glycoprotein overexpressed in varieties of solid tumors including pancreatic, breast, ovary, brain, and lung cancers. It is a multi-structural glycoprotein of the cell surface which is majorly involved in cell proliferation, cell-to-cell interaction, cellular migration, inflammation, and generation of immune responses. Numerous studies focus on the development of nanocarriers for active targeting of the CD44 receptor to improve efficacy of targeting chemotherapy and achieve precise chemotherapy by defining the release, uptake, and accumulation of therapeutic agents. The CD44 receptor has a selective binding affinity towards hyaluronic and chondroitin sulfate (CS). Taking this into consideration, this review focused on the role of CD44 in cancer and its therapy using several nanocarriers such as polymeric/non-polymeric nanoparticles, dendrimer, micelles, carbon nanotubes, nanogels, nanoemulsions etc., for targeted delivery of several chemotherapeutic molecules and nucleic acid. This review also illuminates the role of hyaluronic acid (HA) in cancer therapy, interaction of HA with CD44, and various approaches to target CD44-overexpressed neoplastic cells.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
42
|
Di X, Liang X, Shen C, Pei Y, Wu B, He Z. Carbohydrates Used in Polymeric Systems for Drug Delivery: From Structures to Applications. Pharmaceutics 2022; 14:739. [PMID: 35456573 PMCID: PMC9025897 DOI: 10.3390/pharmaceutics14040739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/17/2023] Open
Abstract
Carbohydrates, one of the most important compounds in living organisms, perform numerous roles, including those associated with the extracellular matrix, energy-related compounds, and information. Of these, polymeric carbohydrates are a class of substance with a long history in drug delivery that have attracted more attention in recent years. Because polymeric carbohydrates have the advantages of nontoxicity, biocompatibility, and biodegradability, they can be used in drug targeting, sustained drug release, immune antigens and adjuvants. In this review, various carbohydrate-based or carbohydrate-modified drug delivery systems and their applications in disease therapy have been surveyed. Specifically, this review focuses on the fundamental understanding of carbohydrate-based drug delivery systems, strategies for application, and the evaluation of biological activity. Future perspectives, including opportunities and challenges in this field, are also discussed.
Collapse
Affiliation(s)
- Xiangjie Di
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Liang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Yuwen Pei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Bin Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
PEGylated dendritic polyurethane as unimolecular micelles for tumor chemotherapy: Effect of molecular architecture. Int J Pharm 2022; 616:121533. [PMID: 35121047 DOI: 10.1016/j.ijpharm.2022.121533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Unimolecular micelles have attracted intense interests as drug carriers for tumor chemotherapy owing to their superior stability in comparison with the self-assembled supramolecular ones. Among them, the dendritic polymers with the polar frameworks could favour the loading of chemotherapeutic drugs rather than the hyperbranched polymers via radical polymerization, by enhancing the interaction with drugs. While the tedious synthesis procedure for dendritic polymers could be simplified with the construction principle on urethane chemistry. Here, the PEGylated dendritic polyurethanes, Ph-DPUGly-PEG and Ph-DPUTEA-PEG, were designed with glycerol or triethanolamine as monomer, respectively. The effect of the molecular architecture of the Ph-DPU-PEGs unimolecular micelles on the controlled drug releasing performance was compared. It was found that the Ph-DPUTEA-PEG with tertiary amine as branching points could efficiently endow the pH-triggered drug release, due to its protonation.
Collapse
|
44
|
Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nanomedicines have the potential to provide advanced therapeutic strategies in combating tumors. Polymer-prodrug-based nanomedicines are particularly attractive in cancer therapies owing to the maximum drug loading, prolonged blood circulation, and reduced premature leakage and side effects in comparison with conventional nanomaterials. However, the difficulty in precisely tuning the composition and drug loading of polymer-drug conjugates leads to batch-to-batch variations of the prodrugs, thus significantly restricting their clinical translation. Polyprodrug nanomedicines inherit the numerous intrinsic advantages of polymer-drug conjugates and exhibit well-controlled composition and drug loading via direct polymerization of therapeutic monomers, representing a promising nanomedicine for clinical tumor therapies. In this review, recent advances in the development of polyprodrug nanomedicines are summarized for tumor elimination. Various types of polyprodrug nanomedicines and the corresponding properties are first summarized. The unique advantages of polyprodrug nanomedicines and their key roles in various tumor therapies are further highlighted. Finally, current challenges and the perspectives on future research of polyprodrug nanomedicines are discussed.
Collapse
Affiliation(s)
- Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Guocan Yu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
45
|
Li J, Liu P. Facile Synthesis of a Redox-Responsive Hyperbranched Polymer Prodrug as a Unimolecular Micelle for the Tumor-Selective Drug Delivery. Bioconjug Chem 2022; 33:411-417. [PMID: 35090123 DOI: 10.1021/acs.bioconjchem.2c00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Demicellization of the self-assembled multimolecular micelles upon dilution restricts their application as drug delivery systems (DDSs) for tumor treatment. Here, a redox-responsive hyperbranched polymer prodrug (HBPP) was designed with a high drug content of 62.0% as a unimolecular micelle for the tumor-selective drug delivery, via the facile self-condensing vinyl polymerization (SCVP) of redox-responsive doxorubicin-based prodrug monomer MA-SS-DOX and poly(ethylene glycol) methacrylate (PEGMA) with p-chloromethylstyrene (CMS) as an inimer. The unimolecular micelle could be easily obtained with a hydrodynamic diameter of 122 nm, showing excellent GSH-triggered drug release performance with a cumulative release of 60.9% within 85 h but a low premature drug leakage of 3.2%. The unimolecular micelle exhibited selective tumor growth inhibition on HepG2 cells but no obvious cytotoxicity on L02 cells.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
46
|
Wang C, Zhang X, Zhao W, Liu X, Wang Q, Sun J. Synthesis of Aliphatic Hyperbranched Polycarbonates via Organo-Catalyzed “A1+B2”-Ring-Opening Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chengliang Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Xu Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Wei Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Xin Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Qingfu Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, Qingdao CN-266042, China
| |
Collapse
|
47
|
|
48
|
Li J, Liu P. Facile synthesis of hyperbranched polymer prodrug as unimolecular micelles for overcoming multidrug resistance. Polym Chem 2022. [DOI: 10.1039/d1py01670a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unimolecular micelles have attracted more interests as drug delivery systems (DDSs) owing to their superior stability. Here, hyperbranched polymer prodrug (HBPP) was designed with high drug content of 57.6% as...
Collapse
|
49
|
Han F, Zhang Z, Ma T, Shou C. Preparation and mechanical properties of water‐dispersible hyperbranched polymer grafted carbon black/natural rubber composites by latex blending method. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Han
- Department of Chemistry and Chemical Engineering University of Jinan Jinan People's Republic of China
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Teng Ma
- Department of Chemistry and Chemical Engineering University of Jinan Jinan People's Republic of China
| | - Chongqi Shou
- Department of Chemistry and Chemical Engineering University of Jinan Jinan People's Republic of China
| |
Collapse
|
50
|
Shi W, Wu B, Guo X, Feng AC, Thang S. Fluorescent Strategy for Direct Quantification of Arm Component in Mikto-Arm Star Copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01656c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent end-functional mikto-arm star copolymers were prepared by an “arm-first” approach mediated by a mixture of macro-RAFT agents. RAFT copolymerization of coumarin-POEGMA, boron-dipyrromethene (BODIPY)-PDMA and bisindolylmaleimide (BIM)-PNIPAM with different fluorophore-labeled...
Collapse
|