1
|
Lingadharini P, Maji D. Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors. Talanta 2024; 285:127397. [PMID: 39700723 DOI: 10.1016/j.talanta.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak. Herein we focus mainly on development of biosensors for testing body fluids in the last 5 years using microfluidic technique through electrochemical and colorimetric principle which forms the two most competing sensing techniques providing quantitative and qualitative assessment modalities respectively and forms almost 80 % of the diagnostic platform worldwide. Present review highlights use of these popular substrates as well as various fabrication strategies for realization of GPOCDs ranging from costly and highly sophisticated photolithography to low cost, non conventional techniques like use of correction ink or marker based devices to even novel pop-up/origami induced patterning techniques. Insights into the advancements in colorimetric technique like distance, count or even text based semi-quantitative read-out modality as a on-hand diagnostic information has also been provided. Finally, future outlooks with other interdisciplinary modalities like use of novel materials, incorporation of digital tools like artificial intelligence (AI), machine learning (ML) and strategies for sensitivity and reliability improvement of future GPOCDs have also been discussed.
Collapse
Affiliation(s)
- P Lingadharini
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India
| | - Debashis Maji
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Mihandoost S, Rezvantalab S, M Pallares R, Schulz V, Kiessling F. A Generative Adversarial Network Approach to Predict Nanoparticle Size in Microfluidics. ACS Biomater Sci Eng 2024. [PMID: 39665629 DOI: 10.1021/acsbiomaterials.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
To achieve precise control over the properties and performance of nanoparticles (NPs) in a microfluidic setting, a profound understanding of the influential parameters governing the NP size is crucial. This study specifically delves into poly(lactic-co-glycolic acid) (PLGA)-based NPs synthesized through microfluidics that have been extensively explored as drug delivery systems (DDS). A comprehensive database, containing more than 11 hundred data points, is curated through an extensive literature review, identifying potential effective features. Initially, we employed a tabular generative adversarial network (TGAN) to enhance data sets, increasing the reliability of the obtained results and elevating prediction accuracy. Subsequently, NP size prediction was performed using different machine learning (ML) techniques including decision tree (DT), random forest (RF), deep neural networks (DNN), linear regression (LR), support vector regression (SVR), and gradient boosting (GB). Among these ensembles, DT emerges as the most accurate algorithm, yielding an average prediction error of 8%. Further simulations underscore the pivotal role of the synthesis method, poly(vinyl alcohol) (PVA) concentration, and lactide-to-glycolide (LA/GA) ratio of PLGA copolymers as the primary determinants influencing NP size.
Collapse
Affiliation(s)
- Sara Mihandoost
- Electrical Engineering Department, Urmia University of Technology, Urmia 57166-419, Iran
| | - Sima Rezvantalab
- Chemical Engineering Department, Urmia University of Technology, Urmia 57166-419, Iran
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Volkmar Schulz
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen, Germany
| |
Collapse
|
3
|
Chen JS, Wang CM, Chiang PY, Lo LC, Liao WS. Spatially Mediated Paper Reactors for On-Site Multicoded Encryption. JACS AU 2024; 4:2151-2159. [PMID: 38938820 PMCID: PMC11200220 DOI: 10.1021/jacsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated. The condensation of dione and hydrazine is first demonstrated on a linear paper reactor, where precursors can mix to react, followed by final product separation under optimized conditions. This linear paper reactor design can also support a multistep cascade Wittig reaction by controlling the relative mobility of reactants, intermediates, and final products. Furthermore, a three-dimensional paper reactor with appropriate mobile phases helps to initiate complex solvent system-driven azide-alkyne cycloaddition. By the use of a three-dimensional device design for spatially limited interdevice reactant transportation, reactants crossing designated boundaries trigger confined chemical reactions at specific positions. Accumulation of repetitive reactions leads to successful product gradient generation and mixing effects, representing a fully controllable intersubstrate chemical operation on the platform. Standing on initiating desired chemical reactions at particular interface regions, integration of appropriate selective reaction area, numerical digits overlay, color diversity, and mobile recognition realizes this dual-functional multicoding encryption process.
Collapse
Affiliation(s)
- Jia-Syuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Yu Chiang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Chiang Lo
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Nguyen N, Van TV, Nguyen T. The synergy of nucleic acid amplification and miniaturized systems in enhancing liquid biopsy applications. Bioanalysis 2024; 16:499-504. [PMID: 38380670 PMCID: PMC11299790 DOI: 10.4155/bio-2023-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Ngoc Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam & Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Toi Vo Van
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam & Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Trieu Nguyen
- Shared Research Facilities, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Jiang W, Tang Q, Zhu Y, Gu X, Wu L, Qin Y. Research progress of microfluidics-based food safety detection. Food Chem 2024; 441:138319. [PMID: 38218144 DOI: 10.1016/j.foodchem.2023.138319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
High demands for food safety detection and analysis have been advocated with people's increasing living standards. Even though numerous analytical testing techniques have been proposed, their widespread adoption is still constrained by the high limit of detection, narrow detection ranges, and high implementation costs. Due to their advantages, such as reduced sample and reagent consumption, high sensitivity, automation, low cost, and portability, using microfluidic devices for food safety monitoring has generated significant interest. This review provides a comprehensive overview of the latest microfluidic detection platforms (published in recent 4 years) and their applications in food safety, aiming to provide references for developing efficient research strategies for food contaminant detection and facilitating the transition of these platforms from laboratory research to practical field use.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China; School of Life Science, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
6
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
7
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
8
|
Kheirkhah Barzoki A. Enhanced mixing efficiency and reduced droplet size with novel droplet generators. Sci Rep 2024; 14:4711. [PMID: 38409482 PMCID: PMC10897375 DOI: 10.1038/s41598-024-55514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Nowadays, droplet microfluidics has become widely utilized for high-throughput assays. Efficient mixing is crucial for initiating biochemical reactions in many applications. Rapid mixing during droplet formation eliminates the need for incorporating micromixers, which can complicate the chip design. Furthermore, immediate mixing of substances upon contact can significantly improve the consistency of chemical reactions and resulting products. This study introduces three innovative designs for droplet generators that achieve efficient mixing and produce small droplets. The T-cross and cross-T geometries combine cross and T junction mixing mechanisms, resulting in improved mixing efficiency. Numerical simulations were conducted to compare these novel geometries with traditional T and cross junctions in terms of mixing index, droplet diameter, and eccentricity. The cross-T geometry exhibited the highest mixing index and produced the smallest droplets. For the flow rate ratio of 0.5, this geometry offered a 10% increase in the mixing index and a decrease in the droplet diameter by 10% compared to the T junction. While the T junction has the best mixing efficiency among traditional droplet generators, it produces larger droplets, which can increase the risk of contamination due to contact with the microchannel walls. Therefore, the cross-T geometry is highly desirable in most applications due to its production of considerably smaller droplets. The asymmetric cross junction offered a 8% increase in mixing index and around 2% decrease in droplet diameter compared to the conventional cross junction in flow rate ratio of 0.5. All novel geometries demonstrated comparable mixing efficiency to the T junction. The cross junction exhibited the lowest mixing efficiency and produced larger droplets compared to the cross-T geometry (around 1%). Thus, the novel geometries, particularly the cross-T geometry, are a favorable choice for applications where both high mixing efficiency and small droplet sizes are important.
Collapse
Affiliation(s)
- Ali Kheirkhah Barzoki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
9
|
Oday J, Hadi H, Hashim P, Richardson S, Iles A, Pamme N. Development and validation of spectrophotometric method and paper-based microfluidic devices for the quantitative determination of Amoxicillin in pure form and pharmaceutical formulations. Heliyon 2024; 10:e24968. [PMID: 38318013 PMCID: PMC10839972 DOI: 10.1016/j.heliyon.2024.e24968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
There is a growing need for easy-to-use, low cost and portable quantitative assays to determine active pharmaceutical ingredients in the pharmaceutical industry. Here, we developed a batch spectrophotometric method and a method employing a paper-based microfluidic device for the estimation of Amoxicillin (AMX) in pure solution and pharmaceutical preparations. The detection depends on the coupling reaction of Amoxicillin with diazotized sulfadimidine (DSDM) in an alkaline medium. The yellow azo dye reaction product was measured at λmax 425 nm and linearity was observed from 2 to 30 mg L-1 with a detection limit of 0.32 mg L-1 and a quantification limit of 1.2 mg L-1 was found. The reaction was then transferred onto the paper-based microfluidic device and a plateau change in color intensity was found above 10 mg L-1. Thus, the paper-based microfluidic device can be applied for the semi-quantitative determination of Amoxicillin in pure solution and commercial pharmaceutical products for rapid screening.
Collapse
Affiliation(s)
- Jwan Oday
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Hind Hadi
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Parween Hashim
- Department of Chemistry, College of Science, University of Duhok, Duhok, Iraq
| | - Samantha Richardson
- School of Natural Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
10
|
Mao K, Zhang H, Ran F, Cao H, Feng R, Du W, Li X, Yang Z. Portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification for antibiotic resistance gene ermB in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132793. [PMID: 37856955 DOI: 10.1016/j.jhazmat.2023.132793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Wastewater is among the main sources of antibiotic resistance genes (ARGs) in the environment, but effective methods to quickly assess ARGs on-site in wastewater are lacking. Here, using the typical ARG ermB as the target, we report a portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification (LAMP) for the detection of ARGs. Six primers of LAMP and the crRNA of CRISPR/Cas12a were first designed to be preamplification with LAMP and lead Cas12a to recognize the ermB via base pairing. Due to the trans-cleavage activity of CRISPR/Cas12a after amplicon recognition, ssDNA probes modified with reporter molecules were used to implement a visual assay with lateral flow test strips and fluorescence. After a simple nucleic acid extraction with magnetic beads, the constructed biosensor possesses excellent sensitivity and selectivity as low as 2.75 × 103 copies/μL using fluorescence and later flow strips in wastewater. We further evaluated the community-wide prevalence of ermB in wastewater influent and found high mass loads of ermB during different months. This user-friendly and low-cost biosensor is applicable for rapid on-site ARG detection, providing a potential point-of-use method for rapid assessments of ARG abundance in wastewater from large city areas with many wastewater treatment plants and in resource-limited rural areas.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Fang Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
11
|
Abbasi R, Mesgin RM, Nazari-Khanamiri F, Abdyazdani N, Imani Z, Talatapeh SP, Nourmohammadi A, Nejati V, Rezaie J. Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer. Eur J Med Res 2023; 28:579. [PMID: 38071346 PMCID: PMC10709841 DOI: 10.1186/s40001-023-01556-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The advancement in novel cancer therapeutics brought a platform combining the properties of exosomes with nanoparticles to precision medicine. The novel therapeutic approach aim is cancer-targeted therapy. Exosomes from mesenchymal stem cells (MSCs-Exo) exhibit unique properties in cancer therapies, which makes them an ideal tool for delivering therapeutic agents into tumor cells. The key role of natural MSCs-Exo is controversial in cancer therapy; however, they can be engineered at their surface or cargo to serve as a smart drug delivery system for cancer-targeted therapy. In the last few years, researchers harnessed nanotechnology to enforce MSCs-Exo for cancer management including, tumor cell tracking, imaging, and tumor cell killing. Different nanoparticles such as gold nanoparticles have particularly been incorporated into MSCs-Exo, which showed an efficient accumulation at the site of tumor with improved anticancer impact. These findings indicate that a hybrid of exosomes-nanoparticles may serve as combination therapy for the effective removal of cancers. SHORT CONCLUSION Although exhibiting impressive potential, the use of nanoparticle-loaded MSCs-Exo as a drug-delivery tool has been troubled by some challenges, therefore, translation to clinic prerequisites further scrutiny. In this review, we focus on nanoparticle-loaded MSCs-Exo as a new cancer therapy and discuss engineered MSC-Exo for target therapy.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | | | - Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, Urmia, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Imani
- Department of Biology, Urmia University, Urmia, Iran
| | | | - Aidin Nourmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Nejati
- Department of Biology, Urmia University, Urmia, Iran.
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, Urmia, Iran.
| |
Collapse
|
12
|
Wang Z, Cui X, Hu A, Lu Z, Meng F, Zhou L, Bie X. Establishment of real-time fluorescence and visual LAMP for rapid detection of Escherichia coli O157:H7 and kits construction. Lett Appl Microbiol 2023; 76:ovad122. [PMID: 37863833 DOI: 10.1093/lambio/ovad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023]
Abstract
Escherichia coli O157:H7 is a common pathogenic bacterium in food and water that can pose a threat to human health. The aim of this study was to develop loop-mediated isothermal amplification (LAMP) method for the detection of E. coli O157:H7 in food based on the specific gene Ecs_2840 and to construct rapid detection kits based on the established methods. Specifically, we established two methods of real-time fluorescent LAMP (RT-LAMP) and visual LAMP with calcein as an indicator. In pure bacterial culture, the cell sensitivity and genomic sensitivity of the RT-LAMP kit were 8.8 × 100 CFU ml-1 and 4.61 fg µl-1, respectively. The sensitivity of the visual LAMP kit was 2.35 × 100 CFU ml-1 and 4.61 fg µl-1. Both kits had excellent specificity and anti-interference performance. In addition, milk inoculated with 2.26 × 100 CFU ml-1E. coli O157:H7 could be detected within the reaction time after enrichment for 3 h. The results showed that the LAMP kits were rapid, sensitive, and specific for the detection of E. coli O157:H7 in food and had good application prospects in food safety surveillance.
Collapse
Affiliation(s)
- Zuwei Wang
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Xinping Cui
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Antuo Hu
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Fanqiang Meng
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Libang Zhou
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, People's Republic of China
| |
Collapse
|
13
|
Escobar A, Diab-Liu A, Bosland K, Xu CQ. Microfluidic Device-Based Virus Detection and Quantification in Future Diagnostic Research: Lessons from the COVID-19 Pandemic. BIOSENSORS 2023; 13:935. [PMID: 37887128 PMCID: PMC10605122 DOI: 10.3390/bios13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The global economic and healthcare crises experienced over the past three years, as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted the commonplace habits of humans around the world. SARS-CoV-2, the virus responsible for the coronavirus 2019 (COVID-19) phenomenon, has contributed to the deaths of millions of people around the world. The potential diagnostic applications of microfluidic devices have previously been demonstrated to effectively detect and quasi-quantify several different well-known viruses such as human immunodeficiency virus (HIV), influenza, and SARS-CoV-2. As a result, microfluidics has been further explored as a potential alternative to our currently available rapid tests for highly virulent diseases to better combat and manage future potential outbreaks. The outbreak management during COVID-19 was initially hindered, in part, by the lack of available quantitative rapid tests capable of confirming a person's active infectiousness status. Therefore, this review will explore the use of microfluidic technology, and more specifically RNA-based virus detection methods, as an integral part of improved diagnostic capabilities and will present methods for carrying the lessons learned from COVID-19 forward, toward improved diagnostic outcomes for future pandemic-level threats. This review will first explore the context of the COVID-19 pandemic and how diagnostic technology was shown to have required even greater advancements to keep pace with the transmission of such a highly infectious virus. Secondly, the historical significance of integrating microfluidic technology in diagnostics and how the different types of genetic-based detection methods may vary in their potential practical applications. Lastly, the review will summarize the past, present, and future potential of RNA-based virus detection/diagnosis and how it might be used to better prepare for a future pandemic.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Alex Diab-Liu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Kamaya Bosland
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| |
Collapse
|
14
|
Li W, Ma X, Yong YC, Liu G, Yang Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal Chim Acta 2023; 1278:341614. [PMID: 37709421 DOI: 10.1016/j.aca.2023.341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (μPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of μPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of μPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).
Collapse
Affiliation(s)
- Wenliang Li
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Xuanye Ma
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Yang-Chun Yong
- Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom.
| |
Collapse
|
15
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
16
|
Khalaf EM, Sanaan Jabbar H, Mireya Romero-Parra R, Raheem Lateef Al-Awsi G, Setia Budi H, Altamimi AS, Abdulfadhil Gatea M, Falih KT, Singh K, Alkhuzai KA. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Li Z, Xu X, Wang D, Jiang X. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. Trends Analyt Chem 2023; 158:116871. [PMID: 36506265 PMCID: PMC9721164 DOI: 10.1016/j.trac.2022.116871] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has extensively promoted the application of nucleic acid testing technology in the field of clinical testing. The most widely used polymerase chain reaction (PCR)-based nucleic acid testing technology has problems such as complex operation, high requirements of personnel and laboratories, and contamination. The highly miniaturized microfluidic chip provides an essential tool for integrating the complex nucleic acid detection process. Various microfluidic chips have been developed for the rapid detection of nucleic acid, such as amplification-free microfluidics in combination with clustered regularly interspaced short palindromic repeats (CRISPR). In this review, we first summarized the routine process of nucleic acid testing, including sample processing and nucleic acid detection. Then the typical microfluidic chip technologies and new research advances are summarized. We also discuss the main problems of nucleic acid detection and the future developing trend of the microfluidic chip.
Collapse
|
18
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
20
|
Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. BIOSENSORS 2022; 12:bios12080581. [PMID: 36004978 PMCID: PMC9406156 DOI: 10.3390/bios12080581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.
Collapse
|
21
|
Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022; 27:4602. [PMID: 35889473 PMCID: PMC9323596 DOI: 10.3390/molecules27144602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
22
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
23
|
Holloway PM. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions. Methods Mol Biol 2022; 2492:193-224. [PMID: 35733046 DOI: 10.1007/978-1-0716-2289-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of microfluidic chips is now allowing for more advanced modelling of the blood-brain barrier (BBB) in vitro, recapitulating heterotypic interactions, 3D architecture, and physiological flow. This chapter will give an introduction to these new technologies and how they are being applied to model the BBB and neurovascular unit (NVU). A foundational understanding of the fluid dynamics germane to the effective use of these chips will be set and an overview of how physical phenomena at the microscale can be exploited to enable new possibilities to control the cell culture environment. The four main approaches to construct microfluidic blood vessel mimetics will be discussed with examples of how these techniques are being applied to model the BBB and more recently to study specific neurovascular disease processes. Finally, practical guidance will be given for researchers wishing to adopt these new techniques along with a summary of the challenges, limitations faced, and new opportunities opened up by these advanced cell culture systems.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Bui LM, Thi Thu Phung H, Ho Thi TT, Singh V, Maurya R, Khambhati K, Wu CC, Uddin MJ, Trung DM, Chu DT. Recent findings and applications of biomedical engineering for COVID-19 diagnosis: a critical review. Bioengineered 2021; 12:8594-8613. [PMID: 34607509 PMCID: PMC8806999 DOI: 10.1080/21655979.2021.1987821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is one of the most severe global health crises that humanity has ever faced. Researchers have restlessly focused on developing solutions for monitoring and tracing the viral culprit, SARS-CoV-2, as vital steps to break the chain of infection. Even though biomedical engineering (BME) is considered a rising field of medical sciences, it has demonstrated its pivotal role in nurturing the maturation of COVID-19 diagnostic technologies. Within a very short period of time, BME research applied to COVID-19 diagnosis has advanced with ever-increasing knowledge and inventions, especially in adapting available virus detection technologies into clinical practice and exploiting the power of interdisciplinary research to design novel diagnostic tools or improve the detection efficiency. To assist the development of BME in COVID-19 diagnosis, this review highlights the most recent diagnostic approaches and evaluates the potential of each research direction in the context of the pandemic.
Collapse
Affiliation(s)
- Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thuy-Tien Ho Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Mehsana, Gujarat, India
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Do Minh Trung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
26
|
Ou Y, Cao S, Zhang J, Dong W, Yang Z, Yu Z. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. Trends Analyt Chem 2021; 143:116333. [PMID: 34720276 PMCID: PMC8547957 DOI: 10.1016/j.trac.2021.116333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infectious diseases caused by pathogenic microbes have posed a major health issue for the public, such as the ongoing COVID-19 global pandemic. In recent years, wastewater-based epidemiology (WBE) is emerging as an effective and unbiased method for monitoring public health. Despite its increasing importance, the advancement of WBE requires more competent and streamlined analytical platforms. Herein we discuss the interactions between WBE and droplet microfluidics, focusing on the analysis of pathogens in droplets, which is hard to be tackled by traditional analytical tools. We highlight research works from three aspects, namely, quantitation of pathogen biomarkers in droplets, single-cell analysis in droplets, and living cell biosensors in droplets, as well as providing future perspectives on the synergy between WBE and droplet microfluidics.
Collapse
Affiliation(s)
- Yangteng Ou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shixiang Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| |
Collapse
|
27
|
von Stockert AR, Luongo A, Langhans M, Brandstetter T, Rühe J, Meckel T, Biesalski M. Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels. SENSORS 2021; 21:s21196348. [PMID: 34640668 PMCID: PMC8512548 DOI: 10.3390/s21196348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators for such paper devices have been reported to date, a number of challenges still exist, which limit a successful transfer into marketable applications. A strong limitation in this respect is the (unspecific) adsorption of protein analytes to the paper fibers during the lateral flow assay. This interaction may significantly reduce the amount of analyte that reaches the detection zone of the microfluidic paper-based analytical device (µPAD), thereby reducing its overall sensitivity. Here, we introduce a novel approach on reducing the nonspecific adsorption of proteins to lab-made paper sheets for the use in µPADs. To this, cotton linter fibers in lab-formed additive-free paper sheets are modified with a surrounding thin hydrogel layer generated from photo-crosslinked, benzophenone functionalized copolymers based on poly-(oligo-ethylene glycol methacrylate) (POEGMA) and poly-dimethyl acrylamide (PDMAA). This, as we show in tests similar to lateral flow assays, significantly reduces unspecific binding of model proteins. Furthermore, by evaporating the transport fluid during the microfluidic run at the end of the paper strip through local heating, model proteins can almost quantitatively be accumulated in that zone. The possibility of complete, almost quantitative protein transport in a µPAD opens up new opportunities to significantly improve the signal-to-noise (S/N) ratio of paper-based lateral flow assays.
Collapse
Affiliation(s)
- Alexander Ritter von Stockert
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Anna Luongo
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
| | - Markus Langhans
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Thomas Brandstetter
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
| | - Jürgen Rühe
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
- Correspondence: (J.R.); (M.B.)
| | - Tobias Meckel
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Markus Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
- Correspondence: (J.R.); (M.B.)
| |
Collapse
|
28
|
Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021; 15:3881-3891. [PMID: 34531650 PMCID: PMC8439440 DOI: 10.2147/dddt.s324580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the controlled drug delivery systems of nanomedicine bring many challenges to clinical practice. These difficulties can be attributed to the high batch-to-batch variations and insufficient production rate of traditional preparation methods, as well as a lack of technology for fast screening of nanoparticulate drug delivery structures with high correlation to in vivo tests. These problems may be addressed through microfluidic technology. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. This overview gives a top-level view of the microfluidic devices advanced to put together nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and therapeutic nanoparticles. Additionally, highlighting the current advances of microfluidic systems in fabricating the more and more practical fashions of the in vitro milieus for fast screening of nanoparticles was reviewed. Overall, microfluidic technology provides a promising technique to boost the scientific delivery of nanomedicine and nanoparticulate drug delivery systems. Nonetheless, digital microfluidics with droplets and liquid marbles is the answer to the problems of cumbersome external structures, in addition to the rather big pattern volume. As the latest work is best at the proof-of-idea of liquid-marble-primarily based on totally virtual microfluidics, computerized structures for developing liquid marble, and the controlled manipulation of liquid marble, including coalescence and splitting, are areas of interest for bringing this platform toward realistic use.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
29
|
Zhang H, Xia C, Feng G, Fang J. Hospitals and Laboratories on Paper-Based Sensors: A Mini Review. SENSORS 2021; 21:s21185998. [PMID: 34577205 PMCID: PMC8472957 DOI: 10.3390/s21185998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
With characters of low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment, paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with nonexpert operation. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in medical detection, environmental inspection, and other applications. Herein, we summarize and generalize the recently reported paper-based sensors based on their application for mechanics, biomolecules, food safety, and environmental inspection. Based on the biological, physical, and chemical analytes-sensitive electrical or optical signals, extensive detections of a large number of factors such as humidity, pressure, nucleic acid, protein, sugar, biomarkers, metal ions, and organic/inorganic chemical substances have been reported via paper-based sensors. Challenges faced by the current paper-based sensors from the fundamental problems and practical applications are subsequently analyzed; thus, the future directions of paper-based sensors are specified for their rapid handheld testing.
Collapse
|
30
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
31
|
Peng X, Wang Y, Wen W, Chen MM, Zhang X, Wang S. Simple MoS 2-Nanofiber Paper-Based Fluorescence Immunosensor for Point-of-Care Detection of Programmed Cell Death Protein 1. Anal Chem 2021; 93:8791-8798. [PMID: 34125511 DOI: 10.1021/acs.analchem.1c00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Programmed cell death protein 1 (PD-1) is one of the coinhibitory checkpoints upon T cell activation, the abnormal expression of which severely threatens host immune modulatation for chronic infection. Thus, fast and sensitive monitoring of PD-1 is of vital importance for early diagnosis and cancer treatment. The current detection methods largely based on enzyme-linked immunosorbent assay (ELISA) require time-consuming incubation and complicated washing steps. Herein, we designed a simple and portable nanofiber paper (NFP)-based fluorescence "off-on" immunosensor for PD-1 rapid determination. Molybdenum disulfide (MoS2) nanosheets modified NFP (MoS2-NFP) was employed for adsorbing and immobilizing CdSe/ZnS quantum dots-antibody (QDs-Ab) complex to construct a ready-to-use fluorescent immunosensor. The fluorescent signal of QDs-Ab was initially quenched by MoS2 under the Förster resonance energy transfer (FRET) effect. When the PD-1 target was specifically captured onto NFP by immunization, the QDs-Ab-PD-1 complex was promptly desorbed from the MoS2-NFP surface, resulting in FRET impediment and fluorescence recovery. As an alternative quenching agent, graphene oxide (GO) served as a contrast to investigate NFP-based sensing performance. Owing to superior quenching and desorption efficiency, the MoS2-NFP-based fluorescence immunosensor exhibited nearly 2-fold lower detection limit (85.5 pg/mL) than GO-NFP-based sensor (151 pg/mL) for PD-1 monitoring. Excellent selectivity and satisfactory recovery in PD-1 mouse cell culture supernatant samples were confirmed as well. In addition, the comparable detectability of the MoS2-NFP-based immunosensor was accurately evaluated by a standard PD-1 mouse ELISA kit. This study displayed a simple, rapid, low-cost, and portable point-of-care PD-1 assay, indicating its broad application prospect toward clinical diagnoses.
Collapse
Affiliation(s)
- Xiaolun Peng
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yijia Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Miao-Miao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
32
|
Sharma S, Bhatia V. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal. Nanomedicine (Lond) 2021; 16:1329-1342. [PMID: 34027677 DOI: 10.2217/nnm-2021-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of magnetic nanoparticles (MNPs) in microfluidics based diagnostics is a classic case of micro-, nano- and bio-technology coming together to design extremely controllable, reproducible, and scalable nano and micro 'on-chip bio sensing systems.' In this review, applications of MNPs in microfluidics ranging from molecular diagnostics and immunodiagnostics to clinical uses have been examined. In addition, microfluidic mixing and capture of analytes using MNPs, and MNPs as carriers in microfluidic devices has been investigated. Finally, the challenges and future directions of this upcoming field have been summarized. The use of MNP-based microfluidic devices, will help in developing decentralized or 'point of care' testing globally, contributing to affordable healthcare, particularly, for middle- and low-income developing countries.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital & Postgraduate Institute, Noida, U.P., India
| |
Collapse
|
33
|
Trinh TND, Lee NY. Nucleic acid amplification-based microfluidic approaches for antimicrobial susceptibility testing. Analyst 2021; 146:3101-3113. [PMID: 33876805 DOI: 10.1039/d1an00180a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Because of the global spread of antimicrobials, there is an urgent need to develop rapid and effective tools for antimicrobial susceptibility testing to help clinicians prescribe accurate and appropriate antibiotic doses sooner. The conventional methods for antimicrobial susceptibility testing are usually based on bacterial culture methods, which are time-consuming, complicated, and labor-intensive. Therefore, other approaches are needed to address these issues. Recently, microfluidic technology has gained significant attention in infection management due to its advantages including rapid detection, high sensitivity and specificity, highly automated assay, simplicity, low cost, and potential for point-of-care testing in low-resource areas. Microfluidic advances for antimicrobial susceptibility testing can be classified into phenotypic (usually culture-based) and genotypic tests. Genotypic antimicrobial susceptibility testing is the detection of resistant genes in a microorganism using methods such as nucleic acid amplification. This review (with 107 references) surveys the different forms of nucleic acid amplification-based microdevices used for genotypic antimicrobial susceptibility testing. The first section reviews the serious threat of antimicrobial-resistant microorganisms and the urgent need for fast check-ups. Next, several conventional antimicrobial susceptibility testing methods are discussed, and microfluidic technology as a promising candidate for rapid detection of antimicrobial-resistant microorganisms is briefly introduced. The next section highlights several advancements of microdevices, with an emphasis on their working principles and performance. The review concludes with the importance of fully integrated microdevices and a discussion on future perspectives.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| |
Collapse
|
34
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
35
|
Mao K, Zhang H, Pan Y, Yang Z. Biosensors for wastewater-based epidemiology for monitoring public health. WATER RESEARCH 2021; 191:116787. [PMID: 33421639 DOI: 10.1016/j.watres.2020.116787] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Public health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Yuwei Pan
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| |
Collapse
|
36
|
Cui H, Shen Y, Schiffelers RM, Hennink WE. Transform nanomedicine with breakthrough thinking? J Control Release 2021; 330:1130-1131. [PMID: 33189787 DOI: 10.1016/j.jconrel.2020.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Honggang Cui
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, 221 Maryland Hall, 3400 North Charles Street, Baltimore 21218, MD, USA.
| | - Youqing Shen
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Raymond M Schiffelers
- Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P.O. Box 80082, Utrecht 3508 TB, The Netherlands.
| |
Collapse
|
37
|
Mao K, Yang Z, Zhang H, Li X, Cooper JM. Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology. WATER RESEARCH 2021; 189:116559. [PMID: 33161329 DOI: 10.1016/j.watres.2020.116559] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Wastewater-based epidemiology (WBE) is a powerful technique for monitoring illicit drugs of abuse in the community. Here, we report upon a surface-enhanced Raman spectroscopy (SERS) sensor for the sensitive and selective detection of methamphetamine based upon the assembly of noble metal core-shell nanoparticles on a bespoke glassy nanofibrous electrospun paper matrix. The hierarchical structure of the fibrous paper, modified with the synthesized Au@Ag core-shells (Au@Ag) gave strong SERS signalling, enabling us to evaluate the community-wide prevalence of methamphetamine in wastewater treatment plants within Beijing. We show that, when normalized for the daily flow of the wastewater treatment plants and for population density, higher mass loads of drugs are generally found in sewage influent from urban areas, implying greater local methamphetamine usage than that in less populated areas. The user-friendly and disposable paper sensors demonstrate the applicability of rapid on-site illicit drug detection, illustrating the application to wastewater-based epidemiology, which has the potential to inform government agencies regarding societal interventions.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Jonathan M Cooper
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom
| |
Collapse
|
38
|
Hu D, Liu H, Tian Y, Li Z, Cui X. Sorting Technology for Circulating Tumor Cells Based on Microfluidics. ACS COMBINATORIAL SCIENCE 2020; 22:701-711. [PMID: 33052651 DOI: 10.1021/acscombsci.0c00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTCs) carry reliable clinical information for the diagnosis and treatment of cancer that is a malignant disease with a high mortality rate. However, the amount of CTCs in the blood is quite low. To obtain credible clinical information, an efficient method of extracting CTCs is necessary. Microfluidic technology has proven its effectiveness on CTCs separation in recent years. Here, we present a comprehensive review of CTC sorting methods based on microfluidics. Specifically, we introduce four different microfluidic sorting methods of CTCs and compare their advantages and disadvantages. Finally, we summarize the analysis of CTCs based on microfluidics and present a prospective view of future research.
Collapse
Affiliation(s)
- Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Minist Educ, Key Lab Intelligent Comp Med Image MIIC, Shenyang 110169, Liaoning, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
39
|
Chaikhan P, Udnan Y, Sananmuang R, Ampiah-Bonney RJ, Chuachuad Chaiyasith W. A low-cost microfluidic paper-based analytical device (µPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Berkenbrock JA, Grecco-Machado R, Achenbach S. Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks. Proc Math Phys Eng Sci 2020; 476:20200398. [PMID: 33363440 PMCID: PMC7735301 DOI: 10.1098/rspa.2020.0398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Extensive testing of populations against COVID-19 has been suggested as a game-changer quest to control the spread of this contagious disease and to avoid further disruption in our social, healthcare and economical systems. Nonetheless, testing millions of people for a new virus brings about quite a few challenges. The development of effective tests for the new coronavirus has become a worldwide task that relies on recent discoveries and lessons learned from past outbreaks. In this work, we review the most recent publications on microfluidics devices for the detection of viruses. The topics of discussion include different detection approaches, methods of signalling and fabrication techniques. Besides the miniaturization of traditional benchtop detection assays, approaches such as electrochemical analyses, field-effect transistors and resistive pulse sensors are considered. For emergency fabrication of quick test kits, the local capabilities must be evaluated, and the joint work of universities, industries, and governments seems to be an unequivocal necessity.
Collapse
Affiliation(s)
- José Alvim Berkenbrock
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rafaela Grecco-Machado
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
41
|
Ming T, Luo J, Liu J, Sun S, Xing Y, Wang H, Xiao G, Deng Y, Cheng Y, Yang Z, Jin H, Cai X. Paper-based microfluidic aptasensors. Biosens Bioelectron 2020; 170:112649. [PMID: 33022516 DOI: 10.1016/j.bios.2020.112649] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
For in-situ disease markers detection, point-of-care (POC) diagnosis has great advantages in speed and cost compared with traditional techniques. The rapid diagnosis, prognosis, and surveillance of diseases can significantly reduce disease-related mortality and trauma. Therefore, increasing attention has been paid to the POC diagnosis devices due to their excellent diagnosis speed and portability. Over the past ten years, paper-based microfluidic aptasensors have emerged as a class of critical POC diagnosis devices and various aptasensors have been proposed to detect various disease markers. However, most aptasensors need further improvement before they can actually enter the market and be widely used. There is thus an urgent need to sort out the key points of preparing the aptasensors and the direction that needs to be invested in. This review summarizes the representative articles in the development of paper-based microfluidic aptasensors. These works can be divided into paper-based optical aptasensors and paper-based electrochemical aptasensors according to their output signals. Significant focus is applied to these works according to the following three parts: (1) The ingenious design of device structure; (2) Application and synthesis of nanomaterial; (3) The detection principle of the proposed aptasensor. This is a detailed and comprehensive review of paper-based microfluidic aptasensors. The accomplishments and shortcomings of the current aptasensors are outlined, the development direction and the future prospective are given. It is hoped that the research in this review can provide a reference for further development of more advanced, more effective paper-based microfluidic aptasensors for POC disease markers diagnosis.
Collapse
Affiliation(s)
- Tao Ming
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinping Luo
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juntao Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuai Sun
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Xing
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guihua Xiao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Deng
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, 100034, PR China
| | - Yan Cheng
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, 100034, PR China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, 100034, PR China.
| | - Xinxia Cai
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
42
|
Boobphahom S, Nguyet Ly M, Soum V, Pyun N, Kwon OS, Rodthongkum N, Shin K. Recent Advances in Microfluidic Paper-Based Analytical Devices toward High-Throughput Screening. Molecules 2020; 25:E2970. [PMID: 32605281 PMCID: PMC7412548 DOI: 10.3390/molecules25132970] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic paper-based analytical devices (µPADs) have become promising tools offering various analytical applications for chemical and biological assays at the point-of-care (POC). Compared to traditional microfluidic devices, µPADs offer notable advantages; they are cost-effective, easily fabricated, disposable, and portable. Because of our better understanding and advanced engineering of µPADs, multistep assays, high detection sensitivity, and rapid result readout have become possible, and recently developed µPADs have gained extensive interest in parallel analyses to detect biomarkers of interest. In this review, we focus on recent developments in order to achieve µPADs with high-throughput capability. We discuss existing fabrication techniques and designs, and we introduce and discuss current detection methods and their applications to multiplexed detection assays in relation to clinical diagnosis, drug analysis and screening, environmental monitoring, and food and beverage quality control. A summary with future perspectives for µPADs is also presented.
Collapse
Affiliation(s)
- Siraprapa Boobphahom
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand;
| | - Mai Nguyet Ly
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Nayoon Pyun
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Oh-Sun Kwon
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand;
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| |
Collapse
|