1
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
2
|
Sánchez-Luján J, Molina-García Á, López-Cascales JJ. Integrated Heat Recovery System Based on Mixed Ionic-Electronic Conducting Membrane for Improved Solid Oxide Co-Electrolyzer Performance. Polymers (Basel) 2024; 16:932. [PMID: 38611190 PMCID: PMC11013187 DOI: 10.3390/polym16070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The current state of mixed ionic-electronic conducting ceramic membrane technology presents significant advancements with potential applications in various fields including solid oxide electrolyzers, fuel cells, hydrogen production, CO2 reduction, and membrane reactors for chemical production and oxygen separation. Particularly in oxygen separation applications, optimal conditions closely align with the conditions of oxygen-rich air streams emitted from the anode of solid oxide co-electrolyzers. This paper describes and analyzes a novel integrated heat recovery system based on mixed ionic-electronic conducting membranes. The system operates in two stages: firstly, oxygen is separated from the anode output stream using mixed ionic-electronic conducting membranes aided by a vacuum system, followed by the heat recovery process. Upon oxygen separation, the swept gas stream is recirculated at temperatures near thermoneutral conditions, resulting in performance improvements at both cell and system levels. Additionally, an oxygen stream is generated for various applications. An Aspen HYSYS® model has been developed to calculate heat and material balances, demonstrating the efficiency enhancements of the proposed system configuration.
Collapse
Affiliation(s)
- José Sánchez-Luján
- Department of Chemical and Environmental Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain;
| | - Ángel Molina-García
- Department of Automatics, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| | - José Javier López-Cascales
- Department of Chemical and Environmental Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain;
| |
Collapse
|
3
|
Juthathan M, Chantarojsiri T, Chainok K, Butburee T, Thamyongkit P, Tuntulani T, Leeladee P. Molecularly dispersed nickel complexes on N-doped graphene for electrochemical CO 2 reduction. Dalton Trans 2023; 52:11407-11418. [PMID: 37283196 DOI: 10.1039/d3dt00878a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, new hybrid catalysts based on molecularly dispersed nickel complexes on N-doped graphene were developed for electrochemical CO2 reduction (ECR). Nickel(II) complexes (1-Ni, 2-Ni), and a new crystal structure ([2-Ni]Me), featuring N4-Schiff base macrocycles, were synthesized and investigated for their potential in ECR. Cyclic voltammetry (CV) in NBu4PF6/CH3CN solution demonstrated that the nickel complexes bearing N-H groups (1-Ni and 2-Ni) showed a substantial current enhancement in the presence of CO2, while the absence of N-H groups ([2-Ni]Me) resulted in an almost unchanged voltammogram. This indicated the necessity of the N-H functionality towards ECR in aprotic media. All three nickel complexes were successfully immobilized on nitrogen-doped graphene (NG) via non-covalent interactions. All three Ni@NG catalysts exhibited satisfactory CO2-to-CO reduction in aqueous NaHCO3 solution with the faradaic efficiency (FE) of 60-80% at the overpotential of 0.56 V vs. RHE. The ECR activity of [2-Ni]Me@NG also suggested that the N-H moiety from the ligand is less important in the heterogeneous aqueous system owing to viable hydrogen-bond formation and proton donors from water and bicarbonate ions. This finding could pave the way for understanding the effects of modifying the ligand framework at the N-H position toward fine tuning the reactivity of hybrid catalysts through molecular-level modulation.
Collapse
Affiliation(s)
- Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand.
| | - Teera Chantarojsiri
- Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Thailand
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Thailand
| | | | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand.
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand.
| |
Collapse
|
4
|
MubarakAli D, Kim H, Venkatesh PS, Kim JW, Lee SY. A Systemic Review on the Synthesis, Characterization, and Applications of Palladium Nanoparticles in Biomedicine. Appl Biochem Biotechnol 2023; 195:3699-3718. [PMID: 35349084 DOI: 10.1007/s12010-022-03840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/25/2023]
Abstract
Palladium nanoparticles (Pd NPs) have been considered as a potential candidate in the field of biomedical applications due to its unique properties such as huge catalytic, hydrogen storage, and sensing behavior. Therefore, Pd NPs have shown to have a significant potential for the development of antimicrobials, wound healing, antioxidant, and anticancer property in recent days. There are plenty of reports that showed superior properties of noble metals. However, only very few studies have been undertaken to explore the advantage of Pd NPs in the field of biomedical applications. This review reports detailed and comprehensive studies comprising of the synthesis, characterization, and potential applications of Pd NPs in biomedicine. This report provides evidences in the literature documented by early researchers to understand the potential applications of Pd NPs to be explored in various fields.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
- Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Hoekun Kim
- Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, Republic of Korea
| | | | - Jung-Wan Kim
- Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Sang-Yul Lee
- Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, Republic of Korea.
| |
Collapse
|
5
|
Hussain I, Alasiri H, Ullah Khan W, Alhooshani K. Advanced electrocatalytic technologies for conversion of carbon dioxide into methanol by electrochemical reduction: Recent progress and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
She X, Wang Y, Xu H, Chi Edman Tsang S, Ping Lau S. Challenges and Opportunities in Electrocatalytic CO 2 Reduction to Chemicals and Fuels. Angew Chem Int Ed Engl 2022; 61:e202211396. [PMID: 35989680 PMCID: PMC10091971 DOI: 10.1002/anie.202211396] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Abstract
The global temperature increase must be limited to below 1.5 °C to alleviate the worst effects of climate change. Electrocatalytic CO2 reduction (ECO2 R) to generate chemicals and feedstocks is considered one of the most promising technologies to cut CO2 emission at an industrial level. However, despite decades of studies, advances at the laboratory scale have not yet led to high industrial deployment rates. This Review discusses practical challenges in the industrial chain that hamper the scaling-up deployment of the ECO2 R technology. Faradaic efficiencies (FEs) of about 100 % and current densities above 200 mA cm-2 have been achieved for the ECO2 R to CO/HCOOH, and the stability of the electrolysis system has been prolonged to 2000 h. For ECO2 R to C2 H4 , the maximum FE is over 80 %, and the highest current density has reached the A cm-2 level. Thus, it is believed that ECO2 R may have reached the stage for scale-up. We aim to provide insights that can accelerate the development of the ECO2 R technology.
Collapse
Affiliation(s)
- Xiaojie She
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| | - Yifei Wang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Hui Xu
- Institute for Energy ResearchSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Shu Ping Lau
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| |
Collapse
|
7
|
Marcos-Madrazo A, Casado-Coterillo C, Iniesta J, Irabien A. Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO 2 to Ethylene in Alkaline Medium. MEMBRANES 2022; 12:783. [PMID: 36005698 PMCID: PMC9412364 DOI: 10.3390/membranes12080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO2) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (CO2R) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (C2H4) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm-2 and a cell potential of -1.9 V, with a C2H4 production rate of 420 µmol m-2 s-1 for the Cu:CS GDE. Upon increasing current density to 90 mA cm-2, however, the production rate of the Cu:CS GDE rose to 509 µmol/m2s but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to C2H4 to a FE of 98% at 10 mA cm-2 with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO2 crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.
Collapse
Affiliation(s)
- Aitor Marcos-Madrazo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| | - Clara Casado-Coterillo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| | - Jesús Iniesta
- Department of Physical Chemistry, Institute of Electrochemistry, Universidad de Alicante, Av. Raspeig s/n, 03080 Alicante, Spain
| | - Angel Irabien
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
8
|
Juthathan M, Chantarojsiri T, Tuntulani T, Leeladee P. Atomic- and Molecular-Level Modulation of Dispersed Active Sites for Electrocatalytic CO2 Reduction. Chem Asian J 2022; 17:e202200237. [PMID: 35417092 DOI: 10.1002/asia.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Global climate changes have been impacted by the excessive CO 2 emission, which exacerbates the environmental problems. Electrochemical CO 2 reduction (CO 2 RR) offers the solution for utilizing CO 2 as feedstocks for value-added products while potentially mitigating the negative effects. Owing to the extreme stability of CO 2 , selectivity and efficiency are crucial factors in the development of CO 2 RR electrocatalysts. Recently, single-atom catalysts have emerged as potential electrocatalysts for CO 2 reduction. They generally comprise of atomically- and molecularly dispersed active sites over conductive supports, which enable atomic-level and molecular-level modulations. In this minireview, catalyst preparations, principle of modulations, and reaction mechanisms are summarised together with related recent advances. The atomic-level modulations are first discussed, followed by the molecular-level modulations. Finally, the current challenges and future opportunities are provided as guidance for further developments regarding the discussed topics.
Collapse
Affiliation(s)
| | | | | | - Pannee Leeladee
- Chulalongkorn University, Chemistry, 254 Phayathai Road, 10330, Bangkok, THAILAND
| |
Collapse
|
9
|
Recent progress in electrochemical reduction of CO2 into formate and C2 compounds. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
|
11
|
Abstract
The severe increase in the CO2 concentration is a causative factor of global warming, which accelerates the destruction of ecosystems. The massive utilization of CO2 for value-added chemical production is a key to commercialization to guarantee both economic feasibility and negative carbon emission. Although the electrochemical reduction of CO2 is one of the most promising technologies, there are remaining challenges for large-scale production. Herein, an overview of these limitations is provided in terms of devices, processes, and catalysts. Further, the economic feasibility of the technology is described in terms of individual processes such as reactions and separation. Additionally, for the practical implementation of the electrochemical CO2 conversion technology, stable electrocatalytic performances need to be addressed in terms of current density, Faradaic efficiency, and overpotential. Hence, the present review also covers the known degradation behaviors and mechanisms of electrocatalysts and electrodes during electrolysis. Furthermore, strategic approaches for overcoming the stability issues are introduced based on recent reports from various research areas involved in the electrocatalytic conversion.
Collapse
|
12
|
Masel RI, Liu Z, Yang H, Kaczur JJ, Carrillo D, Ren S, Salvatore D, Berlinguette CP. An industrial perspective on catalysts for low-temperature CO 2 electrolysis. NATURE NANOTECHNOLOGY 2021; 16:118-128. [PMID: 33432206 DOI: 10.1038/s41565-020-00823-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Electrochemical conversion of CO2 to useful products at temperatures below 100 °C is nearing the commercial scale. Pilot units for CO2 conversion to CO are already being tested. Units to convert CO2 to formic acid are projected to reach pilot scale in the next year. Further, several investigators are starting to observe industrially relevant rates of the electrochemical conversion of CO2 to ethanol and ethylene, with the hydrogen needed coming from water. In each case, Faradaic efficiencies of 80% or more and current densities above 200 mA cm-2 can be reproducibly achieved. Here we describe the key advances in nanocatalysts that lead to the impressive performance, indicate where additional work is needed and provide benchmarks that others can use to compare their results.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxuan Ren
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle Salvatore
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Shafaque HW, Lee C, Fahy KF, Lee JK, LaManna JM, Baltic E, Hussey DS, Jacobson DL, Bazylak A. Boosting Membrane Hydration for High Current Densities in Membrane Electrode Assembly CO 2 Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54585-54595. [PMID: 33236877 DOI: 10.1021/acsami.0c14832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Despite the advantages of CO2 electrolyzers, efficiency losses due to mass and ionic transport across the membrane electrode assembly (MEA) are critical bottlenecks for commercial-scale implementation. In this study, more efficient electrolysis of CO2 was achieved by increasing cation exchange membrane (CEM) hydration via the humidification of the CO2 reactant inlet stream. A high current density of 755 mA/cm2 was reached by humidifying the reactant CO2 in a MEA electrolyzer cell featuring a CEM. The power density was reduced by up to 30% when the fully humidified reactant CO2 was introduced while operating at a current density of 575 mA/cm2. We reduced the ohmic losses of the electrolyzer by fourfold at 575 mA/cm2 by fully humidifying the reactant CO2. A semiempirical CEM water uptake model was developed and used to attribute the improved performance to 11% increases in membrane water uptake and ionic conductivity. Our CEM water uptake model showed that the increase in ohmic losses and the limitation of ionic transport were the result of significant dehydration at the central region of the CEM and the anode gas diffusion electrode-CEM interface region, which exhibited a 2.5% drop in water uptake.
Collapse
Affiliation(s)
- Hisan W Shafaque
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - ChungHyuk Lee
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Kieran F Fahy
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jason K Lee
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jacob M LaManna
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Elias Baltic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Daniel S Hussey
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - David L Jacobson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Aimy Bazylak
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
14
|
de Jesus Gálvez-Vázquez M, Moreno-García P, Xu H, Hou Y, Hu H, Montiel IZ, Rudnev AV, Alinejad S, Grozovski V, Wiley BJ, Arenz M, Broekmann P. Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03609] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Pavel Moreno-García
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Heng Xu
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0354, United States
| | - Yuhui Hou
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Huifang Hu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | | | - Alexander V. Rudnev
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
| | - Shima Alinejad
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Vitali Grozovski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0354, United States
| | - Matthias Arenz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
15
|
Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Heterogeneous Single-Atom Catalysts for Electrochemical CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001848. [PMID: 32644259 DOI: 10.1002/adma.202001848] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/27/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) is of great importance to tackle the rising CO2 concentration in the atmosphere. The CO2 RR can be driven by renewable energy sources, producing precious chemicals and fuels, with the implementation of this process largely relying on the development of low-cost and efficient electrocatalysts. Recently, a range of heterogeneous and potentially low-cost single-atom catalysts (SACs) containing non-precious metals coordinated to earth-abundant elements have emerged as promising candidates for the CO2 RR. Unfortunately, the real catalytically active centers and the key factors that govern the catalytic performance of these SACs remain ambiguous. Here, this ambiguity is addressed by developing a fundamental understanding of the CO2 RR-to-CO process on SACs, as CO accounts for the major product from CO2 RR on SACs. The reaction mechanism, the rate-determining steps, and the key factors that control the activity and selectivity are analyzed from both experimental and theoretical studies. Then, the synthesis, characterization, and the CO2 RR performance of SACs are discussed. Finally, the challenges and future pathways are highlighted in the hope of guiding the design of the SACs to promote and understand the CO2 RR on SACs.
Collapse
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
16
|
Mascaretti L, Niorettini A, Bricchi BR, Ghidelli M, Naldoni A, Caramori S, Li Bassi A, Berardi S. Syngas Evolution from CO 2 Electroreduction by Porous Au Nanostructures. ACS APPLIED ENERGY MATERIALS 2020; 3:4658-4668. [PMID: 33829149 PMCID: PMC8016180 DOI: 10.1021/acsaem.0c00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 05/11/2023]
Abstract
Electrocatalytic reduction of CO2 recently emerged as a viable solution in view of changing the common belief and considering carbon dioxide as a valuable reactant instead of a waste product. In this view, we herein propose the one-step synthesis of gold nanostructures of different morphologies grown on fluorine-doped tin oxide electrodes by means of pulsed-laser deposition. The resulting cathodes are able to produce syngas mixtures of different compositions at overpotentials as low as 0.31 V in CO2-presaturated aqueous media. Insights into the correlation between the structural features/morphology of the cathodes and their catalytic activity are also provided, confirming recent reports on the remarkable sensitivity toward CO production for gold electrodes exposing undercoordinated sites and facets.
Collapse
Affiliation(s)
- Luca Mascaretti
- Micro-
and Nanostructured Materials Laboratory, Department of Energy, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Alessandro Niorettini
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Beatrice Roberta Bricchi
- Micro-
and Nanostructured Materials Laboratory, Department of Energy, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
| | - Matteo Ghidelli
- Micro-
and Nanostructured Materials Laboratory, Department of Energy, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
- Department
of Structure and Nano/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf, Germany
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Stefano Caramori
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Andrea Li Bassi
- Micro-
and Nanostructured Materials Laboratory, Department of Energy, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy
| | - Serena Berardi
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
17
|
García de Arquer FP, Dinh CT, Ozden A, Wicks J, McCallum C, Kirmani AR, Nam DH, Gabardo C, Seifitokaldani A, Wang X, Li YC, Li F, Edwards J, Richter LJ, Thorpe SJ, Sinton D, Sargent EH. CO 2 electrolysis to multicarbon products at activities greater than 1 A cm -2. Science 2020; 367:661-666. [PMID: 32029623 DOI: 10.1126/science.aay4217] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO2) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.
Collapse
Affiliation(s)
- F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Cao-Thang Dinh
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario M5S 3G8, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada.,Department of Materials Science & Engineering (MSE), University of Toronto, 184 College St., Toronto, Ontario M5S 3E4, Canada
| | - Christopher McCallum
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario M5S 3G8, Canada
| | - Ahmad R Kirmani
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Dae-Hyun Nam
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Christine Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario M5S 3G8, Canada
| | - Ali Seifitokaldani
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Yuguang C Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Fengwang Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Jonathan Edwards
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario M5S 3G8, Canada
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Steven J Thorpe
- Department of Materials Science & Engineering (MSE), University of Toronto, 184 College St., Toronto, Ontario M5S 3E4, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario M5S 3G8, Canada.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
18
|
Oh S, Park YS, Park H, Kim H, Jang JH, Choi I, Kim SK. Ag-deposited Ti gas diffusion electrode in proton exchange membrane CO2 electrolyzer for CO production. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Pushing the activity of CO 2 electroreduction by system engineering. Sci Bull (Beijing) 2019; 64:1805-1816. [PMID: 36659577 DOI: 10.1016/j.scib.2019.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/21/2023]
Abstract
As a promising technology that may solve global environmental challenges and enable intermittent renewable energy storage as well as zero-carbon-emission energy cycling, the carbon dioxide reduction reaction has been extensively studied in the past several years. Beyond the fruitful progresses and innovations in catalysts, the system engineering-based research on the full carbon dioxide reduction reaction is urgently needed toward the industrial application. In this review, we summarize and discuss recent works on the innovations in the reactor architectures and optimizations based on system engineering in carbon dioxide reduction reaction. Some challenges and future trends in this field are further discussed, especially on the system engineering factors.
Collapse
|
20
|
Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, Sargent EH. Electrochemical CO 2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807166. [PMID: 31095806 DOI: 10.1002/adma.201807166] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2018] [Indexed: 05/21/2023]
Abstract
The electrochemical reduction of CO2 is a promising route to convert intermittent renewable energy to storable fuels and valuable chemical feedstocks. To scale this technology for industrial implementation, a deepened understanding of how the CO2 reduction reaction (CO2 RR) proceeds will help converge on optimal operating parameters. Here, a techno-economic analysis is presented with the goal of identifying maximally profitable products and the performance targets that must be met to ensure economic viability-metrics that include current density, Faradaic efficiency, energy efficiency, and stability. The latest computational understanding of the CO2 RR is discussed along with how this can contribute to the rational design of efficient, selective, and stable electrocatalysts. Catalyst materials are classified according to their selectivity for products of interest and their potential to achieve performance targets is assessed. The recent progress and opportunities in system design for CO2 electroreduction are described. To conclude, the remaining technological challenges are highlighted, suggesting full-cell energy efficiency as a guiding performance metric for industrial impact.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jonathan P Edwards
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Cao-Thang Dinh
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Ali Seifitokaldani
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
21
|
Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01332-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Endrődi B, Kecsenovity E, Samu A, Darvas F, Jones RV, Török V, Danyi A, Janáky C. Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency. ACS ENERGY LETTERS 2019; 4:1770-1777. [PMID: 31328172 PMCID: PMC6632018 DOI: 10.1021/acsenergylett.9b01142] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/05/2023]
Abstract
Electrochemical reduction of CO2 is a value-added approach to both decrease the atmospheric emission of carbon dioxide and form valuable chemicals. We present a zero gap electrolyzer cell, which continuously converts gas phase CO2 to products without using any liquid catholyte. This is the first report of a multilayer CO2 electrolyzer stack for scaling up the electrolysis process. CO formation with partial current densities above 250 mA cm-2 were achieved routinely, which was further increased to 300 mA cm-2 (with ∼95% faradic efficiency) by pressurizing the CO2 inlet (up to 10 bar). Evenly distributing the CO2 gas among the layers, the electrolyzer operates identically to the sum of multiple single-layer electrolyzer cells. When passing the CO2 gas through the layers consecutively, the CO2 conversion efficiency increased. The electrolyzer simultaneously provides high partial current density, low cell voltage (-3.0 V), high conversion efficiency (up to 40%), and high selectivity for CO production.
Collapse
Affiliation(s)
- B. Endrődi
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
- E-mail: (B. Endrődi)
| | - E. Kecsenovity
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - A. Samu
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - F. Darvas
- ThalesNano
Inc., Záhony u.
7, Budapest 1031, Hungary
| | - R. V. Jones
- ThalesNano
Inc., Záhony u.
7, Budapest 1031, Hungary
| | - V. Török
- ThalesNano
Inc., Záhony u.
7, Budapest 1031, Hungary
| | - A. Danyi
- ThalesNano
Inc., Záhony u.
7, Budapest 1031, Hungary
| | - C. Janáky
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
- E-mail: (C. Janáky)
| |
Collapse
|
23
|
Lee J, Lim J, Roh CW, Whang HS, Lee H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems. Catalysts 2019. [DOI: 10.3390/catal9030224] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrochemical CO2 conversion offers a promising route for value-added products such as formate, carbon monoxide, and hydrocarbons. As a result of the highly required overpotential for CO2 reduction, researchers have extensively studied the development of catalyst materials in a typical H-type cell, utilizing a dissolved CO2 reactant in the liquid phase. However, the low CO2 solubility in an aqueous solution has critically limited productivity, thereby hindering its practical application. In efforts to realize commercially available CO2 conversion, gas-phase reactor systems have recently attracted considerable attention. Although the achieved performance to date reflects a high feasibility, further development is still required in order for a well-established technology. Accordingly, this review aims to promote the further study of gas-phase systems for CO2 reduction, by generally examining some previous approaches from liquid-phase to gas-phase systems. Finally, we outline major challenges, with significant lessons for practical CO2 conversion systems.
Collapse
|
25
|
Messias S, Sousa MM, Nunes da Ponte M, Rangel CM, Pardal T, Reis Machado AS. Electrochemical production of syngas from CO 2at pressures up to 30 bar in electrolytes containing ionic liquid. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00271e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrochemical CO2reduction in a reactor that can operate up to 100 bar and 80 °C, with a configuration similar to that of an alkaline electrolyser, for hydrogen production suitable to be used industrially is reported for the first time.
Collapse
Affiliation(s)
- Sofia Messias
- LAQV
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Miguel M. Sousa
- LAQV
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Manuel Nunes da Ponte
- LAQV
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Carmen M. Rangel
- LNEG
- National Laboratory of Energy and Geology
- 1649-038 Lisboa
- Portugal
| | | | - Ana S. Reis Machado
- LAQV
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| |
Collapse
|
26
|
|
27
|
Leonzio G. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Kaczur JJ, Yang H, Liu Z, Sajjad SD, Masel RI. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front Chem 2018; 6:263. [PMID: 30018951 PMCID: PMC6038358 DOI: 10.3389/fchem.2018.00263] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
The recent development and market introduction of a new type of alkaline stable imidazole-based anion exchange membrane and related ionomers by Dioxide Materials is enabling the advancement of new and improved electrochemical processes which can operate at commercially viable operating voltages, current efficiencies, and current densities. These processes include the electrochemical conversion of CO2 to formic acid (HCOOH), CO2 to carbon monoxide (CO), and alkaline water electrolysis, generating hydrogen at high current densities at low voltages without the need for any precious metal electrocatalysts. The first process is the direct electrochemical generation of pure formic acid in a three-compartment cell configuration using the alkaline stable anion exchange membrane and a cation exchange membrane. The cell operates at a current density of 140 mA/cm2 at a cell voltage of 3.5 V. The power consumption for production of formic acid (FA) is about 4.3–4.7 kWh/kg of FA. The second process is the electrochemical conversion of CO2 to CO, a key focus product in the generation of renewable fuels and chemicals. The CO2 cell consists of a two-compartment design utilizing the alkaline stable anion exchange membrane to separate the anode and cathode compartments. A nanoparticle IrO2 catalyst on a GDE structure is used as the anode and a GDE utilizing a nanoparticle Ag/imidazolium-based ionomer catalyst combination is used as a cathode. The CO2 cell has been operated at current densities of 200 to 600 mA/cm2 at voltages of 3.0 to 3.2 respectively with CO2 to CO conversion selectivities of 95–99%. The third process is an alkaline water electrolysis cell process, where the alkaline stable anion exchange membrane allows stable cell operation in 1 M KOH electrolyte solutions at current densities of 1 A/cm2 at about 1.90 V. The cell has demonstrated operation for thousands of hours, showing a voltage increase in time of only 5 μV/h. The alkaline electrolysis technology does not require any precious metal catalysts as compared to polymer electrolyte membrane (PEM) design water electrolyzers. In this paper, we discuss the detailed technical aspects of these three technologies utilizing this unique anion exchange membrane.
Collapse
Affiliation(s)
| | - Hongzhou Yang
- Dioxide Materials Inc., Boca Raton, FL, United States
| | - Zengcai Liu
- Dioxide Materials Inc., Boca Raton, FL, United States
| | - Syed D Sajjad
- Dioxide Materials Inc., Boca Raton, FL, United States
| | | |
Collapse
|
29
|
Weekes DM, Salvatore DA, Reyes A, Huang A, Berlinguette CP. Electrolytic CO 2 Reduction in a Flow Cell. Acc Chem Res 2018; 51:910-918. [PMID: 29569896 DOI: 10.1021/acs.accounts.8b00010] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrocatalytic CO2 conversion at near ambient temperatures and pressures offers a potential means of converting waste greenhouse gases into fuels or commodity chemicals (e.g., CO, formic acid, methanol, ethylene, alkanes, and alcohols). This process is particularly compelling when driven by excess renewable electricity because the consequent production of solar fuels would lead to a closing of the carbon cycle. However, such a technology is not currently commercially available. While CO2 electrolysis in H-cells is widely used for screening electrocatalysts, these experiments generally do not effectively report on how CO2 electrocatalysts behave in flow reactors that are more relevant to a scalable CO2 electrolyzer system. Flow reactors also offer more control over reagent delivery, which includes enabling the use of a gaseous CO2 feed to the cathode of the cell. This setup provides a platform for generating much higher current densities ( J) by reducing the mass transport issues inherent to the H-cells. In this Account, we examine some of the systems-level strategies that have been applied in an effort to tailor flow reactor components to improve electrocatalytic reduction. Flow reactors that have been utilized in CO2 electrolysis schemes can be categorized into two primary architectures: Membrane-based flow cells and microfluidic reactors. Each invoke different dynamic mechanisms for the delivery of gaseous CO2 to electrocatalytic sites, and both have been demonstrated to achieve high current densities ( J > 200 mA cm-2) for CO2 reduction. One strategy common to both reactor architectures for improving J is the delivery of CO2 to the cathode in the gas phase rather than dissolved in a liquid electrolyte. This physical facet also presents a number of challenges that go beyond the nature of the electrocatalyst, and we scrutinize how the judicious selection and modification of certain components in microfluidic and/or membrane-based reactors can have a profound effect on electrocatalytic performance. In membrane-based flow cells, for example, the choice of either a cation exchange membrane (CEM), anion exchange membrane (AEM), or a bipolar membrane (BPM) affects the kinetics of ion transport pathways and the range of applicable electrolyte conditions. In microfluidic cells, extensive studies have been performed upon the properties of porous carbon gas diffusion layers, materials that are equally relevant to membrane reactors. A theme that is pervasive throughout our analyses is the challenges associated with precise and controlled water management in gas phase CO2 electrolyzers, and we highlight studies that demonstrate the importance of maintaining adequate flow cell hydration to achieve sustained electrolysis.
Collapse
Affiliation(s)
- David M. Weekes
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Danielle A. Salvatore
- Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6H 1Z3, Canada
| | - Angelica Reyes
- Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6H 1Z3, Canada
| | - Aoxue Huang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Curtis P. Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6H 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Machado ASR, Nunes AV, da Ponte MN. Carbon dioxide utilization—Electrochemical reduction to fuels and synthesis of polycarbonates. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Wang G, Pan J, Jiang SP, Yang H. Gas phase electrochemical conversion of humidified CO2 to CO and H2 on proton-exchange and alkaline anion-exchange membrane fuel cell reactors. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Yang H, Kaczur JJ, Sajjad SD, Masel RI. Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.04.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
|
34
|
Preface. J CO2 UTIL 2016. [DOI: 10.1016/j.jcou.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|