1
|
Gonzalo A, Augustin CM, Bifulco SF, Telle Å, Chahine Y, Kassar A, Guerrero-Hurtado M, Durán E, Martínez-Legazpi P, Flores O, Bermejo J, Plank G, Akoum N, Boyle PM, Del Alamo JC. Multiphysics simulations reveal haemodynamic impacts of patient-derived fibrosis-related changes in left atrial tissue mechanics. J Physiol 2024; 602:6789-6812. [PMID: 39513553 DOI: 10.1113/jp287011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Stroke is a leading cause of death and disability worldwide. Atrial myopathy, including fibrosis, is associated with an increased risk of ischaemic stroke, but the mechanisms underlying this association are poorly understood. Fibrosis modifies myocardial structure, impairing electrical propagation and tissue biomechanics, and creating stagnant flow regions where clots could form. Fibrosis can be mapped non-invasively using late gadolinium enhancement magnetic resonance imaging (LGE-MRI). However, fibrosis maps are not currently incorporated into stroke risk calculations or computational electro-mechano-fluidic models. We present multiphysics simulations of left atrial (LA) myocardial motion and haemodynamics using patient-specific anatomies and fibrotic maps from LGE-MRI. We modify tissue stiffness and active tension generation in fibrotic regions and investigate how these changes affect LA flow for different fibrotic burdens. We find that fibrotic regions and, to a lesser extent, non-fibrotic regions experience reduced myocardial strain, resulting in decreased LA emptying fraction consistent with clinical observations. Both fibrotic tissue stiffening and hypocontractility independently reduce LA function, but, together, these two alterations cause more pronounced effects than either one alone. Fibrosis significantly alters flow patterns throughout the atrial chamber, and particularly, the filling and emptying jets of the left atrial appendage (LAA). The effects of fibrosis in LA flow are largely captured by the concomitant changes in LA emptying fraction except inside the LAA, where a multifactorial behaviour is observed. This work illustrates how high-fidelity, multiphysics models can be used to study thrombogenesis mechanisms in patient-specific anatomies, shedding light onto the links between atrial fibrosis and ischaemic stroke. KEY POINTS: Left atrial (LA) fibrosis is associated with arrhythmogenesis and increased risk of ischaemic stroke; its extent and pattern can be quantified on a patient-specific basis using late gadolinium enhancement magnetic resonance imaging. Current stroke risk prediction tools have limited personalization, and their accuracy could be improved by incorporating patient-specific information such as fibrotic maps and haemodynamic patterns. We present the first electro-mechano-fluidic multiphysics computational simulations of LA flow, including fibrosis and anatomies from medical imaging. Mechanical changes in fibrotic tissue impair global LA motion, decreasing LA and left atrial appendage (LAA) emptying fractions, especially in subjects with higher fibrosis burdens. Fibrotic-mediated LA motion impairment alters LA and LAA flow near the endocardium and the whole cavity, ultimately leading to more stagnant blood regions in the LAA.
Collapse
Affiliation(s)
- Alejandro Gonzalo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Christoph M Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Savannah F Bifulco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Åshild Telle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yaacoub Chahine
- School of Cardiology, University of Washington, Seattle, WA, USA
| | - Ahmad Kassar
- School of Cardiology, University of Washington, Seattle, WA, USA
| | - Manuel Guerrero-Hurtado
- Department of Aerospace and Biomedical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| | - Eduardo Durán
- Dept. Ing. Mecánica, Térmica y de Fluidos, Universidad de Málaga, Málaga, Spain
| | | | - Oscar Flores
- Department of Aerospace and Biomedical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| | - Javier Bermejo
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medical School, Complutense University of Madrid, Madrid, Spain
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Nazem Akoum
- School of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Juan C Del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Gonzalo A, Augustin CM, Bifulco SF, Telle Å, Chahine Y, Kassar A, Guerrero-Hurtado M, Durán E, Martínez-Legazpi P, Flores O, Bermejo J, Plank G, Akoum N, Boyle PM, Del Alamo JC. Multi-physics simulations reveal hemodynamic impacts of patient-derived fibrosis-related changes in left atrial tissue mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596526. [PMID: 38853952 PMCID: PMC11160719 DOI: 10.1101/2024.05.29.596526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Stroke is a leading cause of death and disability worldwide. Atrial myopathy, including fibrosis, is associated with an increased risk of ischemic stroke, but the mechanisms underlying this association are poorly understood. Fibrosis modifies myocardial structure, impairing electrical propagation and tissue biomechanics, and creating stagnant flow regions where clots could form. Fibrosis can be mapped non-invasively using late gadolinium enhancement magnetic resonance imaging (LGE-MRI). However, fibrosis maps are not currently incorporated into stroke risk calculations or computational electro-mechano-fluidic models. We present multi-physics simulations of left atrial (LA) myocardial motion and hemodynamics using patient-specific anatomies and fibrotic maps from LGE-MRI. We modify tissue stiffness and active tension generation in fibrotic regions and investigate how these changes affect LA flow for different fibrotic burdens. We find that fibrotic regions and, to a lesser extent, non-fibrotic regions experience reduced myocardial strain, resulting in decreased LA emptying fraction consistent with clinical observations. Both fibrotic tissue stiffening and hypocontractility independently reduce LA function, but together, these two alterations cause more pronounced effects than either one alone. Fibrosis significantly alters flow patterns throughout the atrial chamber, and particularly, the filling and emptying jets of the left atrial appendage (LAA). The effects of fibrosis in LA flow are largely captured by the concomitant changes in LA emptying fraction except inside the LAA, where a multi-factorial behavior is observed. This work illustrates how high-fidelity, multi-physics models can be used to study thrombogenesis mechanisms in patient-specific anatomies, shedding light onto the links between atrial fibrosis and ischemic stroke. Key points Left atrial (LA) fibrosis is associated with arrhythmogenesis and increased risk of ischemic stroke; its extent and pattern can be quantified on a patient-specific basis using late gadolinium enhancement magnetic resonance imaging.Current stroke risk prediction tools have limited personalization, and their accuracy could be improved by incorporating patient-specific information like fibrotic maps and hemodynamic patterns.We present the first electro-mechano-fluidic multi-physics computational simulations of LA flow, including fibrosis and anatomies from medical imaging. Mechanical changes in fibrotic tissue impair global LA motion, decreasing LA and left atrial appendage (LAA) emptying fractions, especially in subjects with higher fibrosis burdens. Fibrotic-mediated LA motion impairment alters LA and LAA flow near the endocardium and the whole cavity, ultimately leading to more stagnant blood regions in the LAA.
Collapse
|
3
|
Sel K, Osman D, Zare F, Masoumi Shahrbabak S, Brattain L, Hahn J, Inan OT, Mukkamala R, Palmer J, Paydarfar D, Pettigrew RI, Quyyumi AA, Telfer B, Jafari R. Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact. J Am Heart Assoc 2024; 13:e031981. [PMID: 39087582 PMCID: PMC11681439 DOI: 10.1161/jaha.123.031981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice. Rooted in engineering mechanics and manufacturing, the digital twin is a virtual representation engineered to model and simulate its physical counterpart. Recent breakthroughs in scientific computation, artificial intelligence, and sensor technology have enabled rapid bidirectional interactions between the virtual-physical counterparts with measurements of the physical twin that inform and improve its virtual twin, which in turn provide updated virtual projections of disease trajectories and anticipated clinical outcomes. Verification, validation, and uncertainty quantification builds confidence and trust by clinicians and patients in the digital twin and establishes boundaries for the use of simulations in cardiovascular medicine. Mechanistic physiological models form the fundamental building blocks of the personalized digital twin that continuously forecast optimal management of cardiovascular health using individualized data streams. We present exemplars from the existing body of literature pertaining to mechanistic model development for cardiovascular dynamics and summarize existing technical challenges and opportunities pertaining to the foundation of a digital twin.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyCambridgeMAUSA
| | - Deen Osman
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Fatemeh Zare
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | | | - Laura Brattain
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - Jin‐Oh Hahn
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMDUSA
| | - Omer T. Inan
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Anesthesiology and Perioperative MedicineUniversity of PittsburghPittsburghPAUSA
| | - Jeffrey Palmer
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - David Paydarfar
- Department of NeurologyThe University of Texas at Austin Dell Medical SchoolAustinTXUSA
| | | | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Brian Telfer
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - Roozbeh Jafari
- Laboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyCambridgeMAUSA
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
- School of Engineering MedicineTexas A&M UniversityHoustonTXUSA
| |
Collapse
|
4
|
Thangaraj PM, Benson SH, Oikonomou EK, Asselbergs FW, Khera R. Cardiovascular care with digital twin technology in the era of generative artificial intelligence. Eur Heart J 2024; 45:ehae619. [PMID: 39322420 PMCID: PMC11638093 DOI: 10.1093/eurheartj/ehae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Digital twins, which are in silico replications of an individual and its environment, have advanced clinical decision-making and prognostication in cardiovascular medicine. The technology enables personalized simulations of clinical scenarios, prediction of disease risk, and strategies for clinical trial augmentation. Current applications of cardiovascular digital twins have integrated multi-modal data into mechanistic and statistical models to build physiologically accurate cardiac replicas to enhance disease phenotyping, enrich diagnostic workflows, and optimize procedural planning. Digital twin technology is rapidly evolving in the setting of newly available data modalities and advances in generative artificial intelligence, enabling dynamic and comprehensive simulations unique to an individual. These twins fuse physiologic, environmental, and healthcare data into machine learning and generative models to build real-time patient predictions that can model interactions with the clinical environment to accelerate personalized patient care. This review summarizes digital twins in cardiovascular medicine and their potential future applications by incorporating new personalized data modalities. It examines the technical advances in deep learning and generative artificial intelligence that broaden the scope and predictive power of digital twins. Finally, it highlights the individual and societal challenges as well as ethical considerations that are essential to realizing the future vision of incorporating cardiology digital twins into personalized cardiovascular care.
Collapse
Affiliation(s)
- Phyllis M Thangaraj
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Sean H Benson
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Evangelos K Oikonomou
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Center, University College London, London, UK
| | - Rohan Khera
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, 47 College St., New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, 100 College St. Fl 9, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St. Fl 6, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Gerach T, Loewe A. Differential effects of mechano-electric feedback mechanisms on whole-heart activation, repolarization, and tension. J Physiol 2024; 602:4605-4624. [PMID: 38185911 DOI: 10.1113/jp285022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The human heart is subject to highly variable amounts of strain during day-to-day activities and needs to adapt to a wide range of physiological demands. This adaptation is driven by an autoregulatory loop that includes both electrical and the mechanical components. In particular, mechanical forces are known to feed back into the cardiac electrophysiology system, which can result in pro- and anti-arrhythmic effects. Despite the widespread use of computational modelling and simulation for cardiac electrophysiology research, the majority of in silico experiments ignore this mechano-electric feedback entirely due to the high computational cost associated with solving cardiac mechanics. In this study, we therefore use an electromechanically coupled whole-heart model to investigate the differential and combined effects of electromechanical feedback mechanisms with a focus on their physiological relevance during sinus rhythm. In particular, we consider troponin-bound calcium, the effect of deformation on the tissue diffusion tensor, and stretch-activated channels. We found that activation of the myocardium was only significantly affected when including deformation into the diffusion term of the monodomain equation. Repolarization, on the other hand, was influenced by both troponin-bound calcium and stretch-activated channels and resulted in steeper repolarization gradients in the atria. The latter also caused afterdepolarizations in the atria. Due to its central role for tension development, calcium bound to troponin affected stroke volume and pressure. In conclusion, we found that mechano-electric feedback changes activation and repolarization patterns throughout the heart during sinus rhythm and lead to a markedly more heterogeneous electrophysiological substrate. KEY POINTS: The electrophysiological and mechanical function of the heart are tightly interrelated by excitation-contraction coupling (ECC) in the forward direction and mechano-electric feedback (MEF) in the reverse direction. While ECC is considered in many state-of-the-art computational models of cardiac electromechanics, less is known about the effect of different MEF mechanisms. Accounting for calcium bound to troponin increases stroke volume and delays repolarization. Geometry-mediated MEF leads to more heterogeneous activation and repolarization with steeper gradients. Both effects combine in an additive way. Non-selective stretch-activated channels as an additional MEF mechanism lead to heterogeneous diastolic transmembrane voltage, higher developed tension and delayed repolarization or afterdepolarizations in highly stretched parts of the atria. The differential and combined effects of these three MEF mechanisms during sinus rhythm activation in a human four-chamber heart model may have implications for arrhythmogenesis, both in terms of substrate (repolarization gradients) and triggers (ectopy).
Collapse
Affiliation(s)
- Tobias Gerach
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
6
|
Salvador M, Strocchi M, Regazzoni F, Augustin CM, Dede' L, Niederer SA, Quarteroni A. Whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations. NPJ Digit Med 2024; 7:90. [PMID: 38605089 PMCID: PMC11009296 DOI: 10.1038/s41746-024-01084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-based methods can make the creation of fast and accurate whole-heart digital twins feasible. We use Latent Neural Ordinary Differential Equations (LNODEs) to learn the pressure-volume dynamics of a heart failure patient. Our surrogate model is trained from 400 simulations while accounting for 43 parameters describing cell-to-organ cardiac electromechanics and cardiovascular hemodynamics. LNODEs provide a compact representation of the 3D-0D model in a latent space by means of an Artificial Neural Network that retains only 3 hidden layers with 13 neurons per layer and allows for numerical simulations of cardiac function on a single processor. We employ LNODEs to perform global sensitivity analysis and parameter estimation with uncertainty quantification in 3 hours of computations, still on a single processor.
Collapse
Affiliation(s)
- Matteo Salvador
- Institute for Computational and Mathematical Engineering, Stanford University, California, CA, USA.
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy.
| | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Christoph M Augustin
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Luca Dede'
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- The Alan Turing Institute, London, UK
| | - Alfio Quarteroni
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Fumagalli I, Pagani S, Vergara C, Dede’ L, Adebo DA, Del Greco M, Frontera A, Luciani GB, Pontone G, Scrofani R, Quarteroni A. The role of computational methods in cardiovascular medicine: a narrative review. Transl Pediatr 2024; 13:146-163. [PMID: 38323181 PMCID: PMC10839285 DOI: 10.21037/tp-23-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Background and Objective Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data with physical knowledge of the processes underlying the heart function. These models have been increasingly employed in clinical practice to understand pathological mechanisms and their progression, design medical devices, support clinicians in improving therapies. Hinging upon a long-year experience in cardiovascular modeling, we have recently constructed a computational multi-physics and multi-scale integrated model of the heart for the investigation of its physiological function, the analysis of pathological conditions, and to support clinicians in both diagnosis and treatment planning. This narrative review aims to systematically discuss the role that such model had in addressing specific clinical questions, and how further impact of computational models on clinical practice are envisaged. Methods We developed computational models of the physical processes encompassed by the heart function (electrophysiology, electrical activation, force generation, mechanics, blood flow dynamics, valve dynamics, myocardial perfusion) and of their inherently strong coupling. To solve the equations of such models, we devised advanced numerical methods, implemented in a flexible and highly efficient software library. We also developed computational procedures for clinical data post-processing-like the reconstruction of the heart geometry and motion from diagnostic images-and for their integration into computational models. Key Content and Findings Our integrated computational model of the heart function provides non-invasive measures of indicators characterizing the heart function and dysfunctions, and sheds light on its underlying processes and their coupling. Moreover, thanks to the close collaboration with several clinical partners, we addressed specific clinical questions on pathological conditions, such as arrhythmias, ventricular dyssynchrony, hypertrophic cardiomyopathy, degeneration of prosthetic valves, and the way coronavirus disease 2019 (COVID-19) infection may affect the cardiac function. In multiple cases, we were also able to provide quantitative indications for treatment. Conclusions Computational models provide a quantitative and detailed tool to support clinicians in patient care, which can enhance the assessment of cardiac diseases, the prediction of the development of pathological conditions, and the planning of treatments and follow-up tests.
Collapse
Affiliation(s)
- Ivan Fumagalli
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Stefano Pagani
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Christian Vergara
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Luca Dede’
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Dilachew A. Adebo
- Children’s Heart Institute, Hermann Children’s Hospital, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Maurizio Del Greco
- Department of Cardiology, S. Maria del Carmine Hospital, Rovereto, Italy
| | - Antonio Frontera
- Electrophysiology Department, De Gasperis Cardio Center, ASST Great Metropolitan Hospital Niguarda, Milan, Italy
| | | | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCSS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Roberto Scrofani
- Cardiovascular Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfio Quarteroni
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
8
|
Cicci L, Fresca S, Manzoni A, Quarteroni A. Efficient approximation of cardiac mechanics through reduced-order modeling with deep learning-based operator approximation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3783. [PMID: 37921217 DOI: 10.1002/cnm.3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Reducing the computational time required by high-fidelity, full-order models (FOMs) for the solution of problems in cardiac mechanics is crucial to allow the translation of patient-specific simulations into clinical practice. Indeed, while FOMs, such as those based on the finite element method, provide valuable information on the cardiac mechanical function, accurate numerical results can be obtained at the price of very fine spatio-temporal discretizations. As a matter of fact, simulating even just a few heartbeats can require up to hours of wall time on high-performance computing architectures. In addition, cardiac models usually depend on a set of input parameters that are calibrated in order to explore multiple virtual scenarios. To compute reliable solutions at a greatly reduced computational cost, we rely on a reduced basis method empowered with a new deep learning-based operator approximation, which we refer to as Deep-HyROMnet technique. Our strategy combines a projection-based POD-Galerkin method with deep neural networks for the approximation of (reduced) nonlinear operators, overcoming the typical computational bottleneck associated with standard hyper-reduction techniques employed in reduced-order models (ROMs) for nonlinear parametrized systems. This method can provide extremely accurate approximations to parametrized cardiac mechanics problems, such as in the case of the complete cardiac cycle in a patient-specific left ventricle geometry. In this respect, a 3D model for tissue mechanics is coupled with a 0D model for external blood circulation; active force generation is provided through an adjustable parameter-dependent surrogate model as input to the tissue 3D model. The proposed strategy is shown to outperform classical projection-based ROMs, in terms of orders of magnitude of computational speed-up, and to return accurate pressure-volume loops in both physiological and pathological cases. Finally, an application to a forward uncertainty quantification analysis, unaffordable if relying on a FOM, is considered, involving output quantities of interest such as, for example, the ejection fraction or the maximal rate of change in pressure in the left ventricle.
Collapse
Affiliation(s)
- Ludovica Cicci
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Stefania Fresca
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Andrea Manzoni
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Alfio Quarteroni
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Bennati L, Giambruno V, Renzi F, Di Nicola V, Maffeis C, Puppini G, Luciani GB, Vergara C. Turbulent blood dynamics in the left heart in the presence of mitral regurgitation: a computational study based on multi-series cine-MRI. Biomech Model Mechanobiol 2023; 22:1829-1846. [PMID: 37400622 PMCID: PMC10613156 DOI: 10.1007/s10237-023-01735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
In this work, we performed a computational image-based study of blood dynamics in the whole left heart, both in a healthy subject and in a patient with mitral valve regurgitation. We elaborated multi-series cine-MRI with the aim of reconstructing the geometry and the corresponding motion of left ventricle, left atrium, mitral and aortic valves, and aortic root of the subjects. This allowed us to prescribe such motion to computational blood dynamics simulations where, for the first time, the whole left heart motion of the subject is considered, allowing us to obtain reliable subject-specific information. The final aim is to investigate and compare between the subjects the occurrence of turbulence and the risk of hemolysis and of thrombi formation. In particular, we modeled blood with the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian framework, with a large eddy simulation model to describe the transition to turbulence and a resistive method to manage the valve dynamics, and we used a finite element discretization implemented in an in-house code for the numerical solution.
Collapse
Affiliation(s)
- Lorenzo Bennati
- Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37134, Verona, Italy
| | - Vincenzo Giambruno
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - Francesca Renzi
- Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37134, Verona, Italy
| | - Venanzio Di Nicola
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - Caterina Maffeis
- Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37134, Verona, Italy
| | - Giovanni Puppini
- Department of Radiology, University of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - Giovanni Battista Luciani
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatrics, and Obstetrics/Gynecology, University of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
10
|
Zingaro A, Vergara C, Dede' L, Regazzoni F, Quarteroni A. A comprehensive mathematical model for cardiac perfusion. Sci Rep 2023; 13:14220. [PMID: 37648701 PMCID: PMC10469210 DOI: 10.1038/s41598-023-41312-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
The aim of this paper is to introduce a new mathematical model that simulates myocardial blood perfusion that accounts for multiscale and multiphysics features. Our model incorporates cardiac electrophysiology, active and passive mechanics, hemodynamics, valve modeling, and a multicompartment Darcy model of perfusion. We consider a fully coupled electromechanical model of the left heart that provides input for a fully coupled Navier-Stokes-Darcy Model for myocardial perfusion. The fluid dynamics problem is modeled in a left heart geometry that includes large epicardial coronaries, while the multicompartment Darcy model is set in a biventricular myocardium. Using a realistic and detailed cardiac geometry, our simulations demonstrate the biophysical fidelity of our model in describing cardiac perfusion. Specifically, we successfully validate the model reliability by comparing in-silico coronary flow rates and average myocardial blood flow with clinically established values ranges reported in relevant literature. Additionally, we investigate the impact of a regurgitant aortic valve on myocardial perfusion, and our results indicate a reduction in myocardial perfusion due to blood flow taken away by the left ventricle during diastole. To the best of our knowledge, our work represents the first instance where electromechanics, hemodynamics, and perfusion are integrated into a single computational framework.
Collapse
Affiliation(s)
- Alberto Zingaro
- MOX, Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
- ELEM Biotech S.L., Pier01, Palau de Mar, Plaça Pau Vila, 1, 08003, Barcelona, Spain.
| | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Luca Dede'
- MOX, Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesco Regazzoni
- MOX, Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Alfio Quarteroni
- MOX, Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Station 8, Av. Piccard, CH-1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Telle Å, Bargellini C, Chahine Y, del Álamo JC, Akoum N, Boyle PM. Personalized biomechanical insights in atrial fibrillation: opportunities & challenges. Expert Rev Cardiovasc Ther 2023; 21:817-837. [PMID: 37878350 PMCID: PMC10841537 DOI: 10.1080/14779072.2023.2273896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Atrial fibrillation (AF) is an increasingly prevalent and significant worldwide health problem. Manifested as an irregular atrial electrophysiological activation, it is associated with many serious health complications. AF affects the biomechanical function of the heart as contraction follows the electrical activation, subsequently leading to reduced blood flow. The underlying mechanisms behind AF are not fully understood, but it is known that AF is highly correlated with the presence of atrial fibrosis, and with a manifold increase in risk of stroke. AREAS COVERED In this review, we focus on biomechanical aspects in atrial fibrillation, current and emerging use of clinical images, and personalized computational models. We also discuss how these can be used to provide patient-specific care. EXPERT OPINION Understanding the connection betweenatrial fibrillation and atrial remodeling might lead to valuable understanding of stroke and heart failure pathophysiology. Established and emerging imaging modalities can bring us closer to this understanding, especially with continued advancements in processing accuracy, reproducibility, and clinical relevance of the associated technologies. Computational models of cardiac electromechanics can be used to glean additional insights on the roles of AF and remodeling in heart function.
Collapse
Affiliation(s)
- Åshild Telle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Clarissa Bargellini
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Juan C. del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Nazem Akoum
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Strocchi M, Longobardi S, Augustin CM, Gsell MAF, Petras A, Rinaldi CA, Vigmond EJ, Plank G, Oates CJ, Wilkinson RD, Niederer SA. Cell to whole organ global sensitivity analysis on a four-chamber heart electromechanics model using Gaussian processes emulators. PLoS Comput Biol 2023; 19:e1011257. [PMID: 37363928 DOI: 10.1371/journal.pcbi.1011257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.
Collapse
Affiliation(s)
- Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stefano Longobardi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | | | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Edward J Vigmond
- University of Bordeaux, CNRS, Bordeaux, Talence, France
- IHU Liryc, Bordeaux, Talence, France
| | - Gernot Plank
- Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Chris J Oates
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Alan Turing Institute, London, United Kingdom
| |
Collapse
|
13
|
Viola F, Del Corso G, De Paulis R, Verzicco R. GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Sci Rep 2023; 13:8230. [PMID: 37217483 DOI: 10.1038/s41598-023-34098-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The recruitment of patients for rare or complex cardiovascular diseases is a bottleneck for clinical trials and digital twins of the human heart have recently been proposed as a viable alternative. In this paper we present an unprecedented cardiovascular computer model which, relying on the latest GPU-acceleration technologies, replicates the full multi-physics dynamics of the human heart within a few hours per heartbeat. This opens the way to extensive simulation campaigns to study the response of synthetic cohorts of patients to cardiovascular disorders, novel prosthetic devices or surgical procedures. As a proof-of-concept we show the results obtained for left bundle branch block disorder and the subsequent cardiac resynchronization obtained by pacemaker implantation. The in-silico results closely match those obtained in clinical practice, confirming the reliability of the method. This innovative approach makes possible a systematic use of digital twins in cardiovascular research, thus reducing the need of real patients with their economical and ethical implications. This study is a major step towards in-silico clinical trials in the era of digital medicine.
Collapse
Affiliation(s)
- Francesco Viola
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy
- INFN-Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
| | - Giulio Del Corso
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy
- Institute of Information Science and Technologies A. Faedo, CNR, Pisa, Italy
| | - Ruggero De Paulis
- European Hospital, Rome, Italy
- UniCamillus International University of Health Sciences, Rome, Italy
| | - Roberto Verzicco
- Gran Sasso Science Institute (GSSI), L'Aquila, Italy.
- University of Rome Tor Vergata, Rome, Italy.
- POF Group, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
14
|
Mechanoelectric effects in healthy cardiac function and under Left Bundle Branch Block pathology. Comput Biol Med 2023; 156:106696. [PMID: 36870172 PMCID: PMC10040614 DOI: 10.1016/j.compbiomed.2023.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.
Collapse
|
15
|
Computational analysis of ventricular mechanics in hypertrophic cardiomyopathy patients. Sci Rep 2023; 13:958. [PMID: 36653468 PMCID: PMC9849405 DOI: 10.1038/s41598-023-28037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is associated with many pathological features, such as a reduction in global longitudinal strain (GLS), myofiber disarray and hypertrophy. The effects of these features on left ventricle (LV) function are, however, not clear in two phenotypes of HCM, namely, obstructive and non-obstructive. To address this issue, we developed patient-specific computational models of the LV using clinical measurements from 2 female HCM patients and a control subject. Left ventricular mechanics was described using an active stress formulation and myofiber disarray was described using a structural tensor in the constitutive models. Unloaded LV configuration for each subject was first determined from their respective end-diastole LV geometries segmented from the cardiac magnetic resonance images, and an empirical single-beat estimation of the end-diastolic pressure volume relationship. The LV was then connected to a closed-loop circulatory model and calibrated using the clinically measured LV pressure and volume waveforms, peak GLS and blood pressure. Without consideration of myofiber disarray, peak myofiber tension was found to be lowest in the obstructive HCM subject (60 kPa), followed by the non-obstructive subject (242 kPa) and the control subject (375 kPa). With increasing myofiber disarray, we found that peak tension has to increase in the HCM models to match the clinical measurements. In the obstructive HCM patient, however, peak tension was still depressed (cf. normal subject) at the largest degree of myofiber disarray found in the clinic. The computational modeling workflow proposed here can be used in future studies with more HCM patient data.
Collapse
|
16
|
Gerach T, Schuler S, Wachter A, Loewe A. The Impact of Standard Ablation Strategies for Atrial Fibrillation on Cardiovascular Performance in a Four-Chamber Heart Model. Cardiovasc Eng Technol 2023; 14:296-314. [PMID: 36652165 PMCID: PMC10102113 DOI: 10.1007/s13239-022-00651-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/29/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE Atrial fibrillation is one of the most frequent cardiac arrhythmias in the industrialized world and ablation therapy is the method of choice for many patients. However, ablation scars alter the electrophysiological activation and the mechanical behavior of the affected atria. Different ablation strategies with the aim to terminate atrial fibrillation and prevent its recurrence exist but their impact on the performance of the heart is often neglected. METHODS In this work, we present a simulation study analyzing five commonly used ablation scar patterns and their combinations in the left atrium regarding their impact on the pumping function of the heart using an electromechanical whole-heart model. We analyzed how the altered atrial activation and increased stiffness due to the ablation scars affect atrial as well as ventricular contraction and relaxation. RESULTS We found that systolic and diastolic function of the left atrium is impaired by ablation scars and that the reduction of atrial stroke volume of up to 11.43% depends linearly on the amount of inactivated tissue. Consequently, the end-diastolic volume of the left ventricle, and thus stroke volume, was reduced by up to 1.4 and 1.8%, respectively. During ventricular systole, left atrial pressure was increased by up to 20% due to changes in the atrial activation sequence and the stiffening of scar tissue. CONCLUSION This study provides biomechanical evidence that atrial ablation has acute effects not only on atrial contraction but also on ventricular performance. Therefore, the position and extent of ablation scars is not only important for the termination of arrhythmias but is also determining long-term pumping efficiency. If confirmed in larger cohorts, these results have the potential to help tailoring ablation strategies towards minimal global cardiovascular impairment.
Collapse
Affiliation(s)
- Tobias Gerach
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Steffen Schuler
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andreas Wachter
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
17
|
Rodero C, Longobardi S, Augustin C, Strocchi M, Plank G, Lamata P, Niederer SA. Calibration of Cohorts of Virtual Patient Heart Models Using Bayesian History Matching. Ann Biomed Eng 2023; 51:241-252. [PMID: 36271218 PMCID: PMC9832095 DOI: 10.1007/s10439-022-03095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023]
Abstract
Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we used a Statistical Shape Model and to represent function, we ran electrophysiological simulations. We study the use of 14 biomarkers to calibrate the model, training one Gaussian Process Emulator (GPE) per biomarker. To fit the models, we followed a Bayesian History Matching (BHM) strategy, wherein each iteration a region of the parameter space is ruled out if the emulation with that set of parameter values produces is "implausible". We found that without running any extra simulations we can find 87.41% of the non-implausible parameter combinations. Moreover, we showed how reducing the uncertainty of the measurements from 10 to 5% can reduce the final parameter space by 6 orders of magnitude. This innovation allows for a model fitting technique, therefore reducing the computational load of future biomedical studies.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group (CEMRG), Biomedical Engineering and Imaging Sciences Department, King's College London, London, UK.
- Cardiac Modelling and Imaging Biomarkers (CMIB), Biomedical Engineering and Imaging Sciences Department, King's College London, London, UK.
| | - Stefano Longobardi
- Cardiac Electro-Mechanics Research Group (CEMRG), Biomedical Engineering and Imaging Sciences Department, King's College London, London, UK
| | - Christoph Augustin
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group (CEMRG), Biomedical Engineering and Imaging Sciences Department, King's College London, London, UK
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Pablo Lamata
- Cardiac Modelling and Imaging Biomarkers (CMIB), Biomedical Engineering and Imaging Sciences Department, King's College London, London, UK
| | - Steven A Niederer
- Cardiac Electro-Mechanics Research Group (CEMRG), Biomedical Engineering and Imaging Sciences Department, King's College London, London, UK
| |
Collapse
|
18
|
Laumer F, Amrani M, Manduchi L, Beuret A, Rubi L, Dubatovka A, Matter CM, Buhmann JM. Weakly supervised inference of personalized heart meshes based on echocardiography videos. Med Image Anal 2023; 83:102653. [PMID: 36327655 DOI: 10.1016/j.media.2022.102653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/27/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022]
Abstract
Echocardiography provides recordings of the heart chamber size and function and is a central tool for non-invasive diagnosis of heart diseases. It produces high-dimensional video data with substantial stochasticity in the measurements, which frequently prove difficult to interpret. To address this challenge, we propose an automated framework to enable the inference of a high resolution personalized 4D (3D plus time) surface mesh of the cardiac structures from 2D echocardiography video data. Inferring such shape models arises as a key step towards accurate personalized simulation that enables an automated assessment of the cardiac chamber morphology and function. The proposed method is trained using only unpaired echocardiography and heart mesh videos to find a mapping between these distinct visual domains in a self-supervised manner. The resulting model produces personalized 4D heart meshes, which exhibit a high correspondence with the input echocardiography videos. Furthermore, the 4D heart meshes enable the automatic extraction of echocardiographic variables, such as ejection fraction, myocardial muscle mass, and volumetric changes of chamber volumes over time with high temporal resolution.
Collapse
Affiliation(s)
- Fabian Laumer
- Institute for Machine Learning at ETH Zürich, Zürich, Switzerland.
| | - Mounir Amrani
- Institute for Machine Learning at ETH Zürich, Zürich, Switzerland
| | - Laura Manduchi
- Institute for Machine Learning at ETH Zürich, Zürich, Switzerland
| | - Ami Beuret
- Institute for Machine Learning at ETH Zürich, Zürich, Switzerland
| | - Lena Rubi
- Institute for Machine Learning at ETH Zürich, Zürich, Switzerland
| | - Alina Dubatovka
- Institute for Machine Learning at ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
19
|
Karabelas E, Longobardi S, Fuchsberger J, Razeghi O, Rodero C, Strocchi M, Rajani R, Haase G, Plank G, Niederer S. Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models. IEEE Trans Biomed Eng 2022; 69:3216-3223. [PMID: 35353691 PMCID: PMC9491017 DOI: 10.1109/tbme.2022.3163428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/19/2022] [Indexed: 11/15/2022]
Abstract
Computational Fluid Dynamics (CFD) is used to assist in designing artificial valves and planning procedures, focusing on local flow features. However, assessing the impact on overall cardiovascular function or predicting longer-term outcomes may requires more comprehensive whole heart CFD models. Fitting such models to patient data requires numerous computationally expensive simulations, and depends on specific clinical measurements to constrain model parameters, hampering clinical adoption. Surrogate models can help to accelerate the fitting process while accounting for the added uncertainty. We create a validated patient-specific four-chamber heart CFD model based on the Navier-Stokes-Brinkman (NSB) equations and test Gaussian Process Emulators (GPEs) as a surrogate model for performing a variance-based global sensitivity analysis (GSA). GSA identified preload as the dominant driver of flow in both the right and left side of the heart, respectively. Left-right differences were seen in terms of vascular outflow resistances, with pulmonary artery resistance having a much larger impact on flow than aortic resistance. Our results suggest that GPEs can be used to identify parameters in personalized whole heart CFD models, and highlight the importance of accurate preload measurements.
Collapse
Affiliation(s)
- Elias Karabelas
- Institute of Mathematics and Scientific ComputingUniversity of GrazAustria
| | - Stefano Longobardi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonU.K.
| | - Jana Fuchsberger
- Institute of Mathematics and Scientific ComputingUniversity of GrazAustria
| | - Orod Razeghi
- Research IT Services DepartmentUniversity College LondonU.K.
| | - Cristobal Rodero
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonU.K.
| | - Marina Strocchi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonU.K.
| | - Ronak Rajani
- Department of Adult EchocardiographyGuy’s and St Thomas’ Hospitals NHS Foundation TrustU.K.
| | - Gundolf Haase
- Institute of Mathematics and Scientific ComputingUniversity of GrazAustria
| | - Gernot Plank
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division BiophysicsMedical University of GrazAustria
| | - Steven Niederer
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging SciencesKing’s College LondonSE1 7EHLondonU.K.
| |
Collapse
|
20
|
Marx L, Niestrawska JA, Gsell MA, Caforio F, Plank G, Augustin CM. Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. JOURNAL OF COMPUTATIONAL PHYSICS 2022; 463:111266. [PMID: 35662800 PMCID: PMC7612790 DOI: 10.1016/j.jcp.2022.111266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Image-based computational models of the heart represent a powerful tool to shed new light on the mechanisms underlying physiological and pathological conditions in cardiac function and to improve diagnosis and therapy planning. However, in order to enable the clinical translation of such models, it is crucial to develop personalized models that are able to reproduce the physiological reality of a given patient. There have been numerous contributions in experimental and computational biomechanics to characterize the passive behavior of the myocardium. However, most of these studies suffer from severe limitations and are not applicable to high-resolution geometries. In this work, we present a novel methodology to perform an automated identification of in vivo properties of passive cardiac biomechanics. The highly-efficient algorithm fits material parameters against the shape of a patient-specific approximation of the end-diastolic pressure-volume relation (EDPVR). Simultaneously, an unloaded reference configuration is generated, where a novel line search strategy to improve convergence and robustness is implemented. Only clinical image data or previously generated meshes at one time point during diastole and one measured data point of the EDPVR are required as an input. The proposed method can be straightforwardly coupled to existing finite element (FE) software packages and is applicable to different constitutive laws and FE formulations. Sensitivity analysis demonstrates that the algorithm is robust with respect to initial input parameters.
Collapse
Affiliation(s)
- Laura Marx
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Justyna A. Niestrawska
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Federica Caforio
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Corresponding author at: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/D04, 8010 Graz, Austria. (C.M.Augustin)
| |
Collapse
|
21
|
Caforio F, Augustin CM, Alastruey J, Gsell MAF, Plank G. A coupling strategy for a first 3D-1D model of the cardiovascular system to study the effects of pulse wave propagation on cardiac function. COMPUTATIONAL MECHANICS 2022; 70:703-722. [PMID: 36124206 PMCID: PMC9477941 DOI: 10.1007/s00466-022-02206-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A key factor governing the mechanical performance of the heart is the bidirectional coupling with the vascular system, where alterations in vascular properties modulate the pulsatile load imposed on the heart. Current models of cardiac electromechanics (EM) use simplified 0D representations of the vascular system when coupling to anatomically accurate 3D EM models is considered. However, these ignore important effects related to pulse wave transmission. Accounting for these effects requires 1D models, but a 3D-1D coupling remains challenging. In this work, we propose a novel, stable strategy to couple a 3D cardiac EM model to a 1D model of blood flow in the largest systemic arteries. For the first time, a personalised coupled 3D-1D model of left ventricle and arterial system is built and used in numerical benchmarks to demonstrate robustness and accuracy of our scheme over a range of time steps. Validation of the coupled model is performed by investigating the coupled system's physiological response to variations in the arterial system affecting pulse wave propagation, comprising aortic stiffening, aortic stenosis or bifurcations causing wave reflections. Our first 3D-1D coupled model is shown to be efficient and robust, with negligible additional computational costs compared to 3D-0D models. We further demonstrate that the calibrated 3D-1D model produces simulated data that match with clinical data under baseline conditions, and that known physiological responses to alterations in vascular resistance and stiffness are correctly replicated. Thus, using our coupled 3D-1D model will be beneficial in modelling studies investigating wave propagation phenomena.
Collapse
Affiliation(s)
- Federica Caforio
- Institute of Mathematics and Scientific Computing, NAWI Graz, University of Graz, Graz, Austria
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Jordi Alastruey
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH UK
| | - Matthias A. F. Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
22
|
Gerach T, Appel S, Wilczek J, Golba KS, Jadczyk T, Loewe A. Dyssynchronous Left Ventricular Activation is Insufficient for the Breakdown of Wringing Rotation. Front Physiol 2022; 13:838038. [PMID: 35615669 PMCID: PMC9124904 DOI: 10.3389/fphys.2022.838038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac resynchronization therapy is a valuable tool to restore left ventricular function in patients experiencing dyssynchronous ventricular activation. However, the non-responder rate is still as high as 40%. Recent studies suggest that left ventricular torsion or specifically the lack thereof might be a good predictor for the response of cardiac resynchronization therapy. Since left ventricular torsion is governed by the muscle fiber orientation and the heterogeneous electromechanical activation of the myocardium, understanding the relation between these components and the ability to measure them is vital. To analyze if locally altered electromechanical activation in heart failure patients affects left ventricular torsion, we conducted a simulation study on 27 personalized left ventricular models. Electroanatomical maps and late gadolinium enhanced magnetic resonance imaging data informed our in-silico model cohort. The angle of rotation was evaluated in every material point of the model and averaged values were used to classify the rotation as clockwise or counterclockwise in each segment and sector of the left ventricle. 88% of the patient models (n = 24) were classified as a wringing rotation and 12% (n = 3) as a rigid-body-type rotation. Comparison to classification based on in vivo rotational NOGA XP maps showed no correlation. Thus, isolated changes of the electromechanical activation sequence in the left ventricle are not sufficient to reproduce the rotation pattern changes observed in vivo and suggest that further patho-mechanisms are involved.
Collapse
Affiliation(s)
- Tobias Gerach
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Tobias Gerach,
| | - Stephanie Appel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jacek Wilczek
- Department of Electrocardiology, Upper-Silesian Heart Center, Katowice, Poland
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Krzysztof S. Golba
- Department of Electrocardiology, Upper-Silesian Heart Center, Katowice, Poland
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Tomasz Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
23
|
Karabelas E, Gsell MA, Haase G, Plank G, Augustin CM. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 394:114887. [PMID: 35432634 PMCID: PMC7612621 DOI: 10.1016/j.cma.2022.114887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fiber-reinforced soft biological tissues are typically modeled as hyperelastic, anisotropic, and nearly incompressible materials. To enforce incompressibility a multiplicative split of the deformation gradient into a volumetric and an isochoric part is a very common approach. However, the finite element analysis of such problems often suffers from severe volumetric locking effects and numerical instabilities. In this paper, we present novel methods to overcome volumetric locking phenomena for using stabilized P1-P1 elements. We introduce different stabilization techniques and demonstrate the high robustness and computational efficiency of the chosen methods. In two benchmark problems from the literature as well as an advanced application to cardiac electromechanics, we compare the approach to standard linear elements and show the accuracy and versatility of the methods to simulate anisotropic, nearly and fully incompressible materials. We demonstrate the potential of this numerical framework to accelerate accurate simulations of biological tissues to the extent of enabling patient-specific parameterization studies, where numerous forward simulations are required.
Collapse
Affiliation(s)
- Elias Karabelas
- Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gundolf Haase
- Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Correspondence to: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, Graz 8010, Austria. (C.M. Augustin)
| |
Collapse
|
24
|
Riabiz M, Chen WY, Cockayne J, Swietach P, Niederer SA, Mackey L, Oates CJ. Optimal thinning of MCMC output. J R Stat Soc Series B Stat Methodol 2022. [DOI: 10.1111/rssb.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marina Riabiz
- King's College London LondonUK
- Alan Turing Institute LondonUK
| | | | | | | | | | | | - Chris. J. Oates
- Alan Turing Institute LondonUK
- Newcastle University Newcastle Upon TyneUK
| |
Collapse
|
25
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
26
|
Jung A, Gsell MAF, Augustin CM, Plank G. An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics-A Multi-Fidelity Approach for Personalising Active Mechanics. MATHEMATICS (BASEL, SWITZERLAND) 2022; 10:823. [PMID: 35295404 PMCID: PMC7612499 DOI: 10.3390/math10050823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Personalised computer models of cardiac function, referred to as cardiac digital twins, are envisioned to play an important role in clinical precision therapies of cardiovascular diseases. A major obstacle hampering clinical translation involves the significant computational costs involved in the personalisation of biophysically detailed mechanistic models that require the identification of high-dimensional parameter vectors. An important aspect to identify in electromechanics (EM) models are active mechanics parameters that govern cardiac contraction and relaxation. In this study, we present a novel, fully automated, and efficient approach for personalising biophysically detailed active mechanics models using a two-step multi-fidelity solution. In the first step, active mechanical behaviour in a given 3D EM model is represented by a purely phenomenological, low-fidelity model, which is personalised at the organ scale by calibration to clinical cavity pressure data. Then, in the second step, median traces of nodal cellular active stress, intracellular calcium concentration, and fibre stretch are generated and utilised to personalise the desired high-fidelity model at the cellular scale using a 0D model of cardiac EM. Our novel approach was tested on a cohort of seven human left ventricular (LV) EM models, created from patients treated for aortic coarctation (CoA). Goodness of fit, computational cost, and robustness of the algorithm against uncertainty in the clinical data and variations of initial guesses were evaluated. We demonstrate that our multi-fidelity approach facilitates the personalisation of a biophysically detailed active stress model within only a few (2 to 4) expensive 3D organ-scale simulations-a computational effort compatible with clinical model applications.
Collapse
Affiliation(s)
- Alexander Jung
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
| | - Matthias A. F. Gsell
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
- NAWI Graz, Institute of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
27
|
Moss R, Wülfers EM, Schuler S, Loewe A, Seemann G. A Fully-Coupled Electro-Mechanical Whole-Heart Computational Model: Influence of Cardiac Contraction on the ECG. Front Physiol 2022; 12:778872. [PMID: 34975532 PMCID: PMC8716847 DOI: 10.3389/fphys.2021.778872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
The ECG is one of the most commonly used non-invasive tools to gain insights into the electrical functioning of the heart. It has been crucial as a foundation in the creation and validation of in silico models describing the underlying electrophysiological processes. However, so far, the contraction of the heart and its influences on the ECG have mainly been overlooked in in silico models. As the heart contracts and moves, so do the electrical sources within the heart responsible for the signal on the body surface, thus potentially altering the ECG. To illuminate these aspects, we developed a human 4-chamber electro-mechanically coupled whole heart in silico model and embedded it within a torso model. Our model faithfully reproduces measured 12-lead ECG traces, circulatory characteristics, as well as physiological ventricular rotation and atrioventricular valve plane displacement. We compare our dynamic model to three non-deforming ones in terms of standard clinically used ECG leads (Einthoven and Wilson) and body surface potential maps (BSPM). The non-deforming models consider the heart at its ventricular end-diastatic, end-diastolic and end-systolic states. The standard leads show negligible differences during P-Wave and QRS-Complex, yet during T-Wave the leads closest to the heart show prominent differences in amplitude. When looking at the BSPM, there are no notable differences during the P-Wave, but effects of cardiac motion can be observed already during the QRS-Complex, increasing further during the T-Wave. We conclude that for the modeling of activation (P-Wave/QRS-Complex), the associated effort of simulating a complete electro-mechanical approach is not worth the computational cost. But when looking at ventricular repolarization (T-Wave) in standard leads as well as BSPM, there are areas where the signal can be influenced by cardiac motion of the heart to an extent that should not be ignored.
Collapse
Affiliation(s)
- Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eike Moritz Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steffen Schuler
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Kong F, Wilson N, Shadden S. A deep-learning approach for direct whole-heart mesh reconstruction. Med Image Anal 2021; 74:102222. [PMID: 34543913 PMCID: PMC9503710 DOI: 10.1016/j.media.2021.102222] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023]
Abstract
Automated construction of surface geometries of cardiac structures from volumetric medical images is important for a number of clinical applications. While deep-learning-based approaches have demonstrated promising reconstruction precision, these approaches have mostly focused on voxel-wise segmentation followed by surface reconstruction and post-processing techniques. However, such approaches suffer from a number of limitations including disconnected regions or incorrect surface topology due to erroneous segmentation and stair-case artifacts due to limited segmentation resolution. We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data. Our approach leverages a graph convolutional neural network to predict deformation on mesh vertices from a pre-defined mesh template to reconstruct multiple anatomical structures in a 3D image volume. Our method demonstrated promising performance of generating whole heart reconstructions with as good or better accuracy than prior deep-learning-based methods on both CT and MR data. Furthermore, by deforming a template mesh, our method can generate whole heart geometries with better anatomical consistency and produce high-resolution geometries from lower resolution input image data. Our method was also able to produce temporally-consistent surface mesh predictions for heart motion from CT or MR cine sequences, and therefore can potentially be applied for efficiently constructing 4D whole heart dynamics. Our code and pre-trained networks are available at https://github.com/fkong7/MeshDeformNet.
Collapse
Affiliation(s)
- Fanwei Kong
- Mechanical Engineering Department, University of California, Berkeley, Berkeley, CA 94709, United States.
| | - Nathan Wilson
- Open Source Medical Software Corporation, Santa Monica, CA, United States.
| | - Shawn Shadden
- Mechanical Engineering Department, University of California, Berkeley, Berkeley, CA 94709, United States.
| |
Collapse
|
29
|
Augustin CM, Gsell MA, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 386:114092. [PMID: 34630765 PMCID: PMC7611781 DOI: 10.1016/j.cma.2021.114092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
Collapse
Affiliation(s)
- Christoph M. Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Erik Willemen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frits W. Prinzen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Correspondence to: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, Graz 8010, Austria. (G. Plank)
| |
Collapse
|
30
|
Augustin CM, Gsell MAF, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 386:114092. [PMID: 34630765 DOI: 10.1016/jxma.2021.114092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
Collapse
Affiliation(s)
- Christoph M Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Erik Willemen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frits W Prinzen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
31
|
Zhang Y, Adams J, Wang VY, Horwitz L, Tartibi M, Morgan AE, Kim J, Wallace AW, Weinsaft JW, Ge L, Ratcliffe MB. A finite element model of the cardiac ventricles with coupled circulation: Biventricular mesh generation with hexahedral elements, airbags and a functional mockup interface to the circulation. Comput Biol Med 2021; 137:104840. [PMID: 34508972 DOI: 10.1016/j.compbiomed.2021.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Finite element (FE) mechanics models of the heart are becoming more sophisticated. However, there is lack of consensus about optimal element type and coupling of FE models to the circulation. We describe biventricular (left (LV) and right (RV) ventricles) FE mechanics model creation using hexahedral elements, airbags and a functional mockup interface (FMI) to lumped-parameter models of the circulation. METHODS Cardiac MRI (CMR) was performed in two healthy volunteers and a single patient with ischemic heart disease (IHD). CMR images were segmented and surfaced, meshing with hexahedral elements was performed with a "thin butterfly with septum" topology. LV and RV inflow and outflow airbags were coupled to lumped-parameter circulation models with an FMI interface. Pulmonary constriction (PAC) and vena cava occlusion (VCO) were simulated and end-systolic pressure-volume relations (ESPVR) were calculated. RESULTS Mesh construction was prompt with representative contouring and mesh adjustment requiring 32 and 26 min Respectively. The numbers of elements ranged from 4104 to 5184 with a representative Jacobian of 1.0026 ± 0.4531. Agreement between CMR-based surfaces and mesh was excellent with root-mean-squared error of 0.589 ± 0.321 mm. The LV ESPVR slope was 3.37 ± 0.09 in volunteers but 2.74 in the IHD patient. The effect of PAC and VCO on LV ESPVR was consistent with ventricular interaction (p = 0.0286). CONCLUSION Successful co-simulation using a biventricular FE mechanics model with hexahedral elements, airbags and an FMI interface to lumped-parameter model of the circulation was demonstrated. Future studies will include comparison of element type and study of cardiovascular pathologies and device therapies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Surgery, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jennifer Adams
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Vicky Y Wang
- Department of Surgery, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Lucas Horwitz
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Ashley E Morgan
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Jiwon Kim
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arthur W Wallace
- Department of Anesthesia, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Liang Ge
- Department of Surgery, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Mark B Ratcliffe
- Department of Surgery, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
32
|
Plank G, Loewe A, Neic A, Augustin C, Huang YL, Gsell MAF, Karabelas E, Nothstein M, Prassl AJ, Sánchez J, Seemann G, Vigmond EJ. The openCARP simulation environment for cardiac electrophysiology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106223. [PMID: 34171774 DOI: 10.1016/j.cmpb.2021.106223] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiac electrophysiology is a medical specialty with a long and rich tradition of computational modeling. Nevertheless, no community standard for cardiac electrophysiology simulation software has evolved yet. Here, we present the openCARP simulation environment as one solution that could foster the needs of large parts of this community. METHODS AND RESULTS openCARP and the Python-based carputils framework allow developing and sharing simulation pipelines which automate in silico experiments including all modeling and simulation steps to increase reproducibility and productivity. The continuously expanding openCARP user community is supported by tailored infrastructure. Documentation and training material facilitate access to this complementary research tool for new users. After a brief historic review, this paper summarizes requirements for a high-usability electrophysiology simulator and describes how openCARP fulfills them. We introduce the openCARP modeling workflow in a multi-scale example of atrial fibrillation simulations on single cell, tissue, organ and body level and finally outline future development potential. CONCLUSION As an open simulator, openCARP can advance the computational cardiac electrophysiology field by making state-of-the-art simulations accessible. In combination with the carputils framework, it offers a tailored software solution for the scientific community and contributes towards increasing use, transparency, standardization and reproducibility of in silico experiments.
Collapse
Affiliation(s)
- Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Yung-Lin Huang
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg. Bad Krozingen, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias A F Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Mark Nothstein
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anton J Prassl
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Jorge Sánchez
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg. Bad Krozingen, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France; Université Bordeaux, IMB, UMR 5251, F-33400 Talence, France
| |
Collapse
|
33
|
Grandits T, Effland A, Pock T, Krause R, Plank G, Pezzuto S. GEASI: Geodesic-based earliest activation sites identification in cardiac models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3505. [PMID: 34170082 PMCID: PMC8459297 DOI: 10.1002/cnm.3505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 05/18/2023]
Abstract
The identification of the initial ventricular activation sequence is a critical step for the correct personalization of patient-specific cardiac models. In healthy conditions, the Purkinje network is the main source of the electrical activation, but under pathological conditions the so-called earliest activation sites (EASs) are possibly sparser and more localized. Yet, their number, location and timing may not be easily inferred from remote recordings, such as the epicardial activation or the 12-lead electrocardiogram (ECG), due to the underlying complexity of the model. In this work, we introduce GEASI (Geodesic-based Earliest Activation Sites Identification) as a novel approach to simultaneously identify all EASs. To this end, we start from the anisotropic eikonal equation modeling cardiac electrical activation and exploit its Hamilton-Jacobi formulation to minimize a given objective function, for example, the quadratic mismatch to given activation measurements. This versatile approach can be extended to estimate the number of activation sites by means of the topological gradient, or fitting a given ECG. We conducted various experiments in 2D and 3D for in-silico models and an in-vivo intracardiac recording collected from a patient undergoing cardiac resynchronization therapy. The results demonstrate the clinical applicability of GEASI for potential future personalized models and clinical intervention.
Collapse
Affiliation(s)
- Thomas Grandits
- Institute of Computer Graphics and VisionTU GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Alexander Effland
- Institute of Computer Graphics and VisionTU GrazGrazAustria
- Silicon Austria Labs (TU Graz SAL DES Lab)GrazAustria
- Institute for Applied MathematicsUniversity of BonnBonnGermany
| | - Thomas Pock
- Institute of Computer Graphics and VisionTU GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Euler InstituteUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Gernot Plank
- BioTechMed‐GrazGrazAustria
- Gottfried Schatz Research Center—Division of BiophysicsMedical University of GrazGrazAustria
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Euler InstituteUniversità della Svizzera ItalianaLuganoSwitzerland
| |
Collapse
|
34
|
Salvador M, Fedele M, Africa PC, Sung E, Dede' L, Prakosa A, Chrispin J, Trayanova N, Quarteroni A. Electromechanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under arrhythmia. Comput Biol Med 2021; 136:104674. [PMID: 34340126 DOI: 10.1016/j.compbiomed.2021.104674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
We developed a novel patient-specific computational model for the numerical simulation of ventricular electromechanics in patients with ischemic cardiomyopathy (ICM). This model reproduces the activity both in sinus rhythm (SR) and in ventricular tachycardia (VT). The presence of scars, grey zones and non-remodeled regions of the myocardium is accounted for by the introduction of a spatially heterogeneous coefficient in the 3D electromechanics model. This 3D electromechanics model is firstly coupled with a 2-element Windkessel afterload model to fit the pressure-volume (PV) loop of a patient-specific left ventricle (LV) with ICM in SR. Then, we employ the coupling with a 0D closed-loop circulation model to analyze a VT circuit over multiple heartbeats on the same LV. We highlight similarities and differences on the solutions obtained by the electrophysiology model and those of the electromechanics model, while considering different scenarios for the circulatory system. We observe that very different parametrizations of the circulation model induce the same hemodynamical considerations for the patient at hand. Specifically, we classify this VT as unstable. We conclude by stressing the importance of combining electrophysiological, mechanical and hemodynamical models to provide relevant clinical indicators in how arrhythmias evolve and can potentially lead to sudden cardiac death.
Collapse
Affiliation(s)
- Matteo Salvador
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy.
| | - Marco Fedele
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luca Dede'
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alfio Quarteroni
- MOX-Dipartimento di Matematica, Politecnico di Milano, Milan, Italy; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Gillette K, Gsell MAF, Prassl AJ, Karabelas E, Reiter U, Reiter G, Grandits T, Payer C, Štern D, Urschler M, Bayer JD, Augustin CM, Neic A, Pock T, Vigmond EJ, Plank G. A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med Image Anal 2021; 71:102080. [PMID: 33975097 DOI: 10.1016/j.media.2021.102080] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.
Collapse
Affiliation(s)
- Karli Gillette
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Anton J Prassl
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute for Mathematics and Natural Sciences, University of Graz, Austria
| | - Ursula Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gert Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria; Research and Development, Siemens Healthcare Diagnostics, Graz, Austria
| | - Thomas Grandits
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Christian Payer
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Darko Štern
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Martin Urschler
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Jason D Bayer
- LIRYC Electrophysiology and Heart Modeling Institute, Bordeaux Foundation, Pessac, France
| | - Christoph M Augustin
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | | | - Thomas Pock
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | | | - Gernot Plank
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
36
|
Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach. MATHEMATICS 2021. [DOI: 10.3390/math9111247] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mathematical models of the human heart are evolving to become a cornerstone of precision medicine and support clinical decision making by providing a powerful tool to understand the mechanisms underlying pathophysiological conditions. In this study, we present a detailed mathematical description of a fully coupled multi-scale model of the human heart, including electrophysiology, mechanics, and a closed-loop model of circulation. State-of-the-art models based on human physiology are used to describe membrane kinetics, excitation-contraction coupling and active tension generation in the atria and the ventricles. Furthermore, we highlight ways to adapt this framework to patient specific measurements to build digital twins. The validity of the model is demonstrated through simulations on a personalized whole heart geometry based on magnetic resonance imaging data of a healthy volunteer. Additionally, the fully coupled model was employed to evaluate the effects of a typical atrial ablation scar on the cardiovascular system. With this work, we provide an adaptable multi-scale model that allows a comprehensive personalization from ion channels to the organ level enabling digital twin modeling.
Collapse
|
37
|
Woodworth LA, Cansız B, Kaliske M. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3443. [PMID: 33522111 DOI: 10.1002/cnm.3443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/16/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Millions of degrees of freedom are often required to accurately represent the electrophysiology of the myocardium due to the presence of discretization effects. This study seeks to explore the influence of temporal and spatial discretization on the simulation of cardiac electrophysiology in conjunction with changes in modeling choices. Several finite element analyses are performed to examine how discretization affects solution time, conduction velocity and electrical excitation. Discretization effects are considered along with changes in the electrophysiology model and solution approach. Two action potential models are considered: the Aliev-Panfilov model and the ten Tusscher-Noble-Noble-Panfilov model. The solution approaches consist of two time integration schemes and different treatments for solving the local system of ordinary differential equations. The efficiency and stability of the calculation approaches are demonstrated to be dependent on the action potential model. The dependency of the conduction velocity on the element size and time step is shown to be different for changes in material parameters. Finally, the discrepancies between the wave propagation in coarse and fine meshes are analyzed based on the temporal evolution of the transmembrane potential at a node and its neighboring Gauss points. Insight obtained from this study can be used to suggest new methods to improve the efficiency of simulations in cardiac electrophysiology.
Collapse
Affiliation(s)
- Lucas A Woodworth
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| | - Barış Cansız
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| | - Michael Kaliske
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Rodero C, Strocchi M, Marciniak M, Longobardi S, Whitaker J, O’Neill MD, Gillette K, Augustin C, Plank G, Vigmond EJ, Lamata P, Niederer SA. Linking statistical shape models and simulated function in the healthy adult human heart. PLoS Comput Biol 2021; 17:e1008851. [PMID: 33857152 PMCID: PMC8049237 DOI: 10.1371/journal.pcbi.1008851] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac anatomy plays a crucial role in determining cardiac function. However, there is a poor understanding of how specific and localised anatomical changes affect different cardiac functional outputs. In this work, we test the hypothesis that in a statistical shape model (SSM), the modes that are most relevant for describing anatomy are also most important for determining the output of cardiac electromechanics simulations. We made patient-specific four-chamber heart meshes (n = 20) from cardiac CT images in asymptomatic subjects and created a SSM from 19 cases. Nine modes captured 90% of the anatomical variation in the SSM. Functional simulation outputs correlated best with modes 2, 3 and 9 on average (R = 0.49 ± 0.17, 0.37 ± 0.23 and 0.34 ± 0.17 respectively). We performed a global sensitivity analysis to identify the different modes responsible for different simulated electrical and mechanical measures of cardiac function. Modes 2 and 9 were the most important for determining simulated left ventricular mechanics and pressure-derived phenotypes. Mode 2 explained 28.56 ± 16.48% and 25.5 ± 20.85, and mode 9 explained 12.1 ± 8.74% and 13.54 ± 16.91% of the variances of mechanics and pressure-derived phenotypes, respectively. Electrophysiological biomarkers were explained by the interaction of 3 ± 1 modes. In the healthy adult human heart, shape modes that explain large portions of anatomical variance do not explain equivalent levels of electromechanical functional variation. As a result, in cardiac models, representing patient anatomy using a limited number of modes of anatomical variation can cause a loss in accuracy of simulated electromechanical function.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
- Cardiac Modelling and Imaging Biomarkers, Biomedical Engineering Department, King´s College London, London, United Kingdom
- * E-mail:
| | - Marina Strocchi
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - Maciej Marciniak
- Cardiac Modelling and Imaging Biomarkers, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - Stefano Longobardi
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - John Whitaker
- Cardiovascular Imaging Department, King’s College London, London, United Kingdom
| | - Mark D. O’Neill
- Department of Cardiology, St Thomas’ Hospital, London, United Kingdom
| | - Karli Gillette
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Edward J. Vigmond
- Institute of Electrophysiology and Heart Modeling, Foundation Bordeaux University, Bordeaux, France
- Bordeaux Institute of Mathematics, University of Bordeaux, Bordeaux, France
| | - Pablo Lamata
- Cardiac Modelling and Imaging Biomarkers, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - Steven A. Niederer
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
| |
Collapse
|
39
|
On the Role of Ionic Modeling on the Signature of Cardiac Arrhythmias for Healthy and Diseased Hearts. MATHEMATICS 2020. [DOI: 10.3390/math8122242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Computational cardiology is rapidly becoming the gold standard for innovative medical treatments and device development. Despite a worldwide effort in mathematical and computational modeling research, the complexity and intrinsic multiscale nature of the heart still limit our predictability power raising the question of the optimal modeling choice for large-scale whole-heart numerical investigations. We propose an extended numerical analysis among two different electrophysiological modeling approaches: a simplified phenomenological one and a detailed biophysical one. To achieve this, we considered three-dimensional healthy and infarcted swine heart geometries. Heterogeneous electrophysiological properties, fine-tuned DT-MRI -based anisotropy features, and non-conductive ischemic regions were included in a custom-built finite element code. We provide a quantitative comparison of the electrical behaviors during steady pacing and sustained ventricular fibrillation for healthy and diseased cases analyzing cardiac arrhythmias dynamics. Action potential duration (APD) restitution distributions, vortex filament counting, and pseudo-electrocardiography (ECG) signals were numerically quantified, introducing a novel statistical description of restitution patterns and ventricular fibrillation sustainability. Computational cost and scalability associated with the two modeling choices suggests that ventricular fibrillation signatures are mainly controlled by anatomy and structural parameters, rather than by regional restitution properties. Finally, we discuss limitations and translational perspectives of the different modeling approaches in view of large-scale whole-heart in silico studies.
Collapse
|
40
|
Grandits T, Gillette K, Neic A, Bayer J, Vigmond E, Pock T, Plank G. An Inverse Eikonal Method for Identifying Ventricular Activation Sequences from Epicardial Activation Maps. JOURNAL OF COMPUTATIONAL PHYSICS 2020; 419:109700. [PMID: 32952215 PMCID: PMC7116090 DOI: 10.1016/j.jcp.2020.109700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A key mechanism controlling cardiac function is the electrical activation sequence of the heart's main pumping chambers termed the ventricles. As such, personalization of the ventricular activation sequences is of pivotal importance for the clinical utility of computational models of cardiac electrophysiology. However, a direct observation of the activation sequence throughout the ventricular volume is virtually impossible. In this study, we report on a novel method for identification of activation sequences from activation maps measured at the outer surface of the heart termed the epicardium. Conceptually, the method attempts to identify the key factors governing the ventricular activation sequence - the timing of earliest activation sites (EAS) and the velocity tensor field within the ventricular walls - from sparse and noisy activation maps sampled from the epicardial surface and fits an Eikonal model to the observations. Regularization methods are first investigated to overcome the severe ill-posedness of the inverse problem in a simplified 2D example. These methods are then employed in an anatomically accurate biventricular model with two realistic activation models of varying complexity - a simplified trifascicular model (3F) and a topologically realistic model of the His-Purkinje system (HPS). Using epicardial activation maps at full resolution, we first demonstrate that reconstructing the volumetric activation sequence is, in principle, feasible under the assumption of known location of EAS and later evaluate robustness of the method against noise and reduced spatial resolution of observations. Our results suggest that the FIMIN algorithm is able to robustly recover the full 3D activation sequence using epicardial activation maps at a spatial resolution achievable with current mapping systems and in the presence of noise. Comparing the accuracy achieved in the reconstructed activation maps with clinical data uncertainties suggests that the FIMIN method may be suitable for the patient- specific parameterization of activation models.
Collapse
Affiliation(s)
- Thomas Grandits
- Institute of Computer Graphics and Vision, Graz University of Technology
- BioTechMed-Graz, Austria
| | - Karli Gillette
- Institute of Biophysics, Medical University of Graz
- BioTechMed-Graz, Austria
| | - Aurel Neic
- Institute of Biophysics, Medical University of Graz
| | - Jason Bayer
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux
| | - Edward Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux
| | - Thomas Pock
- Institute of Computer Graphics and Vision, Graz University of Technology
- BioTechMed-Graz, Austria
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz
- BioTechMed-Graz, Austria
| |
Collapse
|
41
|
Integration of activation maps of epicardial veins in computational cardiac electrophysiology. Comput Biol Med 2020; 127:104047. [PMID: 33099220 DOI: 10.1016/j.compbiomed.2020.104047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
In this work we address the issue of validating the monodomain equation used in combination with the Bueno-Orovio ionic model for the prediction of the activation times in cardiac electro-physiology of the left ventricle. To this aim, we consider four patients who suffered from Left Bundle Branch Block (LBBB). We use activation maps performed at the septum as input data for the model and maps at the epicardial veins for the validation. In particular, a first set (half) of the latter are used to estimate the conductivities of the patient and a second set (the remaining half) to compute the errors of the numerical simulations. We find an excellent agreement between measures and numerical results. Our validated computational tool could be used to accurately predict activation times at the epicardial veins with a short mapping, i.e. by using only a part (the most proximal) of the standard acquisition points, thus reducing the invasive procedure and exposure to radiation.
Collapse
|
42
|
Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model. Ann Biomed Eng 2020; 49:441-454. [PMID: 32705423 DOI: 10.1007/s10439-020-02575-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.
Collapse
|
43
|
In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:58-74. [PMID: 32710902 PMCID: PMC7848595 DOI: 10.1016/j.pbiomolbio.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
Human-based computational modelling and simulation are powerful tools to accelerate the mechanistic understanding of cardiac patho-physiology, and to develop and evaluate therapeutic interventions. The aim of this study is to calibrate and evaluate human ventricular electro-mechanical models for investigations on the effect of the electro-mechanical coupling and pharmacological action on human ventricular electrophysiology, calcium dynamics, and active contraction. The most recent models of human ventricular electrophysiology, excitation-contraction coupling, and active contraction were integrated, and the coupled models were calibrated using human experimental data. Simulations were then conducted using the coupled models to quantify the effects of electro-mechanical coupling and drug exposure on electrophysiology and force generation in virtual human ventricular cardiomyocytes and tissue. The resulting calibrated human electro-mechanical models yielded active tension, action potential, and calcium transient metrics that are in agreement with experiments for endocardial, epicardial, and mid-myocardial human samples. Simulation results correctly predicted the inotropic response of different multichannel action reference compounds and demonstrated that the electro-mechanical coupling improves the robustness of repolarisation under drug exposure compared to electrophysiology-only models. They also generated additional evidence to explain the partial mismatch between in-silico and in-vitro experiments on drug-induced electrophysiology changes. The human calibrated and evaluated modelling and simulation framework constructed in this study opens new avenues for future investigations into the complex interplay between the electrical and mechanical cardiac substrates, its modulation by pharmacological action, and its translation to tissue and organ models of cardiac patho-physiology.
Collapse
|
44
|
Strocchi M, Augustin CM, Gsell MAF, Karabelas E, Neic A, Gillette K, Razeghi O, Prassl AJ, Vigmond EJ, Behar JM, Gould J, Sidhu B, Rinaldi CA, Bishop MJ, Plank G, Niederer SA. A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations. PLoS One 2020; 15:e0235145. [PMID: 32589679 PMCID: PMC7319311 DOI: 10.1371/journal.pone.0235145] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Computational models of the heart are increasingly being used in the development of devices, patient diagnosis and therapy guidance. While software techniques have been developed for simulating single hearts, there remain significant challenges in simulating cohorts of virtual hearts from multiple patients. To facilitate the development of new simulation and model analysis techniques by groups without direct access to medical data, image analysis techniques and meshing tools, we have created the first publicly available virtual cohort of twenty-four four-chamber hearts. Our cohort was built from heart failure patients, age 67±14 years. We segmented four-chamber heart geometries from end-diastolic (ED) CT images and generated linear tetrahedral meshes with an average edge length of 1.1±0.2mm. Ventricular fibres were added in the ventricles with a rule-based method with an orientation of -60° and 80° at the epicardium and endocardium, respectively. We additionally refined the meshes to an average edge length of 0.39±0.10mm to show that all given meshes can be resampled to achieve an arbitrary desired resolution. We ran simulations for ventricular electrical activation and free mechanical contraction on all 1.1mm-resolution meshes to ensure that our meshes are suitable for electro-mechanical simulations. Simulations for electrical activation resulted in a total activation time of 149±16ms. Free mechanical contractions gave an average left ventricular (LV) and right ventricular (RV) ejection fraction (EF) of 35±1% and 30±2%, respectively, and a LV and RV stroke volume (SV) of 95±28mL and 65±11mL, respectively. By making the cohort publicly available, we hope to facilitate large cohort computational studies and to promote the development of cardiac computational electro-mechanics for clinical applications.
Collapse
Affiliation(s)
- Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
| | | | | | - Elias Karabelas
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
| | | | - Karli Gillette
- Institute of Biophysics, Medical University of Graz, Graz, Steiermark, Austria
| | - Orod Razeghi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
| | - Anton J. Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Steiermark, Austria
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- University of Bordeaux, IMB, UMR 5251, F-33400 Talence, France
| | - Jonathan M. Behar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, City of London, United Kingdom
| | - Justin Gould
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, City of London, United Kingdom
| | - Baldeep Sidhu
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, City of London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, City of London, United Kingdom
| | - Martin J. Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Steiermark, Austria
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, City of London, United Kingdom
| |
Collapse
|
45
|
Marx L, Gsell MAF, Rund A, Caforio F, Prassl AJ, Toth-Gayor G, Kuehne T, Augustin CM, Plank G. Personalization of electro-mechanical models of the pressure-overloaded left ventricle: fitting of Windkessel-type afterload models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190342. [PMID: 32448067 PMCID: PMC7287328 DOI: 10.1098/rsta.2019.0342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
Computer models of left ventricular (LV) electro-mechanics (EM) show promise as a tool for assessing the impact of increased afterload upon LV performance. However, the identification of unique afterload model parameters and the personalization of EM LV models remains challenging due to significant clinical input uncertainties. Here, we personalized a virtual cohort of N = 17 EM LV models under pressure overload conditions. A global-local optimizer was developed to uniquely identify parameters of a three-element Windkessel (Wk3) afterload model. The sensitivity of Wk3 parameters to input uncertainty and of the EM LV model to Wk3 parameter uncertainty was analysed. The optimizer uniquely identified Wk3 parameters, and outputs of the personalized EM LV models showed close agreement with clinical data in all cases. Sensitivity analysis revealed a strong dependence of Wk3 parameters on input uncertainty. However, this had limited impact on outputs of EM LV models. A unique identification of Wk3 parameters from clinical data appears feasible, but it is sensitive to input uncertainty, thus depending on accurate invasive measurements. By contrast, the EM LV model outputs were less sensitive, with errors of less than 8.14% for input data errors of 10%, which is within the bounds of clinical data uncertainty. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Laura Marx
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria
| | - Matthias A. F. Gsell
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria
| | - Armin Rund
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Federica Caforio
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria
| | - Anton J. Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria
| | - Gabor Toth-Gayor
- Department of Cardiology, Medical University Graz, Graz, Austria
| | - Titus Kuehne
- Institute for Cardiovascular Computer-assisted Medicine (ICM), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Imaging and Congenital Heart Disease, German Heart Center Berlin, Berlin, Germany
| | - Christoph M. Augustin
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University Graz, Graz, Austria
- e-mail:
| |
Collapse
|
46
|
van Osta N, Lyon A, Kirkels F, Koopsen T, van Loon T, Cramer MJ, Teske AJ, Delhaas T, Huberts W, Lumens J. Parameter subset reduction for patient-specific modelling of arrhythmogenic cardiomyopathy-related mutation carriers in the CircAdapt model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190347. [PMID: 32448061 PMCID: PMC7287326 DOI: 10.1098/rsta.2019.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Arrhythmogenic cardiomyopathy (AC) is an inherited cardiac disease, clinically characterized by life-threatening ventricular arrhythmias and progressive cardiac dysfunction. Patient-specific computational models could help understand the disease progression and may help in clinical decision-making. We propose an inverse modelling approach using the CircAdapt model to estimate patient-specific regional abnormalities in tissue properties in AC subjects. However, the number of parameters (n = 110) and their complex interactions make personalized parameter estimation challenging. The goal of this study is to develop a framework for parameter reduction and estimation combining Morris screening, quasi-Monte Carlo (qMC) simulations and particle swarm optimization (PSO). This framework identifies the best subset of tissue properties based on clinical measurements allowing patient-specific identification of right ventricular tissue abnormalities. We applied this framework on 15 AC genotype-positive subjects with varying degrees of myocardial disease. Cohort studies have shown that atypical regional right ventricular (RV) deformation patterns reveal an early-stage AC disease. The CircAdapt model of cardiovascular mechanics and haemodynamics has already demonstrated its ability to capture typical deformation patterns of AC subjects. We, therefore, use clinically measured cardiac deformation patterns to estimate model parameters describing myocardial disease substrates underlying these AC-related RV deformation abnormalities. Morris screening reduced the subset to 48 parameters. qMC and PSO further reduced the subset to a final selection of 16 parameters, including regional tissue contractility, passive stiffness, activation delay and wall reference area. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Nick van Osta
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
- e-mail:
| | - Aurore Lyon
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
| | - Feddo Kirkels
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Tijmen Koopsen
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
| | - Tim van Loon
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Arco J. Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Maastricht University CARIM School for Cardiovascular Diseases, Maastricht, Limburg, The Netherlands
| |
Collapse
|
47
|
Niederer SA, Aboelkassem Y, Cantwell CD, Corrado C, Coveney S, Cherry EM, Delhaas T, Fenton FH, Panfilov AV, Pathmanathan P, Plank G, Riabiz M, Roney CH, dos Santos RW, Wang L. Creation and application of virtual patient cohorts of heart models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190558. [PMID: 32448064 PMCID: PMC7287335 DOI: 10.1098/rsta.2019.0558] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 05/21/2023]
Abstract
Patient-specific cardiac models are now being used to guide therapies. The increased use of patient-specific cardiac simulations in clinical care will give rise to the development of virtual cohorts of cardiac models. These cohorts will allow cardiac simulations to capture and quantify inter-patient variability. However, the development of virtual cohorts of cardiac models will require the transformation of cardiac modelling from small numbers of bespoke models to robust and rapid workflows that can create large numbers of models. In this review, we describe the state of the art in virtual cohorts of cardiac models, the process of creating virtual cohorts of cardiac models, and how to generate the individual cohort member models, followed by a discussion of the potential and future applications of virtual cohorts of cardiac models. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
| | | | | | | | | | - E. M. Cherry
- Georgia Institute of Technology, Atlanta, GA, USA
| | - T. Delhaas
- Maastricht University, Maastricht, the Netherlands
| | - F. H. Fenton
- Georgia Institute of Technology, Atlanta, GA, USA
| | - A. V. Panfilov
- Ghent University, Gent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - P. Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Administration, Rockville, MD, USA
| | - G. Plank
- Medical University of Graz, Graz, Austria
| | | | | | | | - L. Wang
- Rochester Institute of Technology, La JollaRochester, NY, USA
| |
Collapse
|
48
|
Augustin CM, Fastl TE, Neic A, Bellini C, Whitaker J, Rajani R, O'Neill MD, Bishop MJ, Plank G, Niederer SA. The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium. Biomech Model Mechanobiol 2020; 19:1015-1034. [PMID: 31802292 PMCID: PMC7203597 DOI: 10.1007/s10237-019-01268-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022]
Abstract
The left atrium (LA) has a complex anatomy with heterogeneous wall thickness and curvature. The anatomy plays an important role in determining local wall stress; however, the relative contribution of wall thickness and curvature in determining wall stress in the LA is unknown. We have developed electromechanical finite element (FE) models of the LA using patient-specific anatomical FE meshes with rule-based myofiber directions. The models of the LA were passively inflated to 10mmHg followed by simulation of the contraction phase of the atrial cardiac cycle. The FE models predicted maximum LA volumes of 156.5 mL, 99.3 mL and 83.4 mL and ejection fractions of 36.9%, 32.0% and 25.2%. The median wall thickness in the 3 cases was calculated as [Formula: see text] mm, [Formula: see text] mm, and [Formula: see text] mm. The median curvature was determined as [Formula: see text] [Formula: see text], [Formula: see text], and [Formula: see text]. Following passive inflation, the correlation of wall stress with the inverse of wall thickness and curvature was 0.55-0.62 and 0.20-0.25, respectively. At peak contraction, the correlation of wall stress with the inverse of wall thickness and curvature was 0.38-0.44 and 0.16-0.34, respectively. In the LA, the 1st principal Cauchy stress is more dependent on wall thickness than curvature during passive inflation and both correlations decrease during active contraction. This emphasizes the importance of including the heterogeneous wall thickness in electromechanical FE simulations of the LA. Overall, simulation results and sensitivity analyses show that in complex atrial anatomy it is unlikely that a simple anatomical-based law can be used to estimate local wall stress, demonstrating the importance of FE analyses.
Collapse
Affiliation(s)
- Christoph M Augustin
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, USA
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Thomas E Fastl
- Department of Biomedical Engineering, King's College London, London, UK
| | - Aurel Neic
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, USA
| | - John Whitaker
- Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Ronak Rajani
- Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Mark D O'Neill
- Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Martin J Bishop
- Department of Biomedical Engineering, King's College London, London, UK
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
49
|
Propp A, Gizzi A, Levrero-Florencio F, Ruiz-Baier R. An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Biomech Model Mechanobiol 2020; 19:633-659. [PMID: 31630280 PMCID: PMC7105452 DOI: 10.1007/s10237-019-01237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, coupled with a four-variable phenomenological model for human cardiac cell electrophysiology, which produces an accurate description of the action potential. The conductivities in the model of electric propagation are modified according to stress, inducing an additional degree of nonlinearity and anisotropy in the coupling mechanisms, and the activation model assumes a simplified stretch-calcium interaction generating active tension or active strain. The influence of the new terms in the electromechanical model is evaluated through a sensitivity analysis, and we provide numerical validation through a set of computational tests using a novel mixed-primal finite element scheme.
Collapse
Affiliation(s)
- Adrienne Propp
- Mathematical Institute, University of Oxford, A. Wiles Building, Woodstock Road, Oxford, OX2 6GG United Kingdom
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, Department of Engineering, University Campus Bio-Medico, Rome, Italy
| | | | - Ricardo Ruiz-Baier
- Mathematical Institute, University of Oxford, A. Wiles Building, Woodstock Road, Oxford, OX2 6GG United Kingdom
- Laboratory of Mathematical Modelling, Institute of Personalised Medicine, Sechenov University, Moscow, Russian Federation
| |
Collapse
|
50
|
Levrero-Florencio F, Margara F, Zacur E, Bueno-Orovio A, Wang Z, Santiago A, Aguado-Sierra J, Houzeaux G, Grau V, Kay D, Vázquez M, Ruiz-Baier R, Rodriguez B. Sensitivity analysis of a strongly-coupled human-based electromechanical cardiac model: Effect of mechanical parameters on physiologically relevant biomarkers. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 361:112762. [PMID: 32565583 PMCID: PMC7299076 DOI: 10.1016/j.cma.2019.112762] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human heart beats as a result of multiscale nonlinear dynamics coupling subcellular to whole organ processes, achieving electrophysiologically-driven mechanical contraction. Computational cardiac modelling and simulation have achieved a great degree of maturity, both in terms of mathematical models of underlying biophysical processes and the development of simulation software. In this study, we present the detailed description of a human-based physiologically-based, and fully-coupled ventricular electromechanical modelling and simulation framework, and a sensitivity analysis focused on its mechanical properties. The biophysical detail of the model, from ionic to whole-organ, is crucial to enable future simulations of disease and drug action. Key novelties include the coupling of state-of-the-art human-based electrophysiology membrane kinetics, excitation-contraction and active contraction models, and the incorporation of a pre-stress model to allow for pre-stressing and pre-loading the ventricles in a dynamical regime. Through high performance computing simulations, we demonstrate that 50% to 200% - 1000% variations in key parameters result in changes in clinically-relevant mechanical biomarkers ranging from diseased to healthy values in clinical studies. Furthermore mechanical biomarkers are primarily affected by only one or two parameters. Specifically, ejection fraction is dominated by the scaling parameter of the active tension model and its scaling parameter in the normal direction ( k ort 2 ); the end systolic pressure is dominated by the pressure at which the ejection phase is triggered ( P ej ) and the compliance of the Windkessel fluid model ( C ); and the longitudinal fractional shortening is dominated by the fibre angle ( ϕ ) and k ort 2 . The wall thickening does not seem to be clearly dominated by any of the considered input parameters. In summary, this study presents in detail the description and implementation of a human-based coupled electromechanical modelling and simulation framework, and a high performance computing study on the sensitivity of mechanical biomarkers to key model parameters. The tools and knowledge generated enable future investigations into disease and drug action on human ventricles.
Collapse
Affiliation(s)
- F. Levrero-Florencio
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
- Corresponding authors.
| | - F. Margara
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - E. Zacur
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - A. Bueno-Orovio
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Z.J. Wang
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - A. Santiago
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - J. Aguado-Sierra
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - G. Houzeaux
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - V. Grau
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - D. Kay
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - M. Vázquez
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
- ELEM Biotech, Spain
| | - R. Ruiz-Baier
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Universidad Adventista de Chile, Casilla 7-D, Chillan, Chile
| | - B. Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
- Corresponding authors.
| |
Collapse
|