1
|
Heil AC, de Melo Lima Waterloo M, Guerra JM, Ferreira AMR, da Silva Leite J. Histopathological, immunohistochemical and molecular analyses of foetuses from a female dog naturally infected by Leishmania (Leishmania) infantum - Case report. Vet Med Sci 2023; 9:2443-2446. [PMID: 37669416 PMCID: PMC10650230 DOI: 10.1002/vms3.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
This report presents anatomo-histopathological, immunohistochemical and molecular analyses of an asymptomatic female dog naturally infected with Leishmania (Leishmania) infantum and her four pups. In addition to routine serological tests, the mother's positivity was confirmed by real-time PCR of a bone marrow sample; the placenta and ovaries, however, were negative with the same analysis. The pups presented no positivity in any of the techniques used. It is suggested that the gestational period and factors related to the female's immunological condition cause greater variability in the occurrence of vertical infection.
Collapse
Affiliation(s)
- Ana Carina Heil
- Department of Pathology and Veterinary ClinicFederal Fluminense University, NiteróiRio de JaneiroBrazil
| | | | | | - Ana Maria Reis Ferreira
- Department of Pathology and Veterinary ClinicFederal Fluminense University, NiteróiRio de JaneiroBrazil
| | - Juliana da Silva Leite
- Department of Pathology and Veterinary ClinicFederal Fluminense University, NiteróiRio de JaneiroBrazil
| |
Collapse
|
2
|
Singh G, Tucker EW, Rohlwink UK. Infection in the Developing Brain: The Role of Unique Systemic Immune Vulnerabilities. Front Neurol 2022; 12:805643. [PMID: 35140675 PMCID: PMC8818751 DOI: 10.3389/fneur.2021.805643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) infections remain a major burden of pediatric disease associated with significant long-term morbidity due to injury to the developing brain. Children are susceptible to various etiologies of CNS infection partly because of vulnerabilities in their peripheral immune system. Young children are known to have reduced numbers and functionality of innate and adaptive immune cells, poorer production of immune mediators, impaired responses to inflammatory stimuli and depressed antibody activity in comparison to adults. This has implications not only for their response to pathogen invasion, but also for the development of appropriate vaccines and vaccination strategies. Further, pediatric immune characteristics evolve across the span of childhood into adolescence as their broader physiological and hormonal landscape develop. In addition to intrinsic vulnerabilities, children are subject to external factors that impact their susceptibility to infections, including maternal immunity and exposure, and nutrition. In this review we summarize the current evidence for immune characteristics across childhood that render children at risk for CNS infection and introduce the link with the CNS through the modulatory role that the brain has on the immune response. This manuscript lays the foundation from which we explore the specifics of infection and inflammation within the CNS and the consequences to the maturing brain in part two of this review series.
Collapse
Affiliation(s)
- Gabriela Singh
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
| |
Collapse
|
3
|
Wirsching S, Machtakova M, Borgans F, Pretsch L, Fichter M, Cacicedo ML, Thérien-Aubin H, Landfester K, Gehring S. OVA-PEG-R848 nanocapsules stimulate neonatal conventional and plasmacytoid dendritic cells. Front Pediatr 2022; 10:966113. [PMID: 36177449 PMCID: PMC9513203 DOI: 10.3389/fped.2022.966113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Childhood mortality represents a major issue with 5. 3 million worldwide deaths of children under 5 years of age in 2019. Approximately half of those deaths can be attributed to easily preventable, infectious diseases. Currently approved neonatal vaccines are typically effective only after multiple doses leaving infants especially vulnerable during the first 6 months of life. Survival rates could be improved significantly by developing new and more potent vaccines that are capable of overcoming inherently tolerogenic neonatal immune systems. TLR agonists have garnered a great deal of attention in recent years due to their extensive capacities to activate innate immunity. Herein, the superior capacity of the TLR7/8 agonist, resiquimod (R848), to activate adult and neonatal primary peripheral blood dendritic cells is demonstrated. Moreover, R848 can be conjugated to polyethylene glycol and encapsulated in ovalbumin nanocapsules to efficiently co-deliver antigen and adjuvant in vitro. This study is among the first to demonstrate the capacity of encapsulated R848 to activate neonatal dendritic cells. These findings support the potential incorporation of R848 as adjuvant in neonatal vaccines, making them more effective in eliciting a robust immune response.
Collapse
Affiliation(s)
- Sebastian Wirsching
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Frauke Borgans
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Leah Pretsch
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Fichter
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Max Planck Institute for Polymer Research, Mainz, Germany.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Mainz, Germany.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Stephan Gehring
- Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Taylor M, Pillaye J, Horsnell WGC. Inherent maternal type 2 immunity: Consequences for maternal and offspring health. Semin Immunol 2021; 53:101527. [PMID: 34838445 DOI: 10.1016/j.smim.2021.101527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
An inherent elevation in type 2 immunity is a feature of maternal and offspring immune systems. This has diverse implications for maternal and offspring biology including influencing success of pregnancy, offspring immune development and maternal and offspring ability to control infection and diseases such as allergies. In this review we provide a broad insight into how this immunological feature of pregnancy and early life impacts both maternal and offspring biology. We also suggest how understanding of this axis of immune influence is and may be utilised to improve maternal and offspring health.
Collapse
Affiliation(s)
- Matthew Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, The Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Jamie Pillaye
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Gordon Charles Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
5
|
Sarfas C, White AD, Sibley L, Morrison AL, Gullick J, Lawrence S, Dennis MJ, Marsh PD, Fletcher HA, Sharpe SA. Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques. Front Immunol 2021; 12:754589. [PMID: 34707617 PMCID: PMC8542880 DOI: 10.3389/fimmu.2021.754589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette–Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms.
Collapse
Affiliation(s)
- Charlotte Sarfas
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Andrew D White
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Laura Sibley
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Alexandra L Morrison
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Jennie Gullick
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Steve Lawrence
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Mike J Dennis
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Philip D Marsh
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| | - Helen A Fletcher
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sally A Sharpe
- National Infection Service, UK Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
6
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Iwamoto J, Furukawa M. The estimation of duration of maternally-derived antibodies against Akabane, Aino, and Chuzan virus in calves by the receiver operating characteristic analysis. J Vet Med Sci 2020; 82:1614-1618. [PMID: 32963178 PMCID: PMC7719874 DOI: 10.1292/jvms.20-0332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The duration of maternally-derived antibodies against three arboviruses was investigated in calves, using the results of arbovirus serosurveillance performed
in Kagoshima Prefecture during 2002–2016. The duration of maternally-derived antibodies against Akabane virus (AKAV), Aino virus (AINOV), and Chuzan virus
(CHUV) was estimated to be 178 (sensitivity: 0.769, specificity: 0.730), 156 (sensitivity: 0.806, specificity: 0.791), and 156 days of age (sensitivity: 0.845,
specificity: 0.814), by receiver operating characteristic analysis. The duration of maternally-derived antibodies against AKAV, AINOV, and CHUV differed 7–14,
22–28, and 20–31 days in the same calf types between the regions far from each other although it was similar between the adjacent regions. The dairy calves
showed 6–29 days longer duration than the beef calves rearing in a similar region.
Collapse
Affiliation(s)
- Jiro Iwamoto
- Kagoshima Prefectural Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki-cho, Hioki, Kagoshima 899-2201, Japan
| | - Masahiro Furukawa
- Kagoshima Prefectural Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki-cho, Hioki, Kagoshima 899-2201, Japan
| |
Collapse
|
8
|
Wang A, Chao T, Ji Z, Xuan R, Liu S, Guo M, Wang G, Wang J. Transcriptome analysis reveals potential immune function-related regulatory genes/pathways of female Lubo goat submandibular glands at different developmental stages. PeerJ 2020; 8:e9947. [PMID: 33083113 PMCID: PMC7547598 DOI: 10.7717/peerj.9947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Background The submandibular glands, as major salivary glands, participate in rumen digestion in goats. Sialic acid, lysozyme, immunoglobulin A (IgA), lactoferrin and other biologically active substances secreted in the submandibular glands were reported in succession, which suggests that the submandibular gland may have immune functions in addition to participating in digestion. The aim of this study was to map the expression profile of differentially expressed genes (DEGs) at three different stages by transcriptome sequencing, screen immune-related genes and pathways by bioinformatics methods, and predict the immune function of submandibular glands at different developmental stages. Methods Nine submandibular gland tissue samples were collected from groups of 1-month-old kids, 12-month-old adolescent goats and 24-month-old adult goats (3 samples from each group), and high-throughput transcriptome sequencing was conducted on these samples. The DEGs among the three stages were screened and analysed. Key genes and signalling pathways were selected via protein-protein interaction (PPI) network analysis. Results The results revealed 2,706, 2,525 and 52 DEGs between 1-month-old and 12-month-old goats, between 1-month-old and 24-month-old goats, and between 12-month-old and 24-month-old goats, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most of the DEGs were enriched in immune- related GO terms and pathways. Based on functional enrichment analysis and network analysis, 10 genes (PTPRC, CD28, SELL, LCP2, MYC, LCK, ZAP70, ITGB2, SYK and CCR7), two signalling pathways (the T cell receptor signalling pathway and the NF-κβ signalling pathway) and eight GO terms (T cell receptor signalling pathway, neutrophil mediated immunity, B cell mediated immunity, regulation of alpha-beta T cell activation, positive regulation of T cell proliferation, regulation of leukocyte differentiation, positive regulation of antigen receptor-mediated signalling pathway, positive regulation of lymphocyte proliferation) that may play key roles in the immune functions of the goat submandibular glands at different developmental stages were identified. Moreover, we found that eight antibacterial peptide-encoding genes were downregulated in the tuberculosis and salivary secretion pathways, while all immunoglobulins were upregulated in 10 immune system pathways. These findings indicate that the submandibular glands may be important immunological organs during the growth process of goats and that the immune function of these glands gradually weakens with age up to 12 months but remains relatively stable after 12 months of age. Overall, this study will improve our understanding of transcriptional regulation related to goat submandibular gland immune function.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Maosen Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, P.R. China
| |
Collapse
|
9
|
Abstract
Introduction: Neonates are less responsive to vaccines than adults, making it harder to protect newborns against infection. Neonatal differences in antigen-presenting cell, B and T cell function, all likely contribute. A key question is whether novel adjuvants might be able to make neonatal vaccines more effective. Areas covered: This review addresses the issues of how to improve neonatal vaccines, which we have defined as vaccines given in the first 4 weeks of life in a human infant or the first week of life in a mouse. A search was performed using keywords including 'neonatal immunity', 'neonatal immunisation', 'vaccine' and 'adjuvant' of PubMed articles published between 1960 and 2018. Expert opinion: Sugar-like structures have recently been shown to prime the infant adaptive immune system to respond to vaccines, being potentially more effective than traditional adjuvants. Sugar-based compounds with beneficial adjuvant effects in neonatal vaccine models include delta inulin (Advax), curdlan, and trehalose 6,6'-dibehenate. Such compounds make interesting neonatal adjuvant candidates, either used alone or in combination with traditional innate immune adjuvants.
Collapse
Affiliation(s)
- Isaac G Sakala
- a Vaxine Pty Ltd , Adelaide , Australia.,b Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University , Adelaide , Australia
| | - Katherine Marie Eichinger
- c Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd , Adelaide , Australia.,b Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University , Adelaide , Australia
| |
Collapse
|
10
|
Eldredge LC, Creasy RS, Tanaka S, Lai JF, Ziegler SF. Imbalance of Ly-6C hi and Ly-6C lo Monocytes/Macrophages Worsens Hyperoxia-Induced Lung Injury and Is Rescued by IFN-γ. THE JOURNAL OF IMMUNOLOGY 2019; 202:2772-2781. [PMID: 30944158 DOI: 10.4049/jimmunol.1801374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022]
Abstract
Inflammation in response to oxygen exposure is a major contributing factor in neonatal lung injury leading to bronchopulmonary dysplasia. Although increased levels of proinflammatory cytokines are seen in airway samples and blood from bronchopulmonary dysplasia patients, the innate immune responses in this common neonatal lung condition have not been well characterized. We previously reported that depletion of murine CD11b-expressing mononuclear phagocytes at birth led to severe acute hyperoxia-induced lung injury (HILI) and significant mortality. In this study, we further define the mononuclear phagocyte populations that are present in the neonatal lung and characterize their responses to hyperoxia exposure. We used myeloid depleter mice (CD11b-DTR and CCR2-DTR) to contrast the effects of depleting different monocyte/macrophage subpopulations on the innate immune response to hyperoxia. Using RNA sequencing and subsequent data analysis, we identified an IFN-γ-mediated role for interstitial monocytes/macrophages in acute HILI, in which decreased IFN-γ expression led to increased disease severity and increased Mmp9 mRNA expression. Importantly, intranasal administration of rIFN-γ largely rescued CD11b-DTR+ mice from severe HILI and decreased Mmp9 mRNA expression in Ly-6Clo and Ly-6Chi interstitial monocyte/macrophages. We conclude that the proinflammatory effects of hyperoxia exposure are, at least in part, because of the modulation of effectors downstream of IFN-γ by pulmonary monocytes/macrophages.
Collapse
Affiliation(s)
- Laurie C Eldredge
- Division of Pulmonology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98105.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA 98121; and.,Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Rane S Creasy
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Shigeru Tanaka
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Jen-Feng Lai
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| |
Collapse
|
11
|
Baliu-Piqué M, Kurniawan H, Ravesloot L, Verheij MW, Drylewicz J, Lievaart-Peterson K, Borghans JAM, Koets A, Tesselaar K. Age-related distribution and dynamics of T-cells in blood and lymphoid tissues of goats. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:1-10. [PMID: 30550777 DOI: 10.1016/j.dci.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Neonatal mammals have increased disease susceptibility and sub-optimal vaccine responses. This raises problems in both humans and farm animals. The high prevalence of paratuberculosis in goats and the lack of an effective vaccine against it have a strong impact on the dairy sector, and calls for vaccines optimized for the neonatal immune system. We characterized the composition of the T-cell pool in neonatal kids and adult goats and quantified their turnover rates using in vivo deuterium labelling. From birth to adulthood, CD4+ T-cells were the predominant subset in the thymus and lymph nodes, while spleen and bone marrow contained mainly CD8+ lymphocytes. In blood, CD4+ T-cells were the predominant subset during the neonatal period, while CD8+ T-cells predominated in adults. We observed that thymic mass and cellularity increased during the first 5 months after birth, but decreased later in life. Deuterium labelling revealed that T-cell turnover rates in neonatal kids are considerably higher than in adult animals.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henry Kurniawan
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Myrddin W Verheij
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ad Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Dewals BG, Layland LE, Prazeres da Costa C, Horsnell WG. Maternal helminth infections and the shaping of offspring immunity. Parasite Immunol 2018; 41:e12599. [PMID: 30372527 DOI: 10.1111/pim.12599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022]
Abstract
Helminth infections leave a long-lasting immunological footprint on their hosts. Clinical studies have provided first evidence that maternal helminth infections can result in an altered immune profile in their offspring which can potentially shape how they respond to conditions throughout life. This can relate to changes in offspring induction of immune responses against other diseases. However, whether these changes result in actual changes in offspring ability to control disease is unclear. Our understanding of which immune mechanisms are altered and how they are changed is limited. In this review, we highlight what we know from human and mouse studies about this important context of helminth exposure. Moreover, we discuss how mechanisms such as antibody transfer, antigen exposure, maternal cell uptake, chimerism and epigenetics are all likely to be functional contributors to the striking changes that are seen in offspring born or nursed by helminth exposed mothers.
Collapse
Affiliation(s)
- Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Clarissa Prazeres da Costa
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - William G Horsnell
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.,Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Orléans, France
| |
Collapse
|
13
|
Osman R, Malmuthuge N, Gonzalez-Cano P, Griebel P. Development and Function of the Mucosal Immune System in the Upper Respiratory Tract of Neonatal Calves. Annu Rev Anim Biosci 2017; 6:141-155. [PMID: 29106820 DOI: 10.1146/annurev-animal-030117-014611] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Respiratory infections remain the second most common cause of clinical disease and mortality in newborn calves, which has led to increased interest in using vaccines early in life to mitigate this risk. Intranasal vaccination of neonatal calves can be an effective strategy to circumvent vaccine interference by maternal antibody, but this raises questions regarding onset of immune competence in the upper respiratory tract (URT) following birth. Little is known, however, about the development and function of mucosa-associated lymphoid tissue (MALT) in the URT of newborn calves and what factors, including the commensal microbiome, contribute to this early development. We review the structure, development, and function of MALT in the bovine URT during the first six weeks of life and identify knowledge gaps regarding this early developmental time. This information is critical when designing vaccination programs for young calves, especially when targeting respiratory pathogens that may reside within the commensal microbiome.
Collapse
Affiliation(s)
- Rahwa Osman
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada; ,
| | - Nilusha Malmuthuge
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E3, Canada; ,
| | - Patricia Gonzalez-Cano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E3, Canada; , .,Current affiliation: Universidad de la Cañada, 68540 Oaxaca, Mexico
| | - Philip Griebel
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada; , .,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E3, Canada; ,
| |
Collapse
|
14
|
Abstract
Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life.
Collapse
Affiliation(s)
- Anja Saso
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK
| | - Beate Kampmann
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK.
- Vaccines and Immunity Theme, MRC Unit The Gambia, Fajara, The Gambia.
| |
Collapse
|
15
|
Veazey RS, Lu Y, Xu H, Ziani W, Doyle-Meyers LA, Ratterree MS, Wang X. Maternal antibodies against tetanus toxoid do not inhibit potency of antibody responses to autologous antigen in newborn rhesus monkeys. J Med Primatol 2017; 47:35-39. [PMID: 28585307 DOI: 10.1111/jmp.12281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Our previous study suggested newborns have competent immune systems with the potential to respond to foreign antigens and vaccines. In this study, we examined infant immune responses to tetanus toxoid (TT) vaccination in the presence of maternal antibody to TT. METHODS We examined changes in plasma levels of tetanus toxoid-specific IgG1 (anti-TT IgG1) in a total of eight infant rhesus macaques from birth through 6 months of age using a commercial Monkey Anti-TT IgG1 ELISA kit. RESULTS A significant correlation between anti-TT IgG1 levels in vaccinated dams and their paired newborn infants was detected in control (non-vaccinated) infants as previously reported. Maternal anti-TT IgG1 levels declined rapidly within 1 month of birth in non-vaccinated infants (n=4). In four infants vaccinated with TT at birth, we found two had rapid and robust antibody responses to vaccination. Interestingly, the other two first showed declining TT antibody levels for 2 weeks followed by increasing levels without additional vaccine boosts, indicating all four had good antibody responses to primary TT vaccination at birth, despite the presence of high levels of maternal antibodies to TT in all four infants. CONCLUSIONS Our data indicate that newborn macaques have competent immune systems that are capable of generating their own primary antibody responses to vaccination, at least to tetanus antigens. Maternal antibodies thus do not significantly impair antibody response to the vaccination, even when received on the day of birth in infant rhesus macaques.
Collapse
Affiliation(s)
- Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Yingjie Lu
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Widade Ziani
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Lara A Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Marion S Ratterree
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
16
|
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Bresson JL, Dusemund B, Gundert-Remy U, Kersting M, Lambré C, Penninks A, Tritscher A, Waalkens-Berendsen I, Woutersen R, Arcella D, Court Marques D, Dorne JL, Kass GE, Mortensen A. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J 2017; 15:e04849. [PMID: 32625502 PMCID: PMC7010120 DOI: 10.2903/j.efsa.2017.4849] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health-based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case-by-case basis, depending on whether the substance is added intentionally to food and is systemically available.
Collapse
|
17
|
Nissen TN, Birk NM, Smits G, Jeppesen DL, Stensballe LG, Netea MG, van der Klis F, Benn CS, Pryds O, Andersen A, Kjærgaard J, Thøstesen LM, Pihl GT, Hoffmann T, Kofoed PE, Aaby P. Bacille Calmette-Guérin (BCG) vaccination at birth and antibody responses to childhood vaccines. A randomised clinical trial. Vaccine 2017; 35:2084-2091. [DOI: 10.1016/j.vaccine.2017.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 10/24/2022]
|
18
|
Du Plessis N, Jacobs R, Gutschmidt A, Fang Z, van Helden PD, Lutz MB, Hesseling AC, Walzl G. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis. Eur J Immunol 2017; 47:107-118. [PMID: 27861788 PMCID: PMC5233566 DOI: 10.1002/eji.201646658] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Increased disease susceptibility during early life has been linked to immune immaturity, regulatory T-cell/TH2 immune biasing and hyporesponsiveness. The contribution of myeloid derived suppressor cells (MDSCs) remains uninvestigated. Here, we assessed peripheral MDSC in HIV-infected and -uninfected children with tuberculosis (TB) disease before, during and after TB treatment, along with matched household contacts (HHCs), HIV-exposed, -infected and -uninfected children without recent TB exposure. Serum analytes and enzymes associated with MDSC accumulation/activation/function were measured by colorimetric- and fluorescence arrays. Peripheral frequencies of cells phenotypically resembling MDSCs were significantly increased in HIV-exposed uninfected (HEU) and M.tb-infected children, but peaked in children with TB disease and remained high following treatment. MDSC in HIV-infected (HI) children were similar to unexposed uninfected controls; however, HAART-mediated MDSC restoration to control levels could not be disregarded. Increased MDSC frequencies in HHC coincided with enhanced indoleamine-pyrrole-2,3-dioxygenase (IDO), whereas increased MDSC in TB cases were linked to heightened IDO and arginase-1. Increased MDSC were paralleled by reduced plasma IP-10 and thrombospondin-2 levels in HEU and significantly increased plasma IL-6 in HI HHC. Current investigations into MDSC-targeted treatment strategies, together with functional analyses of MDSCs, could endorse these cells as novel innate immune regulatory mechanism of infant HIV/TB susceptibility.
Collapse
Affiliation(s)
- Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ruschca Jacobs
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zhuo Fang
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul D van Helden
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences/SAMRC Centre for Tuberculosis Research/DST and NRF Centre of Excellence for Biomedical TB Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Rochford R. Epstein-Barr virus infection of infants: implications of early age of infection on viral control and risk for Burkitt lymphoma. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:41-46. [PMID: 29421232 DOI: 10.1016/j.bmhimx.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 11/17/2022] Open
Abstract
Since its first description by Denis Burkitt, endemic Burkitt's lymphoma (BL), the most common childhood cancer in sub-Saharan Africa, has led scientists to search for clues to the origins of this malignancy. The discovery of Epstein-Barr virus (EBV) in BL cells over 50 years ago led to extensive sero-epidemiology studies and revealed that rather than being a virus restricted to areas where BL is endemic, EBV is ubiquitous in the world's population with an estimated greater than 90% of adults worldwide infected. A second pathogen, Plasmodium falciparum (P. falciparum) malaria is also linked to BL. In this review, we will discuss recent studies that indicate a role for P. falciparum malaria in dysregulating EBV infection, and increasing the risk for BL in children living where P. falciparum malaria transmission is high.
Collapse
Affiliation(s)
- Rosemary Rochford
- Department of Immunology and Microbiology University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
20
|
Severance EG, Yolken RH. Role of Immune and Autoimmune Dysfunction in Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016; 23:501-516. [PMID: 33456427 PMCID: PMC7173552 DOI: 10.1016/b978-0-12-800981-9.00029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, we review data in support of the concept that immune system dysregulation is the most plausible explanation that reconciles gene by environmental interactions in schizophrenia. Early investigations of this topic demonstrated aspects of aberrant activation of humoral immunity, including autoimmunity, associated with schizophrenia, whereas current research efforts have expanded this theme to include elements of innate immunity. Advances in our understanding of inflammation and molecules of both the adaptive and innate immune system and their functional roles in standard brain physiology provide an important context by which schizophrenia might arise as the result of the coupling of immune and neurodevelopmental dysregulation.
Collapse
|
21
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
22
|
Mansoor F, Earley B, Cassidy JP, Markey B, Doherty S, Welsh MD. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet Res 2015; 11:220. [PMID: 26293453 PMCID: PMC4546173 DOI: 10.1186/s12917-015-0481-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak.
Collapse
Affiliation(s)
- Fawad Mansoor
- Agri-Food & Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast, BT4 3SD, UK. .,Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland. .,Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Ireland.
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Joseph P Cassidy
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Ireland.
| | - Bryan Markey
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Ireland.
| | - Simon Doherty
- Agri-Food & Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast, BT4 3SD, UK. .,Present address: SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast, BT3 9DT, UK.
| | - Michael D Welsh
- Agri-Food & Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast, BT4 3SD, UK. .,Present address: SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast, BT3 9DT, UK.
| |
Collapse
|
23
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
24
|
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates. Viruses 2015; 7:2308-20. [PMID: 25955106 PMCID: PMC4452907 DOI: 10.3390/v7052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.
Collapse
|
25
|
Maternal lipopolysaccharide alters the newborn oxidative stress and C-reactive protein levels in response to an inflammatory stress. J Dev Orig Health Dis 2015; 3:358-63. [PMID: 25102265 DOI: 10.1017/s204017441200027x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal infection is associated with oxidative stress (OS) and inflammatory responses. We have previously shown that maternal exposure to lipopolysaccharide (LPS) at E18 alters the subsequent offspring immune response. As immune responses are mediated, in part, by OS, we sought to determine if maternal inflammation during pregnancy programs offspring OS and C-reactive protein (CRP) levels. Pregnant Sprague-Dawley rats received intraperitoneal (i.p.) injections of saline or LPS at 18 days' gestation (n = 4), and pups delivered spontaneously at term. At postnatal day 24, male and female offspring received i.p. injection of LPS. Serum lipid peroxides formation (PD) and CRP levels were determined before and at 4 h following the LPS injection. Pups of LPS-exposed dams had significantly higher basal OS (PD 29.4 ± 5.4 v. 10.1 ± 4.8 nmol/ml) compared with controls. In response to LPS, CRP levels (20.4 ± 2.8 v. 5.7 ± 1.0 ng/ml) were significantly higher among pups of LPS-exposed dams than controls. Prenatal maternal exposure to LPS increases baseline OS levels in neonates and CRP levels in response to LPS. These results suggest that maternal inflammation during the antenatal period may induce long-term sequelae in the offspring that may predispose to adult disease.
Collapse
|
26
|
Perkins GA, Wagner B. The development of equine immunity: Current knowledge on immunology in the young horse. Equine Vet J 2015; 47:267-74. [DOI: 10.1111/evj.12387] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 11/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
- G. A. Perkins
- Department of Clinical Sciences; College of Veterinary Medicine; Cornell University; Ithaca New York USA
| | - B. Wagner
- Department of Population Medicine and Diagnostic Sciences; College of Veterinary Medicine; Cornell University; Ithaca New York USA
| |
Collapse
|
27
|
Niewiesk S. Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front Immunol 2014; 5:446. [PMID: 25278941 PMCID: PMC4165321 DOI: 10.3389/fimmu.2014.00446] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/01/2014] [Indexed: 01/28/2023] Open
Abstract
Neonates have an immature immune system, which cannot adequately protect against infectious diseases. Early in life, immune protection is accomplished by maternal antibodies transferred from mother to offspring. However, decaying maternal antibodies inhibit vaccination as is exemplified by the inhibition of seroconversion after measles vaccination. This phenomenon has been described in both human and veterinary medicine and is independent of the type of vaccine being used. This review will discuss the use of animal models for vaccine research. I will review clinical solutions for inhibition of vaccination by maternal antibodies, and the testing and development of potentially effective vaccines. These are based on new mechanistic insight about the inhibitory mechanism of maternal antibodies. Maternal antibodies inhibit the generation of antibodies whereas the T cell response is usually unaffected. B cell inhibition is mediated through a cross-link between B cell receptor (BCR) with the Fcγ-receptor IIB by a vaccine-antibody complex. In animal experiments, this inhibition can be partially overcome by injection of a vaccine-specific monoclonal IgM antibody. IgM stimulates the B cell directly through cross-linking the BCR via complement protein C3d and antigen to the complement receptor 2 (CR2) signaling complex. In addition, it was shown that interferon alpha binds to the CD21 chain of CR2 as well as the interferon receptor and that this dual receptor usage drives B cell responses in the presence of maternal antibodies. In lieu of immunizing the infant, the concept of maternal immunization as a strategy to protect neonates has been proposed. This approach would still not solve the question of how to immunize in the presence of maternal antibodies but would defer the time of infection to an age where infection might not have such a detrimental outcome as in neonates. I will review successful examples and potential challenges of implementing this concept.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
28
|
Klein R, Lourenço M, Moutinho F, Takahira R, Lopes R, Martins R, Machado L, Silveira V, Ferreira H. Imunidade celular em caninos neonatos - do nascimento ao 45° dia de idade. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-41625985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O objetivo do presente trabalho foi acompanhar o desenvolvimento imunológico dos neonatos caninos, a fim de avaliar a imunidade celular pela análise dos leucócitos e linfócitos totais e das subpopulações de linfócitos T (CD4+ e CD8+) pela técnica de citometria de fluxo. Foram utilizados 30 cães neonatos de ambos os sexos, sem raça definida, aos três, 10, 17, 24, 31, 38 e 45 dias de idade. A contagem de leucócitos totais aos 45 dias (11.639±3.574) foi significativamente maior que no terceiro dia de idade (8.740±1.812) (P<0,05); não houve diferença entre a contagem total de linfócitos aos 45 dias em relação ao terceiro dia de idade. Quanto às subpopulações de LT CD4+ e LT CD8+, os percentuais de LT CD4+, aos três dias de idade (24,9±16,8%), foram inferiores quando comparados à média entre o 10°, o 24° e o 31°dia (35,5%), e os de CD8+, ao terceiro dia, menores em relação às médias do 10° e do 31° dia de idade. Pode-se concluir que as subpopulações de LT CD4+ e CD8+ sofrem oscilações durante o desenvolvimento pós-natal, sendo estas crescentes em relação aos níveis obtidos aos três dias de idade. A relação CD4+:CD8+ mostrou superioridade para o primeiro tipo celular, sendo que a maior relação entre CD4+ e CD8+ ocorreu no terceiro dia de idade. Com base nos resultados obtidos neste estudo, notaram-se as diferenças semanais nas populações linfocitárias, o que demonstra a dinâmica dessas células durante o período neonatal.
Collapse
|
29
|
Pfefferle PI, Renz H. Microbial exposure and onset of allergic diseases - potential prevention strategies? Allergol Int 2014; 63:3-10. [PMID: 24569150 DOI: 10.2332/allergolint.13-rai-0671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammatory diseases are a major health problem with global dimension. Particularly, the incidence of allergic diseases has been increased tremendously within the last decades. This world-wide trend clearly indicates the demand for new approaches in the investigation of early allergy development. Recent studies underlined the basic postulate of the hygiene hypothesis that early exposure to microbial stimuli plays a crucial role in the prevention of chronic inflammatory conditions in adulthood. There is ample evidence that, both, exogenous microbes and endogenous microbial communities, the human microbiota, shape the developing immune system and might be involved in prevention of pathologic pro-inflammatory trails. According to the Barker hypothesis, epidemiological studies pointed to transmaternal transmission from the mother to the offspring already in prenatal life. Experimental data from murine models support these findings. This state of the art review provides an overview on the current literature and presents new experimental concepts that point out to future application in the prevention of allergic diseases.
Collapse
Affiliation(s)
- Petra Ina Pfefferle
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics Philipps University Marburg, Biomedical Research Centre, Marburg, Germany; University of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Center for Lung Research (DZL), Marburg, Germany
| | - Harald Renz
- University of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Center for Lung Research (DZL), Marburg, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics Philipps University Marburg, University Hospital Giessen and Marburg GmbH, Marburg, Germany
| |
Collapse
|
30
|
Greenwood CS, Greenwood NP, Fischer PR. Immunization issues in pediatric travelers. Expert Rev Vaccines 2014; 7:651-61. [DOI: 10.1586/14760584.7.5.651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Zhang W, Guo Z, Zhang L, Liu Z, Li J, Ji Z, Xu R, Zhao N, Li F, Chen X, Yan Y, Zhang J, An Q, Yang H, Den Z, Shao Z. Maternal immunization promotes the immune response of neonates towards hepatitis B vaccine. J Viral Hepat 2013; 20:875-81. [PMID: 24304457 DOI: 10.1111/jvh.12103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/27/2013] [Indexed: 12/12/2022]
Abstract
Infants infected with hepatitis B virus (HBV) face the risk of developing severe complications. Unfortunately, in spite of universal vaccination programmes, 5% or more of vaccinated newborns still do not achieve protective levels of anti-hepatitis B virus surface antigen titres (anti-HBs). The aim of this study was to use animal experiments and population-based research to determine whether maternal vaccination against HBV affects the outcome of neonatal vaccination. Six sows and 53 newborn piglets were used for this study and randomly assigned to the vaccination group (three 20 μg doses of recombinant HBV vaccine). All the piglets were followed up to 10 weeks of age, and peripheral blood was withdrawn for measurement of anti-HBs. A cross-sectional study was also conducted on 449 mothers with infants. A structured questionnaire was used to collect demographic, medical and maternal data, and their peripheral blood was collected for measurement of anti-HBs. The results of animal experiments demonstrated that nonvaccinated piglets born to vaccinated sows and nonvaccinated piglets born to nonvaccinated sows were negative for anti-HBs. Repeated measures analysis of variance showed that the titres of anti-HBs in vaccinated piglets born to vaccinated sows were significantly higher than in vaccinated piglets born to nonvaccinated sows (P < 0.05). In a population-based study, a cumulative logistic regression analysis showed that the strongest influences on neonatal anti-HBs titres were delay of the first vaccination dose [OR = 3.02(95% CI: 1.72-5.30)] and maternal anti-HBs titres [OR = 2.48(95% CI: 2.03-3.04)]. In conclusion, high maternal anti-HBs titres can enhance the response to HBV vaccination in infants.
Collapse
Affiliation(s)
- W Zhang
- Department of Epidemiology, School of Public Health, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Immune response of heifers against a Staphylococcus aureus CP5 whole cell and lysate vaccine formulated with ISCOM Matrix adjuvant. Res Vet Sci 2013; 96:86-94. [PMID: 24210331 DOI: 10.1016/j.rvsc.2013.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/12/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is the most frequently isolated pathogen from bovine intramammary infections worldwide. Commercially available vaccines for mastitis control are composed either of S. aureus lysates or whole-cells formulated with traditional adjuvants. We recently showed the ability of a S. aureus CP5 whole-cell vaccine adjuvanted with ISCOM Matrix to increase specific antibodies production in blood and milk, improving opsonic capacity, compared with the same vaccine formulated with Al(OH)3. However, there is no information about the use of ISCOM Matrix for the formulation of bacterial lysates. The aim of this study was to characterize the innate and humoral immune responses induced by a S. aureus CP5 whole-cell or lysate vaccine, formulated with ISCOM Matrix after immunization of pregnant heifers. Both immunogens stimulated strong humoral immune responses in blood and milk, raising antibodies that increased opsonic capacity. Lysate formulation generated a higher and longer lasting antibody titer and stimulated a higher expression of regulatory and pro-inflammatory cytokines compared with the whole-cell vaccine.
Collapse
|
33
|
Berenjian S, Hu K, Abedi-Valugerdi M, Hassan M, Bashir Hassan S, Morein B. The nanoparticulate Quillaja saponin KGI exerts anti-proliferative effects by down-regulation of cell cycle molecules in U937 and HL-60 human leukemia cells. Leuk Lymphoma 2013; 55:1618-24. [PMID: 24138332 DOI: 10.3109/10428194.2013.853301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer cells are characterized by uncontrolled replication involving loss of control of cyclin dependent kinases (CDKs) and cyclins, and by abolished differentiation. In this study we introduce KGI, which is a nanoparticle with a Quillaja saponin as an active molecule. By the use of RNA array analysis and confirmation at the protein level, we show that KGI affects myeloid leukemia cells (in particular, the U937 monoblast cancer cell) by the following mechanisms: (A) ceasing cell replication via proteasome degradation, (B) down-regulation of key molecules at check points between G1/S and G2/M phases, (C) reduction of thymidine kinase activity, followed by (D) exit to differentiation and production of interleukin-8 (IL-8), eventually leading to apoptosis. Leukemia cell lines (U937 and HL-60 cells) were exposed to KGI for 8 h, after which the drug was removed. The cancer cells did not revert to replication over the following 10 days. Thus our findings suggest that the nanoparticle KGI inhibits proliferation and promotes differentiation in leukemic cells by interfering with the cell cycle process.
Collapse
|
34
|
Fossum C, Hjertner B, Ahlberg V, Charerntantanakul W, McIntosh K, Fuxler L, Balagunaseelan N, Wallgren P, Lövgren Bengtsson K. Early inflammatory response to the saponin adjuvant Matrix-M in the pig. Vet Immunol Immunopathol 2013; 158:53-61. [PMID: 23988177 DOI: 10.1016/j.vetimm.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 02/07/2023]
Abstract
The early inflammatory response to Matrix-M was evaluated in pigs. Adverse reactions measured as body temperature, appetite, activity level and reaction at the site of injection were not observed after s.c. injection with three doses of the adjuvant (75, 100 or 150μg) into one week old piglets. Analyses of the immediate cytokine response of PBMC after in vitro exposure to Matrix-M (AbISCO-100(®)) revealed only a low expression of mRNA for tumour necrosis factor-α (p<0.05) after 6h incubation. Histological examination revealed an infiltration of leukocytes, haemorrhage and necrosis in muscle 24h after i.m. injection of 150μg Matrix-M in pigs aged eleven weeks. At this time, different grades of reactive lymphoid hyperplasia were recorded in the draining lymph node that was enlarged in three of these six pigs injected with Matrix-M. The global transcriptional response at the site of injection and in the draining lymph node was analyzed using Affymetrix GeneChip Porcine Genome Array. A significant enrichment of gene signatures for the cell types described as "myeloid cells" and "plasmacytoid dendritic cells" was observed at the site of injection in Matrix-M injected pigs compared with pigs injected with saline. A number of genes encoding cytokines/chemokines or their receptors were upregulated at the injection site as well as in the draining lymph node. In the draining lymph node, a majority of the upregulated genes were interferon-regulated genes (IRGs). The expression of IFN-β, but not IFN-α, was increased in the draining lymph nodes of a majority of the pigs exposed to Matrix-M. These IFN-β expressing pigs also expressed increased levels of osteopontin (OPN) or stimulator of interferon genes (STING), two factors known to facilitate the expression of type I IFNs in response to viral infection. Thus, Matrix-M does not appear to induce any harmful inflammatory response in piglets whilst contributing to the innate immunity by activating the type I IFN system, possibly through several alternative signalling pathways.
Collapse
Affiliation(s)
- Caroline Fossum
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden.
| | - Bernt Hjertner
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Viktor Ahlberg
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Wasin Charerntantanakul
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden; Research Laboratory for Immunity Enhancement in Humans and Domestic Animals Maejo University, Chiang Mai 50290, Thailand
| | - Kathy McIntosh
- Department of Veterinary Microbiology, University of Saskatchewan, Western College of Veterinary Medicine, Saskatoon, Canada
| | - Lisbeth Fuxler
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Navisraj Balagunaseelan
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Per Wallgren
- National Veterinary Institute, SVA, SE-751 89 Uppsala, Sweden
| | | |
Collapse
|
35
|
Hernandez-Medrano JH, Williams RW, van Drunen Littel-van den Hurk S, Peters AR, Hannant D, Campbell BK, Webb R. Early postnatal immunisation against gonadotrophin-releasing hormone induces a high but differential immune response in heifer calves. Res Vet Sci 2013; 95:472-9. [PMID: 23778305 DOI: 10.1016/j.rvsc.2013.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate endocrinological and immunological effects of early postnatal immunisation against gonadotrophin-releasing hormone (GnRH) in heifer calves, as similar treatment in sheep provokes long-term immunocastration. Heifer calves were injected with either a construct of GnRH - bovine herpes virus 1 glycoprotein D (BHV1 gD; n=9) or saline (n=9) at 2, 6 and 13.5 weeks of age. Antibody (GnRH and carrier) and endocrine responses to immunisation were measured twice monthly (FSH and progesterone) or during intensive sampling regimes (LH). Early postnatal immunisation against GnRH induced a high, but variable, antibody response against both GnRH and carrier. Based on antibody responses, animals were divided into high-titre (HT, n=5) and low-titre (LT, n=4). Occurring mainly in HT, a further peak in anti-GnRH antibodies, stimulated independently of the carrier, was observed at 23 weeks of age, with antibody titres ≥ 10% binding for ≈ 9 weeks post-peak. Conversely immunisation had only temporary, reversible effects on reproductive function, not affecting age at puberty. We hypothesise that the newly generated antibody measured 10 weeks after the final immunisation resulted from antigenic stimulation and immunological memory cell activation to an endogenous GnRH release. This outcome offers an opportunity for further manipulation of reproductive function based on modulation of GnRH secretion and activity where long-term immunological memory may contribute to durable endocrine effects.
Collapse
Affiliation(s)
- J H Hernandez-Medrano
- Division of Animal Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
36
|
Hageman JHJ, Hooyenga P, Diersen-Schade DA, Scalabrin DMF, Wichers HJ, Birch EE. The impact of dietary long-chain polyunsaturated fatty acids on respiratory illness in infants and children. Curr Allergy Asthma Rep 2012; 12:564-73. [PMID: 23001718 PMCID: PMC3492691 DOI: 10.1007/s11882-012-0304-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that intake of long-chain polyunsaturated fatty acids (LCPUFA), especially omega-3 LCPUFA, improves respiratory health early in life. This review summarizes publications from 2009 through July 2012 that evaluated effects of fish, fish oil or LCPUFA intake during pregnancy, lactation, and early postnatal years on allergic and infectious respiratory illnesses. Studies during pregnancy found inconsistent effects in offspring: two showed no effects and three showed protective effects of omega-3 LCPUFA on respiratory illnesses or atopic dermatitis. Two studies found that infants fed breast milk with higher omega-3 LCPUFA had reduced allergic manifestations. Earlier introduction of fish improved respiratory health or reduced allergy in four studies. Three randomized controlled trials showed that providing LCPUFA during infancy or childhood reduced allergy and/or respiratory illness while one found no effect. Potential explanations for the variability among studies and possible mechanisms of action for LCPUFA in allergy and respiratory disease are discussed.
Collapse
Affiliation(s)
- Jeske H. J. Hageman
- Human Nutrition Department, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Pieter Hooyenga
- Mead Johnson Nutrition, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | | | | | - Harry J. Wichers
- Wageningen University Food & Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Eileen E. Birch
- Retina Foundation of the Southwest, 9900 North Central Expressway, Suite 400, Dallas, TX 75231 USA
| |
Collapse
|
37
|
Ganguli K, Walker WA. Treatment of necrotizing enterocolitis with probiotics. Gastroenterol Clin North Am 2012; 41:733-46. [PMID: 23101684 DOI: 10.1016/j.gtc.2012.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating condition characterized by diffuse intestinal inflammation and necrosis in preterm infants. It is the most common gastrointestinal emergency in the neonatal intensive care unit and is associated with significant morbidity and mortality. Primary risk factors include prematurity and low birth weight. Although the pathogenesis of NEC is complex and not entirely understood, it is known that an interplay between immature intestinal immune responses and the process of bacterial colonization is required for the development of this disease.
Collapse
Affiliation(s)
- Kriston Ganguli
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology, Massachusetts General Hospital for Children, Harvard Medical School, Charlestown, MA 02129-4404, USA.
| | | |
Collapse
|
38
|
Immune response of heifers against a Staphylococcus aureus CP5 whole cell vaccine formulated with ISCOMATRIX™ adjuvant. J DAIRY RES 2012; 80:72-80. [PMID: 23171590 DOI: 10.1017/s0022029912000593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The shortcomings of Staphylococcus aureus vaccines to control bovine mastitis have been attributed to insufficient capacity of the vaccines to induce opsonizing antibodies and to stimulate cellular immune responses. Types of antigen, administration route and adjuvant used in a vaccine formulation have been identified as critical factors for the development of opsonic antibodies. Current commercially available vaccines for Staph. aureus bovine mastitis control are formulated with Al(OH)3 and oil-based adjuvants. The aim of this study was to evaluate the immune response of heifers immunized with a Staph. aureus CP5 whole cell vaccine formulated either with Al(OH)3 or ISCOMATRIX™. Twenty primigravid Holstein dairy heifers in the last trimester of gestation were immunized either with a vaccine formulated with ISCOMATRIX™ (n = 6), Al(OH)3 (n = 7), or saline solution (placebo) (n = 7). Immunization was carried out 38 and 10 d before calving. Heifers vaccinated with Staph. aureus adjuvanted with ISCOMATRIX™ responded with significantly higher levels of anti-bacterin and anti-CP5 IgG and IgG2 in sera than animals in the Al(OH)3 or control groups. Animals in the ISCOMATRIX™ group responded with significantly higher anti-bacterin specific IgG in whey than animals in the Al(OH)3 and control groups, detected from the first week post calving until 60 d of lactation. Sera from animals inoculated with Staph. aureus in ISCOMATRIX™, obtained 7 d post partum, significantly increased both the number of neutrophils ingesting bacteria and the number of bacteria being ingested by the neutrophils, compared with sera obtained from heifers vaccinated with Al(OH)3 or non-vaccinated controls. These features coupled to safety of the ISCOMATRIX™ formulation, warrant additional studies.
Collapse
|
39
|
Development of Immunologic Assays to Measure Response in Horses Vaccinated with Xenogeneic Plasmid DNA Encoding Human Tyrosinase. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Schmied J, Hamilton K, Rupa P, Oh SY, Wilkie B. Immune response phenotype induced by controlled immunization of neonatal pigs varies in type 1:type 2 bias. Vet Immunol Immunopathol 2012; 149:11-9. [DOI: 10.1016/j.vetimm.2012.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/29/2012] [Accepted: 05/22/2012] [Indexed: 12/31/2022]
|
41
|
Kodama R, Okazaki T, Sato T, Iwashige S, Tanigawa Y, Fujishima J, Moriyama A, Yamashita N, Sasaki Y, Yoshikawa T, Kamimura Y, Maeda H. Age Difference in Morphology and Immunohistology inthe Thymus and Spleen in Crl:CD (SD) Rats. J Toxicol Pathol 2012; 25:55-61. [PMID: 22481860 PMCID: PMC3319772 DOI: 10.1293/tox.25.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 12/13/2011] [Indexed: 01/21/2023] Open
Abstract
We investigated chronological changes in immunohistochemical phenotyping in the thymus and spleen in Crl:CD rats up to the age of about one year. In the thymus, T cells increased markedly from 3 to 4 weeks of age. Proliferating cells also increased markedly at these points. B cells tended towards an increase with age. In the spleen, white pulp increased until 9 weeks of age and remained fairly stable thereafter. In the periarteriolar lymphoid sheath and marginal zone, T cells gradually increased until 9 weeks of age and became almost flat thereafter. In the lymph follicle, T cells increased with age. B cells tended towards an increase with age in all areas of the spleen. It was concluded that development of the thymus was most marked from 3 to 4 weeks of age and that both the thymus and spleen had matured by 9 weeks of age.
Collapse
Affiliation(s)
- Rinya Kodama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima 891-1394, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Vaccines for early-life immunization are a crucial biomedical intervention to reduce global morbidity and mortality, yet their developmental path has been largely ad hoc, empiric, and inconsistent. Immune responses of human newborns and infants are distinct and cannot be predicted from those of human adults or animal models. Therefore, understanding and modeling age-specific human immune responses will be vital to the rational design and development of safe and effective vaccines for newborns and infants.
Collapse
|
43
|
Arnett ALH, Garikipati D, Wang Z, Tapscott S, Chamberlain JS. Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal Administration of Viral Vector. Front Microbiol 2011; 2:220. [PMID: 22065964 PMCID: PMC3207220 DOI: 10.3389/fmicb.2011.00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/16/2011] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.
Collapse
Affiliation(s)
- Andrea L. H. Arnett
- Medical Scientist Training Program, University of Washington School of MedicineSeattle, WA, USA
- Department of Neurology, University of Washington School of MedicineSeattle, WA, USA
| | - Dilip Garikipati
- Department of Neurology, University of Washington School of MedicineSeattle, WA, USA
| | - Zejing Wang
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
| | - Stephen Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington School of MedicineSeattle, WA, USA
- Department of Medicine, University of Washington School of MedicineSeattle, WA, USA
- Department of Biochemistry, University of Washington School of MedicineSeattle, WA, USA
| |
Collapse
|
44
|
Abstract
Necrotizing enterocolitis (NEC) is a common gastrointestinal inflammatory necrosis affecting almost exclusively premature infants usually after oral nutrition has been started, for example, 10 day plus postpartum. Although the pathogenesis is incompletely understood, major risk factors include prematurity and incomplete bacterial colonization. Evidence has been shown that the premature infant because of rapid passage through the birth canal or because of delivery by cesarean section has an inadequate initial ingestion of maternal colonic and vaginal flora and therefore, an inadequate initial colonization with less diversity of bacteria phylla and fewer species of bacteria in the microbiota. As a result, they are more susceptible to environmental pathogens. In addition, prematures have immature intestinal defenses (glycocalyx, tight junctions, innate immune response, etc.) resulting in excessive inflammation in response to luminal stimuli. Recently, we reported that genes mediating the innate inflammatory immune response are developmentally expressed with an increase in toll-like receptors, signaling molecules and transgenic factors and decreased negative regulators of inflammation, which undoubtedly contribute to an excessive inflammatory response. Several clinical studies have suggested that the use of probiotics and ingestion of expressed maternal breast milk containing probiotics can help to stabilize colonization and to reduce the incidence and severity of NEC when given to premature infants at risk. Meta-analyses of multiple small studies strongly suggest a protective effect in the use of probiotics. A multicenter study in Taiwan suggests that Bifidobacteria infantis and Lactobacillus acidophilus in combination may prevent NEC. These meta-analyses suggest that these probiotics should be used in routine care of premature infants. Other clinicians, however, suggest caution, holding out for a single protocol multicenter trial before routine use can be suggested.
Collapse
|
45
|
An overlapping syndrome of allergy and immune deficiency in children. J Allergy (Cairo) 2011; 2012:658279. [PMID: 21918651 PMCID: PMC3171763 DOI: 10.1155/2012/658279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/15/2011] [Accepted: 07/10/2011] [Indexed: 12/13/2022] Open
Abstract
Recurrent airway inflammations in children are an important clinical problem in pediatric practice. An essential challenge is differentiation between allergic background and immune deficiency, which is a difficult task taking into consideration individual predisposition to atopy, immune system maturation in the early childhood, as well as exposition to environmental allergens and microbial antigens. In this paper relationship between selected elements of innate and adaptive immunity, such as pattern-recognition receptors, complement components, dendritic cells, as well as immunoglobulins, and regulatory T lymph cells has been discussed. Particular attention has been paid to these mechanisms of the immune response which, depending on settings and timing of activation, predispose to allergy or contribute to tolerogenic phenotype. In the context of multifactorial conditioning of the innate and adaptive immunity governing the ultimate response and associations between allergy and immune deficiencies, these phenomena should be considered as pathogenetically not precluding, but as an overlapping syndrome.
Collapse
|
46
|
Constitutive high expression of interleukin-4/13A and GATA-3 in gill and skin of salmonid fishes suggests that these tissues form Th2-skewed immune environments. Mol Immunol 2011; 48:1360-8. [DOI: 10.1016/j.molimm.2011.02.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/10/2011] [Accepted: 02/23/2011] [Indexed: 01/10/2023]
|
47
|
Groer MW, Beckstead JW. Multidimensional scaling of multiplex data: human milk cytokines. Biol Res Nurs 2011; 13:289-96. [PMID: 21444331 DOI: 10.1177/1099800411402055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to use multidimensional scaling (MDS) and cluster-analytic techniques to examine how cytokine levels from a large multiplex assay of human milk samples covary. Milk samples were collected at 4-6 weeks postpartum from 57 women and were assayed by Luminex multiplex technology for 20 cytokines, chemokines, and growth factors. The MDS was applied to a proximity-score matrix based on these values. A three-dimensional (3D) space was sufficient to accommodate the configuration of relationships. Cytokines that covaried in their concentrations were assigned similar coordinates and plotted close together in 3D space. Several clusters of cytokines were identified. Since very little is known about the origins and functions of cytokines in milk, this approach may provide new clues that will guide future explorations of origins and functional relationships of the separate clusters. This analytical tool may provide a new approach to understanding the physiology of milk cytokines and may be generalizable to multiplex data in general.
Collapse
Affiliation(s)
- Maureen W Groer
- College of Nursing, University of South Florida, Tampa, FL, USA.
| | | |
Collapse
|
48
|
de Brito CA, Goldoni AL, Sato MN. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response. Immunotherapy 2011; 1:883-95. [PMID: 20636030 DOI: 10.2217/imt.09.38] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.
Collapse
Affiliation(s)
- Cyro Alves de Brito
- Laboratório de Dermatologia e Imunodeficiência, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical - Prédio II, Av Dr Enéas de Carvalho Aguiar 500, 05403-000 São Paulo, Brazil
| | | | | |
Collapse
|
49
|
Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations. Vaccine 2011; 29:1595-604. [PMID: 21215343 DOI: 10.1016/j.vaccine.2010.12.083] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/04/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022]
Abstract
A balanced or Th-1 type immune response is required for effective clearance of many pathogens such as Bordetella pertussis, the causative agent of whooping cough. Since current acellular pertussis vaccines induce limited Th-1 type immune responses, novel vaccine formulations are needed to induce protective immunity in the infant in the earliest stages of life. Here, we developed a novel vaccine platform consisting of genetically detoxified pertussis toxoid (PTd) with multiple adjuvant components including CpG oligodeoxynucleotides, polyphosphazenes, and cationic innate defence regulator peptides. Co-formulation with these immunomodulators increased the serum IgG2a and IgG1 antibody titres in adult mice when compared to immunization with each of the selected adjuvants or immunization with PTd antigen alone. When used in combination, these adjuvants were able to induce a superior IgG2a response in both adult and neonatal mice, when compared to antigen alone or commercial vaccines. The increased response observed when using this adjuvant formulation was also initiated earlier and, moreover, was maintained over a period of greater than 22 months. The adjuvant platform also showed an ability to induce an immune response in a greater number of mice as compared to antigen alone. This suggests that this uniquely adjuvanted vaccine induces a stronger and more balanced immune response with an earlier onset of this response than vaccination with PTd antigen alone.
Collapse
|
50
|
Role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J Pediatr Gastroenterol Nutr 2010; 51:262-73. [PMID: 20639773 PMCID: PMC2932839 DOI: 10.1097/mpg.0b013e3181e1a114] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Therapy with broad-spectrum antibiotics is a common practice for premature infants. This treatment can reduce the biodiversity of the fecal microbiota and may be a factor in the cause of necrotizing enterocolitis. In contrast, probiotic treatment of premature infants reduces the incidence of necrotizing enterocolitis. We hypothesized that 1 mechanism for these observations is the influence of bacteria on postnatal development of the mucosal immune system. MATERIALS AND METHODS Expression of immune molecules and microbial sensors was investigated in the postnatal mouse gastrointestinal tract by real-time polymerase chain reaction. Subsequently, 2-week-old specific pathogen-free and microbial-reduced (MR; antibiotic treated) mice were compared for immune molecule and microbial sensor expression, mesenteric lymph node T-cell numbers and activation, intestinal barrier function/permeability, systemic lymphocyte numbers, and T-cell phenotype commitment. RESULTS Toll-like receptor 2, 4, and 5 expression was highest in 2-week-old specific pathogen-free mice, and this expression was decreased in MR mice. There was no difference in intestinal tight-junctional function, as evaluated by fluorescein isothiocyanate-dextran uptake, but MR mice had increased bacterial translocation across the intestinal epithelial barrier. MR mice had significantly fewer splenic B cells and mesenteric lymph node CD4+ T cells, but there were normal numbers of splenic T cells. These systemic T cells from MR mice produced more interleukin-4 and less interferon-gamma and IL-17, indicative of maintenance of the fetal, T-helper cell type 2 phenotype. CONCLUSIONS The present study shows that intestinal commensal microbiota have an influence on early postnatal immune development. Determining specific bacteria and/or bacterial ligands critical for this development could provide insight into the mechanisms by which broad-spectrum antibiotics and/or probiotic therapy influence the development of the mucosal immune system and mucosal-related diseases.
Collapse
|