1
|
Toma C, Popa R, Ciobanu L, Baldea I, Amorim I, Bochynska D, Wolfe A, Negoescu A, Gal C, Taulescu M. Overexpression of IL-6 and STAT3 may provide new insights into ovine pulmonary adenocarcinoma development. BMC Vet Res 2025; 21:29. [PMID: 39833798 PMCID: PMC11744984 DOI: 10.1186/s12917-024-04429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Ovine pulmonary adenocarcinoma (OPA) is caused by Jaagsiekte sheep retrovirus (JSRV) and is considered an important potential animal model for human lung cancer. The precise mechanisms of OPA oncogenesis are still uncertain. The transcription factor signal transducer and activator of transcription 3 (STAT3) is activated by interleukin-6 (IL-6) in many cancers, but this aspect is unknown in OPA. We therefore aimed to evaluate the expression of IL-6 and STAT3 in OPA for its potential role in pulmonary carcinogenesis. RESULTS Lung tissues from 9 grossly normal and JRSV-negative sheep and 20 cases of JSRV-positive OPA sheep were included in the study. Tissue samples were stained with antibodies against IL-6, STAT3, and JSRV-MA. IL-6 and STAT3 were further quantified in both groups using Western Blot (WB). Immunohistochemically, IL‑6 was expressed in stromal, inflammatory, and epithelial cells in all cases of OPA, while STAT3 immunoexpression was restricted to epithelial cells. In the OPA group, the percentage of immunolabelled cells for STAT3 accounted for a mean value of 96%. Using the H-SCORE method, 95% of cases were considered positive for STAT3 expression. Control tissues showed multifocal and weak immunoexpression for both markers. Using WB analyses, a highly significant amount of both IL-6 (p = 0.0078) and STAT3 (p < 0.0001) proteins were present in lung neoplasms, by comparison to the control lungs. CONCLUSIONS Our data showed overexpression of IL-6 and STAT3 in lung tissues from OPA compared to lungs from JSRV-negative sheep. These results suggest a potential role of IL6-STAT3 in OPA carcinogenesis.
Collapse
Affiliation(s)
- Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Roxana Popa
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lidia Ciobanu
- Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Irina Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Diana Bochynska
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Alan Wolfe
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Andrada Negoescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu Gal
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Synevovet laboratory, Bucharest, Romania
| | - Marian Taulescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Hodor D, Toma C, Negoescu A, Olech M, Gordon D, Cătoi C, Taulescu M. Retroviral coinfection (Jaagsiekte and Maedi-Visna viruses) in sheep with pulmonary tumors in Transylvania (Romania): retrospective study on 82 cases. Front Vet Sci 2024; 11:1457971. [PMID: 39286598 PMCID: PMC11402891 DOI: 10.3389/fvets.2024.1457971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is an important viral-induced neoplasia in sheep caused by exogenous Jaagsiekte sheep retrovirus (exJSRV). Coinfection of exJSRV and Maedi-Visna virus (MVV) is reported in OPA cases, but its worldwide distribution and significance on lung pathology is not yet completely understood. This study aimed to investigate the MVV coinfection rate in 82 exJSRV-related OPA cases, and their pathological effects on lung parenchyma in slaughtered sheep in Transylvania (Romania). On gross examination, classical form of OPA was identified in 92.7%; no changes consisting with MVV interstitial pneumonia were identified in the included cases. The most common histological type of OPA was acinar (58.5%) and the myxoid growths were found in 18 cases. The exJSRV and MMV coinfection rate in examined sheep was 47.6% (39/82). The assessment of perineoplastic areas from coinfected animals, revealed interstitial lymphoplasmacytic infiltrates in all cases, lymphoid hyperplasia in 60.6% cases (20/33) and fibromuscular hyperplasia in 63.7% (21/33). This is the first report providing new data on distribution of OPA coexisting with MVV infection in slaughtered sheep in Romania. We consider that the OPA and MVV coinfection may play an important role on the severity of ovine chronic pulmonary diseases and further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Dragoș Hodor
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Corina Toma
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Andrada Negoescu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Monika Olech
- Department of Pathology, National Veterinary Research Institute, Puławy, Poland
| | - Dumitru Gordon
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Cornel Cătoi
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Marian Taulescu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Duan X, Shi X, Zhang P, Du X, Chen S, Zhang L, Li H, Zhang Y, Wang J, Ding Y, Liu S. Identification of concurrent infection with Jaagsiekte sheep retrovirus and maedi-visna virus in China. J Vet Sci 2024; 25:e61. [PMID: 39231786 PMCID: PMC11450398 DOI: 10.4142/jvs.24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 09/06/2024] Open
Abstract
IMPORTANCE Ovine pulmonary adenomatosis (OPA) and maedi-visna disease (MVD) are chronic and progressive infectious diseases in sheep caused by Jaagsiekte sheep retrovirus (JSRV) and maedi-visna virus (MVV), respectively. OBJECTIVE To investigate the pathological changes and conduct viral gene analysis of OPA and MVD co-occurrence in Inner Mongolia, China. METHODS Using gross pathology, histopathology, immunohistochemistry, ultrastructural pathology, PCR, and sequence analysis, we investigated the concurrent infection of JSRV and MVV in 319 Dorper rams slaughtered in a private slaughterhouse in Inner Mongolia, in 2022. RESULTS Of the 319 rams included, 3 showed concurrent JSRV and MVV infection. Gross lung pathology showed diffuse enlargement, consolidation, and greyish-white miliary nodules on the lung surface; the trachea was filled with a white foamy fluid; hilar and mediastinal lymph nodes were significantly enlarged. Histopathology results revealed typical OPA and MVD lesions in the lung tissue. Immunohistochemical results were positive for JSRV envelope protein (Env) in the tumor cells and MVV CA in alveolar macrophages. Transmission electron microscopy showed several virions and autophagosomes in the lung tissue, severely damaged mitochondria, and the induced mitophagy. Nucleotide sequences obtained for JSRV env and MVV gag showed the highest homology with the Inner Mongolian strains of JSRV env (JQ837489) and MVV gag (MW248464). CONCLUSIONS AND RELEVANCE Our study confirmed that OPA and MVD co-occurrence and identified the pathological changes in Inner Mongolia, China, thereby providing references for the identification of concurrent JSRV and MVV infections.
Collapse
Affiliation(s)
- Xujie Duan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Xiaona Shi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Pei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Xiaoyue Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Sixu Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Liang Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Huiping Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Jinling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Yulin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China.
| |
Collapse
|
4
|
Chen S, Zhang P, Duan X, Bao A, Wang B, Zhang Y, Li H, Zhang L, Liu S. Lesion Localization and Pathological Diagnosis of Ovine Pulmonary Adenocarcinoma Based on MASK R-CNN. Animals (Basel) 2024; 14:2488. [PMID: 39272273 PMCID: PMC11393988 DOI: 10.3390/ani14172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a contagious lung tumour caused by the Jaagsiekte Sheep Retrovirus (JSRV). Histopathological diagnosis is the gold standard for OPA diagnosis. However, interpretation of traditional pathology images is complex and operator dependent. The mask regional convolutional neural network (Mask R-CNN) has emerged as a valuable tool in pathological diagnosis. This study utilized 54 typical OPA whole slide images (WSI) to extract 7167 typical lesion images containing OPA to construct a Common Objects in Context (COCO) dataset for OPA pathological images. The dataset was categorized into training and test sets (8:2 ratio) for model training and validation. Mean average specificity (mASp) and average sensitivity (ASe) were used to evaluate model performance. Six WSI-level pathological images (three OPA and three non-OPA images), not included in the dataset, were used for anti-peeking model validation. A random selection of 500 images, not included in the dataset establishment, was used to compare the performance of the model with assessment by pathologists. Accuracy, sensitivity, specificity, and concordance rate were evaluated. The model achieved a mASp of 0.573 and an ASe of 0.745, demonstrating effective lesion detection and alignment with expert annotation. In Anti-Peeking verification, the model showed good performance in locating OPA lesions and distinguished OPA from non-OPA pathological images. In the random 500-image diagnosis, the model achieved 92.8% accuracy, 100% sensitivity, and 88% specificity. The agreement rates between junior and senior pathologists were 100% and 96.5%, respectively. In conclusion, the Mask R-CNN-based OPA diagnostic model developed for OPA facilitates rapid and accurate diagnosis in practical applications.
Collapse
Affiliation(s)
- Sixu Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Pei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Xujie Duan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Anyu Bao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Buyu Wang
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Huiping Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Liang Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
5
|
Cousens C, Meehan J, Collie D, Wright S, Chang Z, Todd H, Moore J, Grant L, Daniel CR, Tennant P, Ritchie A, Nixon J, Proudfoot C, Guido S, Brown H, Gray CD, MacGillivray TJ, Clutton RE, Greenhalgh SN, Gregson R, Griffiths DJ, Spivey J, Storer N, Eckert CE, Gray M. Tracking Ovine Pulmonary Adenocarcinoma Development Using an Experimental Jaagsiekte Sheep Retrovirus Infection Model. Genes (Basel) 2024; 15:1019. [PMID: 39202379 PMCID: PMC11353984 DOI: 10.3390/genes15081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is an infectious, neoplastic lung disease of sheep that causes significant animal welfare and economic issues throughout the world. Understanding OPA pathogenesis is key to developing tools to control its impact. Central to this need is the availability of model systems that can monitor and track events after Jaagsiekte sheep retrovirus (JSRV) infection. Here, we report the development of an experimentally induced OPA model intended for this purpose. Using three different viral dose groups (low, intermediate and high), localised OPA tumour development was induced by bronchoscopic JSRV instillation into the segmental bronchus of the right cardiac lung lobe. Pre-clinical OPA diagnosis and tumour progression were monitored by monthly computed tomography (CT) imaging and trans-thoracic ultrasound scanning. Post mortem examination and immunohistochemistry confirmed OPA development in 89% of the JSRV-instilled animals. All three viral doses produced a range of OPA lesion types, including microscopic disease and gross tumours; however, larger lesions were more frequently identified in the low and intermediate viral groups. Overall, 31% of JSRV-infected sheep developed localised advanced lesions. Of the sheep that developed localised advanced lesions, tumour volume doubling times (calculated using thoracic CT 3D reconstructions) were 14.8 ± 2.1 days. The ability of ultrasound to track tumour development was compared against CT; the results indicated a strong significant association between paired CT and ultrasound measurements at each time point (R2 = 0.799, p < 0.0001). We believe that the range of OPA lesion types induced by this model replicates aspects of naturally occurring disease and will improve OPA research by providing novel insights into JSRV infectivity and OPA disease progression.
Collapse
Affiliation(s)
- Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK; (C.C.); (H.T.); (J.M.); (D.J.G.)
| | - James Meehan
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - David Collie
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Steven Wright
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Ziyuan Chang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Helen Todd
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK; (C.C.); (H.T.); (J.M.); (D.J.G.)
| | - Jo Moore
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK; (C.C.); (H.T.); (J.M.); (D.J.G.)
| | - Lynn Grant
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Carola R. Daniel
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Peter Tennant
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Adrian Ritchie
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - James Nixon
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Chris Proudfoot
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Stefano Guido
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Helen Brown
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Calum D. Gray
- Edinburgh Imaging Facility, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Tom J. MacGillivray
- Centre for Clinical Brain Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK;
| | - R. Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Stephen N. Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| | - David J. Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK; (C.C.); (H.T.); (J.M.); (D.J.G.)
| | - James Spivey
- Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc., One Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA; (J.S.); (N.S.); (C.E.E.)
| | - Nicole Storer
- Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc., One Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA; (J.S.); (N.S.); (C.E.E.)
| | - Chad E. Eckert
- Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc., One Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA; (J.S.); (N.S.); (C.E.E.)
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Edinburgh EH25 9RG, UK; (J.M.); (D.C.); (S.W.); (Z.C.); (L.G.); (C.R.D.); (P.T.); (A.R.); (J.N.); (C.P.); (S.G.); (H.B.); (R.E.C.); (S.N.G.); (R.G.)
| |
Collapse
|
6
|
Ortega J, Corpa JM, Castillo D, Murphy BG. Pathological Spectrum of Ovine Pulmonary Adenocarcinoma in Small Ruminants: A Focus on the Mixed Form. Animals (Basel) 2023; 13:2828. [PMID: 37760228 PMCID: PMC10525357 DOI: 10.3390/ani13182828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a contagious respiratory tumor of small ruminants, manifesting in chronic weight loss and respiratory failure. Infection with the betaretrovirus jaagsiekte sheep retrovirus (JSRV) is the cause of OPA. Here, we describe the gross and microscopic features of twenty-six sheep and one goat with naturally occurring JSRV-associated OPA. All the animals included in this study had pulmonary lesions morphologically consistent with OPA, but the majority of the observed lesions demonstrated features of both the classical and the atypical form of OPA, and were, therefore, classified grossly as mixed. The gross lesions were located mainly in the cranial pulmonary lobes, were multifocal to coalescing, variable in number and size, flat to slightly raised, firm, and white to grey. Histologically, the cases were classified according to the predominant architectural patterns as lepidic, papillary, acinar, or mixed; the mixed histological pattern was the most prevalent. The aim of this study was to describe the gross and microscopic spectrum of OPA in naturally infected small ruminants from Spain. The mixed form of OPA is less commonly reported, and can be confused with other concurrent pulmonary pathologies (such as BALT hyperplasia in SRLV-associated pneumonia or lungworm granulomas).
Collapse
Affiliation(s)
- Joaquín Ortega
- Pathology Group, PASAPTA, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Av. Seminario s/n, Moncada, 46113 Valencia, Spain;
| | - Juan M. Corpa
- Pathology Group, PASAPTA, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Av. Seminario s/n, Moncada, 46113 Valencia, Spain;
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA; (D.C.); (B.G.M.)
| | - Brian G. Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA; (D.C.); (B.G.M.)
| |
Collapse
|
7
|
Fomsgaard AS, Tahas SA, Spiess K, Polacek C, Fonager J, Belsham GJ. Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System. Viruses 2023; 15:1399. [PMID: 37376698 DOI: 10.3390/v15061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human-animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time.
Collapse
Affiliation(s)
- Anna S Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | | | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| |
Collapse
|
8
|
Neoplasms in Domestic Ruminants and Swine: A Systematic Literature Review. Vet Sci 2023; 10:vetsci10020163. [PMID: 36851467 PMCID: PMC9967503 DOI: 10.3390/vetsci10020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Due to the limited information and lack of studies on neoplasms in domestic ruminants, i.e., cattle, sheep, and goats, and domestic swine, the objective of the present study was to systematically review the scientific literature to verify the occurrence, type, organ system, and organs most affected by neoplasms in these animals. METHODS The recommendations of the PRISMA methodology were followed for the elaboration of this study. The research consisted of a systematic review of neoplasms in domestic cattle, sheep, goats, and swine. RESULTS The number of neoplasms found was 1873. The most affected organ system was the integumentary system with 35.0%, followed in descending order by the alimentary system with 16.90%, the hematopoietic system with 13.50%, the special senses (i.e., eyes and ears) with 10.51%, the female and male genital systems with 7.31%, the urinary system with 4.38%, the liver and biliary system with 3.152%, the endocrine glands with 3.91%, the respiratory system with 2.67%, the nervous system with 2.35%, bones and joints with 0.43%, muscles and tendons with 0.37%, the cardiovascular system with 0.21%, and the pancreas with 0.16%. Of the animals with neoplasms studied, cattle were affected in 69.80% of cases, goats in 10.52%, sheep in 10.46%, and swine in 9.18%. In all species, the most frequent neoplasms were squamous cell carcinomas in ruminants, while melanoma was the most frequent in swine. Few studies carried out in slaughterhouses were found, and the existing ones referred to cattle and swine. No data were found on economic losses with carcass condemnation. CONCLUSIONS In view of the above, it is necessary to carry out extensive and detailed studies that provide knowledge about the impact of neoplasms on the production and condemnation of carcasses in domestic cattle, sheep, goats, and swine and the respective risk factors.
Collapse
|
9
|
A Combined Approach for Detection of Ovine Small Ruminant Retrovirus Co-Infections. Viruses 2023; 15:v15020376. [PMID: 36851589 PMCID: PMC9958757 DOI: 10.3390/v15020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Jaagsiekte retrovirus (JSRV)-induced ovine pulmonary adenocarcinoma (OPA) is an important ovine respiratory disease in Switzerland. Furthermore, ovine lungs with OPA frequently exhibited lesions suggestive of maedi-visna virus (MVV) or caprine arthritis encephalitis virus (CAEV) infection, indicating that co-morbidities might occur. Lungs and pulmonary lymph nodes were sampled from suspected OPA cases, inflammatory lung lesions and control lungs (total of 110 cases). Tissues were (a) processed for histology and immunohistochemistry (IHC), and (b) underwent DNA extraction and real-time PCR for JSRV, MVV and CAEV. Peptide sequences were used to generate virus-specific customized polyclonal antibodies. PCR-positive OPA cases and formalin-fixed and paraffin-embedded MVV- and CAEV-infected synovial cell pellets served as positive controls. Fifty-two lungs were histologically diagnosed with OPA. Histological evidence of MVV/CAEV infection was detected in 25 lungs. JSRV was detected by PCR in 84% of the suspected OPA cases; six were co-infected with MVV and one with CAEV. MVV was detected by PCR in 14 cases, and four lungs were positive for CAEV. Three lungs had MVV/CAEV co-infection. In IHC, JSRV was detected in 91% of the PCR-positive cases, whereas MVV and CAEV immunoreactivity was seen in all PCR-positive lungs. Although PCR showed a higher sensitivity compared to IHC, the combined approach allows for investigations on viral cell tropism and pathogenic processes in co-morbidities, including their potential interdependency. Furthermore, an immunohistochemical tool for specific differentiation of MVV and/or CAEV infection was implemented.
Collapse
|
10
|
Kessler SE, Tsangaras K, Rasoloharijaona S, Radespiel U, Greenwood AD. Long-term host-pathogen evolution of endogenous beta- and gammaretroviruses in mouse lemurs with little evidence of recent retroviral introgression. Virus Evol 2022; 9:veac117. [PMID: 36632481 PMCID: PMC9825726 DOI: 10.1093/ve/veac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Madagascar's flora and fauna have evolved in relative isolation since the island split from the African and Indian continents. When the last common ancestors of lemurs left Africa between 40 and 70 million years ago, they carried a subset of the viral diversity of the mainland population within them, which continued to evolve throughout the lemur radiation. Relative to other primate radiations, we know very little about the past or present viral diversity of lemurs, particularly mouse lemurs. Using high-throughput sequencing, we identified two gammaretroviruses and three betaretroviruses in the genomes of four species of wild mouse lemurs. The two gammaretroviruses and two betaretroviruses have not previously been described. One betaretrovirus was previously identified. All identified viruses are present in both Lorisiformes and Lemuriformes but absent from haplorrhine primates. The estimated ages of these viruses are consistent with the estimated divergence dates of the host lineages, suggesting they colonized the lemur genome after the Haplorrhine-Strepsirrhine split, but before the Lorisiformes-Lemuriformes split and before the colonization of Madagascar. The viral phylogenies connect multiple lineages of retroviruses from non-lemur and non-Madagascar-native species, suggesting substantial cross-species transmission occurred deep in the primate clade prior to its geographic dispersal. These phylogenies provide novel insights into known retroviral clades. They suggest that the origin of gammaretroviruses in rodents or bats may be premature and that the Jaagsiekte sheep virus clade may be older and more broadly distributed among mammals than previously thought.
Collapse
Affiliation(s)
| | - Kyriakos Tsangaras
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, Berlin 10315, Germany,Department of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, CY-2417, P.O. Box 24005, Nicosia, CY-1700, Cyprus
| | - Solofonirina Rasoloharijaona
- Faculty of Science, Technology and Environment, University of Mahajanga, 5 Georges V Street - Building KAKAL Mahajanga Be - Po. Box 652 , Mahajanga 401, Madagascar
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, Hannover 30559, Germany
| | | |
Collapse
|
11
|
Mahmoud NA, Elshafei AM, Almofti YA. A novel strategy for developing vaccine candidate against Jaagsiekte sheep retrovirus from the envelope and gag proteins: an in-silico approach. BMC Vet Res 2022; 18:343. [PMID: 36085036 PMCID: PMC9463060 DOI: 10.1186/s12917-022-03431-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Sheep pulmonary adenocarcinoma (OPA) is a contagious lung cancer of sheep caused by the Jaagsiekte retrovirus (JSRV). OPA typically has a serious economic impact worldwide. A vaccine has yet to be developed, even though the disease has been globally spread, along with its complications. This study aimed to construct an effective multi-epitopes vaccine against JSRV eliciting B and T lymphocytes using immunoinformatics tools. RESULTS The designed vaccine was composed of 499 amino acids. Before the vaccine was computationally validated, all critical parameters were taken into consideration; including antigenicity, allergenicity, toxicity, and stability. The physiochemical properties of the vaccine displayed an isoelectric point of 9.88. According to the Instability Index (II), the vaccine was stable at 28.28. The vaccine scored 56.51 on the aliphatic index and -0.731 on the GRAVY, indicating that the vaccine was hydrophilic. The RaptorX server was used to predict the vaccine's tertiary structure, the GalaxyWEB server refined the structure, and the Ramachandran plot and the ProSA-web server validated the vaccine's tertiary structure. Protein-sol and the SOLPro servers showed the solubility of the vaccine. Moreover, the high mobile regions in the vaccine's structure were reduced and the vaccine's stability was improved by disulfide engineering. Also, the vaccine construct was docked with an ovine MHC-1 allele and showed efficient binding energy. Immune simulation remarkably showed high levels of immunoglobulins, T lymphocytes, and INF-γ secretions. The molecular dynamic simulation provided the stability of the constructed vaccine. Finally, the vaccine was back-transcribed into a DNA sequence and cloned into a pET-30a ( +) vector to affirm the potency of translation and microbial expression. CONCLUSION A novel multi-epitopes vaccine construct against JSRV, was formed from B and T lymphocytes epitopes, and was produced with potential protection. This study might help in controlling and eradicating OPA.
Collapse
Affiliation(s)
- Nuha Amin Mahmoud
- Department of Biochemistry, Genetics and Molecular Biology/ Faculty of Medicine and Surgery, National University, Khartoum, Sudan
| | - Abdelmajeed M Elshafei
- Department of Biochemistry, Genetics and Molecular Biology/ Faculty of Medicine and Surgery, National University, Khartoum, Sudan
| | - Yassir A Almofti
- Department of Biochemistry, Genetics and Molecular Biology/ Faculty of Medicine and Surgery, National University, Khartoum, Sudan.
- Department of Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan.
| |
Collapse
|
12
|
Ding Y, He C, Zhao X, Xue S, Tang J. Adding predictive and diagnostic values of pulmonary ground-glass nodules on lung cancer via novel non-invasive tests. Front Med (Lausanne) 2022; 9:936595. [PMID: 36059824 PMCID: PMC9433577 DOI: 10.3389/fmed.2022.936595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary ground-glass nodules (GGNs) are highly associated with lung cancer. Extensive studies using thin-section high-resolution CT images have been conducted to analyze characteristics of different types of GGNs in order to evaluate and determine the predictive and diagnostic values of GGNs on lung cancer. Accurate prediction of their malignancy and invasiveness is critical for developing individualized therapies and follow-up strategies for a better clinical outcome. Through reviewing the recent 5-year research on the association between pulmonary GGNs and lung cancer, we focused on the radiologic and pathological characteristics of different types of GGNs, pointed out the risk factors associated with malignancy, discussed recent genetic analysis and biomarker studies (including autoantibodies, cell-free miRNAs, cell-free DNA, and DNA methylation) for developing novel diagnostic tools. Based on current progress in this research area, we summarized a process from screening, diagnosis to follow-up of GGNs.
Collapse
Affiliation(s)
- Yizong Ding
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunming He
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Reiji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian Tang,
| |
Collapse
|
13
|
Davies P, Strugnell B, Thomas L, Lovatt F, Willison I. To scan or not to scan? The economics of transthoracic ultrasonography for 'whole-flock' ovine pulmonary adenocarcinoma screening in UK sheep flocks. Vet Rec 2022; 191:e1980. [PMID: 35923073 DOI: 10.1002/vetr.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Transthoracic ultrasonography (TTUS) is currently the only widely used method to diagnose suspected preclinical or subclinical cases of ovine pulmonary adenocarcinoma/Jaagsiekte (OPA) in live sheep. However, the economic impact of using TTUS as a screening test has not been described previously. METHODS Test characteristics for TTUS in a low-prevalence situation were obtained from a previous study of 1074 breeding ewes that underwent TTUS with an experienced operator. The economic impact was modelled using a 10,000-iteration partial budget simulation and probability sensitivity analysis to explore the relative influence of model variables. RESULTS In flocks of this size, culling true-positive and false-positive cases resulted in an estimated median net loss of £4647 (interquartile range: £3537-£6006), determined primarily by replacement ewe value and the cost of TTUS per ewe. CONCLUSION The results of this study emphasise that great caution should be exercised by practitioners when determining if TTUS is appropriate as a screening test for OPA in low-prevalence flocks or subpopulations within a flock, such as younger age groups, where the losses incurred through the inadvertent culling of healthy sheep may significantly exceed any benefit derived from culling preclinical/subclinical cases.
Collapse
Affiliation(s)
- Peers Davies
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | | | - Lian Thomas
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK.,International Livestock Research Institute, Nairobi, Kenya
| | - Fiona Lovatt
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | |
Collapse
|
14
|
Crilly JP. How useful is transthoracic ultrasonography for detecting ovine pulmonary adenocarcinoma in sheep? Vet Rec 2022; 191:119-121. [PMID: 35929713 DOI: 10.1002/vetr.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Cousens C, Ewing DA, McKendrick IJ, Todd H, Dagleish MP, Scott PR. Efficacy of high-throughput transthoracic ultrasonographic screening for on-farm detection of ovine pulmonary adenocarcinoma. Vet Rec 2022; 191:e1797. [PMID: 35788936 DOI: 10.1002/vetr.1797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the efficacy of high-throughput on-farm transthoracic ultrasound (TUS) to screen for ovine pulmonary adenocarcinoma (OPA), an infectious ovine disease of increasing concern. No other routine diagnosis of preclinical OPA is available, or any vaccine or treatment. METHODS More than 80,000 rapid TUS scans were applied on farms with a history of OPA. The TUS results from a convenience sample of 171 TUS-negative and 269 TUS-positive sheep were compared with postmortem histology/immunohistochemistry results, the 'gold standard' reference test for OPA diagnosis. These results, together with new data on within-flock prevalence, allowed estimation of the efficacy of rapid TUS screening to identify OPA (defined as tumours of larger than 1 cm) on-farm. RESULTS The TUS screening had an estimated specificity of 0.998 (95% confidence interval [CI]: 0.998-0.999) and an estimated sensitivity of between 0.76 (95% CI: 0.72-0.79) and 0.99 (95% CI: 0.97-0.99) depending on the presumed false-negative rate applied to the calculation. CONCLUSION High-throughput TUS should be considered for screening to identify individual sheep with OPA and has potential application to indicate flocks at low risk of OPA. However, lower efficacy is likely if conducted by less experienced persons.
Collapse
Affiliation(s)
- Chris Cousens
- Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, The King's Buildings, Edinburgh, UK
| | - Iain J McKendrick
- Biomathematics and Statistics Scotland, The King's Buildings, Edinburgh, UK
| | - Helen Todd
- Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK
| | - Mark P Dagleish
- Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK
| | - Philip R Scott
- Capital Veterinary Services, West Latchfields, Haddington, UK
| |
Collapse
|
16
|
Davies P, Strugnell B, Waine K, Wessels M, Cousens C, Willison I. To scan or not to scan? Efficacy of transthoracic ultrasonography for ovine pulmonary adenocarcinoma screening in a large commercial UK sheep flock. Vet Rec 2022; 191:e1578. [PMID: 35347736 DOI: 10.1002/vetr.1578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/30/2021] [Accepted: 02/18/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transthoracic ultrasonography (TTUS) is currently the only widely used method to diagnose preclinical or subclinical ovine pulmonary adenocarcinoma (OPA) in the live sheep. However, little is known about the test characteristics of TTUS. METHODS One thousand and seventy-four breeding ewes in a flock with evidence of low OPA prevalence underwent TTUS by an experienced operator. Fifty-one sheep were diagnosed with OPA and underwent gross postmortem examination (PME). RESULTS Lesions consistent with OPA were found in only 24% (12/51) of the culled ewes. Thirty-five percent (18/51) of culled ewes had gross lesions consistent with other pulmonary disease and 41% (21/51) had no detectable gross lesions on PME. Histopathology and immunohistochemistry confirmed OPA in only the 12 animals identified with OPA lesions from PME. CONCLUSION Great caution should be exercised when deciding if TTUS is an appropriate screening test in groups of sheep where OPA prevalence may be anticipated to be low. TTUS is a subjective test and thus individual operator ability will influence the sensitivity and specificity of TTUS for OPA diagnosis while the underlying prevalence influences the eventual positive predictive value.
Collapse
Affiliation(s)
- Peers Davies
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | | | | | | | | | | |
Collapse
|
17
|
Mishra S, Kumar P, Dar JA, George N, Singh V, Singh R. Differential immunohistochemical expression of JSRV capsid antigen and tumour biomarkers in classical and atypical OPA: a comparative study. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1610857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sonali Mishra
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, India
| | - Pawan Kumar
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, India
| | - Javeed Ahmad Dar
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, India
| | - Neethu George
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, India
| | - Vidya Singh
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
18
|
Abstract
A large, firm, multi-cystic mammary gland mass grew slowly over 4 y in a 12-y-old, female Finn-Shetland cross sheep. A diagnosis of epithelial malignancy was suspected following fine-needle aspiration cytology at 30 mo after initial observation. The sheep was euthanized when the flock was downsized 18 mo later. A field postmortem examination revealed a large mammary mass, but an absence of metastases to internal organs. Imprint cytology of the mammary tissue supported a benign proliferative process. Histologically, mammary tissue was obliterated by cystic, tubular, and papillary adenomatous arrangements of mammary epithelium, with an anaplastic component, consistent with mammary carcinoma arising in an adenoma. IHC showed strong nuclear positivity to the antibody against progesterone receptor and minimal positivity to the antibody against estrogen receptor alpha expression. Intrinsic subtyping for basal or luminal epithelial origin was attempted through adaptation of companion animal IHC classification panels; high- and low-molecular-weight cytokeratins (CK5, CK8, CK18) failed to stain, but p63 expression for basal epithelium was positive.
Collapse
Affiliation(s)
- Shelley J. Newman
- Veterinary Biomedical Sciences, College of Veterinary
Medicine, Long Island University, Brookville, NY
| | - Stephen A. Smith
- Department of Biomedical Sciences and Pathobiology,
Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Kurt Zimmerman
- Department of Biomedical Sciences and Pathobiology,
Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
19
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Neoplasia-Associated Wasting Diseases with Economic Relevance in the Sheep Industry. Animals (Basel) 2021; 11:ani11020381. [PMID: 33546178 PMCID: PMC7913119 DOI: 10.3390/ani11020381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
We review three neoplastic wasting diseases affecting sheep generally recorded under common production cycles and with epidemiological and economic relevance in sheep-rearing countries: small intestinal adenocarcinoma (SIA), ovine pulmonary adenocarcinoma (OPA) and enzootic nasal adenocarcinoma (ENA). SIA is prevalent in Australia and New Zealand but present elsewhere in the world. This neoplasia is a tubular or signet-ring adenocarcinoma mainly located in the middle or distal term of the small intestine. Predisposing factors and aetiology are not known, but genetic factors or environmental carcinogens may be involved. OPA is a contagious lung cancer caused by jaagsiekte sheep retrovirus (JSRV) and has been reported in most sheep-rearing countries, resulting in significant economic losses. The disease is clinically characterized by a chronic respiratory process as a consequence of the development of lung adenocarcinoma. Diagnosis is based on the detection of JSRV in the tumour lesion by immunohistochemistry and PCR. In vivo diagnosis may be difficult, mainly in preclinical cases. ENA is a neoplasia of glands of the nasal mucosa and is associated with enzootic nasal tumour virus 1 (ENTV-1), which is similar to JSRV. ENA enzootically occurs in many countries of the world with the exception of Australia and New Zealand. The pathology associated with this neoplasia corresponds with a space occupying lesion histologically characterized as a low-grade adenocarcinoma. The combination of PCR and immunohistochemistry for diagnosis is advised.
Collapse
|
21
|
Shi W, Jia S, Guan X, Yao X, Pan R, Huang X, Ma Y, Wei J, Xu Y. A survey of jaagsiekte sheep retrovirus (JSRV) infection in sheep in the three northeastern provinces of China. Arch Virol 2021; 166:831-840. [PMID: 33486631 DOI: 10.1007/s00705-020-04919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022]
Abstract
Ovine pulmonary adenomatosis (OPA) is caused by jaagsiekte sheep retrovirus (JSRV) and is a chronic, progressive, and infectious neoplastic lung disease in sheep, which causes significant economic losses to the sheep industry. Neither a vaccine nor serological diagnostic methods to detect OPA are available. We performed a JSRV infection survey in sheep using blood samples (n = 1,372) collected in the three northeastern provinces of China (i.e., Inner Mongolia, Heilongjiang, and Jilin) to determine JSRV infection status in sheep herds using a real-time PCR assay targeting the gag gene of JSRV. The ovine endogenous retrovirus sequence was successfully amplified in all sheep samples tested (296 from the Inner Mongolia Autonomous Region, 255 from Jilin province, and 821 from Heilongjiang province). Subsequently, we attempted to distinguish exogenous JSRV (exJSRV) and endogenous JSRV (enJSRV) infections in these JSRV-positive samples using a combination assay that identifies a ScaI restriction site in an amplified 229-bp fragment of the gag gene of JSRV and a "LHMKYXXM" motif in the cytoplasmic tail region of the JSRV envelope protein. The ScaI restriction site is present in all known oncogenic JSRVs but absent in ovine endogenous retroviruses, while the "LHMKYXXM" motif is in all known exJSRVs but not in enJSRVs. Interestingly, one JSRV strain (HH13) from Heilongjiang province contained the "LHMKYXXM" motif but not the ScaI enzyme site. Phylogenetic analysis showed that strain HH13 was closely related to strain enJSRV-21 reported in the USA, indicating that HH13 could be an exogenous virus. Our results provide valuable information for further research on the genetic evolution and pathogenesis of JSRV.
Collapse
Affiliation(s)
- Wen Shi
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xueting Guan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xin Yao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ronghui Pan
- Jilin Province Centre for Animal Disease Control and Prevention, Changchun, People's Republic of China
| | - Xinning Huang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yingying Ma
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jing Wei
- Technology Center of Harbin Customs, Harbin, People's Republic of China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
22
|
Toma C, Bâlteanu VA, Tripon S, Trifa A, Rema A, Amorim I, Pop RM, Popa R, Catoi C, Taulescu M. Exogenous Jaagsiekte Sheep Retrovirus type 2 (exJSRV2) related to ovine pulmonary adenocarcinoma (OPA) in Romania: prevalence, anatomical forms, pathological description, immunophenotyping and virus identification. BMC Vet Res 2020; 16:296. [PMID: 32807166 PMCID: PMC7433209 DOI: 10.1186/s12917-020-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ovine pulmonary adenocarcinoma (OPA) is a neoplastic disease caused by exogenous Jaagsiekte Sheep Retrovirus (exJSRV). The prevalence of JSRV-related OPA in Eastern European countries, including Romania is unknown. We aimed to investigate: the prevalence and morphological features of OPA (classical and atypical forms) in the Transylvania region (Romania), the immunophenotype of the pulmonary tumors and their relationships with exJSRV infection. A total of 2693 adult ewes slaughtered between 2017 and 2019 in two private slaughterhouses from Transylvania region (Romania) was evaluated. Lung tumors were subsequently assessed by cytology, histology, immunocytochemistry, immunohistochemistry, electron microscopy and DNA testing. RESULTS Out of 2693 examined sheep, 34 had OPA (1.26% prevalence). The diaphragmatic lobes were the most affected. Grossly, the classical OPA was identified in 88.24% of investigated cases and the atypical OPA in 11.76% that included solitary myxomatous nodules. Histopathology results confirmed the presence of OPA in all suspected cases, which were classified into acinar and papillary types. Myxoid growths (MGs) were diagnosed in 6 classical OPA cases and in 2 cases of atypical form. Lung adenocarcinoma was positive for MCK and TTF-1, and MGs showed immunoreaction for Vimentin, Desmin and SMA; Ki67 expression of classical OPA was higher than atypical OPA and MGs. JSRV-MA was identified by IHC (94.11%) in both epithelial and mesenchymal cells of OPA. Immunocytochemistry and electron microscopy also confirmed the JSRV within the neoplastic cells. ExJSRV was identified by PCR in 97.05% of analyzed samples. Phylogenetic analysis revealed the presence of the exJSRV type 2 (MT809678.1) in Romanian sheep affected by lung cancer and showed a high similarity with the UK strain (AF105220.1). CONCLUSIONS In this study, we confirmed for the first time in Romania the presence of exJSRV in naturally occurring OPA in sheep. Additionally, we described the first report of atypical OPA in Romania, and to the best of our knowledge, in Eastern Europe. Finally, we showed that MGs have a myofibroblastic origin.
Collapse
Affiliation(s)
- Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania
| | - Valentin Adrian Bâlteanu
- Laboratory of Genomics, Biodiversity, Animal Breeding and Molecular Pathology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Septiumiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technology, "C. Crăciun" Electron Microscopy Laboratory, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adrian Trifa
- Department of Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Genetics, "Ion Chiricuta" Cancer Institute, Cluj-Napoca, Romania
| | - Alexandra Rema
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313, Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr.228, 4050-313, Porto, Portugal
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, 400337, Cluj-Napoca, Romania
| | - Roxana Popa
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania
| | - Cornel Catoi
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania
| | - Marian Taulescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372, Cluj-Napoca, Romania.
- Laboratory of Genomics, Biodiversity, Animal Breeding and Molecular Pathology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| |
Collapse
|
23
|
Zong Q, Zhu F, Wu S, Peng L, Mou Y, Miao K, Wang Q, Zhao J, Xu Y, Zhou M. Advanced pneumonic type of lung adenocarcinoma: survival predictors and treatment efficacy of the tumor. TUMORI JOURNAL 2020; 107:216-225. [PMID: 32762285 DOI: 10.1177/0300891620947159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To retrospectively explore the survival predictors and treatment efficacy of advanced pneumonic-type lung adenocarcinoma (P-ADC). METHODS Retrospective analysis of clinical data and survival follow-up was undertaken on 41 patients with advanced P-ADC from January 1, 2009, to April 30, 2019. Analysis on tumor biomarkers such as carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and the cytokeratin-19-fragment (Cyfra21-1) were undertaken. The patients in this study were divided into three groups based on usage of tyrosine kinase inhibitor (TKI): TKI therapy group (including combination with chemotherapy), non-TKI therapy group (chemotherapy alone), and palliative care group. RESULTS More than half of the patients had higher levels of tumor biomarkers and the incidence of NSE was highest (81.8%), followed by CEA (74.4%) and Cyfra21-1 (74.1%). All patients had abnormal findings on chest computed tomography and with adenocarcinoma pathology. The overall survival (OS) time was 10.4 months in TKI group, 8.8 months in the non-TKI group, and 2.1 months in the palliative care group. Patients with higher level of serum Cyfra21-1 had insignificantly shorter survival time compared to those with normal Cyfra21-1 (p = 0.067). TKI therapy and non-TKI therapy provided a better prognosis prediction compared to palliative care. TKI therapy improved prognosis compared to non-TKI therapy. The comprehensive based TKI therapy provided improved OS vs the non-TKI therapy. CONCLUSION TKI-based therapy could improve the prognosis and OS for advanced P-ADC. This study recommends the analysis of EGFR mutations for all patients with advanced P-ADC.
Collapse
Affiliation(s)
- Qiu Zong
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shimin Wu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Mou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Miao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Yang H, Zhang L, Liu S. Determination of reference genes for ovine pulmonary adenocarcinoma infected lung tissues using RNA-seq transcriptome profiling. J Virol Methods 2020; 284:113923. [PMID: 32615131 DOI: 10.1016/j.jviromet.2020.113923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/25/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a globally occurring tumor of lung epithelium which seriously affects the development of sheep farming. In our research, lung tissues of 3 naturally infected OPA individuals and 3 healthy individuals (2-4 years old) were collected. RNA was extracted for transcriptome analysis and reference gene selection. According to transcriptome analysis, 7 candidate reference genes (eukaryotic translation initiation factor 1, EIF1; glyceraldehyde-3-phosphate dehydrogenase, GAPDH; beta-actin, ACTB; GABA Type A receptor-associated protein, GABARAP; activating transcription factor 4, ATF4; ribosomal protein S15, RPS15; and Y-Box binding protein 1, YBX1) showed fragments per kilobase of transcript per million fragments mapped (FPKM) values > 200.0 and standard errors of the means (SEM) < 20.0. Expression of the above candidate reference genes was evaluated by Real-time quantitative polymerase chain reaction (RT-qPCR) combined with the analysis using GeNorm, NormFinder, and BestKeeper software. Comprehensive analysis of the results showed that ACTB was the most stable one, followed by EIF1 and GABARAP. Then, expression stability of the above three genes were validated, suggesting as suitable reference genes in sheep lung tissue, in additional 30 OPA-affected lung tissues and 10 healthy ovine lung tissues. Finally, our findings will be helpful for the subsequent study on the tumorigenic mechanism of OPA.
Collapse
Affiliation(s)
- Hui Yang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Zhao Wu Da Road 306#, Hohhot 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, People's Republic of China.
| | - Liang Zhang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Zhao Wu Da Road 306#, Hohhot 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, People's Republic of China.
| | - Shuying Liu
- Veterinary Medicine College of Inner Mongolia Agricultural University, Zhao Wu Da Road 306#, Hohhot 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, People's Republic of China.
| |
Collapse
|
25
|
Özkan C, Yıldırım S, Huyut Z, Özbek M. Selected Tumour Biomarker Levels in Sheep with Pulmonary Adenomatosis. J Vet Res 2020; 64:39-44. [PMID: 32258798 PMCID: PMC7105990 DOI: 10.2478/jvetres-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Sheep pulmonary adenomatosis (ovine pulmonary adenomatosis, OPA, Jaagsiekte) is a chronic contagious bronchoalveolar carcinoma caused by the Jaagsiekte sheep retrovirus. Since effective treatment and a vaccination procedure are not currently possible, control and eradication of the disease is difficult. It leads to serious economic losses around the world, therefore studies are currently underway in order to design control and eradication programmes. In this study, levels and changes in selected tumour markers (carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 125, CA 19-9, CA 15-3, and alphafetoprotein (AFP)-3) and their diagnostic significance were investigated. MATERIAL AND METHODS A total of 30 sheep were used. Clinical examinations were performed and blood samples were obtained before slaughter from all animals with presumed OPA. Blood samples with positive OPA results by macroscopic and histopathological examination were included in the study as the experimental group and numbered 20. Sheep totalling 10 had negative OPA results and provided control samples. RESULTS CEA levels were similar in both groups, and the differences were statistically insignificant (P > 0.05). CA 125, CA 19-9, CA 15-3, and AFP-3 levels were higher in the OPA group than the control group and with statistical significance (P < 0.05). In all OPA animals, CA 125 levels were higher than 1 U/mL. CONCLUSION serum CAs and AFP levels increase significantly in adenomatous sheep. These tumour markers are thought to facilitate the diagnosis of OPA.
Collapse
Affiliation(s)
- Cumali Özkan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Mustafa Özbek
- Department of Internal Medicine, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, 65080, Van, Turkey
| |
Collapse
|
26
|
Lee AM, Wolfe A, Cassidy JP, Moriarty J, O’Neill R, Fahy C, Connaghan E, Cousens C, Dagleish MP, McElroy MC, McV. Messam LL. An approach to diagnosis of Jaagsiekte sheep retrovirus infection in sheep based on assessment of agreement between macroscopic examination, histopathologic examination and reverse-transcriptase polymerase chain reaction. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Transcriptional Response of Ovine Lung to Infection with Jaagsiekte Sheep Retrovirus. J Virol 2019; 93:JVI.00876-19. [PMID: 31434729 PMCID: PMC6803282 DOI: 10.1128/jvi.00876-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the etiologic agent of ovine pulmonary adenocarcinoma (OPA), a neoplastic lung disease of sheep. OPA is an important economic and welfare issue for sheep farmers and a valuable naturally occurring animal model for human lung adenocarcinoma. Here, we used RNA sequencing to study the transcriptional response of ovine lung tissue to infection by JSRV. We identified 1,971 ovine genes differentially expressed in JSRV-infected lung compared to noninfected lung, including many genes with roles in carcinogenesis and immunomodulation. The differential expression of selected genes was confirmed using immunohistochemistry and reverse transcription-quantitative PCR. A key finding was the activation of anterior gradient 2, yes-associated protein 1, and amphiregulin in OPA tumor cells, indicating a role for this oncogenic pathway in OPA. In addition, there was differential expression of genes related to innate immunity, including genes encoding cytokines, chemokines, and complement system proteins. In contrast, there was little evidence for the upregulation of genes involved in T-cell immunity. Many genes related to macrophage function were also differentially expressed, reflecting the increased abundance of these cells in OPA-affected lung tissue. Comparison of the genes differentially regulated in OPA with the transcriptional changes occurring in human lung cancer revealed important similarities and differences between OPA and human lung adenocarcinoma. This study provides valuable new information on the pathogenesis of OPA and strengthens the use of this naturally occurring animal model for human lung adenocarcinoma.IMPORTANCE Ovine pulmonary adenocarcinoma is a chronic respiratory disease of sheep caused by jaagsiekte sheep retrovirus (JSRV). OPA is a significant economic problem for sheep farmers in many countries and is a valuable animal model for some forms of human lung cancer. Here, we examined the changes in host gene expression that occur in the lung in response to JSRV infection. We identified a large number of genes with altered expression in infected lung, including factors with roles in cancer and immune system function. We also compared the data from OPA to previously published data from human lung adenocarcinoma and found a large degree of overlap in the genes that were dysregulated. The results of this study provide exciting new avenues for future studies of OPA and may have comparative relevance for understanding human lung cancer.
Collapse
|
28
|
|
29
|
Gray ME, Sullivan P, Marland JRK, Greenhalgh SN, Meehan J, Gregson R, Clutton RE, Cousens C, Griffiths DJ, Murray A, Argyle D. A Novel Translational Ovine Pulmonary Adenocarcinoma Model for Human Lung Cancer. Front Oncol 2019; 9:534. [PMID: 31316911 PMCID: PMC6611418 DOI: 10.3389/fonc.2019.00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
In vitro cell line and in vivo murine models have historically dominated pre-clinical cancer research. These models can be expensive and time consuming and lead to only a small percentage of anti-cancer drugs gaining a license for human use. Large animal models that reflect human disease have high translational value; these can be used to overcome current pre-clinical research limitations through the integration of drug development techniques with surgical procedures and anesthetic protocols, along with emerging fields such as implantable medical devices. Ovine pulmonary adenocarcinoma (OPA) is a naturally-occurring lung cancer that is caused by the jaagsiekte sheep retrovirus. The disease has similar histological classification and oncogenic pathway activation to that of human lung adenocarcinomas making it a valuable model for studying human lung cancer. Developing OPA models to include techniques used in the treatment of human lung cancer would enhance its translational potential, making it an excellent research tool in assessing cancer therapeutics. In this study we developed a novel OPA model to validate the ability of miniaturized implantable O2 and pH sensors to monitor the tumor microenvironment. Naturally-occurring pre-clinical OPA cases were obtained through an on-farm ultrasound screening programme. Sensors were implanted into OPA tumors of anesthetized sheep using a CT-guided trans-thoracic percutaneous implantation procedure. This study reports the findings from 9 sheep that received sensor implantations. Time taken from initial CT scans to the placement of a single sensor into an OPA tumor was 45 ± 5 min, with all implantations resulting in the successful delivery of sensors into tumors. Immediate post-implantation mild pneumothoraces occurred in 4 sheep, which was successfully managed in all cases. This is, to the best of our knowledge, the first description of the use of naturally-occurring OPA cases as a pre-clinical surgical model. Through the integration of techniques used in the treatment of human lung cancer patients, including ultrasound, general anesthesia, CT and surgery into the OPA model, we have demonstrated its translational potential. Although our research was tailored specifically for the implantation of sensors into lung tumors, we believe the model could also be developed for other pre-clinical applications.
Collapse
Affiliation(s)
- Mark E Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom.,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Sullivan
- School of Engineering, Institute for Integrated Micro and Nano Systems, Edinburgh, United Kingdom
| | - Jamie R K Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, Edinburgh, United Kingdom
| | - Stephen N Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - R Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - Alan Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Gray ME, Meehan J, Sullivan P, Marland JRK, Greenhalgh SN, Gregson R, Clutton RE, Ward C, Cousens C, Griffiths DJ, Murray A, Argyle D. Ovine Pulmonary Adenocarcinoma: A Unique Model to Improve Lung Cancer Research. Front Oncol 2019; 9:335. [PMID: 31106157 PMCID: PMC6498990 DOI: 10.3389/fonc.2019.00335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer represents a major worldwide health concern; although advances in patient management have improved outcomes for some patients, overall 5-year survival rates are only around 15%. In vitro studies and mouse models are commonly used to study lung cancer and their use has increased the molecular understanding of the disease. Unfortunately, mouse models are poor predictors of clinical outcome and seldom mimic advanced stages of the human disease. Animal models that more accurately reflect human disease are required for progress to be made in improving treatment outcomes and prognosis. Similarities in pulmonary anatomy and physiology potentially make sheep better models for studying human lung function and disease. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer that is caused by the jaagsiekte sheep retrovirus. The disease is endemic in many countries throughout the world and has several features in common with human lung adenocarcinomas, including histological classification and activation of common cellular signaling pathways. Here we discuss the in vivo and in vitro OPA models that are currently available and describe the advantages of using pre-clinical naturally occurring OPA cases as a translational animal model for human lung adenocarcinoma. The challenges and options for obtaining these OPA cases for research purposes, along with their use in developing novel techniques for the evaluation of chemotherapeutic agents or for monitoring the tumor microenvironment in response to treatment, are also discussed.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- School of Engineering and Physical Sciences, Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, United Kingdom
| | - Paul Sullivan
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - Jamie R. K. Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - Stephen N. Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carol Ward
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - David J. Griffiths
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - Alan Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Mansour KA, Al-Husseiny SH, Kshash QH, Jassim A. Clinical-histopathological and molecular study of ovine pulmonary adenocarcinoma in Awassi sheep in Al-Qadisiyah Province, Iraq. Vet World 2019; 12:454-458. [PMID: 31089317 PMCID: PMC6487251 DOI: 10.14202/vetworld.2019.454-458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
AIM This study aimed to conduct a clinical-histopathological and molecular evaluation of ovine pulmonary adenocarcinoma (OPA) in Awassi sheep in various regions of Al-Qadisiyah Province, Iraq. MATERIALS AND METHODS A total of 150 sheep were clinically evaluated, and the wheelbarrow test was performed. 100 samples (35 blood, 25 lung tissue, 20 lymph node, and 20 lung fluid samples) were randomly selected from living and slaughtered sheep. All samples were subjected to polymerase chain reaction (PCR). Histopathological examinations were performed for four lung tissue and two lymph node samples. RESULTS A diagnosis of OPA was made based on the results of the clinical examination and the clinical signs shown by the animals, such as dyspnea, polypnea, coughing, mucous nasal discharge, moist rales on auscultation of the affected lungs, and emaciation. Interestingly, the animals tested positive for the wheelbarrow test, with frothy nares accompanied by profuse and clear lung fluid. Histopathological examination showed various lesions such as glandular transformation in the lung tissues and emphysema. Moreover, lymph nodes showed marked follicular atrophy and necrosis-associated lymphocyte infiltration in the affected tissues. PCR revealed that 25% of the samples including eight (22.8%) blood, five (20%) lung tissue, five (25%) lymph node, and seven (35%) lung fluid samples were positive for Jaagsiekte sheep retrovirus; this result was highly significant. CONCLUSION The results of our study indicated that in Iraq, OPA diagnosis should be based on pathological findings and results of advanced procedures such as PCR.
Collapse
Affiliation(s)
- Khalefa Ali Mansour
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| | - Saad Hashim Al-Husseiny
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| | - Qassim Haleem Kshash
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| | - Asaad Jassim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
| |
Collapse
|
32
|
Disease surveillance in England and Wales, February 2019. Vet Rec 2019; 184:271-275. [PMID: 30819857 DOI: 10.1136/vr.l937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Apari P, Müller V. Paradoxes of tumour complexity: somatic selection, vulnerability by design, or infectious aetiology? Biol Rev Camb Philos Soc 2018; 94:1075-1088. [PMID: 30592143 DOI: 10.1111/brv.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/01/2022]
Abstract
The aetiology of cancer involves intricate cellular and molecular mechanisms that apparently emerge on the short timescale of a single lifetime. Some of these traits are remarkable not only for their complexity, but also because it is hard to conceive selection pressures that would favour their evolution within the local competitive microenvironment of the tumour. Examples include 'niche construction' (re-programming of tumour-specific target sites) to create permissive conditions for distant metastases; long-range feedback loops of tumour growth; and remarkably 'plastic' phenotypes (e.g. density-dependent dispersal) associated with metastatic cancer. These traits, which we term 'paradoxical tumour traits', facilitate the long-range spread or long-term persistence of the tumours, but offer no apparent benefit, and might even incur costs in the competition of clones within the tumour. We discuss three possible scenarios for the origin of these characters: somatic selection driven by specific selection regimes; non-adaptive emergence due to inherent vulnerabilities in the organism; and manipulation by putative transmissible agents that contribute to and benefit from these traits. Our work highlights a lack of understanding of some aspects of tumour development, and offers alternative hypotheses that might guide further research.
Collapse
Affiliation(s)
- Péter Apari
- Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany 8237, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany 8237, Hungary
| |
Collapse
|
34
|
Scott PR, Dagleish MP, Cousens C. Development of superficial lung lesions monitored on farm by serial ultrasonographic examination in sheep with lesions confirmed as ovine pulmonary adenocarcinoma at necropsy. Ir Vet J 2018; 71:23. [PMID: 30450192 PMCID: PMC6219085 DOI: 10.1186/s13620-018-0134-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022] Open
Abstract
Background This ultrasonographic study monitored lesions involving the lung surface suspected to be the early stages of ovine pulmonary adenocarcinoma (OPA) tumours over 4 months in commercially farmed sheep. The enlargement of these lesions defined ultrasonographically, which likely represent the development of OPA tumours, have important implications for ultrasound screening schedules in veterinary management plans attempting to eliminate OPA by test-and-cull. Results The lungs of 58 adult Scottish Blackface sheep with ultrasonographic changes at the lung surface consistent with early OPA tumours were examined two to six times over 40 to 290 days. Lesion development, represented in early video recordings by 2–3 mm lesions involving the visceral pleural and comet tails, then a decreasing length of the hyperechoic line representing the normal visceral pleura and increasing depth of the sharply-demarcated and largely uniform hypoechoic areas into the lung parenchyma, was found in 26 of the 58 sheep. The rate at which the sonographic lesions progressed varied considerably and in 10 of 17 Group 1 sheep developed quickly from an estimated depth of 2–30 mm up to 70 mm between 60 and 120 days later. These sonographic lesions were confirmed as OPA at necropsy; histological changes of concurrent bacterial infection were detected in one of these 10 Group 1 sheep. Thirty-one sheep had sonographic changes ≤30 mm consistent with very early OPA at the first examination which had reduced or were not observed at subsequent examination. Five of these 31 sheep were necropsied, 3 had small OPA lesions while 2 had no significant pathology. Conclusion Lesions involving the visceral pleura, with sonographic changes consistent with previous published findings of early OPA, developed over 40–120 days to large masses in 10 of 17 Group 1 sheep with the provisional sonographic diagnosis confirmed histologically at necropsy. While it is possible that atalectic lung could have caused some of the minor sonographic changes there was no microscopic evidence of pathologies other than OPA in nine of 10 Group 1 sheep. We conclude that some small tumours progress to large tumours within 3 months questioning the assumption that OPA is a slow growing tumour in adult sheep taking several years to cause clinical disease. The findings that a proportion of small ultrasonographic lesions are not found again at subsequent scanning illustrates the challenges of interpreting small (< 1–2 cm) lesions during rapid whole flock ultrasonographic examination and we continue to recommend re-scanning suspicious sonographic changes 2 months later. Electronic supplementary material The online version of this article (10.1186/s13620-018-0134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P R Scott
- Capital Veterinary Services, West Latchfields, Scotland, EH41 4JN UK
| | - M P Dagleish
- 2Moredun Research Institute, Bush Loan, Scotland, Penicuik EH26 0PZ UK
| | - C Cousens
- 2Moredun Research Institute, Bush Loan, Scotland, Penicuik EH26 0PZ UK
| |
Collapse
|
35
|
Old origin of a protective endogenous retrovirus (enJSRV) in the Ovis genus. Heredity (Edinb) 2018; 122:187-194. [PMID: 29976957 DOI: 10.1038/s41437-018-0112-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 11/08/2022] Open
Abstract
Sheep, the Jaagsiekte sheep retrovirus (JSRV) and its endogenous forms (enJSRVs) are a good model to study long-time relationships between retroviruses and their hosts. Taking advantage of 76 whole genome resequencing data of wild and domestic Ovis, we investigated the evolution of this relationship. An innovative analysis of re-sequencing data allowed characterizing 462 enJSRVs insertion sites (including 435 newly described insertions) in the Ovis genus. We focused our study on endogenous copies inserted in the q13 locus of chromosome 6 (6q13). Those copies are known to confer resistance against exogenous JSRV thanks to alleles bearing a mutation in the gag gene. We characterized (i) the distribution of protective and non-protective alleles across Ovis species and (ii) the copy number variation of the 6q13 locus. Our results challenged the previous hypothesis of fixation and amplification of the protective copies in relation with domestication, and allowed building a new model for the evolution of the 6q13 locus. JSRV would have integrated the 6q13 locus after the Ovis-Capra divergence (5-11 MYA) and before the Ovis diversification (2.4-5 MYA). The protective mutation in the enJSRV 6q13 copy appeared shortly after its insertion and was followed by genomic amplifications, after the divergence between Pachyform lineage on one side and the Argaliform and moufloniform lineages on the other (2.4-5 MYA). Considering the potential selective advantage of the protective mutation, its fixation in both sheep and its closest wild relative Ovis orientalis may be due to natural selection before domestication from O. orientalis populations.
Collapse
|
36
|
Lee H, Joung JG, Shin HT, Kim DH, Kim Y, Kim H, Kwon OJ, Shim YM, Lee HY, Lee KS, Choi YL, Park WY, Hayes DN, Um SW. Genomic alterations of ground-glass nodular lung adenocarcinoma. Sci Rep 2018; 8:7691. [PMID: 29769567 PMCID: PMC5955945 DOI: 10.1038/s41598-018-25800-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In-depth molecular pathogenesis of ground-glass nodular lung adenocarcinoma has not been well understood. The objectives of this study were to identify genomic alterations in ground-glass nodular lung adenocarcinomas and to investigate whether viral transcripts were detected in these tumors. Nine patients with pure (n = 4) and part-solid (n = 5) ground-glass nodular adenocarcinomas were included. Six were females with a median age of 58 years. We performed targeted exon sequencing and RNA sequencing. EGFR (n = 10), IDH2 (n = 2), TP53 (n = 1), PTEN (n = 1), EPHB4 (n = 1), and BRAF (n = 1) were identified as driver mutations by targeted exon sequencing. Vasculogenesis-associated genes including NOTCH4 and TGFBR3 expression were significantly downregulated in adenocarcinoma tissue versus normal tissue (adjusted P values < 0.001 for both NOTCH4 and TGFBR3). In addition, five novel fusion gene loci were identified in four lung adenocarcinomas. However, no significant virus-associated transcripts were detected in tumors. In conclusions, EGFR, IDH2, TP53, PTEN, EPHB4, and BRAF were identified as putative driver mutations of ground-glass nodular adenocarcinomas. Five novel fusion genes were also identified in four tumors. Viruses do not appear to be involved in the tumorigenesis of ground-glass nodular lung adenocarcinoma.
Collapse
Affiliation(s)
- Hyun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyun-Tae Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Lee AM, Wolfe A, Cassidy JP, McV Messam LL, Moriarty JP, O'Neill R, Fahy C, Connaghan E, Cousens C, Dagleish MP, McElroy MC. First confirmation by PCR of Jaagsiekte sheep retrovirus in Ireland and prevalence of ovine pulmonary adenocarcinoma in adult sheep at slaughter. Ir Vet J 2017; 70:33. [PMID: 29270288 PMCID: PMC5735933 DOI: 10.1186/s13620-017-0111-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background Ovine pulmonary adenocarcinoma (OPA), caused by Jaagsiekte sheep retrovirus (JSRV), is characterised by the development of invariably fatal lung tumours primarily in adult sheep. High infection rates and disease prevalence can develop during initial infection of flocks, leading to on-farm economic losses and animal welfare issues in sheep with advanced disease. The disease has been reported in Ireland and is notifiable, but the presence of JSRV has never been confirmed using molecular methods in this country. Additionally, due to the difficulties in ante-mortem diagnosis (especially of latently-infected animals, or those in the very early stages of disease), accurate information regarding national prevalence and distribution is unavailable. This study aimed to confirm the presence of JSRV in Ireland and to obtain estimates regarding prevalence and distribution by means of an abattoir survey utilising gross examination, histopathology, JSRV-specific reverse transcriptase polymerase chain reaction (RT-PCR) and SU protein specific immunohistochemistry (IHC) to examine the lungs of adult sheep. Results Lungs from 1911 adult sheep were examined macroscopically in the abattoir and 369 were removed for further testing due to the presence of gross lesions of any kind. All 369 were subject to histopathology and RT-PCR, and 46 to IHC. Thirty-one lungs (31/1911, 1.6%) were positive for JSRV by RT-PCR and/or IHC but only ten cases of OPA were confirmed (10/1911, 0.5%) Four lung tumours not associated with JSRV were also identified. JSRV-positive sheep tended to cluster within the same flocks, and JSRV-positive sheep were identified in the counties of Donegal, Kerry, Kilkenny, Offaly, Tipperary, Waterford and Wicklow. Conclusions The presence of JSRV has been confirmed in the Republic of Ireland for the first time using molecular methods (PCR) and IHC. In addition, an estimate of OPA prevalence in sheep at slaughter and information regarding distribution of JSRV infection has been obtained. The prevalence estimate appears similar to that of the United Kingdom (UK). Results also indicate that the virus has a diverse geographical distribution throughout Ireland. These data highlights the need for further research to establish national control and monitoring strategies.
Collapse
Affiliation(s)
- Alison Marie Lee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 W6F6 Ireland
| | - Alan Wolfe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 W6F6 Ireland
| | - Joseph P Cassidy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 W6F6 Ireland
| | - Locksley L McV Messam
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 W6F6 Ireland
| | - John P Moriarty
- Department of Agriculture, Food and the Marine Laboratories, Backweston Laboratory Campus, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Ronan O'Neill
- Department of Agriculture, Food and the Marine Laboratories, Backweston Laboratory Campus, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Claire Fahy
- Department of Agriculture, Food and the Marine Laboratories, Backweston Laboratory Campus, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Emily Connaghan
- Department of Agriculture, Food and the Marine Laboratories, Backweston Laboratory Campus, Celbridge, Co. Kildare W23 X3PH Ireland
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ Scotland, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ Scotland, UK
| | - Maire C McElroy
- Department of Agriculture, Food and the Marine Laboratories, Backweston Laboratory Campus, Celbridge, Co. Kildare W23 X3PH Ireland
| |
Collapse
|
38
|
Wee JTS, Poh SS. The most important questions in cancer research and clinical oncology : Question 1. Could the vertical transmission of human papilloma virus (HPV) infection account for the cause, characteristics, and epidemiology of HPV-positive oropharyngeal carcinoma, non-smoking East Asian female lung adenocarcinoma, and/or East Asian triple-negative breast carcinoma? CHINESE JOURNAL OF CANCER 2017; 36:13. [PMID: 28093081 PMCID: PMC5240210 DOI: 10.1186/s40880-016-0168-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/20/2016] [Indexed: 01/20/2023]
Abstract
Specific research foci: (1) Mouse models of gamma-herpes virus-68 (γHV-68) and polyomavirus (PyV) infections during neonatal versus adult life. (2) For human papilloma virus (HPV)-positive oropharyngeal carcinoma (OPC)—(a) Asking the question: Is oral sex a powerful carcinogen? (b) Examining the evidence for the vertical transmission of HPV infection. (c) Examining the relationship between HPV and Epstein–Barr virus (EBV) infections and nasopharyngeal cancer (NPC) in West European, East European, and East Asian countries. (d) Examining the association between HPV-positive OPC and human leukocyte antigen (HLA). (3) For non-smoking East Asian female lung adenocarcinoma—(a) Examining the incidence trends of HPV-positive OPC and female lung adenocarcinoma according to birth cohorts. (b) Examining the association between female lung adenocarcinoma and HPV. (c) Examining the associations of lung adenocarcinoma with immune modulating factors. (4) For triple-negative breast carcinoma (TNBC) in East Asians—(a) Examining the association between TNBC and HPV. (b) Examining the unique epidemiological characteristics of patients with TNBC. A summary “epidemiological” model tying some of these findings together.
Collapse
Affiliation(s)
- Joseph T S Wee
- Division of Radiation Oncology, National Cancer Centre, Singapore, 169610, Singapore. .,Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Sharon Shuxian Poh
- Division of Radiation Oncology, National Cancer Centre, Singapore, 169610, Singapore
| |
Collapse
|
39
|
|
40
|
|
41
|
Humann-Ziehank E. Selenium, copper and iron in veterinary medicine-From clinical implications to scientific models. J Trace Elem Med Biol 2016; 37:96-103. [PMID: 27316591 DOI: 10.1016/j.jtemb.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/27/2022]
Abstract
Diseases related to copper, selenium or iron overload or deficiency are common and well-described in large animal veterinary medicine. Some of them certainly have the potential to serve as useful animal models for ongoing research in the field of trace elements. Obvious advantages of large animal models compared to laboratory animal models like rats and mice are the option of long-term, consecutive examinations of progressive deficient or toxic stages and the opportunity to collect various, high volume samples for repeated measurements. Nevertheless, close cooperation between scientific disciplines is necessary as scientists using high sophisticated analytical methods and equipment are not regularly in touch with scientists working with large animal diseases. This review will give an introduction into some typical animal diseases related to trace elements and will present approaches where the animal diseases were used already as a model for interdisciplinary research.
Collapse
Affiliation(s)
- Esther Humann-Ziehank
- Klinik für kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany, Germany.
| |
Collapse
|
42
|
Sonawane GG, Tripathi BN, Kumar R, Kumar J. Diagnosis and prevalence of ovine pulmonary adenocarcinoma in lung tissues of naturally infected farm sheep. Vet World 2016; 9:365-70. [PMID: 27182131 PMCID: PMC4864477 DOI: 10.14202/vetworld.2016.365-370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/03/2016] [Indexed: 11/16/2022] Open
Abstract
AIM This study was aimed to detect ovine pulmonary adenocarcinoma (OPA) in sheep flocks affected with pulmonary disorders at organized farm. MATERIALS AND METHODS A total of 75 sheep died naturally were thoroughly examined for the lesions of OPA during necropsy. Tissue sections from affected portion of the lungs from each animal were collected aseptically and divided into two parts; one each for polymerase chain reaction (PCR) and another for histopathology. RESULTS On PCR examination of lung tissues, six sheep (8%) were found to be positive for JSRV. Two of them were 3-6 months of age and did not show clinical signs/gross lesions of OPA. Four adult sheep positive on PCR revealed characteristic lesions of OPA on gross and histopathological examination. CONCLUSION In the absence of known specific antibody response to the infection with JSRV, there is no diagnostic serological test available. The PCR assay employed in this study on lung tissues, using primers based on the U3 region of the viral long terminal repeat for JSRV would be helpful in the screening of preclinical and clinical cases of OPA in sheep.
Collapse
Affiliation(s)
- Ganesh G Sonawane
- Animal Health Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Malpura, Tonk, Rajasthan, India
| | | | - Rajiv Kumar
- Animal Biotechnology Section, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Malpura, Tonk, Rajasthan, India
| | - Jyoti Kumar
- Animal Health Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Malpura, Tonk, Rajasthan, India
| |
Collapse
|
43
|
İlhan F, Vural SA, Yıldırım S, Sözdutmaz İ, Alcigir ME. Expression of p53 protein, Jaagsiekte sheep retrovirus matrix protein, and surfactant protein in the lungs of sheep with pulmonary adenomatosis. J Vet Diagn Invest 2016; 28:249-56. [PMID: 27016721 DOI: 10.1177/1040638716636939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring cancer in sheep that is caused by the Jaagsiekte sheep retrovirus (JSRV). Because the pathologic and epidemiologic features of OPA are similar to those of bronchoalveolar carcinoma in humans, OPA is considered a useful animal model for pulmonary carcinogenesis. In this study, 3,512 lungs from various breeds of sheep were collected and macroscopically examined. OPA was identified in 30 sheep, and samples of these animals were further examined by histologic, immunohistochemical (p53 protein, surfactant protein A [SP-A], proliferating cell nuclear antigen [PCNA], JSRV matrix protein [MA]), and PCR methods. Papillary or acinar adenocarcinomas were detected microscopically in the affected areas. Immunoreactivity for p53 PAb240 was detected in 13 sheep, whereas p53 DO-1 was not detected in any of the OPA animals. PCNA immunoreactivity was recorded in 27 animals. SP-A and JSRV MA protein was immunopositive in all 30. JSRV proviral DNA was detected by PCR analysis in all of the lung samples collected from OPA animals. In addition, the pulmonary SP-A levels were increased in tumor cells. The results of this study suggest that PCNA and p53 protein expression may be useful indicators in monitoring malignancy of pulmonary tumors.
Collapse
Affiliation(s)
- Fatma İlhan
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - Sevil A Vural
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - İbrahim Sözdutmaz
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - Mehmet E Alcigir
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| |
Collapse
|
44
|
Sistiaga-Poveda M, Larruskain A, Mateo-Abad M, Jugo BM. Lack of association between polymorphic copies of endogenous Jaagsiekte sheep retrovirus (enJSRVs) and Ovine Pulmonary Adenocarcinoma. Vet Microbiol 2016; 185:49-55. [PMID: 26931391 DOI: 10.1016/j.vetmic.2016.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Ovine Pulmonary Adenocarcinoma (OPA) is a retrovirus-induced lung tumor of sheep, goat and mouflon, and its etiologic agent, Jaagsiekte sheep retrovirus (JSRV) is the only virus known to cause a naturally occurred lung adenocarcinoma. The oncogenic JSRV has several endogenous counterparts termed enJSRVs, some of which have been shown to interfere with JSRV replication at early and late stages of the retroviral cycle inhibiting JSRV exit from the cell, and thus, protecting sheep against the infection. In this work, Latxa sheep breed animals were classified depending on the presence/absence of OPA-characteristic clinical lesions in the lung. Using a PCR genotyping method and a logistic regression-based association study, five polymorphic enJSRV copies were analyzed in 49 OPA positive sheep and 124 control individuals. Our results showed that the frequency of the provirus enJSRV-16 is much higher in Latxa sheep breed than in other breeds, suggesting a recent proliferation of this provirus in the studied breed. However, no polymorphic enJSRV was found to be statistically associated with the susceptibility/resistance to OPA development.
Collapse
Affiliation(s)
- Maialen Sistiaga-Poveda
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Amaia Larruskain
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maider Mateo-Abad
- Applied Mathematics, Statistics and Operative Research Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña M Jugo
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
45
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
46
|
Larruskain A, Esparza-Baquer A, Minguijón E, Juste RA, Jugo BM. SNPs in candidate genesMX dynamin-like GTPaseandchemokine (C-C motif) receptor-5are associated with ovine pulmonary adenocarcinoma progression in Latxa sheep. Anim Genet 2015; 46:666-75. [DOI: 10.1111/age.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Larruskain
- Genetics, Physical Anthropology and Animal Physiology Department; Faculty of Science and Technology; University of the Basque Country (UPV/EHU); 48080 Bilbao Bizkaia Spain
| | - A. Esparza-Baquer
- Genetics, Physical Anthropology and Animal Physiology Department; Faculty of Science and Technology; University of the Basque Country (UPV/EHU); 48080 Bilbao Bizkaia Spain
| | - E. Minguijón
- Animal Health Department; NEIKER-Tecnalia; 48160 Derio Bizkaia Spain
| | - R. A. Juste
- Animal Health Department; NEIKER-Tecnalia; 48160 Derio Bizkaia Spain
| | - B. M. Jugo
- Genetics, Physical Anthropology and Animal Physiology Department; Faculty of Science and Technology; University of the Basque Country (UPV/EHU); 48080 Bilbao Bizkaia Spain
| |
Collapse
|
47
|
Benavides J, González L, Dagleish M, Pérez V. Diagnostic pathology in microbial diseases of sheep or goats. Vet Microbiol 2015; 181:15-26. [PMID: 26275854 DOI: 10.1016/j.vetmic.2015.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Post-mortem examination is a key step in the diagnostic process of infectious diseases in sheep and goats. Diagnostic pathology deals with identification and study of lesions, at the same time providing also significant clues regarding pathogenesis of the diseases. This article reviews the salient pathological findings associated with the most significant infectious diseases of sheep and goats present in countries where small ruminants are a relevant agricultural industry. Lesions are reviewed according to the different organ systems where they occur. Emphasis has been given in the description of the salient lesional patterns than can be identified in each organ and which can be of help in the differential diagnosis of the lesions caused by bacteria, viruses, fungi or prions. Finally, a review of the usefulness of ancillary tests that may be used on various tissue samples for performing an aetiological diagnosis, is included; the application of various techniques, from immunohistochemistry to molecular biology-based tests, is described.
Collapse
Affiliation(s)
- J Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - L González
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, Scotland, UK
| | - M Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, Scotland, UK
| | - V Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| |
Collapse
|
48
|
Cousens C, Alleaume C, Bijsmans E, Martineau HM, Finlayson J, Dagleish MP, Griffiths DJ. Jaagsiekte sheep retrovirus infection of lung slice cultures. Retrovirology 2015; 12:31. [PMID: 25889156 PMCID: PMC4419405 DOI: 10.1186/s12977-015-0157-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a transmissible neoplastic disease of sheep. OPA is an economically important veterinary disease and is also a valuable naturally occurring animal model of human lung cancer, with which it shares a similar histological appearance and the activation of common cell signaling pathways. Interestingly, the JSRV Env protein is directly oncogenic and capable of driving cellular transformation in vivo and in vitro. Previous studies of JSRV infection in cell culture have been hindered by the lack of a permissive cell line for the virus. Here, we investigated the ability of JSRV to infect slices of ovine lung tissue cultured ex vivo. Results We describe the use of precision cut lung slices from healthy sheep to study JSRV infection and transformation ex vivo. Following optimization of the culture system we characterized JSRV infection of lung slices and compared the phenotype of infected cells to natural field cases and to experimentally-induced OPA tumors from sheep. JSRV was able to infect cells within lung slices, to produce new infectious virions and induce cell proliferation. Immunohistochemical labeling revealed that infected lung slice cells express markers of type II pneumocytes and phosphorylated Akt and ERK1/2. These features closely resemble the phenotype of natural and experimentally-derived OPA in sheep, indicating that lung slice culture provides an authentic ex vivo model of OPA. Conclusions We conclude that we have established an ex vivo model of JSRV infection. This model will be valuable for future studies of JSRV replication and early events in oncogenesis and provides a novel platform for studies of JSRV-induced lung cancer.
Collapse
Affiliation(s)
- Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK.
| | - Charline Alleaume
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK.
| | - Esther Bijsmans
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK.
| | - Henny M Martineau
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, UK.
| | - Jeanie Finlayson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK.
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK.
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK.
| |
Collapse
|
49
|
Cousens C, Gibson L, Finlayson J, Pritchard I, Dagleish MP. Prevalence of ovine pulmonary adenocarcinoma (Jaagsiekte) in a UK slaughterhouse sheep study. Vet Rec 2015; 176:413. [PMID: 25721510 DOI: 10.1136/vr.102880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Affiliation(s)
- C Cousens
- Moredun Research Institute, Edinburgh EH26 0PZ, UK
| | - L Gibson
- SAC Consulting Veterinary Services, Allan Watt Building, Bush Estate, Penicuik EH26 0QE, UK
| | - J Finlayson
- Moredun Research Institute, Edinburgh EH26 0PZ, UK
| | - I Pritchard
- SAC Consulting Veterinary Services, Allan Watt Building, Bush Estate, Penicuik EH26 0QE, UK
| | - M P Dagleish
- Moredun Research Institute, Edinburgh EH26 0PZ, UK
| |
Collapse
|
50
|
Underwood WJ, Blauwiekel R, Delano ML, Gillesby R, Mischler SA, Schoell A. Biology and Diseases of Ruminants (Sheep, Goats, and Cattle). LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7149867 DOI: 10.1016/b978-0-12-409527-4.00015-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ruminants continue to be important in their traditional role in agricultural research and teaching. They are now also extensively used for studies in molecular biology; genetic engineering; and biotechnology for basic science, agricultural and clinical applications. Concern and interest for the welfare for these species and improved understanding of their biology and behavior have continued and are reflected in changing husbandry and management systems. This chapter addresses at high levels basic biology, husbandry, and the more common or important diseases of the three ruminant species used most commonly in the laboratory, namely sheep, goats and cattle.
Collapse
Affiliation(s)
| | - Ruth Blauwiekel
- University of Vermont, Hills Building, Carrigan Drive, Burlington, VT, USA
| | | | - Rose Gillesby
- Veterinary Services and Biocontainment Research, Animal Research Support, Zoetis, Richland, MI, USA
| | - Scott A. Mischler
- Worldwide Comparative Medicine, Pfizer Inc., Middletown Rd., Pearl River, NY, USA
| | | |
Collapse
|