1
|
Liu Y, Wu Y, Jia Y, Ren F, Zhou S. Effect of GABA combined with ultrasound stress germination treatment on phenolic content and antioxidant activity of highland barley. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9023-9034. [PMID: 38979987 DOI: 10.1002/jsfa.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
2
|
Figueroa-Pérez MG, Reynoso-Camacho R, Ramos-Gómez M, Mendoza-Sánchez M, Pérez-Ramírez IF. Impact of temperature and humidity conditions as abiotic stressors on the phytochemical fingerprint of oat (Avena sativa L.) sprouts. Food Chem 2024; 439:138173. [PMID: 38100868 DOI: 10.1016/j.foodchem.2023.138173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
This study aimed to evaluate the effect of temperature (20, 25, and 30 °C) and relative humidity (RH, 50, 55, and 60 %) as abiotic stressors during oat (Avena sativa L.) germination using a 2-level factorial design with central point. UPLC-QToF-MSE identified eighty polyphenols, nine avenanthramides, twelve lignans, and five phytosterols Notably, 100 % germination was achieved at 25 °C/60 % RH from day 3, yielding the longest radicle size. The highest content of most phenolic acids, avenanthramides, and lignans occurred at 30 °C/65 % RH, where 100 % germination was attained by day 5, but with a shorter radicle size. The best flavonoid and phytosterol profle was obtained at 20 °C/55 % RH, achieving only a 67 % germination rate. Therefore, while these conditions enhance the bioactive compound profile, the associate decrease in germination metrics suggests potential distress effects. Consideration of both photochemical outcomes and germination yield is crucial for comprehensive assessments in future applications.
Collapse
Affiliation(s)
| | | | - Minerva Ramos-Gómez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico
| | - Magdalena Mendoza-Sánchez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico; Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico.
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico.
| |
Collapse
|
3
|
Jágr M, Hofinger-Horvath A, Ergang P, Čepková PH, Schönlechner R, Pichler EC, D Amico S, Grausgruber H, Vagnerová K, Dvořáček V. Comprehensive study of the effect of oat grain germination on the content of avenanthramides. Food Chem 2024; 437:137807. [PMID: 37871428 DOI: 10.1016/j.foodchem.2023.137807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
The chemical profile and the levels of AVNs in oat varieties after germination have been examinated. In the present study, 12 distinct oat varieties were germinated for 0-192 h and a total of 28 AVNs and 3 AVN-hexosides were determined in these samples. Among them, three novel AVNs were synthesized (AVN 1a, AVN 2a, and AVN 2ad), characterized using NMR techniques (1D- and 2D-NMR), and assessed in real samples for the first time. The most abundant AVNs in the samples were AVN 2c, AVN 2p, AVN 2f, and their long-chained analogues AVN 2 cd, AVN 2pd, AVN 2fd, together representing 75-85 % of the total AVNs content. The highest total AVN level was observed on average after 48-72 h of germination time and it reached a value 1-1.2 mg/g. Out of 12 investigated oat varieties, CDC Boyer, Diadem, and Rozmar have proved to be the most suitable genotypes for germination.
Collapse
Affiliation(s)
- Michal Jágr
- Quality of Plant Products, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6 - Ruzyně, Czech Republic.
| | - Andreas Hofinger-Horvath
- Department of Chemistry, Division of Organic Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Peter Ergang
- Institute of Physiology, Czech Academic of Sciences, Vídeňská 1084, 142 00 Prague 4, Czech Republic
| | - Petra Hlásná Čepková
- Gene Bank, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6 - Ruzyně, Czech Republic
| | - Regine Schönlechner
- Institute of Food Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Eleonora Charlotte Pichler
- Institute of Food Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Stefano D Amico
- Institute for Animal Nutrition and Feed, AGES - Austrian Agency for Health and Food Safety GmbH, Spargelfeldstr. 192, 1220 Vienna, Austria
| | - Heinrich Grausgruber
- Institute of Plant Breeding, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 24, 3430 Tulln an der Donau, Austria
| | - Karla Vagnerová
- Institute of Physiology, Czech Academic of Sciences, Vídeňská 1084, 142 00 Prague 4, Czech Republic
| | - Václav Dvořáček
- Quality of Plant Products, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6 - Ruzyně, Czech Republic
| |
Collapse
|
4
|
Rassbach J, Hilsberg N, Haensch VG, Dörner S, Gressler J, Sonnabend R, Semm C, Voigt K, Hertweck C, Gressler M. Non-canonical two-step biosynthesis of anti-oomycete indole alkaloids in Kickxellales. Fungal Biol Biotechnol 2023; 10:19. [PMID: 37670394 PMCID: PMC10478498 DOI: 10.1186/s40694-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Fungi are prolific producers of bioactive small molecules of pharmaceutical or agricultural interest. The secondary metabolism of higher fungi (Dikarya) has been well-investigated which led to > 39,000 described compounds. However, natural product researchers scarcely drew attention to early-diverging fungi (Mucoro- and Zoopagomycota) as they are considered to rarely produce secondary metabolites. Indeed, only 15 compounds have as yet been isolated from the entire phylum of the Zoopagomycota. RESULTS Here, we showcase eight species of the order Kickxellales (phylum Zoopagomycota) as potent producers of the indole-3-acetic acid (IAA)-derived compounds lindolins A and B. The compounds are produced both under laboratory conditions and in the natural soil habitat suggesting a specialized ecological function. Indeed, lindolin A is a selective agent against plant-pathogenic oomycetes such as Phytophthora sp. Lindolin biosynthesis was reconstituted in vitro and relies on the activity of two enzymes of dissimilar evolutionary origin: Whilst the IAA-CoA ligase LinA has evolved from fungal 4-coumaryl-CoA synthetases, the subsequently acting IAA-CoA:anthranilate N-indole-3-acetyltransferase LinB is a unique enzyme across all kingdoms of life. CONCLUSIONS This is the first report on bioactive secondary metabolites in the subphylum Kickxellomycotina and the first evidence for a non-clustered, two-step biosynthetic route of secondary metabolites in early-diverging fungi. Thus, the generally accepted "gene cluster hypothesis" for natural products needs to be reconsidered for early diverging fungi.
Collapse
Affiliation(s)
- Johannes Rassbach
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Nathalie Hilsberg
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Veit G Haensch
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Sebastian Dörner
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Julia Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Robin Sonnabend
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Caroline Semm
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Kerstin Voigt
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Markus Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
5
|
Djorgbenoo R, Hu J, Hu C, Sang S. Fermented Oats as a Novel Functional Food. Nutrients 2023; 15:3521. [PMID: 37630712 PMCID: PMC10459665 DOI: 10.3390/nu15163521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fermented oats are gaining popularity due to their nutritional value and the increasing consumer demand for health-conscious foods. These oats are believed to offer enhanced phytochemical and nutritional profiles compared to unfermented oats. The increased nutritional content of fermented oats is associated with various health benefits, including anti-inflammatory and antioxidant activities, which could potentially reduce the risk of chronic diseases. Further investigations are warranted to elucidate the nutritional benefits of fermented oats in human nutrition. This mini review provides a comprehensive overview of fermented oat products available on the market and the various production methods employed for fermenting oats. Furthermore, this review investigates how fermentation affects the chemical composition and biological functions of oats. Additionally, this manuscript presents some future perspectives on fermented oat products by discussing potential research directions and opportunities for further development. The findings presented in this review contribute to the expanding body of knowledge on fermented oats as a promising functional food, paving the way for future studies and applications in the field of nutrition and health.
Collapse
Affiliation(s)
| | | | | | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA; (R.D.); (J.H.); (C.H.)
| |
Collapse
|
6
|
Feng Y, Suo D, Guan X, Wang S, Xiao Z, Li Y, Liu X, Fan X. Effect of Germination on the Avenanthramide Content of Oats and Their in Vitro Antisensitivity Activities. Molecules 2022; 27:molecules27196167. [PMID: 36234703 PMCID: PMC9573532 DOI: 10.3390/molecules27196167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a method, based on an ultraperformance liquid chromatography coupled with high-field quadrupole orbitrap high-resolution mass spectrometry (UHPLC-QE-HF-HRMS) platform, was established for the trace determination of three major avenanthramides (AVNs). The MS conditions for determining the AVNs were optimized, and the cracking methods of avenanthramides were analyzed. The linear range of the results and the correlation coefficient were 1−2000 μg/L and >0.996, respectively. Further, the established method was employed for the determination of the AVN contents of oats at different germination times, and the results indicated that the AVN contents of Zaohua and Bayou oats increased 19.26 and 6.09 times, respectively, after germination. The total AVN content of both oat varieties reached a maximum on the fifth day of germination (153.51 ± 4.08 and 126.30 ± 3.33 μg/g for the Zaohua and Bayou oats, respectively). Furthermore, this study investigated the antiallergic and antioxidant activities of the germinated oats via hyaluronidase inhibition and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging assays. The antiallergic and DPPH-scavenging abilities of the ungerminated forms of both oat varieties were weaker. However, on the fifth day of germination, the inhibition rate of anthranilamide hyaluronidase reached 72.7% and 67.3% for the Zaohua and Bayou oat varieties, respectively. The antiallergic abilities of the oats increased significantly on the fifth day of germination in terms of their antiallergic capacities and DPPH clearance (82.67% and 77.64% for the Zaohua and Bayou oats, respectively), and the two indicators exhibited similar trends. These findings demonstrated that AVNs exhibit good antisensitivity and antioxidation properties, and the antisensitivity effect correlated positively with the AVN content.
Collapse
Affiliation(s)
- Yuchao Feng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Chinese National Engineering Research Center, Daqing 163319, China
| | - Decheng Suo
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xin Guan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shi Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yang Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xiaolu Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing 100081, China
- Correspondence:
| |
Collapse
|
7
|
Sprouting and Hydrolysis as Biotechnological Tools for Development of Nutraceutical Ingredients from Oat Grain and Hull. Foods 2022; 11:foods11182769. [PMID: 36140899 PMCID: PMC9497932 DOI: 10.3390/foods11182769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oat consumption has increased during the last decade because of the health benefits associated with its soluble dietary fiber (β-glucan), functional proteins, lipids, and the presence of specific phytochemicals, such as avenanthramides. Oat is consumed mainly as whole grain, and the hull (seed coat), comprising 25–35% of the entire grain, is removed, generating a large amount of waste/by-product from the milling industry. The objective of this study was to evaluate the use of biotechnological strategies, such as sprouting for oat grain (OG) and hydrolysis for oat hull (OH), to enhance antioxidant and anti-inflammatory properties and lower the glycemic index (GI). Sprouting produced significant (p ≤ 0.05) increases in free (32.10 to 76.62 mg GAE (100 g)−1) and bound phenols (60.45 to 124.36 mg GAE (100 g)−1), increasing significantly (p ≤ 0.05) the avenanthramide (2c, 2p and 2f) soluble phenolic alkaloid content and anti-inflammatory properties of OG. On the other hand, the hydrolysis of OH using Viscoferm (EH2-OH) and Ultraflo XL (EH21-OH) increased by 4.5 and 5-fold the release of bound phenols, respectively; meanwhile, the use of Viscoferm increased the 4.55-fold soluble β-glucan content in OH, reaching values close to those of OG (4.04 vs. 4.46 g (100 g)−1). The study shows the potential of both strategies to enhance the nutritional and bioactive properties of OG and OH and describes these processes as feasible for the industry to obtain an ingredient with high antioxidant and anti-inflammatory activities. Single or combined biotechnological tools can be used on oat grains and hulls to provide nutraceutical ingredients.
Collapse
|
8
|
Zhu P, Zhang Y, Zhang D, Han L, Liu H, Sun B. Inhibitory Mechanism of Advanced Glycation End-Product Formation by Avenanthramides Derived from Oats through Scavenging the Intermediates. Foods 2022; 11:foods11121813. [PMID: 35742012 PMCID: PMC9222356 DOI: 10.3390/foods11121813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
As a special polyphenolic compound in oats, the physiological function of oat avenanthramides (AVAs) drives a variety of biological activities, and plays an important role in the prevention and treatment of common chronic diseases. In this study, the optimum extraction conditions and structural identification of AVAs from oats was studied. The inhibitory effect of AVAs from oats on advanced glycation end-products (AGEs) in a glucose–casein simulation system was evaluated, and this revealed dose-dependent inhibitory effects. The trapping capacity of AVAs to the α-dicarbonyl compounds of AGE intermediate products was determined by HPLC–MS/MS, and the results indicate that AVA 2c, AVA 2p, and AVA 2f exhibited the ability to capture α-dicarbonyl compounds. More importantly, AVA 2f was found to be more efficient than AVA 2p at inhibiting superoxide anion radical (O2−), hydroxyl radical (OH), and singlet oxygen (1O2) radical generation, which may be the main reason that AVA 2f was more efficient than AVA 2p in AGE inhibition. Thus, this research presents a promising application of AVAs from oats in inhibiting the food-borne AGEs formed in food processing.
Collapse
Affiliation(s)
| | | | | | | | - Huilin Liu
- Correspondence: ; Tel.: +86-10-68-984-857
| | | |
Collapse
|
9
|
Validation of avenanthramide and other phenolic compounds in oats and sprouted oats and their antimicrobial properties against Escherichia coli O157:H7. Food Sci Biotechnol 2022; 31:1145-1155. [DOI: 10.1007/s10068-022-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022] Open
|
10
|
Nkhata Malunga L, Ames N, Mitchell Fetch J, Netticadan T, Joseph Thandapilly S. Genotypic and environmental variations in phenolic acid and avenanthramide content of Canadian oat (Avena sativa). Food Chem 2022; 388:132904. [PMID: 35460963 DOI: 10.1016/j.foodchem.2022.132904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
Abstract
Phenolic compounds (PC) in oat may possess health promoting properties. This study evaluated the effect of genotype, environment, and their interaction on the phenolic acid and avenanthramide (AVN) concentration in Canadian oat. Six cultivars were grown at eight locations across Canada in a randomised complete block design with three field replicates. Free PCs were extracted from oat groat flour and analysed using a UPLC-PDA system. The cumulative concentration of free PCs and AVN ranged from 58 to 350 and 9 to 244 µg/g, respectively. The effect of environment was significant (p < 0.0001) for the concentration of all PCs. Cultivar differences significantly influenced the concentration of all PCs but AVNs A and B. The growing location explained > 68% of the variation in the concentration of AVN. Thus understanding the genotypic and environmental triggers of individual PCs may help agronomists and breeders strategize in selecting and growing oat cultivars of interest.
Collapse
Affiliation(s)
- Lovemore Nkhata Malunga
- Agriculture & Agri-Food Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, Manitoba R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy Ames
- Agriculture & Agri-Food Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, Manitoba R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Jennifer Mitchell Fetch
- Agriculture & Agri-Food Canada, Brandon Research Development Center, Brandon, Manitoba, Canada
| | - Thomas Netticadan
- Agriculture & Agri-Food Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada
| | - Sijo Joseph Thandapilly
- Agriculture & Agri-Food Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, Manitoba R3T 2N2, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Bouchard J, Valookaran AF, Aloud BM, Raj P, Malunga LN, Thandapilly SJ, Netticadan T. Impact of oats in the prevention/management of hypertension. Food Chem 2022; 381:132198. [PMID: 35123221 DOI: 10.1016/j.foodchem.2022.132198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Oats are a rich source of a soluble fibre, beta-glucan, phenolic compounds, as well as functional lipid and protein components that could potentially aid in preventing and managing hypertension. Processing techniques commonly used to manufacture oat based foods have been shown to improve its physiological efficacy. Hypertension is a common condition that is a risk factor for cardiovascular disease, a primary cause of mortality worldwide. Though exercise and pharmacological interventions are often used in the management of hypertension, diet is an incredibly important factor. One preclinical study and a handful of clinical studies have shown that oat components/products are effective in lowering blood pressure. However, research in this area is limited and more studies are needed to elucidate the anti-hypertensive potential of oats.
Collapse
Affiliation(s)
- Jenny Bouchard
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Aleena Francis Valookaran
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | | | - Pema Raj
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | - Lovemore Nkhata Malunga
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Yu Y, Zhou L, Li X, Liu J, Li H, Gong L, Zhang J, Wang J, Sun B. The Progress of Nomenclature, Structure, Metabolism, and Bioactivities of Oat Novel Phytochemical: Avenanthramides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:446-457. [PMID: 34994561 DOI: 10.1021/acs.jafc.1c05704] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oats are among the most commonly consumed whole grains and are widely grown worldwide, and they contain numerous nutrients, including proteins, lipids, vitamins, minerals, β-glucan, and unique phytochemical polyphenol avenanthramides (Avns). Recent studies have indicated that Avns play essential roles in mediating the health benefits of oats. This review systemically summarized the nomenclature and structures of Avns, effect of germination on promoting Avns production, and in vivo metabolites produced after Avns consumption. The classical functions and novel potential bioactivities of Avns were further elucidated. The classical functions of Avns in cancer prevention, antioxidative response, anti-inflammatory reaction, and maintaining muscle health were expounded, and the internal mechanisms of these functions were analyzed. The potential novel bioactivities of Avns in modulating gut microbiota, alleviating obesity, and preventing chronic diseases, such as atherosclerosis and osteoporosis, were further revealed. This review may provide new prospects and directions for the development and utilization of oat Avns.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Mao H, Xu M, Ji J, Zhou M, Li H, Wen Y, Wang J, Sun B. The utilization of oat for the production of wholegrain foods: Processing technology and products. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Huijia Mao
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Minghao Xu
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Jingyun Ji
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Mengsha Zhou
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Hongyan Li
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
| | - Jing Wang
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| | - Baoguo Sun
- China–Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health Beijing Technology and Business University Beijing China
| |
Collapse
|
14
|
Paudel D, Dhungana B, Caffe M, Krishnan P. A Review of Health-Beneficial Properties of Oats. Foods 2021; 10:2591. [PMID: 34828872 PMCID: PMC8625765 DOI: 10.3390/foods10112591] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022] Open
Abstract
Oat is among the food crops and ancient grains cultivated and consumed worldwide. It is gaining in popularity owing to its nutritional composition and multifunctional benefits of select bioactive compounds. Beta-glucan is an important component of dietary fiber found in oat grains. It is the major active compound in oats with proven cholesterol-lowering and antidiabetic effects. Oats also provide substantial levels of other bioactive compounds such as phenolic acids, tocols, sterols, avenacosides, and avenanthramides. The consumption of oats has been determined to be beneficial for human health by promoting immunomodulation and improving gut microbiota. In addition, oat consumption assists in preventing diseases such as atherosclerosis, dermatitis, and some forms of cancer. While much has been published in relation to oat nutrients and oat fibers and their impact on major diseases, the oat industries and consumers may benefit from greater knowledge and understanding of clinical effects, range of occurrence, distribution, therapeutic doses and food functional attributes of other oat bioactives such as avenanthramides and saponins as well as other anti-inflammatory agents found in the cereal. This review focuses on the various studies relevant to the contribution of the consumption of oats and oat-based products in preventing human diseases and promoting human health.
Collapse
Affiliation(s)
- Devendra Paudel
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
| | - Bandana Dhungana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (B.D.); (M.C.)
| | - Melanie Caffe
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (B.D.); (M.C.)
| | - Padmanaban Krishnan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
15
|
Lee YY, Wang M, Son Y, Yang EJ, Kang MS, Kim HJ, Kim HS, Jo J. Oat Extract Avenanthramide-C Reverses Hippocampal Long-Term Potentiation Decline in Tg2576 Mice. Molecules 2021; 26:molecules26206105. [PMID: 34684684 PMCID: PMC8541156 DOI: 10.3390/molecules26206105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
Memory deterioration in Alzheimer’s disease (AD) is thought to be underpinned by aberrant amyloid β (Aβ) accumulation, which contributes to synaptic plasticity impairment. Avenanthramide-C (Avn-C), a polyphenol compound found predominantly in oats, has a range of biological properties. Herein, we performed methanolic extraction of the Avns-rich fraction (Fr. 2) from germinated oats using column chromatography, and examined the effects of Avn-C on synaptic correlates of memory in a mouse model of AD. Avn-C was identified in Fr. 2 based on 1H-NMR analysis. Electrophysiological recordings were performed to examine the effects of Avn-C on the hippocampal long-term potentiation (LTP) in a Tg2576 mouse model of AD. Avn-C from germinated oats restored impaired LTP in Tg2576 mouse hippocampal slices. Furthermore, Avn-C-facilitated LTP was associated with changes in the protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β-S9) and cleaved caspase 3, which are involved in Aβ-induced synaptic impairment. Our findings suggest that the Avn-C extract from germinated oats may be beneficial for AD-related synaptic plasticity impairment and memory decline.
Collapse
Affiliation(s)
- Yu-Young Lee
- Department of Central Area, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Korea; (Y.S.); (M.-S.K.); (H.-J.K.)
- Correspondence: (Y.-Y.L.); (H.-S.K.); (J.J.)
| | - Ming Wang
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea;
| | - Yurim Son
- Department of Central Area, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Korea; (Y.S.); (M.-S.K.); (H.-J.K.)
| | - Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Korea;
| | - Moon-Seok Kang
- Department of Central Area, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Korea; (Y.S.); (M.-S.K.); (H.-J.K.)
| | - Hyun-Joo Kim
- Department of Central Area, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Korea; (Y.S.); (M.-S.K.); (H.-J.K.)
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 501-757, Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-757, Korea
- Correspondence: (Y.-Y.L.); (H.-S.K.); (J.J.)
| | - Jihoon Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea;
- Correspondence: (Y.-Y.L.); (H.-S.K.); (J.J.)
| |
Collapse
|
16
|
Shi R, Li Y, Liu L. Synergistic anti-oxidative and antimicrobial effects of oat phenolic compounds and ascorbate palmitoyl on fish balls during cold storage. J Food Sci 2021; 86:4628-4636. [PMID: 34549438 DOI: 10.1111/1750-3841.15922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022]
Abstract
This study investigated the effect of antioxidants on lipid stability of mackerel (Scomber japonicus) fish balls. Oat phenolic acid compounds (OPC) and ascorbate palmitoyl (AP) were used to prolong the shelf life of steamed mackerel fish balls. Fish balls were stored at 4°C for 21 days, and the total bacterial count, hardness, whiteness, water holding capacity (WHC), pH, total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) value were monitored regularly. The results indicated that OPC+AP composite as a biological preservative could significantly inhibit the increase of the total bacterial count. Meanwhile, OPC and AP could maintain better hardness, whiteness, and WHC of fish balls during refrigerated storage. Furthermore, OPC and AP slowed down the increase of TVB-N and TBARS values. The results showed that OPC+AP had a synergistic effect on the storage time and could prolong the shelf life within the storage time. Adding OPC and AP was a promising strategy to improve the quality and shelf life of fish balls. PRACTICAL APPLICATION: The research provided a new application of OPC and AP for improving fish balls quality and shelf life during cold storage (4°C). OPC is a natural plant secondary metabolite from oat which exhibits excellent anti-oxidation. The research showed that OPC and AP combined with synergistic effect as biological preservatives can effectively inhibit the total bacterial count and reduce TBARS and TVB-N value of fish balls during the shelf life and maintain the hardness, which improved the quality and shelf life of fish balls.
Collapse
Affiliation(s)
- Ranran Shi
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang Province, P. R. China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang Province, P. R. China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang Province, P. R. China
| |
Collapse
|
17
|
Synergistic Effect of Methyl Jasmonate and Abscisic Acid Co-Treatment on Avenanthramide Production in Germinating Oats. Int J Mol Sci 2021; 22:ijms22094779. [PMID: 33946373 PMCID: PMC8125723 DOI: 10.3390/ijms22094779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The oat (Avena sativa L.) is a grain of the Poaceae grass family and contains many powerful anti-oxidants, including avenanthramides as phenolic alkaloids with anti-inflammatory, anti-oxidant, anti-itch, anti-irritant, and anti-atherogenic activities. Here, the treatment of germinating oats with methyl jasmonate (MeJA) or abscisic acid (ABA) resulted in 2.5-fold (582.9 mg/kg FW) and 2.8-fold (642.9 mg/kg FW) increase in avenanthramide content, respectively, relative to untreated controls (232.6 mg/kg FW). Moreover, MeJA and ABA co-treatment synergistically increased avenanthramide production in germinating oats to 1505 mg/kg FW. Individual or combined MeJA and ABA treatment increased the expression of genes encoding key catalytic enzymes in the avenanthramide-biosynthesis pathway, including hydroxycinnamoyl-CoA:hydrocyanthranilate N-hydroxycinnamoyl transferase (HHT). Further analyses showed that six AsHHT genes were effectively upregulated by MeJA or ABA treatment, especially AsHHT4 for MeJA and AsHHT5 for ABA, thereby enhancing the production of all three avenanthramides in germinating oats. Specifically, AsHHT5 exhibited the highest expression following MeJA and ABA co-treatment, indicating that AsHHT5 played a more crucial role in avenanthramide biosynthesis in response to MeJA and ABA co-treatment of germinating oats. These findings suggest that elicitor-mediated metabolite farming using MeJA and ABA could be a valuable method for avenanthramide production in germinating oats.
Collapse
|
18
|
Xochitl AF, Rosalía RC, Minerva RG, Mendoza-Sánchez M, Mora O, Pérez-Ramírez IF. Polyphenols and avenanthramides extracted from oat (Avena sativa L.) grains and sprouts modulate genes involved in glucose and lipid metabolisms in 3T3 L1 adipocytes. J Food Biochem 2021; 45:e13738. [PMID: 33899247 DOI: 10.1111/jfbc.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of polyphenol (PE) and avenanthramide (AE) extracts from oat grains (OG) and sprouts (OS) on genes related to glucose and lipid metabolisms in 3T3 L1 adipocytes. The AE-OS exerted the greatest effect on genes involved in glucose metabolism, increasing Glut4, Irs1, and Pi3k expression by 3.0- to 3.9-fold. Conversely, the PE-OS exerted the greatest effect on genes involved in lipid metabolism, decreasing Fasn and Acaca expression by 0.2- to 0.3-fold, and increasing Cpt1a and Acadm expression by 2.7- to 3.0-fold. These effects were mainly related to their high content of avenanthramides A (2p), B (2f), and C (2c), quercetin 3-O-rutinoside, kaempferol, sinapoylquinic acid, and apigenin and luteolin derivatives according to the chemometric analysis. In conclusion, this study demonstrated that oat sprouts extract exerts a greater effect than oat grains on the regulation of genes involved in glucose and lipid metabolisms in adipocytes. PRACTICAL APPLICATIONS: This study demonstrates that polyphenols and avenanthramides extracted from oat (Avena sativa L.) grains and sprouts modulate key genes involved in glucose and lipid metabolisms in adipocytes and that oat sprouts exert a greatest health beneficial effect than oat grains due to their higher content of bioactive compounds. In addition, the chemometric analysis identified the bioactive compounds that can be associated with the beneficial effects of oat grains and sprouts, which can be further used for the identification of oat varieties and oat-derived products with high content of these bioactive compounds and, thus, with high nutraceutical potential.
Collapse
Affiliation(s)
| | | | - Ramos-Gómez Minerva
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| | | | - Ofelia Mora
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| |
Collapse
|
19
|
Yang D, Gao X. Progress of the use of alternatives to malt in the production of gluten-free beer. Crit Rev Food Sci Nutr 2020; 62:2820-2835. [PMID: 33325770 DOI: 10.1080/10408398.2020.1859458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Beer is the most widely consumed alcoholic drink in the world, but it is not suitable for patients who suffer from celiac disease (CD) because its main ingresdients, barley or wheat, contain gluten. Approximately 1% of the world's population is affected by CD, and the development of gluten-free beer is imperative. Gluten-free beers produced using alternative materials, such as rice, sorghum, maize, millet, oats, and pseudocereals (e.g., buckwheat, quinoa and Amaranth), are studied in this review that examines the effects of specific substitutions on the different characteristics of the final beer to ensure the appropriateness of their use. The use of alternatives to malt may affect the quality of gluten-free beer and result in some negative consequences. Accordingly, the influential factors are discussed in terms of the total substitution of malt with other grains in the production of beer. Research results have provided some new alternative solutions for the production of gluten-free beer, such as the use of malted grains to improve hydrolytic enzyme activity, the application of nonconventional mashing procedures involving the decoction method and extrusion cooking techniques to increase the extract yield, the use of exogenous enzymes and nitrogen supplements to improve the sugar and amino acid spectra necessary for yeast fermentation, and the application of combinations of alternative grains to improve the flavor, body and foam stability of gluten-free beers.
Collapse
Affiliation(s)
- Dongsheng Yang
- Department of Bioengineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Xuan Gao
- Department of Bioengineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
20
|
Hernandez-Hernandez O, Pereira-Caro G, Borges G, Crozier A, Olsson O. Characterization and antioxidant activity of avenanthramides from selected oat lines developed by mutagenesis technique. Food Chem 2020; 343:128408. [PMID: 33158678 DOI: 10.1016/j.foodchem.2020.128408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
From a mutagenized oat population, produced by ethyl methanesulfonate mutagenesis, hulled grains from 17 lines with elevated avenanthramide (AVN) content were selected and their AVN structures, concentrations and antioxidant potentials were determined by HPLC-MS2 and HPLC equipped with an on-line ABTS+ antioxidant detection system. The data obtained showed qualitative and quantitative differences in the synthesis of AVNs in the different lines, with a total AVN concentration up to 227.5 µg/g oat seed flour in the highest line, compared with 78.2 µg/g seed in the commercial line, SW Belinda. In total, 25 different AVNs were identified with avenanthramide B structures being among the most abundant, and AVN C structures having the highest antioxidant activity. The findings indicate the potential of oat mutagenesis in combination with a high precision biochemical selection method for the generation of stable mutagenized lines with a high concentration of total and/or individual AVNs in the oat seed grain.
Collapse
Affiliation(s)
| | - Gema Pereira-Caro
- Department of Food and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | - Gina Borges
- Polyphenol Bio Ltd., 9/47, Partickhill Road, Glasgow G11 5AB, United Kingdom
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; Department of Nutrition, University of California, Davis, CA 95616-5270, United States
| | - Olof Olsson
- Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden; CropTailorAB, c/o Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
| |
Collapse
|
21
|
Raguindin PF, Adam Itodo O, Stoyanov J, Dejanovic GM, Gamba M, Asllanaj E, Minder B, Bussler W, Metzger B, Muka T, Glisic M, Kern H. A systematic review of phytochemicals in oat and buckwheat. Food Chem 2020; 338:127982. [PMID: 32950005 DOI: 10.1016/j.foodchem.2020.127982] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/29/2022]
Abstract
Consumption of oat and buckwheat have been associated with various health benefits that may be attributed to their nutritional composition. We performed a systematic review to evaluate the profile and quantity of bioactive compounds present in oat and buckwheat. Among 154 studies included in final analysis, 113 and 178 bioactive compounds were reported in oat and buckwheat, respectively. Total phytosterols, tocols, flavonoids and rutin content were generally higher in buckwheat, β-glucans were significantly higher in oat, while avenanthramides and saponins were characteristically present in oat. The majority of studies included in current review were published before 2010s. The heterogeneous methodological procedures used across the studies precluded our possibility to meta-analyse the evidence and raises the need for harmonization of separation and extraction methods in future studies. Our findings should further stimulate the exploration of metabolites related to identified phytochemicals and their roles in human health.
Collapse
Affiliation(s)
- Peter Francis Raguindin
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | - Oche Adam Itodo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | | | - Gordana M Dejanovic
- Department of Ophthalmology, University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 1-3, 21000 Novi Sad, Serbia
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Weston Bussler
- Standard Process Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Brandon Metzger
- Standard Process Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland.
| | - Hua Kern
- Standard Process Nutrition Innovation Center, Kannapolis, NC 28018, USA
| |
Collapse
|
22
|
Comparative evaluation of physicochemical, nutritional and molecular interactions of flours from different cereals as affected by germination duration. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00364-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem 2019; 283:239-247. [DOI: 10.1016/j.foodchem.2018.12.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
|
24
|
Dhakal H, Yang EJ, Lee S, Kim MJ, Baek MC, Lee B, Park PH, Kwon TK, Khang D, Song KS, Kim SH. Avenanthramide C from germinated oats exhibits anti-allergic inflammatory effects in mast cells. Sci Rep 2019; 9:6884. [PMID: 31053741 PMCID: PMC6499795 DOI: 10.1038/s41598-019-43412-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells play a crucial role in allergic diseases via the release of inflammatory mediators, particularly histamine and pro-inflammatory cytokines. Avenanthramide (Avn) C, a polyphenol found mainly in oats, is known to exhibit various biological properties. In this study, we aimed to evaluate the effectiveness of Avn C from germinated oats against mast cell-mediated allergic inflammation. For the in vitro study, RBL-2H3, mouse bone marrow-derived mast cells and rat peritoneal mast cells were used. Avn C (1–100 nM) inhibited the immunoglobulin (Ig)E-stimulated mast cells degranulation by suppressing phosphorylation of phosphoinositide 3-kinase and phospholipase Cγ1 and decreasing intracellular calcium levels. It inhibited IgE-stimulated secretion of inflammatory cytokines via suppression of FcεRI-mediated signaling proteins Lyn, Syk, Akt, and nuclear factor-κB. To verify the effects of Avn C in vivo, ovalbumin-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. Oral administration of Avn C dose-dependently attenuated the ASA reactions, as evidenced by the inhibition of hypothermia and reduction of elevated serum histamine, IgE, and interleukin-4 levels. Avn C also inhibited the PCA reactions, such as ear swelling and plasma extravasation. Our results suggested that Avn C from germinated oats might be a possible therapeutic candidate for mast cell-mediated allergic inflammation.
Collapse
Affiliation(s)
- Hima Dhakal
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Min-Jong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon, Republic of Korea.
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea. .,GHAM BioPharm Co. Ltd., College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
25
|
Lee JH, Lee BK, Park HH, Lee BW, Woo KS, Kim HJ, Han SI, Lee YY. Oat germination and ultrafiltration process improves the polyphenol and avenanthramide contents with protective effect in oxidative-damaged HepG2 cells. J Food Biochem 2019; 43:e12799. [PMID: 31353574 DOI: 10.1111/jfbc.12799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 01/11/2023]
Abstract
Oat is the nutritious crop containing various compounds with antioxidant properties, such as polyphenols. In this study, we investigated the effect of germination and ultrafiltration process on polyphenol and avenanthramide contents in oat as well as their cytoprotective effect. Germination of oat for 48 hr significantly increased avenanthramide (5.5 to 11.3 mg/g) and polyphenol (115 to 155 mg GAE/g) contents. The compounds were more concentrated after ultrafiltration using 10 kDa membranes (polyphenol, 206 GAE/g; avenanthramide, 18 mg/g). In addition, oat extracts significantly reduced the cellular ROS level against tert-butyl hydroperoxide (t-BHP) stimulation in HepG2 cells. In the mechanistic study, oat extracts induced Nrf2 translocation to the nucleus by inhibition of Keap1 expression, resulting into upregulation of γ-GCS and NQO1. In conclusion, oat germination and ultrafiltration processes increased the polyphenol content, including that of avenanthramide. These extracts protected cells from t-BHP by radical scavenging activities and induced Nrf2 pathway activation. PRACTICAL APPLICATIONS: This study presents the method for avenanthramide-concentrated extract which is unique bioactive compounds in oat. In addition, antioxidant activity and their mechanisms of the avenanthramide-enriched extracts were evaluated. The polyphenol compounds including avenanthramide were found to increase after germination and ultrafiltration, thereby improving the radical scavenging ability. These results can be utilized as data for the development of health-promoting materials using oats.
Collapse
Affiliation(s)
- Ji Hae Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Byoung-Kyu Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Hyoung-Ho Park
- Headquarters, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Byong Won Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Koan Sik Woo
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Sang-Ik Han
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Yu Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
26
|
Lemmens E, Moroni AV, Pagand J, Heirbaut P, Ritala A, Karlen Y, Lê KA, Van den Broeck HC, Brouns FJPH, De Brier N, Delcour JA. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr Rev Food Sci Food Saf 2018; 18:305-328. [PMID: 33337026 DOI: 10.1111/1541-4337.12414] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Sprouting induces activation and de novo synthesis of hydrolytic enzymes that make nutrients available for plant growth and development. Consumption of sprouted grains is suggested to be beneficial for human health. Positive consumer perceptions about sprouted cereals have resulted in new food and beverage product launches. However, because there is no generally accepted definition of "sprouting," it is unclear when grains are to be called sprouted. Moreover, guidelines about how much sprouted grain material food products should contain to exert health benefits are currently lacking. Accordingly, there is no regulatory base to develop appropriate food labeling for "sprouted foods." This review describes the nutritional and technological properties of sprouted grains in relation to processing conditions and provides guidelines to optimize sprouting practices in order to maximize nutritive value. Relatively long sprouting times (3 to 5 days) and/or high processing temperatures (25 to 35 °C) are needed to maximize the de novo synthesis and/or release of plant bioactive compounds. Nutrient compositional changes resulting from sprouting are often associated with health benefits. However, supportive data from clinical studies are very scarce, and at present it is impossible to draw any conclusion on health benefits of sprouted cereals. Finally, grains sprouted under the above-mentioned conditions are generally unfit for use in traditional food processing and it is challenging to use sprouted grains as ingredients without compromising their nutrient content. The present review provides a basis for better defining what "sprouting" is, and to help further research and development efforts in this field as well as future food regulations development.
Collapse
Affiliation(s)
- Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Alice V Moroni
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Jennifer Pagand
- Puratos Group, Industrialaan 25, B-1702, Groot-Bijgaarden, Belgium
| | - Pieter Heirbaut
- Puratos Group, Industrialaan 25, B-1702, Groot-Bijgaarden, Belgium
| | - Anneli Ritala
- VTT Technical Research Centre of Finland, Vuorimiehentie 3, 02150, Espoo, Finland
| | - Yann Karlen
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Kim-Anne Lê
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Hetty C Van den Broeck
- Wageningen Univ. & Research, Business unit Bioscience, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands
| | - Fred J P H Brouns
- Dept. of Human Biology School of Nutrition and Translational Research in Metabolism Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - Niels De Brier
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
27
|
Ninfali P, Mari M, Meli MA, Roselli C, Antonini E. In vitro
bioaccessibility of avenanthramides in cookies made with malted oat flours. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Paolino Ninfali
- Department of Biomolecular Sciences University of Urbino Carlo Bo via Saffi, 2 61029 Urbino (PU) Italy
| | - Michele Mari
- Department of Biomolecular Sciences University of Urbino Carlo Bo via Saffi, 2 61029 Urbino (PU) Italy
| | - Maria A. Meli
- Department of Biomolecular Sciences University of Urbino Carlo Bo via Saffi, 2 61029 Urbino (PU) Italy
| | - Carla Roselli
- Department of Biomolecular Sciences University of Urbino Carlo Bo via Saffi, 2 61029 Urbino (PU) Italy
| | - Elena Antonini
- Department of Biomolecular Sciences University of Urbino Carlo Bo via Saffi, 2 61029 Urbino (PU) Italy
| |
Collapse
|
28
|
de Bruijn WJC, van Dinteren S, Gruppen H, Vincken JP. Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chem 2018; 277:682-690. [PMID: 30502203 DOI: 10.1016/j.foodchem.2018.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/27/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Avenanthramides are amides, with a phenylalkenoic acid (PA) and an anthranilic acid (AA) subunit, which are secondary metabolites of oat. Oat seeds were germinated, extracted, and the avenanthramides analysed by a combination of UHPLC with ion trap and high resolution ESI-MS. Typical fragmentation pathways with corresponding diagnostic fragments belonging to the PA and AA subunits were identified and summarised in a decision guideline. Based on these findings 28 unique avenanthramides were annotated in the oat seed(ling) extracts, including the new avenanthramide 6f (with a 4/5-methoxy AA subunit). Avenanthramide content increased by 25 times from seed to seedling. Avenanthramides 2p, 2c, and 2f, which are commonly described as the major avenanthramides, represented less than 20% of the total content in the seedlings. Future quantitative analyses should, therefore, include a wider range of avenanthramides to avoid underestimation of the total avenanthramide content.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
29
|
Wu W, Tang Y, Yang J, Idehen E, Sang S. Avenanthramide Aglycones and Glucosides in Oat Bran: Chemical Profile, Levels in Commercial Oat Products, and Cytotoxicity to Human Colon Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8005-8014. [PMID: 29985603 DOI: 10.1021/acs.jafc.8b02767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Avenanthramides (AVAs), unique phytochemicals in oat, have attracted an increasing amount of attention due to their outstanding health benefits. However, the chemical profile and the levels of AVAs in commercial oat products as well as their health benefits have not been examined in detail. In the present study, a total of 29 AVA aglycones and AVA glucosides were identified and characterized from oat bran using NMR (1D and 2D NMR) and LC-MS techniques. Among them, 17 novel AVA glucosides were reported in oat bran for the first time. The most abundant AVA glucoside, 2c-3'- O-glc, had a similar growth inhibitory activity with the major AVA, 2c, against HCT-116 and HT-29 human colon cancer cells, indicating glucosylation does not affect the growth inhibitory effects of AVAs. Furthermore, the levels of all individual AVAs in 13 commercial oat products were analyzed using HPLC-MS/MS. The total AVAs contents in various oat products ranged from 9.22 to 61.77 mg/kg (fresh weight).
Collapse
Affiliation(s)
- Wenbin Wu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Junli Yang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Emmanuel Idehen
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
30
|
Effect of ultra high temperature processing and storage conditions on phenolic acid, avenanthramide, free fatty acid and volatile profiles from Australian oat grains. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Singh A, Sharma S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Crit Rev Food Sci Nutr 2018; 57:3051-3071. [PMID: 26466514 DOI: 10.1080/10408398.2015.1085828] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole grains provide energy, nutrients, fibers, and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional, and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health-promoting compounds and enhanced functional attributes.
Collapse
Affiliation(s)
- Arashdeep Singh
- a Department of Food Science and Technology , Punjab Agricultural University , Ludhiana , Punjab , India
| | - Savita Sharma
- a Department of Food Science and Technology , Punjab Agricultural University , Ludhiana , Punjab , India
| |
Collapse
|
32
|
Schaffer-Lequart C, Lehmann U, Ross AB, Roger O, Eldridge AL, Ananta E, Bietry MF, King LR, Moroni AV, Srichuwong S, Wavreille AS, Redgwell R, Labat E, Robin F. Whole grain in manufactured foods: Current use, challenges and the way forward. Crit Rev Food Sci Nutr 2017; 57:1562-1568. [PMID: 25747755 DOI: 10.1080/10408398.2013.781012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Some countries now incorporate recommendations for increased consumption of whole grain (WG) into local dietary guidelines. Cereal and pseudo-cereal grains are good sources of complex carbohydrates, dietary fiber, proteins, phytochemicals, vitamins and minerals. However, research shows that the large majority of consumers are still falling short of WG consumption goals. To address this, we are actively involved in research to help increase the WG content of processed foods without compromising on taste and texture. In order to ensure consumer trust, the advancement of process technologies in incorporating WG to produce tasty food has to go hand in hand with well designed clinical trials that confirm the health benefits resulting from diets rich in WG.
Collapse
Affiliation(s)
| | | | | | | | | | - Edwin Ananta
- a Nestlé Research Centre , Lausanne , Switzerland
| | | | - Luis R King
- a Nestlé Research Centre , Lausanne , Switzerland
| | | | | | | | | | - Emilie Labat
- b Nestlé Product Technology Centre Orbe , Orbe , Switzerland
| | - Frederic Robin
- b Nestlé Product Technology Centre Orbe , Orbe , Switzerland
| |
Collapse
|
33
|
Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. Eur J Nutr 2017; 57:1381-1395. [DOI: 10.1007/s00394-017-1418-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
|
34
|
Sang S, Chu Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol Nutr Food Res 2017; 61. [PMID: 28067025 DOI: 10.1002/mnfr.201600715] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 12/30/2016] [Indexed: 11/12/2022]
Abstract
Oats are a good source of soluble dietary fiber, especially β-glucan, which has outstanding functional and nutritional properties. β-Glucan is considered to be the major active component of oats because of its cholesterol-lowering and antidiabetic effects. However, the nutritional benefits of oats appear to go beyond fiber to bioactive phytochemicals with strong antioxidant and anti-inflammatory effects. In this review, we summarize current knowledge on the chemistry, stability, bioavailability, and health effects of two unique phytochemicals in oats, avenanthramides, and avenacosides A and B. We conclude that studies on the beneficial effects of avenanthramides and avenacosides A and B are still in their infancy, and additional health benefits of these unique oat components may yet be identified.
Collapse
Affiliation(s)
- Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL, USA
| |
Collapse
|
35
|
Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination. Food Chem 2016; 194:608-18. [DOI: 10.1016/j.foodchem.2015.08.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022]
|
36
|
Binqiang T, Chao W, Lan W, Bijun X. Granule Size and Distribution of Raw and Germinated Oat Starch in Solid State and Ethanol Solution. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2014.923908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Rasane P, Jha A, Sabikhi L, Kumar A, Unnikrishnan VS. Nutritional advantages of oats and opportunities for its processing as value added foods - a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:662-75. [PMID: 25694675 PMCID: PMC4325078 DOI: 10.1007/s13197-013-1072-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023]
Abstract
Oats (Avena sativa L.) have received considerable attention for their high content of dietary fibres, phytochemicals and nutritional value. It is believed that consumption of oats possesses various health benefits such as hypocholesterolaemic and anticancerous properties. Oats have also recently been considered suitable in the diet of celiac patients. Owing to their high nutritional value, oat-based food products like breads, biscuits, cookies, probiotic drinks, breakfast cereals, flakes and infant food are gaining increasing consideration. Research and development on oat and its products may be helpful in combating various diseases known to mankind. This paper provides an overview of the nutritional and health benefits provided by oats as whole grains and its value added products. It is designed to provide an insight on the processing of oats and its effect on their functional properties. The manuscript also reviews various uses of oats and its fractions for clinical and industrial purposes and in development of value added food products.
Collapse
Affiliation(s)
- Prasad Rasane
- />Centre of Food Science and Technology, Banaras Hindu University, Varanasi, 221 005 India
| | - Alok Jha
- />Centre of Food Science and Technology, Banaras Hindu University, Varanasi, 221 005 India
| | - Latha Sabikhi
- />Dairy Technology Division, National Dairy Research Institute, Karnal, 132 001 India
| | - Arvind Kumar
- />Centre of Food Science and Technology, Banaras Hindu University, Varanasi, 221 005 India
| | - V. S. Unnikrishnan
- />Centre of Food Science and Technology, Banaras Hindu University, Varanasi, 221 005 India
| |
Collapse
|
38
|
Hübner F, Arendt EK. Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review. Crit Rev Food Sci Nutr 2013; 53:853-61. [DOI: 10.1080/10408398.2011.562060] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Wu F, Yang N, Touré A, Jin Z, Xu X. Germinated Brown Rice and Its Role in Human Health. Crit Rev Food Sci Nutr 2013; 53:451-63. [DOI: 10.1080/10408398.2010.542259] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Klose C, Arendt EK. Proteins in oats; their synthesis and changes during germination: a review. Crit Rev Food Sci Nutr 2012; 52:629-39. [PMID: 22530714 DOI: 10.1080/10408398.2010.504902] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oats (Avena sativa L.) are distinct among cereals due to their considerably higher protein concentration. At the same time oats possess a protein quality of high nutritional value and a special protein composition. Most cereals like wheat, barley, and rye have a high percentage of prolamins, the alcohol-soluble fraction, which usually contains most of the storage proteins, but oats are an exception. Their major storage proteins belong to the salt-water soluble globulin fraction, whereas oats prolamins are a minor component. During oats groat development, most obvious is the fairly linear increase in the globulin fraction. Oats globulins share structural features with the 11 S globulins of legumes and other dicots. Amino acid composition of oats is superior to that of other cereals due to the higher amount of limiting amino acids like lysine and threonine. During germination, total amino acid analysis revealed an increase in essential amino acids like lysine and tryptophan, which leads to an increased nutritional value of germinated oats. Oats protein products including globulin have been chemically modified by various methods to improve their functional properties.
Collapse
Affiliation(s)
- Christina Klose
- Department of Food and Nutritional Sciences, National University of Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
41
|
Cai S, Wang O, Wu W, Zhu S, Zhou F, Ji B, Gao F, Zhang D, Liu J, Cheng Q. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:507-13. [PMID: 22136169 DOI: 10.1021/jf204163a] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of present work was to investigate the effect of solid-state fermentation with filamentous fungi (Aspergillus oryzae var. effuses, Aspergillus oryzae, and Aspergillus niger) on total phenolics content (TPC), flavonoids, and antioxidant activities of four subfractions of oat, namely, n-hexane, ethyl acetate (EA), n-butanol, and water, and compare them to their corresponding subfractions of unfermented oat. The TPC and total flavonoids increased dramatically, especially in EA subfractions (p < 0.05). The levels of antioxidant activity of subfractions were also significantly enhanced (p < 0.05). The highest antioxidant activities were also found in the EA subfractions. The polyphenols in EA were analyzed by high-performance liquid chromatography at 280 nm. Most polyphenols were increased remarkably, especially ferulic and caffeic acids. There was a clear correlation between the TPC and antioxidant activity. In conclusion, fungi fermentation is a potential bioprocess for increasing the TPC, flavonoids, and antioxidant activities of oat-based food.
Collapse
Affiliation(s)
- Shengbao Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wise ML. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7028-7038. [PMID: 21598950 DOI: 10.1021/jf2008869] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown, in experimental systems, certain desirable nutritional characteristics such as inhibiting atherosclerotic plaque formation and reducing inflammation. Avenanthramides occur in both the leaves and grain of oat. In the leaves they are expressed as phytoalexins in response to crown rust (Puccina coronata) infection. The experiments reported here demonstrate that avenanthramide levels in vegetative tissue can be enhanced by treatment with benzothiadiazole (BTH), an agrochemical formulated to elicit systemic acquired resistance (SAR). The response to BTH was dramatically stronger than those produced with salicylic acid treatment. The roots of BTH treated plants also showed a smaller but distinct increase in avenanthramides. The dynamics of the root avenanthramide increase was substantially slower than that observed in the leaves, suggesting that avenanthramides might be transported from the leaves.
Collapse
|
43
|
Cai S, Huang C, Ji B, Zhou F, Wise ML, Zhang D, Yang P. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Schmitt MR, Wise ML. Barley and Oat β-Glucan Content Measured by Calcofluor Fluorescence in a Microplate Assay. Cereal Chem 2009. [DOI: 10.1094/cchem-86-2-0187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mark R. Schmitt
- USDA Agricultural Research Service, Cereal Crops Research Unit, 502 Walnut Street, Madison WI 53726. Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture
- Corresponding author. Phone: (608) 262-4480 (voice), Fax: (608) 890-0302 (fax) E-mail:
| | - Mitchell L. Wise
- USDA Agricultural Research Service, Cereal Crops Research Unit, 502 Walnut Street, Madison WI 53726. Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture
| |
Collapse
|