1
|
Muñoz-Llandes CB, Palma-Rodríguez HM, de Jesús Perea-Flores M, Martínez-Villaluenga C, Castro-Rosas J, Salgado-Delgado R, Guzmán-Ortiz FA. Incorporation of germinated lupin into corn-based extrudates: Focus on starch digestibility, matrix structure and physicochemical properties. Food Chem 2024; 458:140196. [PMID: 38943953 DOI: 10.1016/j.foodchem.2024.140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.
Collapse
Affiliation(s)
- Ciro Baruchs Muñoz-Llandes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario, Tulancingo, de Bravo Hidalgo, Mexico; Área Académica de Química (AAQ), Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, Mexico
| | - Heidi María Palma-Rodríguez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario, Tulancingo, de Bravo Hidalgo, Mexico.
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Luis Enrique Erro, San Pedro Zacatenco, Ciudad de México, Mexico
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| | - Javier Castro-Rosas
- Área Académica de Química (AAQ), Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, Mexico
| | - Rene Salgado-Delgado
- Tecnológico Nacional de México, Instituto Tecnológico de Zacatepec, Calzada Tecnológico N° 27, Col. Centro, Zacatepec Morelos, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONAHCYT-Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico.
| |
Collapse
|
2
|
Pietrysiak E, Zak A, Ikuse M, Nalbandian E, Kloepfer I, Hoang L, Vincent M, Jeganathan B, Ganjyal GM. Impact of genotypic variation and cultivation conditions on the techno-functional characteristics and chemical composition of 25 new Canadian quinoa cultivars. Food Res Int 2024; 195:114903. [PMID: 39277215 DOI: 10.1016/j.foodres.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024]
Abstract
The utilization of quinoa in food production requires comprehensive information on its processing characteristics. Twenty-five new quinoa cultivars developed by the Northern Quinoa Breeding Program, grown in three Canadian locations over two seasons, were characterized for their proximate composition, pasting properties, thermal properties, water absorption index, water solubility index, foaming capacity, foaming stability, oil holding capacity, and emulsion activity crucial for potential food applications. Results showed significant variations in the proximate composition among the cultivars, which was also influenced by the growing location and harvest year. Significant differences (p < 0.05) were also observed in the pasting properties, thermal stability, hydration properties, foaming properties, oil holding capacity, and emulsion activity. The hierarchical cluster and principal component analyses were associated with five distinct clusters of quinoa cultivars, each with unique techno-functional attributes, suggesting their potential for different food applications. These findings emphasize the need for further research to explore the performance of quinoa flours in specific food products and their impact on end-product quality.
Collapse
Affiliation(s)
| | - Angelika Zak
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Marina Ikuse
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | | | - Ivy Kloepfer
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Luuvan Hoang
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Marc Vincent
- Northern Quinoa Production Corporation, Saskatoon, SK S7P 0E6, Canada
| | - Brasathe Jeganathan
- School of Food Science, Washington State University, Pullman, WA 99164, USA; Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
3
|
Mohammed S, Dubey PK, Mishra AA, Rahman S. Valorisation of jackfruit seed flour in extrusion and bakery products: a review. Food Sci Biotechnol 2024; 33:3167-3180. [PMID: 39328228 PMCID: PMC11422402 DOI: 10.1007/s10068-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Jackfruit seeds are a highly nutritious, underutilized byproduct that can combat malnutrition and promote a healthy diet. This review evaluates the effects of jackfruit seed flour (JSF) on extrusion and bakery processing, examining its nutritional, functional, and physical properties. Comprehensive analysis showed that JSF in extruded and bakery products improves their nutritional properties and increases functional properties such as bulk density and water holding capacity, whereas it decreases oil holding capacity and expansion ratio. Furthermore, the textural and colour properties became poorer with the higher concentration of JSF due to the absence of gluten. Consumer studies revealed that the overall acceptability of extruded products containing JSF was higher than that of bakery products with similar substitutions. However, optimal formulations are needed to balance nutritional enhancement with desirable textural properties, and the sustainable utilization of this byproduct can lead to the development of a variety of nutritious food products. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01665-2.
Collapse
Affiliation(s)
- Shibil Mohammed
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Praveen Kumar Dubey
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Atul Anand Mishra
- Department of Processing & Food Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Allahabad, Uttar Pradesh India
| | - Shamsad Rahman
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| |
Collapse
|
4
|
Adebayo AI, Oladunjoye AO. Proximate, structural, textural, sensory and microbiological properties of non-gluten extrudate using Sorghum ( Sorghum bicolor L. Moench) and a sprouted legume ( Phaseolus lunatus L.). FOOD SCI TECHNOL INT 2024:10820132241289157. [PMID: 39397487 DOI: 10.1177/10820132241289157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The inclusion of legumes as functional ingredients in a gluten-free extrusion process has been gaining attention in recent times. In this study, sorghum and germinated lima bean flour (100, 90:10, 80:20, 70:30, 60:40 and 50:50) was extruded (feed moisture - 18%, screw speed - 250 rpm, barrel temperatures 50 °C-120 °C-120 °C, die hole diameter - 3 mm) and analysed for functional, proximate, textural, structural, pasting, microbiological and sensory properties. With 100% sorghum used as control, lima beans addition significantly (p < 0.05) improved the loose (0.37-0.44 g/ml) and packed (0.63-0.72 g/ml) bulk density, while water (5.00-3.15 g/g) and oil (2.45-1.60 g/g) absorption capacity and expansion ratio (3.11-2.30) decreased, respectively. An increase in protein (12.77-18.00%), crude fibre (2.58-5.17%) and ash content (2.11-3.12%) were observed in the extrudate, while the (L*) colour parameter (54.49-43.62), hardness (180.04-78.36 N) and pasting viscosities reduced with addition of lima beans. The structural micrograph depicted air-trapped bubbles with thick walls after adding lima beans, while a notable decline in microbial count below approved limits was observed after 8 weeks of storage. Sensory scores showed that values obtained were above average with the 90:10 sorghum-lima bean ratio having the highest score. The economic and industrial value of underutilised legumes such as lima bean can be promoted as functional ingredients via extrusion in addressing coeliac disease and alternative sources of protein, especially in developing countries.
Collapse
|
5
|
Wang K, Ma J, Wang L, Yue X, Ma X, Huo J, Duan Y, Wang P, Yu X, Xiao Z. Insight into the relationship between the starch crystalline structure and textural quality and physicochemical properties of reconstituted rice: Influence of feed moisture content. Int J Biol Macromol 2024; 280:135758. [PMID: 39299432 DOI: 10.1016/j.ijbiomac.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Reconstituted rice was prepared by extrusion with different feed moistures (30 %, 33 %, 36 %, 39 % and 42 %), and the relationship between the crystalline structure, physicochemical properties, and textual quality of reconstituted rice was studied. The results revealed that, with the feed moisture increased (33 %-36 %), the gelatinization degree reached 97.28 % and the bound water content increased by 23.58 %. The water absorption index and swelling power index reached 8.35 g/g and 9.46 g/g, respectively, and the texture properties were close to those of native rice. Higher extrusion feed moisture (39 %-42 %) increased the setback value (206.00 cP) and breakdown value (721.33 cP) of starch, and the hardness and gumminess of reconstituted rice were also increased (p < 0.05). The starch crystalline structure was disrupted by extrusion and changed to a surface fractal structure, the relative crystallinity decreased from 26.87 % to 6.68 %, and the degree of order decreased from 1.680 to 1.006. Correlation analysis revealed that the crystalline structure of starch and water distribution would affect the textural and hydration properties of reconstituted rice. The results provide theoretical references and data support for improving the edibility and quality of reconstituted rice and enhancing the utilization rate of broken rice.
Collapse
Affiliation(s)
- Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lishuang Wang
- Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China
| | - Xiqing Yue
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoqi Ma
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Yumin Duan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Xiaoshuai Yu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
6
|
Ren X, Zhang H, Lv M, Fan H, Liu L, Wang B, Hu X, Shi Y, Yang C, Chen F, Sun Y. Technology for Blending Recombined Flour: Substitution of Extruded Rice Flour, Quantity of Addition, and Impact on Dough. Foods 2024; 13:2929. [PMID: 39335858 PMCID: PMC11431399 DOI: 10.3390/foods13182929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In a previous study, rice bread was prepared using a combination of rice-wheat mixed flour. To investigate the impact of the partial adoption of extruded rice flour (ERF) on mixed flour (MF) and mixed dough (MD), the effects of adding ERF on the pasting, mixing characteristics, texture, and water retention of the MF and MD were examined by a rapid visco analyzer (RVA), Mixolab, texture profile analysis (TPA), and a low-field nuclear magnetic resonance analyzer (LF-NMR). The PV, TV, BD, FV, and SV of the MF declined as the incorporated amount of ERF increased. There was no significant difference in the PT at the 5-15% addition level (p < 0.05), but it showed an increasing trend at the 20-30% level (p < 0.05). The incorporation of ERF led to a significant increase in the water absorption (WA) of the MD, while the DT, ST, C2, C3, C4, and C5 exhibited a declining trend. The texture analysis revealed a significant decrease in the dough hardness with the addition of ERF, with a 55% reduction in the hardness of the 30% improved mixed dough (IMD), and the cohesiveness increased significantly (p < 0.05). The IMD was mainly composed of weakly bound water. The content of weakly bound water increased with the ERF amount.
Collapse
Affiliation(s)
- Xuyang Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Huining Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Hongchen Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofeng Hu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yanguo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunhua Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Fenglian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Sun
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
7
|
Salvador-Reyes R, Furlan LC, Martínez-Villaluenga C, Martins Dala-Paula B, Harumi Nabeshima E, da Costa Pinto C, Michielon de Souza S, Azevedo Lima Pallone J, Teresa Pedrosa Silva Clerici M. Peruvian fava beans for health and food innovation: physicochemical, morphological, nutritional, and techno-functional characterization. Food Res Int 2024; 192:114814. [PMID: 39147510 DOI: 10.1016/j.foodres.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Peruvian fava beans (PFB) are used in traditional cuisine as a nutrient-rich, flavorful, and textural ingredient; however, little is known about their industrial properties. This study evaluated the physicochemical, nutritional, and techno-functional characteristics of PFB varieties: Verde, Quelcao, and Peruanita. PFB exhibited distinct physical characteristics, quality parameters, and morphology. The color patterns of the seed coat and the hardness were the main parameters for distinguishing them. Nutritionally, all three samples exhibited high protein (23.88-24.88 g/100 g), with high proportion of essential amino acids, high dietary fiber (21.74-25.28 g/100 g), and mineral content. They also contain polyphenols (0.79-1.25 mg GAE/g) and flavonoids (0.91-1.06 mg CE/g) with antioxidant potential (16.60-21.01 and 4.68-5.17 µmol TE/g for ABTS and DPPH assays, respectively). Through XRD measurements, the semi-crystalline nature of samples was identified, belonging to the C-type crystalline form. Regarding techno-functionality, PFB flours displayed great foaming capacity, with Verde variety being the most stable. Emulsifying capacity was similar among samples, although Peruanita was more stable during heating. Upon heating with water, PFB flours reached peak viscosities between 175 and 272 cP, and final viscosities between 242 and 384 cP. Quelcao and Verde formed firmer gels after refrigeration. Based on these results, PFB would be useful to developing innovative, nutritious, and healthy products that meet market needs.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil; Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | - Luisa Campigli Furlan
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Department of Technological Process and Biotechnology, Jose Antonio Novais, 6, 28040 Madrid, Spain
| | - Bruno Martins Dala-Paula
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil
| | - Elizabeth Harumi Nabeshima
- Instituto de Tecnologia de Alimentos/ITAL, Cereal and Chocolate Research Center, Av. Brasil, 2880, CEP 13070-178, Campinas, Brazil
| | - Camila da Costa Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas (IFAM), Presidente Figueiredo/AM, Brazil
| | - Sérgio Michielon de Souza
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil; Department of Materials Physics, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Juliana Azevedo Lima Pallone
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | | |
Collapse
|
8
|
Zhang Y, Shao F, Wan X, Zhang H, Hu K, Cai M, Duan Y. Understanding the mechanism for sodium tripolyphosphate in improving the physicochemical properties of low-moisture extrusion textured protein from rapeseed protein and soybean protein blends. Int J Biol Macromol 2024; 272:132656. [PMID: 38810848 DOI: 10.1016/j.ijbiomac.2024.132656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Our previous experiments found that rapeseed protein (RP) has applicability in low-moisture textured proteins. The amount of RP added is limited to <20 %, but the addition of 20 % RP still brings some negative effects. Therefore, in order to improve the quality of 20%RP textured protein, this experiment added different proportions of sodium tripolyphosphate (STPP) to improve the quality of the product, and studied the physical-chemical properties and molecular structure changes of the product to explore the possible modification mechanism. The STPP not only improved the expansion characteristics of extrudates, but also increased the brightness of the extrudates, the rehydration rate. In addition, STPP increased the specific mechanical energy during extrusion, decreased the material mass flow rate. Furthermore, STPP decreased the starch digestibility, increased the content of slow-digesting starch and resistant starch. STPP increased the degree of denaturation of extrudate proteins, the proportion of β-sheets in the secondary structure of proteins, as well as the intermolecular hydrogen bonding interactions. The gelatinization degradation degree of starch molecules also decreased with the addition of STPP. STPP also increased the protein-starch interactions and enhanced the thermal stability of the extrudate. All these indicate that STPP can improve the physical-chemical properties of extrudate.
Collapse
Affiliation(s)
- Yuanlong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kai Hu
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Ge F, Sun Y, Yang C, Cheng W, Wang Z, Xia X, Wu D, Tang X. Exploring the relationship between starch structure and physicochemical properties: The impact of extrusion on highland barley flour. Food Res Int 2024; 183:114226. [PMID: 38760145 DOI: 10.1016/j.foodres.2024.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and β-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.
Collapse
Affiliation(s)
- Fei Ge
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yue Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chenxi Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xifeng Xia
- Center of Analytical Facilities of Nanjing University of Science and Technology, Nanjing 210094, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
10
|
Wang K, Tan C, Tao H, Yuan F, Guo L, Cui B. Effect of different screw speeds on the structure and properties of starch straws. Carbohydr Polym 2024; 328:121701. [PMID: 38220338 DOI: 10.1016/j.carbpol.2023.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
11
|
Gu Y, Zhang X, Song S, Wang Y, Sun B, Wang X, Ma S. Structural modification of starch and protein: From the perspective of gelatinization degree of oat flour. Int J Biol Macromol 2024; 260:129406. [PMID: 38224797 DOI: 10.1016/j.ijbiomac.2024.129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
To clarify the relationship between gelatinization degree and structure characteristics, oat kernels were roasted to different gelatinization degree of 15 %-90 % based on tempering water content of 22.5 %-35 %, and the structure characteristics of starch and protein were evaluated. The results showed that the increased gelatinization degree dependent on tempering water content promoted protein aggregation on the surface of starch particles, forming larger aggregates with molecular weight >100 kDa. Oat kernels presented a dense starch gel network structure induced by gelatinized starch. Partial gelatinization of starch led to a decrease in pasting viscosities (setback viscosity, 3.91 Pa·s-1.59 Pa·s) and enthalpy (5.12 J/g-0.11 J/g). With the increase of gelatinization degree, the starch crystal structure conversed from A + V type to V type, accompanied by the formation of starch-lipid complexes and a decrease of relative crystallinity (22.28 %-8.72 %). Moreover, 50 % gelatinized oat flour possessed the highest β-sheet structure (38.04 %), but a decrease in surface hydrophobicity and an increase in endogenous fluorescence intensity were found in oat flour of gelatinization degree >50 %. This study provided a theoretical reference for the application of oat flour with different gelatinization degrees to match suitable products.
Collapse
Affiliation(s)
- Yujuan Gu
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Xiaoyan Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Shuya Song
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Ying Wang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
12
|
Liu X, Zhao X, Ma C, Wu M, Fan Q, Fu Y, Zhang G, Bian X, Zhang N. Effects of Extrusion Technology on Physicochemical Properties and Microstructure of Rice Starch Added with Soy Protein Isolate and Whey Protein Isolate. Foods 2024; 13:764. [PMID: 38472878 DOI: 10.3390/foods13050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
In order to improve the retrogradation of rice starch (RS) and the quality of rice products, soy protein isolate (SPI), whey protein isolate (WPI), and rice flour were mixed and further extruded into mixed flour. The physicochemical properties and morphology of starch of extruded rice flour (ERS) and starch of extruded mixtures of SPI, WPI, and rice flour (SPI-WPI-ERS) were analyzed. The distribution of amylopectin chain length, molecular weight, microstructure, crystallinity, short-range ordered structure, pasting properties, and thermodynamic properties of RS, ERS, and SPI-WPI-ERS were measured. The results showed that, compared with rice starch, the proportion of long-chain starch, total starch content, and molecular weight were decreased in ERS and SPI-WPI-ERS, but the proportion of short-chain and amylose content was increased. The short-range order structure was destroyed. The water absorption of ERS and SPI-WPI-ERS was much higher than rice starch at 55 °C, 65 °C, and 75 °C, but lower than that of rice starch at 95 °C. Therefore, the retrogradation characteristics of SPI-WPI-ERS were improved. The setback of rice starch products was reduced and the setback of SPI-WPI-ERS was lower than that of ERS. Overall, the retrogradation of rice starch was delayed by adding exogenous protein and extrusion technology, and the application range of rice flour in staple food products was broadened.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiangxiang Zhao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ming Wu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Qiqi Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
13
|
Wu J, Zhu K, Zhang S, Shi M, Liao L. Impact of Oat Supplementation on the Structure, Digestibility, and Sensory Properties of Extruded Instant Rice. Foods 2024; 13:217. [PMID: 38254518 PMCID: PMC10815101 DOI: 10.3390/foods13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The addition of oat at varying percentages (26%, 32%, 38%, 44% and 50%) was used to evaluate the structural, microstructural, and physicochemical changes in instant-extruded rice (IER). A mixture of broken rice and oat flour was extruded in a twin-screw extruder. It was found that when adding 44% oats, the gelatinization degree of the mixed powder was the lowest (89.086 ± 1.966%). The dietary fiber content increased correspondingly with the increase in oat addition. Analyses of texture properties revealed that the hardness, adhesive, and resilience values increased and then decreased with oat addition. Compared with other common instant rice (IR), the advantages of IER were evaluated in terms of microstructure, digestive performance, and flavor. IER with 44% oat addition obtained in this study had higher hardness, adhesiveness, rehydration time, and sensory score, and the content of resistant starch (RS) reached 6.06%. The electronic nose and electronic tongue analyses could distinguish the flavor of different IR efficiently. This study showed the feasibility of preparing fiber-enriched IER. The results demonstrated the potential for the development and utilization of broken rice, providing a reference for the development of IER.
Collapse
Affiliation(s)
| | | | | | | | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.W.); (K.Z.); (S.Z.); (M.S.)
| |
Collapse
|
14
|
Allai FM, Junaid PM, Azad Z, Gul K, Dar B, Siddiqui SA, Manuel Loenzo J. Impact of moisture content on microstructural, thermal, and techno-functional characteristics of extruded whole-grain-based breakfast cereal enriched with Indian horse chestnut flour. Food Chem X 2023; 20:100959. [PMID: 38144831 PMCID: PMC10739762 DOI: 10.1016/j.fochx.2023.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
The use of non-conventional seed flour is of interest in obtaining healthy breakfast cereals. The research aimed to study the physico-functional, bioactive, microstructure, and thermal characteristics of breakfast cereals using scanning electron microscopy, X-ray diffractometry, and differential scanning calorimeter. The increase in feed moisture content (16 %) enhanced the bulk density (5.24 g/mL), water absorption index (7.76 g/g), total phenolic content (9.03 mg GAE/g), and antioxidant activity (30.36 %) having desirable expansion rate (2.84 mm), water solubility index (48 %), and color attributes. The microstructure showed dense inner structures with closed air cells in extruded flours. Extrusion treatment rearranged the crystalline structure from A-type to V-type by disrupting the granular structure of starch, reducing its crystallinity, and promoting the formation of an amylose-lipid complex network. Increasing conditioning moisture enhanced the degree of gelatinization (%), peak gelatinization temperature (Tp), and starch crystallinity (%) and reduced the gelatinization enthalpy (ΔHG) and gelatinization temperature ranges. The results reported in this study will help industries to develop innovative and novel food products containing functional ingredients.
Collapse
Affiliation(s)
- Farhana Mehraj Allai
- Department Post Harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, UP, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, India
| | - Pir Mohammad Junaid
- Department Post Harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, UP, India
| | - Z.R.A.A. Azad
- Department Post Harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, UP, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, United Kingdom
| | - B.N. Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D Quakenbrück, Germany
| | - Jose Manuel Loenzo
- CentroTecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| |
Collapse
|
15
|
Saeed Omer SH, Hong J, Zheng X, Khashaba R. Sorghum Flour and Sorghum Flour Enriched Bread: Characterizations, Challenges, and Potential Improvements. Foods 2023; 12:4221. [PMID: 38231610 DOI: 10.3390/foods12234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 01/19/2024] Open
Abstract
A Sorghum flour (SF) is a leading and prominent food source for humans in African countries. Recently extensive studies have been conducted on Sorghum bread (SB) or sorghum composite bread (SCB), covering various aspects. However, there are many technical challenges in the formation of SF and sorghum composite flour (SCF) that impact the quality of the bread and fail to meet the consumer's desires and expectations. This review primarily focuses on the characteristics of SF, SCF, SB, and SCB, with discussions encompassing the rheological and morphological properties of the dough, improvement strategies, and bread quality. Moreover, a comprehensive analysis has been conducted to investigate the behavior of SF and SCF along with a discussion of the challenges affecting bread quality and the strategies applied for improvement. The significant demand for nutrients-rich and gluten-free bread indicates that sorghum will become one of the most vital crops worldwide. However, further comprehensive research is highly demanded and necessary for an in-depth understanding of the key features of SF and the resulting bread quality. Such understanding is vital to optimize the utilization of sorghum grain in large-scale bread production.
Collapse
Affiliation(s)
- Saeed Hamid Saeed Omer
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing Hong
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Reham Khashaba
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Faculty of Agriculture, New Valley University, El-Kharga 72511, Egypt
| |
Collapse
|
16
|
Chen Z, Nie M, Xi H, He Y, Wang A, Liu L, Wang L, Yang X, Dang B, Wang F, Tong LT. Effect of continuous instant pressure drop treatment on the rheological properties and volatile flavor compounds of whole highland barley flour. Food Res Int 2023; 173:113408. [PMID: 37803747 DOI: 10.1016/j.foodres.2023.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Continuous instant pressure drop (CIPD) treatment effectively reduces microbial contamination in whole highland barley flour (WHBF). Base on it, this study further investigated its effects on flour properties (especially rheological properties) and volatile compounds (VOCs) profile of WHBF, and compared it with that of ultraviolet-C (UV-C), ozone and hot air (HA) treatments. The results showed that the damaged starch content (6.0%) of CIPD-treated WHBF was increased, leading to a rough surface and partial aggregation of starch particle, thereby increasing the particle size (18.06 μm of D10, 261.46 μm of D50 and 534.44 μm of D90). Besides, CIPD treatment exerted a positive influence on the structure and rheological properties of WHBF, including an elevation in pasting temperature and viscosity. Notably, CIPD-treated WHBF exhibited higher storage modulus and loss modulus compared to the other three groups of sterilization treatments, contributing to the formulation of a better-defined and stable gel strength (tan δ = 0.38). UV-C and ozone, as cold sterilization techniques, also induced alterations in specific characteristics of WHBF. UV-C treatment led to changes in WHBF's crystallinity, while ozone treatment caused modifications in the secondary protein structure of WHBF. A total of 68 VOCs were identified in raw WHBF (including 3 acids, 19 alcohols, 25 aldehydes, 1 alkene, 8 esters, 2 ethers, 3 furans, and 7 ketones). The maximum flavor-contributing VOC in CIPD-treated WHBF remained dimethyl sulfide monomer (cabbage aroma), consistent with the raw WHBF. Conversely, in HA-treated WHBF, the maximum flavor-contributing VOC shifted to 2-furanmethanethiol monomer (roasted coffee aroma), altering the initial flavor presentation. These findings will provide strong support for the application of CIPD technology in the powdery foods industry.
Collapse
Affiliation(s)
- Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai 810016, China
| | - Bin Dang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai 810016, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
17
|
Fu Y, Liu Z, Wang H, Zhang F, Guo S, Shen Q. Comparison of the generation of α-glucosidase inhibitory peptides derived from prolamins of raw and cooked foxtail millet: In vitro activity, de novo sequencing, and in silico docking. Food Chem 2023; 411:135378. [PMID: 36669338 DOI: 10.1016/j.foodchem.2022.135378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Foxtail millet prolamin has been demonstrated to have anti-diabetic effects. In this study, we compared the generation of anti-α-glucosidase peptides derived from prolamins of raw and cooked foxtail millet (PRFM and PCFM). PRFM and PCFM hydrolysates (PRFMH and PCFMH) both exhibited α-glucosidase inhibitory activity. After ultrafiltration according to molecular weight (Mw), the fraction with Mw < 3 kDa in PCFMH (PCFMH<3) showed higher α-glucosidase inhibitory activity than that in PRFMH (PRFMH<3). The composition of α-glucosidase inhibitory peptides identified by de novo sequencing in PCFMH<3 and PRFMH<3 was compared by virtual screening, combining biological activity, net charge, grand average of hydropathicity (GRAVY), and key hydrophobic amino acids (Met, Pro, Phe, and Leu). We found that the proportion of peptides with excellent α-glucosidase binding force in PCFMH<3 was higher than in PRFMH<3. Overall, cooking may positively affect the generation of peptides that perform well in inhibiting α-glucosidase derived from foxtail millet prolamin.
Collapse
Affiliation(s)
- Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Liu
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fan Zhang
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Industrial Technology Research Institute Ltd, Beijing, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Qun Shen
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Altan A, Yağci S. Physicochemical characteristics and structural changes of fermented faba bean extrudates prepared by twin-screw extrusion. Food Chem 2023; 411:135502. [PMID: 36682171 DOI: 10.1016/j.foodchem.2023.135502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
In this study, fermented faba bean blends with different locust bean gum (LBG) contents were processed in a co-rotating twin-screw extruder. The effects of extrusion process variables and the LBG level on physicochemical, sensory and structural characteristics of expanded extrudates were investigated. The results showed that physical characteristics of extrudates including expansion, apparent density and texture were significantly affected by variation of screw speed and die temperature, but the effect of LBG level was only significant for expansion and density. FTIR-ATR analysis revealed that a significant change occurred in the protein secondary structure as well as in the short-range ordered molecular structure of starch during fermentation and extrusion. The X-ray diffraction patterns of extrudates exhibited V-type pattern. Microstructure of the extrudates analyzed by FE-SEM exhibited variations in cell size and wall thickness depending on extrusion processing conditions and LBG level, which in turn lead to different textural perceptions.
Collapse
Affiliation(s)
- Aylin Altan
- Department of Food Engineering, Mersin University, Ciftlikköy, Mersin 33343, Turkey.
| | - Sibel Yağci
- Department of Food Engineering, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
19
|
Ren N, Hu X, Ma Z. Multi-Scale Structural Insights into Enzymatically Hydrolyzed Lentil Starch Concentrates Prepared by In Vitro Method Using Different Types of Enzymes. Foods 2023; 12:foods12112150. [PMID: 37297395 DOI: 10.3390/foods12112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study was undertaken to investigate the enzymatic hydrolysis of lentil starch concentrates from conventional cooked seeds (CCLSC) by the action of different types of enzymes, including pancreatin (PC-EHSC), heat-stable α-amylase (HS-EHSC), β-amylase (βA-EHSC), amyloglucosidase (AMG-EHSC), and multi-enzymes (βA-HS-AMG-EHSC); their multi-scale structural characteristics of the enzymatic hydrolysis products of lentil starch concentrates were compared. The morphological features distinguished among different samples. The Fourier-transform infrared spectroscopy and solid-state 13C CP/MAS NMR spectral features indicated the possible formation of a binary and ternary complex among amylose, protein and lipids. The X-ray diffraction results revealed that the V-type characteristic diffraction peaks were more obvious for samples including PC-EHSC and βA-EHSC, which was in line with their lowest polydispersity index (DPn). PC-EHSC and βA-EHSC also showed an increased peak intensity of the scattering maximum on the small-angle X-ray scattering spectra, whereas CCLSC exhibited an overall lower peak intensity within the studied q range of scattering. The highest XRD crystallinity and the lowest DPn value obtained for PC-EHSC indicated that the starch polymers modified by pancreatin could produce glucan chains with a comparatively homogenous Mw distribution that are readily recrystallized by hydrogen bonding through chain aggregation. Comparatively, the lowest relative crystallinity for HS-EHSC obtained from XRD suggested that thermostable α-amylolysis was unfavorable for the formation of starch structure with a higher degree of molecular order. This study could provide useful information for the needed research to obtain a deeper understanding of the impact of different amylolysis actions on the structural organization of starch hydrolysates and to provide a theoretical foundation for the development of fermentable enzymatically hydrolyzed starch with well-tailored physiological properties.
Collapse
Affiliation(s)
- Namei Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
20
|
Jiang L, Song J, Qi M, Suo W, Deng Y, Liu Y, Li L, Zhang D, Wang C, Li H. Modification mechanism of protein in rice adjuncts upon extrusion and its effects on nitrogen conversion during mashing. Food Chem 2023; 407:135150. [PMID: 36493491 DOI: 10.1016/j.foodchem.2022.135150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The traditional production of wort with adjunct-introduced was achieved by double mashing procedure, which hindered the utilization of proteins in adjunct and led to a deficiency of nitrogen in wort. In this study, the modification mechanism of the extrusion pretreatment on the structure characterization of rice flour protein was investigated. The decoction mashing procedure was performed to enhance the nitrogen conversion of the extruded rice adjunct. Decreased solubility along with disrupted secondary and tertiary structures of rice protein were observed after extrusion. As a result, the total nitrogen, free amino nitrogen, and free amino acids content of wort with extruded rice adjunct-introduced were improved by 23.28 %, 34.67 %, and 7.33 %, respectively, which could be verified by the electrophoretic patterns of the wort protein. The application of extrusion as a pretreatment of adjuncts can promote the protein availability of adjuncts in the decoction mashing stage.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yao Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
21
|
Zhu XJ, Guo XN, Zhu KX. Effect of sorbitol on the in vitro starch digestibility in semi-dried black highland barley noodles. Int J Biol Macromol 2023; 236:123959. [PMID: 36898464 DOI: 10.1016/j.ijbiomac.2023.123959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Sorbitol is commonly used in semi-dried noodles for holding water, thus extending the shelf life. This research analyzed the effect of sorbitol on the in vitro starch digestibility in semi-dried black highland barley noodles (SBHBN). In vitro starch digestion revealed that the hydrolysis extent and digestive rate decreased with increasing sorbitol addition, although its inhibition abated when added >2 %. Compared with the control, adding 2 % of sorbitol lowered the equilibrium hydrolysis (C∞) significantly (P < 0.05) from 75.18 to 66.57 % and decreased the kinetic coefficient (k) significantly (P < 0.05) by 20.29 %. Adding sorbitol increased the tightness of microstructure, relative crystallinity, V-type crystal, molecular structure order, and hydrogen bond strength of starch in cooked SBHBN. Meanwhile, gelatinization enthalpy change (ΔH) of starch in raw SBHBN was increased by adding sorbitol. In addition, the swelling power and amylose leaching in SBHBN added with sorbitol were reduced. Pearson correlations analysis observed significant (P < 0.05) correlations among short-range ordered structure, ΔH, and related in vitro starch digestion indexes of SBHBN after being added with sorbitol. These results revealed that sorbitol might form hydrogen bonds with starch, making it a potential additive to lower the eGI in starchy foods.
Collapse
Affiliation(s)
- Xue-Jing Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
22
|
Gu Y, Qian X, Sun B, Wang X, Ma S. Effects of gelatinization degree and boiling water kneading on the rheology characteristics of gluten-free oat dough. Food Chem 2023; 404:134715. [DOI: 10.1016/j.foodchem.2022.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
23
|
Yu X, Wang L, Zhang J, Duan Y, Xin G, Tong L, Xiao Z, Wang P. Effects of screw speed on the structure and physicochemical properties of extruded reconstituted rice composed of rice starch and glutelin. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
24
|
Interaction of starch with some food macromolecules during the extrusion process and its effect on modulating physicochemical and digestible properties. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
25
|
Miao WB, Wu ZW, Jiang JH, Li YJ, Qin Z, Liu HM, Cai XS, Wang XD. The physicochemical properties of starches isolated from defatted tigernut meals: Effect of extrusion pretreatment. Carbohydr Polym 2022; 298:120152. [DOI: 10.1016/j.carbpol.2022.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
26
|
Zhang Y, Xu F, Wang Q, Zhang Y, Wu G, Tan L, Zhang Z. Effects of moisture content on digestible fragments and molecular structures of high amylose jackfruit starch prepared by improved extrusion cooking technology. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Zhang Z, Zhu M, Xing B, Liang Y, Zou L, Li M, Fan X, Ren G, Zhang L, Qin P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Huang X, Liu H, Ma Y, Mai S, Li C. Effects of Extrusion on Starch Molecular Degradation, Order-Disorder Structural Transition and Digestibility-A Review. Foods 2022; 11:foods11162538. [PMID: 36010538 PMCID: PMC9407177 DOI: 10.3390/foods11162538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Extrusion is a thermomechanical technology that has been widely used in the production of various starch-based foods and can transform raw materials into edible products with unique nutritional characteristics. Starch digestibility is a crucial nutritional factor that can largely determine the human postprandial glycemic response, and frequent consumption of foods with rapid starch digestibility is related to the occurrence of type 2 diabetes. The extrusion process involves starch degradation and order-disorder structural transition, which could result in large variance in starch digestibility in these foods depending on the raw material properties and processing conditions. It provides opportunities to modify starch digestibility by selecting a desirable combination of raw food materials and extrusion settings. This review firstly introduces the application of extrusion techniques in starch-based food production, while, more importantly, it discusses the effects of extrusion on the alteration of starch structures and consequentially starch digestibility in various foods. This review contains important information to generate a new generation of foods with slow starch digestibility by the extrusion technique.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yue Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shihua Mai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
30
|
Lai S, Zhang T, Wang Y, Ouyang K, Hu H, Hu X, Xiong H, Zhao Q. Effects of different extrusion temperatures on physicochemical, rheological and digestion properties of rice flour produced in a pilot‐scale extruder. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sixing Lai
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| | - Tingting Zhang
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| | - Yong Wang
- School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| | - Hao Hu
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology Nanchang University Jiangxi 330047 China
| |
Collapse
|
31
|
Yadav GP, Dalbhagat CG, Mishra HN. Effects of extrusion process parameters on cooking characteristics and physicochemical, textural, thermal, pasting, microstructure, and nutritional properties of
millet‐based
extruded products: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gorenand Prasad Yadav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
32
|
Punia Bangar S, Sharma N, Singh A, Phimolsiripol Y, Brennan CS. Glycaemic response of pseudocereal‐based gluten‐free food products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson 29634 USA
| | - Nitya Sharma
- Food Customization Research Lab Centre for Rural Development and Technology New Delhi 110016 India
| | - Arashdeep Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana Punjab 141004 India
| | | | | |
Collapse
|
33
|
Jiang L, Qi M, Deng Y, Suo W, Song J, Zhang M, Zheng H, Zhang D, Chen S, Li H. Extrusion-induced pre-gelatinization and hydrolyzation of rice adjunct contributed to the mashing performance. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Wang Q, Li L, Wang T, Zheng X. A review of extrusion-modified underutilized cereal flour: chemical composition, functionality, and its modulation on starchy food quality. Food Chem 2022; 370:131361. [PMID: 34788965 DOI: 10.1016/j.foodchem.2021.131361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Compared with three major cereals, underutilized cereals (UCs) are those with less use but having abundant bioactive components and better functionalities after proper processing. As a productive and energy-efficient technology, extrusion has been used for UC modification to improve its technological and nutritional quality. Extrusion could induce structural and quantitative changes in chemical components of UC flour, the degree of which is affected by extrusion intensity. Based on the predominant component (starch), functionalities of extruded underutilized cereal flour (EUCF) and potential mechanisms are reviewed. Considering bioactive compounds, it also summarizes the physiological functions of EUCF. EUCF incorporation could modulate the dough rheological behavior and starchy foods quality. Controlling extrusion intensity or incorporation level of EUCF is vital to achieve sensory-appealing and nutritious products. This paper gives comprehensive information of EUCF to promote its utilization in novel staple foods.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Ting Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|
35
|
Taylor JRN, Duodu KG. Resistant‐Type Starch in Sorghum Foods – Factors Involved and Health Implications. STARCH-STARKE 2022. [DOI: 10.1002/star.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John R. N. Taylor
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| | - Kwaku G. Duodu
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| |
Collapse
|
36
|
Feng W, Ma S, Wang F, Wang X. Effect of black rice flour with different particle sizes on frozen dough and steamed bread quality. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenjuan Feng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Fengcheng Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|
37
|
Effect of improved extrusion cooking technology modified buckwheat flour on whole buckwheat dough and noodle quality. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2021.100248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Sinaki NY, Masatcioglu MT, Paliwal J, Koksel F. Development of Cellular High-Protein Foods: Third-Generation Yellow Pea and Red Lentil Puffed Snacks. Foods 2021; 11:38. [PMID: 35010164 PMCID: PMC8750491 DOI: 10.3390/foods11010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate how extrusion cooking conditions and microwave heating play a role in enhancing physical and thermal properties of third-generation expanded cellular snacks made from yellow pea (YP) and red lentil (RL) flours for the first time. Increasing temperature and moisture content during extrusion resulted in darker, crunchier and crispier products with higher expansion index (EI). Microwave heating after extrusion led to an increase in cell size and porosity of YP and RL products when qualitatively compared to extrusion alone. Additionally, extrusion followed by microwave heating resulted in extensive damage to starch granular structure and complete denaturation of proteins. Using microwave heating, as a fast and inexpensive process, following partial cooking with extrusion was demonstrated to greatly improve the physical and thermal properties of YP and RL snacks. Microwave heating following mild extrusion, instead of severe extrusion cooking alone, can potentially benefit the development of high quality nutritionally-dense expanded cellular snacks made from pulse flours.
Collapse
Affiliation(s)
- Nasibeh Y. Sinaki
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Mustafa Tugrul Masatcioglu
- Food Engineering Department, Tayfur Sokmen Campus, Hatay Mustafa Kemal University, Antakya 31034, Turkey;
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Filiz Koksel
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
39
|
Perraulta Lavanya J, Gowthamraj G, Sangeetha N. Effect of heat moisture treatment on the physicochemical, functional, and antioxidant characteristics of white sorghum (
Sorghum bicolor
(L.) grains and flour. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J Perraulta Lavanya
- Department of Food Science and Technology Pondicherry University Pondicherry India
| | - G Gowthamraj
- Department of Food Science and Technology Pondicherry University Pondicherry India
| | | |
Collapse
|
40
|
|
41
|
Mushtaq BS, AL-Ansi W, Dhungle A, Haq FU, Mahdi AA, Walayat N, Manzoor MS, Nawaz A, Fan M, Qian H, Jinxin L, Wang L. Influence of pretreatments combined with extrusion on γ-amino butyric acid, nutritional composition and physicochemical properties of foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zahari I, Ferawati F, Purhagen JK, Rayner M, Ahlström C, Helstad A, Östbring K. Development and Characterization of Extrudates Based on Rapeseed and Pea Protein Blends Using High-Moisture Extrusion Cooking. Foods 2021; 10:2397. [PMID: 34681446 PMCID: PMC8535811 DOI: 10.3390/foods10102397] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 blend of rapeseed protein concentrate (RPC) and yellow pea isolate (YPI) using high-moisture-extrusion (HME) cooking with a twin-screw extruder to gain a better understanding of the properties of the protein powders and resulting extrudates. The effects of extrusion processing parameters such as moisture content (60%, 63%, 65%, 70%), screw speed (500, 700, and 900 rpm), and a barrel temperature profile of 40-80-130-150 °C on the extrudates' characteristics were studied. When compared to the effect of varying screw speeds, targeted moisture content had a larger impact on textural characteristics. The extrudates had a greater hardness at the same moisture content when the screw speed was reduced. The specific mechanical energy (SME) increased as the screw speed increased, while increased moisture content resulted in a small reduction in SME. The lightness (L*) of most samples was found to increase as the target moisture content increased from 60% to 70%. The RPC:YPI blend was equivalent to proteins produced from other sources and comparable to the FAO/WHO standard requirements.
Collapse
Affiliation(s)
- Izalin Zahari
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
- Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia
| | - Ferawati Ferawati
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden;
| | - Jeanette K. Purhagen
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Marilyn Rayner
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Cecilia Ahlström
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Amanda Helstad
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| | - Karolina Östbring
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 22362 Lund, Sweden; (J.K.P.); (M.R.); (C.A.); (A.H.); (K.Ö.)
| |
Collapse
|
43
|
Sajid Mushtaq B, Zhang W, Al-Ansi W, Ul Haq F, Rehman A, Omer R, Mahmood Khan I, Niazi S, Ahmad A, Ali Mahdi A, Al-Maqtari QA, Walayat N, Wang L. A Critical Review on the Development, Physicochemical Variations and Technical Concerns of Gluten Free Extrudates in Food Systems. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1976793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenhui Zhang
- Institute of Food Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Waleed Al-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Faizan Ul Haq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Abdur Rehman
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Imran Mahmood Khan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Sobia Niazi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Aqsa Ahmad
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qais Ali Al-Maqtari
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Pasqualone A, Costantini M, Labarbuta R, Summo C. Production of extruded-cooked lentil flours at industrial level: Effect of processing conditions on starch gelatinization, dough rheological properties and techno-functional parameters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Gürler N, Paşa S, Temel H. Silane doped biodegradable starch-PLA bilayer films for food packaging applications: Mechanical, thermal, barrier and biodegradability properties. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Cao Y, Zhao J, Jin Z, Tian Y, Zhou X, Long J. Improvement of rice bran modified by extrusion combined with ball milling on the quality of steamed brown rice cake. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Rolandelli G, Gallardo-Navarro YT, García Pinilla S, Farroni AE, Gutiérrez-López GF, Buera MDP. Components interactions and changes at molecular level in maize flour-based blends as affected by the extrusion process. A multi-analytical approach. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Fu Y, Yin R, Guo E, Cheng R, Diao X, Xue Y, Shen Q. Protein Isolates from Raw and Cooked Foxtail Millet Attenuate Development of Type 2 Diabetes in Streptozotocin-Induced Diabetic Mice. Mol Nutr Food Res 2021; 65:e2000365. [PMID: 33480470 DOI: 10.1002/mnfr.202000365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/02/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Millet protein has received much attention due to its beneficial role in alleviating metabolic disease symptoms. This study aims to investigate the role and molecular mechanism of foxtail millet protein isolates, including protein isolates from raw and cooked foxtail millet in alleviating diabetes, including gut microbiota and intracellular signal pathways. METHODS AND RESULTS Protein isolates from raw and cooked foxtail millet are orally administered to streptozotocin (STZ)-induced diabetic mice for 5 weeks before hypoglycemic effect evaluation. The results show that foxtail millet protein isolates improve glucose intolerance and insulin resistance in diabetic mice. However, only the protein isolate from cooked foxtail millet reverse the weight loss trend and alleviate lipid disorders in diabetic mice. Besides, 16S rRNA sequencing show that both raw and cooked foxtail millet protein isolates altered diabetes-induced gut dysbiosis. In addition, western blotting analysis indicated that the protein isolate from cooked foxtail millet increases the expression levels of glucagon-like peptide-1 receptor (GLP-1R), phosphoinositide 3-kinase (PI3K), and phosphoinositide-protein kinase B (p-AKT)/AKT while the protein isolate from raw foxtail millet downregulates stearoyl-coenzyme A desaturase 1 (SCD1) level. CONCLUSION Both raw and cooked foxtail millet protein isolates can exert hypoglycemic effects in diabetic mice through rewiring glucose homeostasis, mitigating diabetes-induced gut dysbiosis, and affecting the GLP-1R/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| | - Ruiyang Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| | - Erhu Guo
- Shanxi Academy of Agricultural Sciences, Research Institute of Millet, Taiyuan, 030031, China
| | - Ruhong Cheng
- Hebei Academy of Agriculture and Forestry Sciences, Research Institute of Millet, Shijiazhuang, 050035, China
| | - Xianmin Diao
- Chinese Academy of Agricultural Sciences, Institute of Crop Science, Beijing, 100081, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
49
|
Espinosa-Ramírez J, Rodríguez A, De la Rosa-Millán J, Heredia-Olea E, Pérez-Carrillo E, Serna-Saldívar SO. Shear-induced enhancement of technofunctional properties of whole grain flours through extrusion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106400] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Xie F, Gu BJ, Saunders SR, Ganjyal GM. High methoxyl pectin enhances the expansion characteristics of the cornstarch relative to the low methoxyl pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|