1
|
Ellenberger C, Heenemann K, Vahlenkamp TW, Grothmann P, Herden C, Heinrich A. Borna disease in an adult free-ranging Eurasian beaver (Castor fiber albicus). J Comp Pathol 2024; 209:31-35. [PMID: 38350270 DOI: 10.1016/j.jcpa.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Borna disease (BD) associated with a peracute bacterial septicaemia with Escherichia coli was diagnosed in an adult female, naturally infected, free-ranging Eurasian beaver of the subspecies Castor fiber albicus, clinically characterized by weight loss, depression, weakness and gurgled peristaltic sounds. The beaver was euthanized humanely. Necropsy and light microscopy revealed a non-purulent meningoencephalitis with typical mononuclear perivascular cuffs and parenchymal infiltrates. The diagnosis of BD was confirmed by detection of viral antigen and RNA by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). The PCR product was sequenced and cluster analysis revealed a close relationship between endemic clusters in Saxony-Anhalt. This is the first report of naturally occurring BD in a free-ranging Eurasian beaver.
Collapse
Affiliation(s)
- Christin Ellenberger
- Department of Veterinary Medicine, State Office for Consumer Protection of Sachsen-Anhalt, Stendal, Haferbreiter Weg 132-135, D-39576 Stendal, Germany.
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Thomas W Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Pierre Grothmann
- Magdeburg Zoological Garden, Zooallee 1, D-39124 Magdeburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Frankfurter Strasse 96, D-35392 Giessen, Germany
| | - Anja Heinrich
- Department of Veterinary Medicine, State Office for Consumer Protection of Sachsen-Anhalt, Stendal, Haferbreiter Weg 132-135, D-39576 Stendal, Germany
| |
Collapse
|
2
|
Riccò M, Zanella I, Satta E, Ranzieri S, Corrado S, Marchesi F, Peruzzi S. BoDV-1 Infection in Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr Rep 2023; 15:512-531. [PMID: 37755407 PMCID: PMC10534910 DOI: 10.3390/pediatric15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) can cause a severe human syndrome characterized by meningo-myeloencephalitis. The actual epidemiology of BoDV-1 remains disputed, and our study summarized prevalence data among children and adolescents (<18-year-old). Through systematic research on three databases (PubMed, EMBASE, MedRxiv), all studies, including seroprevalence rates for BoDV-1 antigens and specific antibodies, were retrieved, and their results were summarized. We identified a total of six studies for a total of 2692 subjects aged less than 18 years (351 subjects sampled for BoDV-1 antibodies and 2557 for antigens). A pooled seroprevalence of 6.09% (95% Confidence Interval [95% CI] 2.14 to 16.17) was eventually calculated for BoDV-1 targeting antibodies and 0.76% (95% CI 0.26 to 2.19) for BoDV-1 antigens. Both estimates were affected by substantial heterogeneity. Seroprevalence rates for BoDV-1 in children and adolescents suggested that a substantial circulation of the pathogen does occur, and as infants and adolescents have relatively scarce opportunities for being exposed to hosts and animal reservoirs, the potential role of unknown vectors cannot be ruled out.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Corrado
- ASST Rhodense, Dipartimento Della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, 42016 Guastalla, Italy;
| |
Collapse
|
3
|
Kinnunen PM, Matomäki A, Verkola M, Heikinheimo A, Vapalahti O, Kallio-kokko H, Virtala AM, Jokelainen P. Veterinarians as a Risk Group for Zoonoses: Exposure, Knowledge and Protective Practices in Finland. Saf Health Work 2021; 13:78-85. [PMID: 35936209 PMCID: PMC9346934 DOI: 10.1016/j.shaw.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/12/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Veterinarians may encounter a variety of zoonotic pathogens in their work. Methods We conducted two cross-sectional questionnaire studies among veterinarians in Finland. Participants were recruited during two Annual Veterinary Congresses. In 2009, 306 veterinarians participated in an extensive questionnaire study, and in 2016, 262 veterinarians participated in a more focused study that included two same questions. Results In 2009, the majority (90.9%) of the participating veterinarians reported having been occupationally exposed to zoonotic pathogens. Zoonotic infections (15.0%), needle stick incidents (78.8%), bites (85.0%), as well as infected skin lesions (24.2%) were reported. In 2009, 8.2% of the participants fully agreed with the statement “I have good knowledge of zoonoses and their prevention”; in 2016, the proportion was 10.3%. The reported use of protective practices and personal protective equipment in connection with specific veterinary procedures indicated that there was room for improvement, particularly in protection from pathogens that are transmissible via inhalation and mucous membranes. Conclusion The results confirm that veterinarians are commonly occupationally exposed to zoonotic pathogens. Education should aim to improve and maintain the knowledge of zoonoses and their prevention. Use of protective practices should be advocated.
Collapse
|
4
|
Yolken RH, Kinnunen PM, Vapalahti O, Dickerson F, Suvisaari J, Chen O, Sabunciyan S. Studying the virome in psychiatric disease. Schizophr Res 2021; 234:78-86. [PMID: 34016507 DOI: 10.1016/j.schres.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
An overlooked aspect of current microbiome studies is the role of viruses in human health. Compared to bacterial studies, laboratory and analytical methods to study the entirety of viral communities in clinical samples are rudimentary and need further refinement. In order to address this need, we developed Virobiome-Seq, a sequence capture method and an accompanying bioinformatics analysis pipeline, that identifies viral reads in human samples. Virobiome-Seq is able to enrich for and detect multiple types of viruses in human samples, including novel subtypes that diverge at the sequence level. In addition, Virobiome-Seq is able to detect RNA transcripts from DNA viruses and may provide a sensitive method for detecting viral activity in vivo. Since Virobiome-Seq also yields the viral sequence, it makes it possible to investigate associations between viral genotype and psychiatric illness. In this proof of concept study, we detected HIV1, Torque Teno, Pegi, Herpes and Papilloma virus sequences in Peripheral Blood Mononuclear Cells, plasma and stool samples collected from individuals with psychiatric disorders. We also detected the presence of numerous novel circular RNA viruses but were unable to determine whether these viruses originate from the sample or represent contaminants. Despite this challenge, we demonstrate that our knowledge of viral diversity is incomplete and opportunities for novel virus discovery exist. Virobiome-Seq will enable a more sophisticated analysis of the virome and has the potential of uncovering complex interactions between viral activity and psychiatric disease.
Collapse
Affiliation(s)
- Robert H Yolken
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Paula M Kinnunen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Jaana Suvisaari
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ou Chen
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Nobach D, Herden C. No evidence for European bats serving as reservoir for Borna disease virus 1 or other known mammalian orthobornaviruses. Virol J 2020; 17:11. [PMID: 32000801 PMCID: PMC6993374 DOI: 10.1186/s12985-020-1289-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/22/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The majority of emerging infectious diseases are zoonotic in nature and originate from wildlife reservoirs. Borna disease, caused by Borna disease virus 1 (BoDV-1), is an infectious disease affecting mammals, but recently it has also been shown to cause fatal encephalitis in humans. The endemic character of Borna disease points towards a nature-bound reservoir, with only one shrew species identified as reservoir host to date. Bats have been identified as reservoirs of a variety of zoonotic infectious agents. Endogenous borna-like elements in the genome of certain bat species additionally point towards co-evolution of bats with bornaviruses and therefore raise the question whether bats could serve as a potential reservoir of orthobornaviruses. METHODS Frozen brain samples (n = 257) of bats of seven different genera from Germany were investigated by orthobornaviral RT-PCR. Additionally, tissue slides of formalin-fixed paraffin-embedded material of a subset of these bats (n = 140) were investigated for orthobornaviral phosphoprotein by immunohistochemistry. RESULTS The brain samples were tested by RT-PCR without any evidence of orthobornavirus specific amplicons. Immunohistochemistry revealed a faint immunoreaction in 3/140 bats but with an untypical staining pattern for viral antigen. CONCLUSIONS RT-PCR-screening showed no evidence for orthobornaviral RNA in the investigated bats. However, immunohistochemistry results should be investigated further to elucidate whether the reaction might be associated with expressed endogenous bornaviral elements or other so far unknown bornaviruses.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany.
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
- Center for Mind, Brain and Behavior, Justus Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Tappe D, Frank C, Offergeld R, Wagner-Wiening C, Stark K, Rubbenstroth D, Giese S, Lattwein E, Schwemmle M, Beer M, Schmidt-Chanasit J, Wilking H. Low prevalence of Borna disease virus 1 (BoDV-1) IgG antibodies in humans from areas endemic for animal Borna disease of Southern Germany. Sci Rep 2019; 9:20154. [PMID: 31882942 PMCID: PMC6934520 DOI: 10.1038/s41598-019-56839-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
Borna disease virus-1 (BoDV-1) was recently discovered as cause of severe and often fatal encephalitis in humans. BoDV-1 is known to cause neurological disease in horses and sheep mainly in South and Central Germany. The virus is maintained in bicolored white-toothed shrews (Crocidura leucodon). The incidence of infection and risk factors in humans are completely unresolved. Veterinarians may be disproportionally BoDV-1-exposed through contact to animals not recognized to be BoDV-1 infected. We conducted three serosurveys predominantly in endemic areas of South Germany for the presence of BoDV-1-reactive antibodies. Anonymized residual samples from two serosurveys of veterinarians (n = 736) with interview data on exposures and one serosurvey among blood donors (n = 373) were screened with an indirect immunofluorescence antibody test, followed by a newly developed immunoblot as confirmatory assay. One serum from a 55-59-year-old veterinarian who worked in an animal practice and as a meat inspector but none from blood donors tested positive by the screening and confirmatory assays. We show that seropositive individuals are rare even in areas with highest zoonotic risk and in a group with potentially elevated exposure risk. In light of the low seroprevalence demonstrated here, the high case-fatality rate in clinically observed human BoDV-1 infections is even more impressive.
Collapse
Affiliation(s)
- Dennis Tappe
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | | | | | | | | | | | - Sebastian Giese
- Institut für Virologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | | | - Martin Schwemmle
- Institut für Virologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald/Insel Riems, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
7
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
8
|
Barba M, Fairbanks EL, Daly JM. Equine viral encephalitis: prevalence, impact, and management strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:99-110. [PMID: 31497528 PMCID: PMC6689664 DOI: 10.2147/vmrr.s168227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Members of several different virus families cause equine viral encephalitis, the majority of which are arthropod-borne viruses (arboviruses) with zoonotic potential. The clinical signs caused are rarely pathognomonic; therefore, a clinical diagnosis is usually presumptive according to the geographical region. However, recent decades have seen expansion of the geographical range and emergence in new regions of numerous viral diseases. In this context, this review presents an overview of the prevalence and distribution of the main viral causes of equine encephalitis and discusses their impact and potential approaches to limit their spread.
Collapse
Affiliation(s)
- Marta Barba
- Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Emma L Fairbanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
9
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán‐Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Borna disease. EFSA J 2017; 15:e04951. [PMID: 32625602 PMCID: PMC7009998 DOI: 10.2903/j.efsa.2017.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Borna disease to be listed, Article 9 for the categorisation of Borna disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Borna disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Borna disease cannot be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no compliance on criterion 5 A(v). Consequently, the assessment on compliance of Borna disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is not applicable, as well as which animal species can be considered to be listed for Borna disease according to Article 8(3) of the AHL.
Collapse
|
10
|
Weissenböck H, Bagó Z, Kolodziejek J, Hager B, Palmetzhofer G, Dürrwald R, Nowotny N. Infections of horses and shrews with Bornaviruses in Upper Austria: a novel endemic area of Borna disease. Emerg Microbes Infect 2017. [PMID: 28634359 PMCID: PMC5520313 DOI: 10.1038/emi.2017.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Borna disease, a lethal infection with Borna disease virus-1 (BoDV-1), was diagnosed in four horses from Upper Austria in 2015 and 2016. All cases occurred in winter (two cases in February 2015 and two cases in December 2016), and the maximal distance of the affected stables was 17 km. To demonstrate whether the causative agent was also harbored by its reservoir host, the bicolored white-toothed shrew (Crocidura leucodon), 28 shrews from this geographic area were collected in 2015 and investigated for the presence of BoDV-1. The shrew species were identified according to taxonomic clues and molecular barcodes. Affected horses and all shrews were investigated using histology, immunohistochemistry (IHC) and reverse transcription PCR. The horses exhibited severe nonpurulent encephalitis. Large amounts of BoDV-1 antigen were identified in their CNS. Among the 28 shrews, nine were identified as C. leucodon and 13 as Sorex araneus (Common shrew; Eurasian shrew). Six C. leucodon (66.7%) and one S. araneus (7.7%) had BoDV-1 infections. In accordance with previous findings, the IHC of C. leucodon exhibited a high amount of viral antigen in many neural and extraneural tissues. By contrast, the single positive S. araneus had an exclusively neural staining pattern. Of all positive samples, whole-genome BoDV-1 sequences were generated. The acquired sequences of the affected shrews were not identical to each other and clustered around the sequences of the diseased horses belonging, surprisingly, to the German ‘strain V’ cluster.
Collapse
Affiliation(s)
- Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Zoltán Bagó
- Institute for Veterinary Disease Control Mödling, Austrian Agency for Health and Food Safety (AGES), Mödling A-2340, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Barbara Hager
- Veterinary Practice St. Agatha, St. Agatha A-4084, Austria
| | | | - Ralf Dürrwald
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai 505055, United Arab Emirates
| |
Collapse
|
11
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Abstract
AbstractNatural bornavirus infections and their resulting diseases are largely restricted to horses and sheep in Central Europe. The disease also occurs naturally in cats, and can be induced experimentally in laboratory rodents and numerous other mammals. Borna disease virus-1 (BoDV-1), the cause of most cases of mammalian Borna disease, is a negative-stranded RNA virus that replicates within the nucleus of target cells. It causes severe, often lethal, encephalitis in susceptible species. Recent events, especially the discovery of numerous new species of bornaviruses in birds and a report of an acute, lethal bornaviral encephalitis in humans, apparently acquired from squirrels, have revived interest in this remarkable family of viruses. The clinical manifestations of the bornaviral diseases are highly variable. Thus, in addition to acute lethal encephalitis, they can cause persistent neurologic disease associated with diverse behavioral changes. They also cause a severe retinitis resulting in blindness. In this review, we discuss both the pathological lesions observed in mammalian bornaviral disease and the complex pathogenesis of the neurologic disease. Thus infected neurons may be destroyed by T-cell-mediated cytotoxicity. They may die as a result of excessive inflammatory cytokine release from microglia. They may also die as a result of a ‘glutaminergic storm’ due to a failure of infected astrocytes to regulate brain glutamate levels.
Collapse
|
13
|
Scordel C, Huttin A, Cochet-Bernoin M, Szelechowski M, Poulet A, Richardson J, Benchoua A, Gonzalez-Dunia D, Eloit M, Coulpier M. Borna disease virus phosphoprotein impairs the developmental program controlling neurogenesis and reduces human GABAergic neurogenesis. PLoS Pathog 2015; 11:e1004859. [PMID: 25923687 PMCID: PMC4414417 DOI: 10.1371/journal.ppat.1004859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/07/2015] [Indexed: 12/31/2022] Open
Abstract
It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult. When a virus enters the brain, it most often induces inflammation, fever, and brain injury, all signs that are indicative of acute encephalitis. Under certain conditions, however, some neurotropic viruses may cause disease in a subtler manner. The Borna disease virus (BDV) is an excellent example of this second class of viruses, as it impairs neural function without cell lysis and induces neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. In the present study, we identify that a singled-out BDV protein called P causes similar impairment of human neurogenesis, and further show that it leads to diminution in the genesis of a particular neuronal subtype, the GABAergic neurons. We have also found that the expression of several genes involved in the generation and the maturation of neurons is dysregulated by this viral protein, which strongly suggests their implication in P-induced impairment of GABAergic neurogenesis. This study is the first to demonstrate that a viral protein interferes with human GABAergic neurogenesis, a process that is frequently impaired in neuropsychiatric disorders. It may thus contribute to elucidating the molecular bases of psychiatric disorders.
Collapse
Affiliation(s)
- Chloé Scordel
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | - Alexandra Huttin
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | - Marielle Cochet-Bernoin
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | - Marion Szelechowski
- Institut National de la Santé et de la Recherche Médicale, UMR 1043, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5282, Toulouse, France
- Université Paul Sabatier, Toulouse 3, Toulouse, France
| | | | - Jennifer Richardson
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | | | - Daniel Gonzalez-Dunia
- Institut National de la Santé et de la Recherche Médicale, UMR 1043, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5282, Toulouse, France
- Université Paul Sabatier, Toulouse 3, Toulouse, France
| | - Marc Eloit
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
- Pasteur Institute, Pathogen Discovery Laboratory, Biology of Infection Unit, INSERM U1117, Paris, France
| | - Muriel Coulpier
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Mazaheri-Tehrani E, Maghsoudi N, Shams J, Soori H, Atashi H, Motamedi F, Bode L, Ludwig H. Borna disease virus (BDV) infection in psychiatric patients and healthy controls in Iran. Virol J 2014; 11:161. [PMID: 25186971 PMCID: PMC4167498 DOI: 10.1186/1743-422x-11-161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Background Borna disease virus (BDV) is an evolutionary old RNA virus, which infects brain and blood cells of humans, their primate ancestors, and other mammals. Human infection has been correlated to mood disorders and schizophrenia, but the impact of BDV on mental-health still remains controversial due to poor methodological and cross-national comparability. Method This first report from the Middle East aimed to determine BDV infection prevalence in Iranian acute psychiatric disorder patients and healthy controls through circulating immune complexes (CIC), antibodies (Ab) and antigen (pAg) in blood plasma using a standardized triple enzyme immune assay (EIA). Samples of 314 subjects (114 psychiatric cases, 69 blood donors, and 131 healthy controls) were assayed and data analyzed quantitatively and qualitatively. Results CICs revealed a BDV prevalence of one third (29.5%) in healthy Iranian controls (27.5% controls; 33.3% blood donors). In psychiatric patients CIC prevalence was higher than in controls (40.4%) and significantly correlating with bipolar patients exhibiting overt clinical symptoms (p = 0.005, OR = 1.65). CIC values were significantly elevated in bipolar (p = 0.001) and major depressive disorder (p = 0.029) patients as compared to controls, and in females compared to males (p = 0.031). Conclusion This study supports a similarly high prevalence of subclinical human BDV infections in Iran as reported for central Europe, and provides again an indication for the correlation of BDV infection and mood disorders. Further studies should address the morbidity risk for healthy carriers and those with elevated CIC levels, along with gender disparities.
Collapse
Affiliation(s)
- Elham Mazaheri-Tehrani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P,O, Box 19615-1178, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
SOMEYA A, FUKUSHIMA R, YOSHIDA M, TANAHASHI Y, PRAPEUK T, IIZUKA R, HIRAMI H, MATSUDA A, TAKAHASHI S, KURITA G, KIMURA T, SEO M, FUNABA M, NISHINO Y. A study on Borna disease virus infection in domestic cats in Japan. J Vet Med Sci 2014; 76:1157-60. [PMID: 24805904 PMCID: PMC4155199 DOI: 10.1292/jvms.13-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 04/18/2014] [Indexed: 11/24/2022] Open
Abstract
Borna disease virus (BDV) infection causes neurological disease in cats. Here, we report BDV infection in 199 hospitalized domestic cats in the Tokyo area. BDV infection was evaluated by detection of plasma antibodies against BDV-p24 or -p40. BDV-specific antibodies were detected in 54 cats (27.1%). Interestingly, the percentage of seropositive cats was not significantly different among the three clinical groups, i.e., healthy (29.8%), neurologically asymptomatic disease (22.2%) and neurological disease (33.3%). The specific antibodies were present even in cats aged below one year. The seropositive ratio was constant, irrespective of age and sampling season. The present study suggests that additional factors are required for onset of Borna disease in naturally infected cats and that BDV is transmitted through vertical routes in cats.
Collapse
Affiliation(s)
- Azusa SOMEYA
- Department of Animal Medical Sciences, Faculty of Life
Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603–8555,
Japan
| | - Ryoko FUKUSHIMA
- Research Institute of Biosciences, Azabu University, 1–17–71
Fuchinobe, Chuo-ku, Sagamihara 252–5201, Japan
| | - Michiko YOSHIDA
- Research Institute of Biosciences, Azabu University, 1–17–71
Fuchinobe, Chuo-ku, Sagamihara 252–5201, Japan
| | - Yasuyuki TANAHASHI
- Department of Animal Medical Sciences, Faculty of Life
Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603–8555,
Japan
| | - Tangmunkhong PRAPEUK
- Research Institute of Biosciences, Azabu University, 1–17–71
Fuchinobe, Chuo-ku, Sagamihara 252–5201, Japan
- Department of Veterinary Public Health, Faculty of
Veterinary Medicine, Kasetsart University, Nakorn-Pathom 73140, Thailand
| | - Reiko IIZUKA
- Hirami Animal Hospital, Tateno-cho, Nerima-Ku, Tokyo
177–0054, Japan
| | - Hiroshi HIRAMI
- Hirami Animal Hospital, Tateno-cho, Nerima-Ku, Tokyo
177–0054, Japan
| | - Atsushi MATSUDA
- Hoshigaoka Animal Hospital, 4–4–5 Hoshigaoka, Chuo-ku,
Sagamihara 252–0238, Japan
| | - Shunichi TAKAHASHI
- FAH Takahashi Animal Hospital, 1785–1 Shimotsuruma, Yamato
242–0001, Japan
| | - Goro KURITA
- Kurita Animal Hospital, 139–1 Furukawa, Furukawa 306–0016,
Japan
| | - Takashi KIMURA
- Laboratory of Comparative Pathology, Department of
Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18,
Nishi-9, Sapporo 060–0818, Japan
- Present address: Division of Molecular Pathobiology,
Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Sapporo
001–0020, Japan
| | - Misuzu SEO
- Department of Animal Medical Sciences, Faculty of Life
Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603–8555,
Japan
| | - Masayuki FUNABA
- Division of Applied Biosciences, Kyoto University Graduate
School of Agriculture, Kitashirakawa Oiwakecho, Kyoto 606–8502, Japan
| | - Yoshii NISHINO
- Department of Animal Medical Sciences, Faculty of Life
Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603–8555,
Japan
- Research Institute of Biosciences, Azabu University, 1–17–71
Fuchinobe, Chuo-ku, Sagamihara 252–5201, Japan
| |
Collapse
|
17
|
Glutamate and lipid metabolic perturbation in the hippocampi of asymptomatic borna disease virus-infected horses. PLoS One 2014; 9:e99752. [PMID: 24956478 PMCID: PMC4067290 DOI: 10.1371/journal.pone.0099752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic, enveloped, non-segmented, negative-stranded RNA virus that infects a wide variety of vertebrate species from birds to humans across a broad global geographic distribution. Animal symptomatology range from asymptomatic infection to behavioral abnormalities to acute meningoencephalitis. Asymptomatic BDV infection has been shown to be more frequent than conventionally estimated. However, the molecular mechanism(s) underyling asymptomatic BDV infection remain largely unknown. Here, based on real-time quantitative PCR and Western blotting, a total of 18 horse hippocampi were divided into BDV-infected (n = 8) and non-infected control (n = 10) groups. A gas chromatography coupled with mass spectrometry (GC-MS) metabolomic approach, in conjunction with multivariate statistical analysis, was used to characterize the hippocampal metabolic changes associated with asymptomatic BDV infection. Multivariate statistical analysis showed a significant discrimination between the BDV-infected and control groups. BDV-infected hippocampi were characterized by lower levels of D-myo-inositol-1-phosphate, glutamate, phosphoethanolamine, heptadecanoic acid, and linoleic acid in combination with a higher level of ammonia. These differential metabolites are primarily involved in glutamate and lipid metabolism. These finding provide an improved understanding of hippocampal changes associated with asymptomatic BDV infection.
Collapse
|
18
|
The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus. PLoS One 2014; 9:e93659. [PMID: 24699636 PMCID: PMC3974811 DOI: 10.1371/journal.pone.0093659] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
Borna disease (BD) is a sporadic neurologic disease of horses and sheep caused by mammalian Borna disease virus (BDV). Its unique epidemiological features include: limited occurrence in certain endemic regions of central Europe, yearly varying disease peaks, and a seasonal pattern with higher disease frequencies in spring and a disease nadir in autumn. It is most probably not directly transmitted between horses and sheep. All these features led to the assumption that an indigenous virus reservoir of BDV other than horses and sheep may exist. The search for such a reservoir had been unsuccessful until a few years ago five BDV-infected shrews were found in a BD-endemic area in Switzerland. So far, these data lacked further confirmation. We therefore initiated a study in shrews in endemic areas of Germany. Within five years 107 shrews of five different species were collected. BDV infections were identified in 14 individuals of the species bicolored white-toothed shrew (Crocidura leucodon, HERMANN 1780), all originating from BD-endemic territories. Immunohistological analysis showed widespread distribution of BDV antigen both in the nervous system and in epithelial and mesenchymal tissues without pathological alterations. Large amounts of virus, demonstrated by presence of viral antigen in epithelial cells of the oral cavity and in keratinocytes of the skin, may be a source of infection for natural and spill-over hosts. Genetic analyses reflected a close relationship of the BDV sequences obtained from the shrews with the regional BDV cluster. At one location a high percentage of BDV-positive shrews was identified in four consecutive years, which points towards a self-sustaining infection cycle in bicolored white-toothed shrews. Analyses of behavioral and population features of this shrew species revealed that the bicolored white-toothed shrew may indeed play an important role as an indigenous host of BDV.
Collapse
|
19
|
Zhang L, Wang X, Zhan Q, Wang Z, Xu M, Zhu D, He F, Liu X, Huang R, Li D, Lei Y, Xie P. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol 2014; 159:1941-9. [PMID: 24573218 DOI: 10.1007/s00705-013-1971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/28/2013] [Indexed: 11/29/2022]
Abstract
Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect many vertebrate species, including humans. To date, BDV infection has been reported in a range of animal species across a broad global geographic distribution. However, a systematic epidemiological survey of BDV infection in domesticated animals in China has yet to be performed. In current study, BDV RNA and antibodies in 2353 blood samples from apparently healthy animals of eight species (horse, donkey, dog, pig, rabbit, cattle, goat, sheep) from three areas in western China (Xinjiang province, Chongqing municipality, and Ningxia province) were assayed using reverse transcription qPCR (RT-qPCR) and ELISA assay. Brain tissue samples from a portion of the BDV RNA- and/or antibody-positive animals were subjected to RT-qPCR and western blotting. As a result, varying prevalence of BDV antibodies and/or RNA was demonstrated in various animal species from three areas, ranging from 4.4 % to 20.0 %. Detection of BDV RNA and/or antibodies in Chongqing pigs (9.2 %) provided the first known evidence of BDV infection in this species. Not all brain tissue samples from animals whose blood was BDV RNA and/or antibody positive contained BDV RNA and protein. This study provides evidence that BDV infection among healthy domestic animal species is more widespread in western China than previously believed.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Borna disease virus infection in cats. Vet J 2013; 201:142-9. [PMID: 24480411 DOI: 10.1016/j.tvjl.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023]
Abstract
Bornaviruses are known to cause neurological disorders in a number of animal species. Avian Bornavirus (ABV) causes proventricular dilatation disease (PDD) in birds and Borna disease virus (BDV) causes Borna disease in horses and sheep. BDV also causes staggering disease in cats, characterised by ataxia, behavioural changes and loss of postural reactions. BDV-infection markers in cats have been reported throughout the world. This review summarizes the current knowledge of Borna disease viruses in cats, including etiological agent, clinical signs, pathogenesis, epidemiology and diagnostics, with comparisons to Bornavirus infections in other species.
Collapse
|
21
|
Popgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology 2013; 56:395-412. [PMID: 24157886 DOI: 10.1159/000354561] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Viruses are the most abundant obligate intracellular entities in our body. Until recently, they were only considered to be pathogens that caused a broad array of pathologies, ranging from mild disease to deaths in the most severe cases. However, recent advances in unbiased mass sequencing techniques as well as increasing epidemiological evidence have indicated that the human body is home to diverse viral species under non-pathological conditions. Despite these studies, the description of the presumably healthy viral flora, i.e. the normal human virome, is still in its infancy regarding viral composition and dynamics. This review summarizes our current knowledge of the human virome under non-pathological conditions.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- URMITE UM63, CNRS 7278, IRD 198, INSERM 1095, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
22
|
Abstract
In 2008, avian bornaviruses (ABV) were identified as the cause of proventricular dilatation disease (PDD). PDD is a significant condition of captive parrots first identified in the late 1970s. ABV infection has subsequently been shown to be widespread in wild waterfowl across the United States and Canada where the virus infects 10-20% of some populations of ducks, geese and swans. In most cases birds appear to be healthy and unaffected by the presence of the virus; however, infection can also result in severe non-suppurative encephalitis and lesions similar to those seen in parrots with PDD. ABVs are genetically diverse with seven identified genotypes in parrots and one in canaries. A unique goose genotype (ABV-CG) predominates in waterfowl in Canada and the northern United States. ABV appears to be endemic in North American waterfowl, in comparison to what appears to be an emerging disease in parrots. It is not known whether ABV can spread between waterfowl and parrots. The discovery of ABV infection in North American waterfowl suggests that European waterfowl should be evaluated for the presence of ABV, and also as a possible reservoir species for Borna disease virus (BDV), a related neurotropic virus affecting horses and sheep in central Europe. Although investigations have suggested that BDV is likely derived from a wildlife reservoir, for which the shrew and water vole are currently prime candidates, we suggest that the existence of other mammalian and avian reservoirs should not be discounted.
Collapse
|
23
|
Kinnunen PM, Palva A, Vaheri A, Vapalahti O. Epidemiology and host spectrum of Borna disease virus infections. J Gen Virol 2012; 94:247-262. [PMID: 23223618 DOI: 10.1099/vir.0.046961-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Borna disease virus (BDV) has gained lot of interest because of its zoonotic potential, ability to introduce cDNA of its RNA transcripts into host genomes, and ability to cause severe neurobehavioural diseases. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep, known in central Europe for centuries. According to current knowledge, BDV or a close relative also infects several other species, including humans at least occasionally, in central Europe and elsewhere, but the existence of potential 'human Borna disease' with its suspected neuropsychiatric symptoms is highly controversial. The recent detection of endogenized BDV-like genes in primate and various other vertebrate genomes confirms that at least ancient bornaviruses did infect our ancestors. The epidemiology of BDV is largely unknown, but accumulating evidence indicates vectors and reservoirs among small wild mammals. The aim of this review is to bring together the current knowledge on epidemiology of BDV infections. Specifically, geographical and host distribution are addressed and assessed in the critical light of the detection methods used. We also review some salient clinical aspects.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Antti Vaheri
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland
| | - Olli Vapalahti
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
24
|
Karjalainen E, Sarjala T, Raitio H. Promoting human health through forests: overview and major challenges. Environ Health Prev Med 2012; 15:1-8. [PMID: 19568838 DOI: 10.1007/s12199-008-0069-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/05/2008] [Indexed: 01/11/2023] Open
Abstract
This review aims to contribute to the ongoing discussion about human health, global change, and biodiversity by concentrating on the relationships between forests and human health. This review gives a short overview of the most important health benefits that forests provide to humans, and the risks that forests may pose to human health. Furthermore, it discusses the future challenges for the research on the links between forests and human health, and for delivering health through forests in practice. Forests provide enormous possibilities to improve human health conditions. The results of a vast amount of research show that forest visits promote both physical and mental health by reducing stress. Forests represent rich natural pharmacies by virtue of being enormous sources of plant and microbial material with known or potential medicinal or nutritional value. Forest food offers a safety net for the most vulnerable population groups in developing countries, and healthy forest ecosystems may also help in regulation of infectious diseases. Utilizing forests effectively in health promotion could reduce public health care budgets and create new sources of income. Main challenges to delivering health through forests are due to ecosystem and biodiversity degradation, deforestation, and climate change. In addition, major implementation of research results into practice is still lacking. Inadequate implementation is partly caused by insufficient evidence base and partly due to the lack of policy-makers' and practitioners' awareness of the potential of forests for improving human health. This calls for strong cooperation among researchers, policy-makers, and practitioners as well as between different sectors, especially between health and environmental professionals.
Collapse
Affiliation(s)
- Eeva Karjalainen
- Finnish Forest Research Institute, P.O. Box 18, 01301, Vantaa, Finland,
| | | | | |
Collapse
|
25
|
Wensman JJ, Jäderlund KH, Gustavsson MH, Hansson-Hamlin H, Karlstam E, Lilliehöök I, Oström ILÖ, Belák S, Berg M, Holst BS. Markers of Borna disease virus infection in cats with staggering disease. J Feline Med Surg 2012; 14:573-82. [PMID: 22553310 PMCID: PMC11104187 DOI: 10.1177/1098612x12446638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Borna disease virus (BDV) is a RNA-virus causing neurological disorders in a wide range of mammals. In cats, BDV infection may cause staggering disease. Presently, staggering disease is a tentative clinical diagnosis, only confirmed at necropsy. In this study, cats with staggering disease were investigated to study markers of BDV infection aiming for improvement of current diagnostics. Nineteen cats fulfilled the inclusion criteria based on neurological signs and pathological findings. In 17/19 cats, BDV infection markers (BDV-specific antibodies and/or BDV-RNA) were found, and antibodies in serum (13/16, 81%) were the most common marker. BDV-RNA was found in 11/19 cats (58%). In a reference population without neurological signs, 4/25 cats were seropositive (16%). The clinical history and neurological signs in combination with presence of BDV infection markers, where serology and rRT-PCR on blood can be helpful tools, improve the diagnostic accuracy in the living cat.
Collapse
Affiliation(s)
- Jonas J Wensman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Borna disease virus infects human neural progenitor cells and impairs neurogenesis. J Virol 2011; 86:2512-22. [PMID: 22190725 DOI: 10.1128/jvi.05663-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the complex mechanisms by which infectious agents can disrupt behavior represents a major challenge. The Borna disease virus (BDV), a potential human pathogen, provides a unique model to study such mechanisms. Because BDV induces neurodegeneration in brain areas that are still undergoing maturation at the time of infection, we tested the hypothesis that BDV interferes with neurogenesis. We showed that human neural stem/progenitor cells are highly permissive to BDV, although infection does not alter their survival or undifferentiated phenotype. In contrast, upon the induction of differentiation, BDV is capable of severely impairing neurogenesis by interfering with the survival of newly generated neurons. Such impairment was specific to neurogenesis, since astrogliogenesis was unaltered. In conclusion, we demonstrate a new mechanism by which BDV might impair neural function and brain plasticity in infected individuals. These results may contribute to a better understanding of behavioral disorders associated with BDV infection.
Collapse
|
27
|
Varner J, Dearing MD. Estimating duration of infection with avidity assays: potential limitations and recommendations for improvement. ECOHEALTH 2011; 8:512-518. [PMID: 22311097 DOI: 10.1007/s10393-012-0742-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Recent infections often have higher pathogen loads. The number of recent infections can therefore be used to estimate transmission rates in a host population. Antibody avidity assays are an emerging technique to infer infection age in both domestic and wild animals. These assays have the potential to supplant intensive mark-recapture efforts for identification of recent infections, but their results may be confounded by antibody titer. We examined the effectiveness of an avidity assay for identifying recent infections of Sin Nombre virus, a hantavirus in North America that establishes a chronic infection in deer mice (Peromyscus maniculatus). We found that assay performance statistics such as sensitivity, specificity, and positive predictive value for low avidity scores were significantly improved when we accounted for antibody titer in the analyses. Without accounting for titer, avidity assays may classify samples with low titers as recent infections regardless of actual infection history, thereby overestimating the number of recent infections in a population and inflating estimates of transmission rates and/or human exposure risk. We recommend that antibody titers meet a minimum threshold for use in avidity assays, and we emphasize the importance of considering titer and dilution in the validation of newly developed avidity assays.
Collapse
Affiliation(s)
- Johanna Varner
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
28
|
Lipkin WI, Briese T, Hornig M. Borna disease virus - fact and fantasy. Virus Res 2011; 162:162-72. [PMID: 21968299 DOI: 10.1016/j.virusres.2011.09.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/25/2011] [Indexed: 11/26/2022]
Abstract
The occasion of Brian Mahy's retirement as editor of Virus Research provides an opportunity to reflect on the work that led one of the authors (Lipkin) to meet him shortly after the molecular discovery and characterization of Borna disease virus in the late 1980s, and work with authors Briese and Hornig to investigate mechanisms of pathogenesis and its potential role in human disease. This article reviews the history, molecular biology, epidemiology, and pathobiology of bornaviruses.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St., 17th Floor, New York, NY 10032, United States.
| | | | | |
Collapse
|
29
|
Intracerebral Borna disease virus infection of bank voles leading to peripheral spread and reverse transcription of viral RNA. PLoS One 2011; 6:e23622. [PMID: 21935357 PMCID: PMC3174072 DOI: 10.1371/journal.pone.0023622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/21/2011] [Indexed: 12/17/2022] Open
Abstract
Bornaviruses, which chronically infect many species, can cause severe neurological diseases in some animal species; their association with human neuropsychiatric disorders is, however, debatable. The epidemiology of Borna disease virus (BDV), as for other members of the family Bornaviridae, is largely unknown, although evidence exists for a reservoir in small mammals, for example bank voles (Myodes glareolus). In addition to the current exogenous infections and despite the fact that bornaviruses have an RNA genome, bornavirus sequences integrated into the genomes of several vertebrates millions of years ago. Our hypothesis is that the bank vole, a common wild rodent species in traditional BDV-endemic areas, can serve as a viral host; we therefore explored whether this species can be infected with BDV, and if so, how the virus spreads and whether viral RNA is transcribed into DNA in vivo.We infected neonate bank voles intracerebrally with BDV and euthanized them 2 to 8 weeks post-infection. Specific Ig antibodies were detectable in 41%. Histological evaluation revealed no significant pathological alterations, but BDV RNA and antigen were detectable in all infected brains. Immunohistology demonstrated centrifugal spread throughout the nervous tissue, because viral antigen was widespread in peripheral nerves and ganglia, including the mediastinum, esophagus, and urinary bladder. This was associated with viral shedding in feces, of which 54% were BDV RNA-positive, and urine at 17%. BDV nucleocapsid gene DNA occurred in 66% of the infected voles, and, surprisingly, occasionally also phosphoprotein DNA. Thus, intracerebral BDV infection of bank vole led to systemic infection of the nervous tissue and viral excretion, as well as frequent reverse transcription of the BDV genome, enabling genomic integration. This first experimental bornavirus infection in wild mammals confirms the recent findings regarding bornavirus DNA, and suggests that bank voles are capable of bornavirus transmission.
Collapse
|
30
|
Kinnunen PM, Henttonen H, Hoffmann B, Kallio ER, Korthase C, Laakkonen J, Niemimaa J, Palva A, Schlegel M, Ali HS, Suominen P, Ulrich RG, Vaheri A, Vapalahti O. Orthopox virus infections in Eurasian wild rodents. Vector Borne Zoonotic Dis 2011; 11:1133-40. [PMID: 21453121 DOI: 10.1089/vbz.2010.0170] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genus Orthopoxvirus includes variola (smallpox) virus and zoonotic cowpox virus (CPXV). All orthopoxviruses (OPV) are serologically cross-reactive and cross-protective, and after the cessation of smallpox vaccination, CPXV and other OPV infections represent an emerging threat to human health. In this respect CPXV, with its reservoir in asymptomatically infected wild rodents, is of special importance. In Europe, clinical cowpox has been diagnosed in both humans and animals. The main objective of this study was to elucidate the prevalence of OPV infections in wild rodents in different parts of Eurasia and to compare the performance of three real-time polymerase chain reaction (PCR) methods in detecting OPV DNA in wildlife samples. We investigated 962 wild rodents from Northern Europe (Finland), Central Europe (Germany), and Northern Asia (Siberia, Russia) for the presence of OPV antibodies. According to a CPXV antigen-based immunofluorescence assay, animals from 13 of the 17 locations (76%) showed antibodies. Mean seroprevalence was 33% in Finland (variation between locations 0%-69%), 32% in Germany (0%-43%), and 3.2% (0%-15%) in Siberia. We further screened tissue samples from 513 of the rodents for OPV DNA using up to three real-time PCRs. Three rodents from two German and one Finnish location were OPV DNA positive. The amplicons were 96% to 100% identical to available CPXV sequences. Further, we demonstrated OPV infections as far east as the Baikal region and occurring in hamster and two other rodent species, ones previously unnoticed as possible reservoir hosts. Based on serological and PCR findings, Eurasian wild rodents are frequently but nonpersistently infected with OPVs. Results from three real-time PCR methods were highly concordant. This study extends the geographic range and wildlife species diversity in which OPV (or CPXV) viruses are naturally circulating.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Priestnall SL, Schöniger S, Ivens PAS, Eickmann M, Brachthäuser L, Kehr K, Tupper C, Piercy RJ, Menzies-Gow NJ, Herden C. Borna disease virus infection of a horse in Great Britain. Vet Rec 2011; 168:380b. [PMID: 21498268 DOI: 10.1136/vr.c6405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- S L Priestnall
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Langley R, Morris T. That horse bit me: zoonotic infections of equines to consider after exposure through the bite or the oral/nasal secretions. J Agromedicine 2010; 14:370-81. [PMID: 19657886 DOI: 10.1080/10599240903058087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Millions of individuals are in contact with horses through occupational or recreational activities. Injuries from horses are responsible for over 100,000 emergency room visits each year in the United States. Although various types of traumatic injuries related to direct contact with horses are well described, roughly 3% to 4.5% of all reported injuries are due to bites by equines. The immediate injuries are commonly either blunt or penetrating trauma to local tissue; however, the bite exposure may also transmit a microbial agent of equine origin that can lead to a zoonotic infection. In almost all jurisdictions in the United States, animal bites are considered public health events and should be reported to the local health departments. Many animals can harbor many unusual zoonotic pathogens that both the individual health provider and public health officials much consider as they can adversely impact both the patient and the community health. This review focuses on those zoonoses that have been reported in the literature, including those that may in theory be transmitted from equine to human by direct inoculation or exposure to oral/nasal secretions from horses and other equine species.
Collapse
Affiliation(s)
- Ricky Langley
- North Carolina Department of Health and Human Services, Occupational and Environmental Epidemiology Branch, Raleign, North Carolina 27699-1923, USA.
| | | |
Collapse
|
33
|
Na KS, Tae SH, Song JW, Kim YK. Failure to detect borna disease virus antibody and RNA from peripheral blood mononuclear cells of psychiatric patients. Psychiatry Investig 2009; 6:306-12. [PMID: 20140130 PMCID: PMC2808801 DOI: 10.4306/pi.2009.6.4.306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/11/2009] [Accepted: 09/29/2009] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Borna disease virus (BDV) is a highly neurotropic agent causing various neuropsychiatric symptoms in animals. Over the past two decades, it has been suggested that BDV might be associated with human psychiatric diseases. We aimed to investigate whether BDV is associated with psychiatric patients in Korea. METHODS We recruited 60 normal controls and 198 psychiatric patients (98 patients with depressive disorder, 60 with schizophrenia, and 40 with bipolar disorder). We used an indirect immunofluorescence antibody (IFA) test for the BDV antibody and a real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay for p24 and p40 RNA from peripheral blood mononuclear cells (PBMCs). RESULTS Neither the BDV antibody nor p24, p40 RNA was detected in controls and patients groups. CONCLUSION Our results suggest that BDV might not be associated with psychiatric patients in Korea.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
| | - Seong-Ho Tae
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| | - Jin-won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
- Division of Brain Korea 21 Biomedical Science, Korea University, Seoul, Korea
| |
Collapse
|
34
|
Baker WS, Gray GC. A review of published reports regarding zoonotic pathogen infection in veterinarians. J Am Vet Med Assoc 2009; 234:1271-8. [PMID: 19442021 DOI: 10.2460/javma.234.10.1271] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify published reports regarding zoonotic pathogen infection among veterinarians. DESIGN Literature review. PROCEDURES The PubMed electronic database of medical literature published between 1966 and November 2007 was searched. Clinical case reports and reports of outbreak investigations were also identified through searches of the literature outside of PubMed and searches of references listed in included articles. Reports eligible for inclusion included controlled and uncontrolled studies examining seroprevalence of animal pathogens in veterinarians, serosurveys involving veterinarians, and reports of zoonotic pathogen infections causing clinical illness. RESULTS 66 relevant articles were identified. This included 44 seroepidemiologic studies (some examined > 1 pathogen), 12 case reports, 3 outbreak investigations, and 7 self-reported surveys (including 4 related to personal protective equipment use). Of the 44 seroepidemiologic studies, 37 (84%) identified an increased risk of zoonotic pathogen infection among veterinarians, and 7 (16%) identified no increased risk or a decreased risk. Surveys also documented that veterinarians often failed to use recommended personal protective equipment. CONCLUSIONS AND CLINICAL RELEVANCE Our review indicated that veterinarians had an increased risk of infection with a number of zoonotic pathogens. It also suggested that veterinarians may inadvertently serve as biological sentinels for emerging pathogens and could potentially spread zoonotic pathogens to their families, community members, and the animals for which they provide care. Professional and policy measures should be implemented to reduce the risk that veterinarians will become infected with, or transmit, zoonotic pathogens.
Collapse
Affiliation(s)
- Whitney S Baker
- Center for Emerging Infectious Diseases, Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52241, USA
| | | |
Collapse
|
35
|
Promoting human health through forests: overview and major challenges. Environ Health Prev Med 2009. [PMID: 19568838 DOI: 10.1007/s12199‐008‐0069‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This review aims to contribute to the ongoing discussion about human health, global change, and biodiversity by concentrating on the relationships between forests and human health. This review gives a short overview of the most important health benefits that forests provide to humans, and the risks that forests may pose to human health. Furthermore, it discusses the future challenges for the research on the links between forests and human health, and for delivering health through forests in practice. Forests provide enormous possibilities to improve human health conditions. The results of a vast amount of research show that forest visits promote both physical and mental health by reducing stress. Forests represent rich natural pharmacies by virtue of being enormous sources of plant and microbial material with known or potential medicinal or nutritional value. Forest food offers a safety net for the most vulnerable population groups in developing countries, and healthy forest ecosystems may also help in regulation of infectious diseases. Utilizing forests effectively in health promotion could reduce public health care budgets and create new sources of income. Main challenges to delivering health through forests are due to ecosystem and biodiversity degradation, deforestation, and climate change. In addition, major implementation of research results into practice is still lacking. Inadequate implementation is partly caused by insufficient evidence base and partly due to the lack of policy-makers' and practitioners' awareness of the potential of forests for improving human health. This calls for strong cooperation among researchers, policy-makers, and practitioners as well as between different sectors, especially between health and environmental professionals.
Collapse
|
36
|
Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 2009; 35:221-70. [DOI: 10.1080/10408410902989837] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Patti AM, Vulcano A, Candelori E, Ludwig H, Bode L. Borna disease virus infection in the population of Latium (Italy). APMIS 2008:74-6. [PMID: 18771104 DOI: 10.1111/j.1600-0463.2008.00m13.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anna Maria Patti
- Dept. of Science of public Health, University La Sapienza of Rome, Italy.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
|