1
|
Pers YM, Soler-Rich R, Vadalà G, Ferreira R, Duflos C, Picot MC, Herman F, Broussous S, Sánchez A, Noriega D, Ardura F, Alberca Zaballos M, García V, Gordillo Cano V, González-Vallinas M, Denaro V, Russo F, Guicheux J, Vilanova J, Orozco L, Meisel HJ, Alfonso M, Rannou F, Maugars Y, Berenbaum F, Barry FP, Tarte K, Louis-Plence P, Ferreira-Dos-Santos G, García-Sancho J, Jorgensen C. Allogenic bone marrow-derived mesenchymal stromal cell-based therapy for patients with chronic low back pain: a prospective, multicentre, randomised placebo controlled trial (RESPINE study). Ann Rheum Dis 2024; 83:1572-1583. [PMID: 39393844 PMCID: PMC11503111 DOI: 10.1136/ard-2024-225771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/10/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES To assess the efficacy of a single intradiscal injection of allogeneic bone marrow mesenchymal stromal cells (BM-MSCs) versus a sham placebo in patients with chronic low back pain (LBP). METHODS Participants were randomised in a prospective, double-blind, controlled study to receive either sham injection or intradiscal injection of 20 million allogeneic BM-MSC, between April 2018 and December 2022. The first co-primary endpoint was the rate of responders defined by improvement of the Visual Analogue Scale (VAS) for pain of at least 20% and 20 mm, or improvement of the Oswestry Disability Index (ODI) of 20% between baseline and month 12. The secondary structural co-primary endpoint was assessed by the disc fluid content measured by quantitative MRI T2, between baseline and month 12. Secondary endpoints included pain VAS, ODI, the Short Form (SF)-36 and the minimal clinically important difference in all timepoints (1, 3, 6, 12 and 24 months). We determined the immune response associated with allogeneic cell injection between baseline and 6 months. Serious adverse events (SAEs) were recorded. RESULTS 114 patients were randomised (n=58, BM-MSC group; n=56, sham placebo group). At 12 months, the primary outcome was not reached (74% in the BM-MSC group vs 69% in the placebo group; p=0.77). The groups did not differ in all secondary outcomes. No SAE related to the intervention occurred. CONCLUSIONS While our study did not conclusively demonstrate the efficacy of allogeneic BM-MSCs for LBP, the procedure was safe. Long-term outcomes of MSC therapy for LBP are still being studied. TRIAL REGISTRATION NUMBER EudraCT 2017-002092-25/ClinicalTrials.gov: NCT03737461.
Collapse
Affiliation(s)
- Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | | | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Rosanna Ferreira
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpelliera, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, Languedoc-Roussillon, France
| | - Marie-Christine Picot
- Department of Medical Information, Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, Languedoc-Roussillon, France
| | - Fanchon Herman
- Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, France
| | - Sylvie Broussous
- 7Research and Innovation Department, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Ana Sánchez
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Valladolid, Spain
- Citospin SL, Valladolid, Spain
| | - David Noriega
- Orthopedic Surgery Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Francisco Ardura
- Orthopedic Surgery Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Mercedes Alberca Zaballos
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Verónica García
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Virginia Gordillo Cano
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Valladolid, Spain
- Citospin SL, Valladolid, Spain
| | - Margarita González-Vallinas
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Vicenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Lazio, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Lazio, Italy
| | - Jérôme Guicheux
- Regenerative Medicine and Skeleton, RMeS, Nantes Université, Oniris, INSERM, CHU Nantes, Nantes, France
| | | | | | | | - Matias Alfonso
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Yves Maugars
- Regenerative Medicine and Skeleton, RMeS, Nantes Université, Oniris, INSERM, CHU Nantes, Nantes, France
- Service de Rhumatologie, Hôtel-Dieu, CHU Nantes, Nantes, France
| | | | - Frank P Barry
- Regenerative Medicine Institute, University of Galway Regenerative Medicine Institute, Galway, Ireland
| | - Karin Tarte
- Laboratoire SITI, Pôle Biologie, CHU Rennes, Rennes, Bretagne, France
| | - Pascale Louis-Plence
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Guilherme Ferreira-Dos-Santos
- Centro Médico Teknon, Barcelona, Spain
- Division of Pain Medicine, Department of Anesthesiology, Reanimation, and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Javier García-Sancho
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Christian Jorgensen
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| |
Collapse
|
2
|
Priyadarshani P, Van Grouw A, Liversage AR, Rui K, Nikitina A, Tehrani KF, Aggarwal B, Stice SL, Sinha S, Kemp ML, Fernández FM, Mortensen LJ. Investigation of MSC potency metrics via integration of imaging modalities with lipidomic characterization. Cell Rep 2024; 43:114579. [PMID: 39153198 DOI: 10.1016/j.celrep.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cell (MSC) therapies have had limited success so far in clinical trials due in part to heterogeneity in immune-responsive phenotypes. Therefore, techniques to characterize these properties of MSCs are needed during biomanufacturing. Imaging cell shape, or morphology, has been found to be associated with MSC immune responsivity-but a direct relationship between single-cell morphology and function has not been established. We used label-free differential phase contrast imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to evaluate single-cell morphology and explore relationships with lipid metabolic immune response. In interferon gamma (IFN-γ)-stimulated MSCs, we found higher lipid abundances from the ceramide-1-phosphate (C1P), phosphatidylcholine (PC), LysoPC, and triglyceride (TAG) families that are involved in cell immune function. Furthermore, we identified differences in lipid signatures in morphologically defined MSC subpopulations. The use of single-cell optical imaging coupled with single-cell spatial lipidomics could assist in optimizing the MSC production process and improve mechanistic understanding of manufacturing process effects on MSC immune activity and heterogeneity.
Collapse
Affiliation(s)
- Priyanka Priyadarshani
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Alexandria Van Grouw
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adrian Ross Liversage
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kejie Rui
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Arina Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kayvan Forouhesh Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Bhavay Aggarwal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Saurabh Sinha
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luke J Mortensen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Tragoonlugkana P, Pruksapong C, Ontong P, Kamprom W, Supokawej A. Fibronectin and vitronectin alleviate adipose-derived stem cells senescence during long-term culture through the AKT/MDM2/P53 pathway. Sci Rep 2024; 14:14242. [PMID: 38902430 PMCID: PMC11189918 DOI: 10.1038/s41598-024-65339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular senescence plays a role in the development of aging-associated degenerative diseases. Cell therapy is recognized as a candidate treatment for degenerative diseases. To achieve the goal of cell therapy, the quality and good characteristics of cells are concerned. Cell expansion relies on two-dimensional culture, which leads to replicative senescence of expanded cells. This study aimed to investigate the effect of cell culture surface modification using fibronectin (FN) and vitronectin (VN) in adipose-derived stem cells (ADSCs) during long-term expansion. Our results showed that ADSCs cultured in FN and VN coatings significantly enhanced adhesion, proliferation, and slow progression of cellular senescence as indicated by lower SA-β-gal activities and decreased expression levels of genes including p16, p21, and p53. The upregulation of integrin α5 and αv genes influences phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), and AKT proteins. FN and VN coatings upregulated AKT and MDM2 leading to p53 degradation. Additionally, MDM2 inhibition by Nutlin-3a markedly elevated p53 and p21 expression, increased cellular senescence, and induced the expression of inflammatory molecules including HMGB1 and IL-6. The understanding of FN and VN coating surface influencing ADSCs, especially senescence characteristics, offers a promising and practical point for the cultivation of ADSCs for future use in cell-based therapies.
Collapse
Affiliation(s)
- Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Department of Surgery, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Pawared Ontong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Witchayapon Kamprom
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Shaz BH, Schäfer R, Fontaine MJ, Norris PJ, McKenna DH, Jin P, Reems JA, Stroncek D, Tanashi M, Marks D, Geng H, Pati S. Local manufacturing processes contribute to variability in human mesenchymal stromal cell expansion while growth media supplements contribute to variability in gene expression and cell function: a Biomedical Excellence for Safer Transfusion (BEST) collaborative study. Cytotherapy 2024; 26:531-539. [PMID: 38043052 DOI: 10.1016/j.jcyt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AIMS Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods, source material and culture media. The purpose of this multicenter study was to assess the impact on MSC expansion, gene expression and other characteristics when different laboratories expanded MSCs from cultures initiated with bone marrow-MSC aliquots derived from the same donor source material yet with different growth media. METHODS Eight centers expanded MSCs using four human platelet lysate (HPL) and one fetal bovine serum (FBS) products as media supplements. The expanded cells were taken through two passages then assessed for cell count, viability, doubling time, immunophenotype, cell function, immunosuppression and gene expression. Results were analyzed by growth media and by center. RESULTS Center methodologies varied by their local seeding density, feeding regimen, inoculation density, base media and other growth media features (antibiotics, glutamine, serum). Doubling times were more dependent on center than on media supplements. Two centers had appropriate immunophenotyping showing all MSC cultures were positive for CD105, CD73, CD90 and negative for CD34, CD45, CD14, HLA-DR. MSCs cultured in media supplemented with FBS compared with HPL featured greater T-cell inhibition potential. Gene expression analysis showed greater impact of the type of media supplement (HPL versus FBS) than the manufacturing center. Specifically, nine genes were decreased in expression and six increased when combining the four HPL-grown MSCs versus FBS (false discovery rate [FDR] <0.01), however, without significant difference between different sources of HPL (FDR <0.01). CONCLUSIONS Local manufacturing process plays a critical role in MSC expansion while growth media may influence function and gene expression. All HPL and FBS products supported cell growth.
Collapse
Affiliation(s)
- Beth H Shaz
- Department of Pathology, Duke University, Durham, North Carolina, USA.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany; Institute for Transfusion Medicine and Gene Therapy, Medical Center University of Freiburg, Freiburg, Germany
| | - Magali J Fontaine
- University of Maryland School of Medical Science, Baltimore, Maryland, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA; Department of Lab Medicine, University of California San Francisco, San Francisco, California, USA
| | - David H McKenna
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ping Jin
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center; National Institutes of Health, Bethesda, Maryland, USA
| | - Jo-Anna Reems
- Cell Therapy and Regenerative Medicine Facility, University of Utah, Salt Lake City, Utah, USA
| | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center; National Institutes of Health, Bethesda, Maryland, USA
| | - Minoko Tanashi
- Japanese Red Cross Blood Service Headquarters, Tokyo, Japan
| | - Denese Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, NSW, Australia
| | - Huimin Geng
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Shibani Pati
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
5
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
He L, Li M, Wang X, Wu X, Yue G, Wang T, Zhou Y, Lei B, Zhou G. Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures. BMC Biol 2024; 22:1. [PMID: 38167069 PMCID: PMC10762950 DOI: 10.1186/s12915-023-01780-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disorders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mesenchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the development of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be used for detection. However, morphological assessment during MSC production is often subjective and uncertain. New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs. RESULTS We have developed a successful morphology-based Cascade region-based convolution neural network (Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes with other senescence indicators. CONCLUSIONS This deep learning has been applied for the first time to detect senescent MSCs, showing promising performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive and real-time morphological image analysis integrated into cell production.
Collapse
Affiliation(s)
- Liangge He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Mingzhu Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Xinglie Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Xiaoyan Wu
- Department of Dermatology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Guanghui Yue
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Yan Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China
- Lungene Biotech Ltd., Shenzhen, 18000, China
| | - Baiying Lei
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China.
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
7
|
Ding L, Oh S, Shrestha J, Lam A, Wang Y, Radfar P, Warkiani ME. Scaling up stem cell production: harnessing the potential of microfluidic devices. Biotechnol Adv 2023; 69:108271. [PMID: 37844769 DOI: 10.1016/j.biotechadv.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Stem cells are specialised cells characterised by their unique ability to both self-renew and transform into a wide array of specialised cell types. The widespread interest in stem cells for regenerative medicine and cultivated meat has led to a significant demand for these cells in both research and practical applications. Despite the growing need for stem cell manufacturing, the industry faces significant obstacles, including high costs for equipment and maintenance, complicated operation, and low product quality and yield. Microfluidic technology presents a promising solution to the abovementioned challenges. As an innovative approach for manipulating liquids and cells within microchannels, microfluidics offers a plethora of advantages at an industrial scale. These benefits encompass low setup costs, ease of operation and multiplexing, minimal energy consumption, and the added advantage of being labour-free. This review presents a thorough examination of the prominent microfluidic technologies employed in stem cell research and explores their promising applications in the burgeoning stem cell industry. It thoroughly examines how microfluidics can enhance cell harvesting from tissue samples, facilitate mixing and cryopreservation, streamline microcarrier production, and efficiently conduct cell separation, purification, washing, and final cell formulation post-culture.
Collapse
Affiliation(s)
- Lin Ding
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia.
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Alan Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Yaqing Wang
- School of Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Payar Radfar
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia..
| |
Collapse
|
8
|
Torrents S, del Moral AE, Codinach M, Rodríguez L, Querol S, Vives J. Optimized reagents for immunopotency assays on mesenchymal stromal cells for clinical use. Immunol Res 2023; 71:725-734. [PMID: 37120479 PMCID: PMC10148700 DOI: 10.1007/s12026-023-09385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Multipotent mesenchymal stromal cells (MSC) offer new therapeutic opportunities based on their ability to modulate an imbalanced immune system. Immunomodulatory potency is typically demonstrated in vitro by measuring the presence of surrogate markers (i.e., indoleamine-2,3-dioxygenase, IDO; tumor necrosis factor receptor type 1, TNFR1) and/or functional assays in co-cultures (i.e., inhibition of lymphoproliferation, polarization of macrophages). However, the biological variability of reagents used in the latter type of assays leads to unreliable and difficult to reproduce data therefore making cross-comparison between batches difficult, both at the intra- and inter-laboratory levels. Herein, we describe a set of experiments aiming at the definition and validation of reliable biological reagents as a first step towards standardization of a potency assay. This approach is based on the co-culture of Wharton's jelly (WJ)-derived MSC and cryopreserved pooled peripheral blood mononuclear cells. Altogether, we successfully defined a robust and reproducible immunopotency assay based on previously described methods incorporating substantial improvements such as cryopreservation of multiple vials of pooled peripheral blood mononuclear cells (PBMC) from 5 individual donors that enable a number of tests with same reagents, also reducing waste of PBMC from individual donors and therefore contributing to a more efficient and ethical method to use substances of human origin (SoHO). The new methodology was successfully validated using 11 batches of clinical grade MSC,WJ. Methods described here contribute to minimize PBMC donor variability while reducing costs, streamlining assay setup and convenience and laying the foundations for harmonization of biological reagents usage in standardized immunopotency assays for MSC. HIGHLIGHTS: • The use of pools of peripheral blood mononuclear cells (PBMCs) in potency assays contributes to robust and reproducible results, which is key in the assessment of mesenchymal stroma cells (MSC) potency for batch release. • Cryopreservation of PBMCs does not impact negatively on their activation and proliferation abilities. • Cryopreserved pools of PBMC constitutes convenient off-the-shelf reagents for potency assays. • Cryopreservation of pooled PBMCs from multiple donors is a way to reduce waste of donated PBMC and its associated costs, as well as reducing the impact of individual donor variability of substances of human origin (SoHO).
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Andrés Escudero del Moral
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Margarita Codinach
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Luciano Rodríguez
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Sergi Querol
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Pastor JC, Pastor-Idoate S, López-Paniagua M, Para M, Blazquez F, Murgui E, García V, Coco-Martín RM. Intravitreal allogeneic mesenchymal stem cells: a non-randomized phase II clinical trial for acute non-arteritic optic neuropathy. Stem Cell Res Ther 2023; 14:261. [PMID: 37735668 PMCID: PMC10512539 DOI: 10.1186/s13287-023-03500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND An effective treatment for acute non-arteritic ischemic optic neuropathy (NA-AION) has not been known or proven yet. Previous studies have suggested a neuroprotective effect of allogeneic bone marrow-derived mesenchymal stem cells. This study aims to report the results of a clinical trial on patients with acute non-arteritic optic neuropathy (NA-AION) treated with an intravitreal injection of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) (MSV®). METHODS We conducted a prospective, non-randomized, clinical phase-II study (Eudra CT number 2016-003029-40; ClinicalTrials.gov Registry NCT03173638) that included 5 patients with acute unilateral NA-AION diagnosed within 2 weeks after symptom onset and who received an intravitreal injection of allogeneic BM-MSCs (0.05 ml; cell concentration: 1.5 × 106cells/mL). The patients underwent regular ophthalmological examinations and were followed for one year. RESULTS In this trial, allogeneic BM-MSCs appeared to be safe as no patients developed signs of acute nor chronic intraocular inflammation or a significant change in intraocular pressure, although an epiretinal membrane was developed in one patient. A retrolental aggregate formed shortly after the injection spontaneously disappeared within a few weeks in another phakic patient, leaving a subcapsular cataract. Visual improvement was noted in 4 patients, and amplitudes of P100 on the visually evoked potentials recordings increased in three patients. The retinal nerve fiber layer and macular ganglion cell layer thicknesses significantly decreased during the follow-up. CONCLUSIONS Besides the development of an epiretinal membrane in one patient, the intravitreal application of allogeneic BM-MSCs appeared to be intraocularly well tolerated. Consequently, not only NA-AION but also BM-MSCs deserve more clinical investigational resources and a larger randomized multicenter trial that would provide stronger evidence both about safety and the potential therapeutic efficacy of intravitreally injected allogeneic BM-MSCs in acute NA-AION. TRIAL REGISTRATION Safety Assessment of Intravitreal Mesenchymal Stem Cells for Acute Non-Arteritic Anterior Ischemic Optic Neuropathy (NEUROSTEM). NCT03173638. Registered June 02, 2017 https://clinicaltrials.gov/ct2/show/NCT03173638 .
Collapse
Affiliation(s)
- Jose C Pastor
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain.
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Clínico Universitario, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Para
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Francisco Blazquez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Murgui
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Verónica García
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Citospin S.L., Valladolid, Spain
| | - Rosa M Coco-Martín
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Van Grouw A, Colonna MB, Maughon TS, Shen X, Larey AM, Moore SG, Yeago C, Fernández FM, Edison AS, Stice SL, Bowles-Welch AC, Marklein RA. Development of a Robust Consensus Modeling Approach for Identifying Cellular and Media Metabolites Predictive of Mesenchymal Stromal Cell Potency. Stem Cells 2023; 41:792-808. [PMID: 37279550 PMCID: PMC10427967 DOI: 10.1093/stmcls/sxad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications due in part to their ability to modulate immune cells. However, MSCs demonstrate significant functional heterogeneity in terms of their immunomodulatory function because of differences in MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we comprehensively profiled intracellular and extracellular metabolites throughout the expansion process to identify predictors of immunomodulatory function (T-cell modulation and indoleamine-2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust consensus machine learning approach, we were able to identify panels of metabolites predictive of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of identifying metabolites in 2 or more machine learning models and then building consensus models based on these consensus metabolite panels. Consensus intracellular metabolites with high predictive value included multiple lipid classes (such as phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways significantly associated with MSC function such as sphingolipid signaling and metabolism, arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable framework for identifying consensus predictive metabolites that predict MSC function, as well as guiding future MSC manufacturing efforts through identification of high-potency MSC lines and metabolic engineering.
Collapse
Affiliation(s)
- Alexandria Van Grouw
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxwell B Colonna
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ty S Maughon
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Xunan Shen
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Novel Potency Assay for MSC Secretome-Based Treatment of Idiopathic Male Infertility Employed Leydig Cells and Revealed Vascular Endothelial Growth Factor as a Promising Potency Marker. Int J Mol Sci 2022; 23:ijms23169414. [PMID: 36012677 PMCID: PMC9409465 DOI: 10.3390/ijms23169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic male infertility is a highly prevalent diagnosis in developed countries with no specific treatment options. Although empirical medical treatment is widely used to restore male fertility, its efficacy remains limited and inconclusively proven. Therefore, the development of novel therapeutic approaches in this field is a high-priority task. Since the failure of testicular microenvironment components might be involved in the pathogenesis of idiopathic male infertility, application of mesenchymal stromal cells (MSCs) as well as the MSC secretome is worth considering. Previously, we showed that the intratesticular injection of MSCs or the MSC secretome led to the recovery of spermatogenesis at least through replenishing the testicular microenvironment and its maintenance by MSC-secreted paracrine factors. However, the clinical use of such products has been limited to single trials to date. This may be due to the lack of relevant potency tests reflecting mechanisms of action of the MSC secretome in male infertility models. Based on the presumptive MSC secretome mode of action on the testicular microenvironment, we suggest a novel approach to test the potential efficacy of the MSC secretome for idiopathic male infertility treatment. It represents a potency assay based on evaluation of testosterone production by isolated Leydig cells. We demonstrated that the MSC secretome stimulated testosterone secretion by Leydig cells in vitro. We then hypothesized that among the major factors of the MSC secretome, vascular endothelial growth factor (VEGF) could be responsible for the observed effects, which we confirmed by the revealed correlation between the extent of stimulated testosterone production and VEGF concentration in the MSC secretome. The pilot results obtained from the doxorubicin-induced male infertility murine model also indicate the important impact of VEGF in the MSC secretome’s regenerative effects. Utilizing VEGF as a surrogate factor, a novel approach to study the potency of MSC secretome-based products for idiopathic male infertility treatment is suggested. Further validation is required for its implementation into the biopharmaceutical manufacturing process.
Collapse
|
12
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
13
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
14
|
Lee JY, Kang MH, Jang JE, Lee JE, Yang Y, Choi JY, Kang HS, Lee U, Choung JW, Jung H, Yoon YC, Jung KH, Hong SS, Yi EC, Park SG. Comparative analysis of mesenchymal stem cells cultivated in serum free media. Sci Rep 2022; 12:8620. [PMID: 35597800 PMCID: PMC9124186 DOI: 10.1038/s41598-022-12467-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Stem cells are attractive candidates for the regeneration of tissue and organ. Mesenchymal stem cells (MSCs) have been extensively investigated for their potential applications in regenerative medicine and cell therapy. For developing effective stem cell therapy, the mass production of consistent quality cells is required. The cell culture medium is the most critical aspect of the mass production of qualified stem cells. Classically, fetal bovine serum (FBS) has been used as a culture supplement for MSCs. Due to the undefined and heterologous composition of animal origin components in FBS, efforts to replace animal-derived components with non-animal-derived substances led to safe serum free media (SFM). Adipose derived mesenchymal stem cells (ADSCs) cultivated in SFM provided a more stable population doubling time (PDT) to later passage and more cells in a shorter time compared to FBS containing media. ADSCs cultivated in SFM had lower cellular senescence, lower immunogenicity, and higher genetic stability than ADSCs cultivated in FBS containing media. Differential expression analysis of mRNAs and proteins showed that the expression of genes related with apoptosis, immune response, and inflammatory response were significantly up-regulated in ADSCs cultivated in FBS containing media. ADSCs cultivated in SFM showed similar therapeutic efficacy in an acute pancreatitis mouse model to ADSCs cultivated in FBS containing media. Consideration of clinical trials, not only pre-clinical trial, suggests that cultivation of MSCs using SFM might offer more safe cell therapeutics as well as repeated administration due to low immunogenicity.
Collapse
Affiliation(s)
- Joo Youn Lee
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine Or College of Pharmacy, Seoul National University, Seoul, 03080, Korea
| | - Min Hee Kang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Ji Eun Jang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Jeong Eon Lee
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Yuyeong Yang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Ji Yong Choi
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Hong Seok Kang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Uiil Lee
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Ji Woong Choung
- Dacapo Oral & Maxillofacial Surgery Clinic, Jeongin Building, 559 Gangnamdae-ro, Seocho-gu, Seoul, 06531, Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine Or College of Pharmacy, Seoul National University, Seoul, 03080, Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, Inha University, 27 Inhang-ro, Jung-gu, Incheon, 22332, Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, 27 Inhang-ro, Jung-gu, Incheon, 22332, Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, 27 Inhang-ro, Jung-gu, Incheon, 22332, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine Or College of Pharmacy, Seoul National University, Seoul, 03080, Korea
| | - Sang Gyu Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Worldcup-ro, 206, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
15
|
Cabanillas Stanchi KM, Böhringer J, Strölin M, Groeschel S, Lenglinger K, Treuner C, Kehrer C, Laugwitz L, Bevot A, Kaiser N, Schumm M, Lang P, Handgretinger R, Krägeloh-Mann I, Müller I, Döring M. Hematopoietic stem cell transplantation with mesenchymal stromal cells in children with metachromatic leukodystrophy. Stem Cells Dev 2022; 31:163-175. [PMID: 35323019 DOI: 10.1089/scd.2021.0352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder primarily affecting the white matter of the nervous system that results from a deficiency of the arylsulfatase A (ARSA). Mesenchymal stem cells (MSCs) are able to secrete ARSA and have shown beneficial effects in MLD patients. In this retrospective analysis, 10 pediatric MLD patients (MSCG) underwent allogeneic hematopoietic stem cell transplantation (HSCT) and received two applications of 2 x 106 MSCs/kg bodyweight at day +30 and +60 after HSCT between 2007 and 2018. MSC safety, occurrence of graft-versus-host disease (GvHD), blood ARSA levels, chimerism, cell regeneration and engraftment, MRI changes, and the gross motor function were assessed within the first year of HSCT. The long-term data included clinical outcomes and safety aspects of MSCs. Data were compared to a control cohort of seven pediatric MLD patients (CG) who underwent HSCT only. The application of MSC in pediatric MLD patients after allogeneic HSCT was safe and well tolerated and long-term potentially MSC-related adverse effects up to 13.5 years after HSCT were not observed. Patients achieved significantly higher ARSA levels (CG: median 1.03 nmol∙10-6, range 0.41-1.73 | MSCG: median 1.58 nmol∙10-6, range 0.44-2.6; p<0.05), as well as significantly higher leukocyte (p<0.05) and thrombocyte (p<0.001) levels within 365 days of MSC application compared to CG patients. Statistically significant effects on acute GvHD, regeneration of immune cells, engraftment, MRI changes, gross motor function, and clinical outcomes were not detected. In conclusion, the application of MSCs in pediatric MLD patients after allogeneic HSCT was safe and well tolerated. The two applications of 2 x 106/kg allogeneic MSCs were followed by improved engraftment and hematopoiesis within the first year after HSCT. Larger, prospective trials are necessary to evaluate the impact of MSC application on engraftment and hematopoietic recovery.
Collapse
Affiliation(s)
| | - Judith Böhringer
- University Children's Hospital Tübingen, Dpt. III - Neuropediatrics, Germany;
| | - Manuel Strölin
- University Children's Hospital Tübingen, Dpt. III - Neuropediatrics, Germany;
| | - Samuel Groeschel
- University Children's Hospital Tübingen, Dpt. III - Neuropediatrics, Germany;
| | - Katrin Lenglinger
- University Children's Hospital Tübingen, Dpt. I - General Pediatrics, Hematology and Oncology, Germany;
| | - Claudia Treuner
- University Children's Hospital Tübingen, Dpt. I - General Pediatrics, Hematology and Oncology, Germany;
| | - Christiane Kehrer
- University Children's Hospital Tübingen, Dpt. I - General Pediatrics, Hematology and Oncology, Germany;
| | - Lucia Laugwitz
- University Children's Hospital Tübingen, Dpt. III - Neuropediatrics, Germany;
| | - Andrea Bevot
- University Children's Hospital Tübingen, Dpt. III - Neuropediatrics, Germany;
| | - Nadja Kaiser
- University Children's Hospital Tübingen, Dpt. III - Neuropediatrics, Germany;
| | - Michael Schumm
- University Children's Hospital Tübingen, Dpt. I - General Pediatrics, Hematology and Oncology, Germany;
| | - Peter Lang
- University Children's Hospital Tübingen, Dpt. I - General Pediatrics, Hematology and Oncology, Germany;
| | - Rupert Handgretinger
- Children's University Hospital, Hematology/Oncology, Hoppe-Seyler-Str. 1, Tuebingen, Germany, 72076;
| | | | - Ingo Müller
- University Medical Center Hamburg-Eppendorf, 37734, Department of Pediatric Hematology and Oncology, Hamburg, Hamburg, Germany;
| | - Michaela Döring
- University Children's Hospital Tübingen, Dpt. I - General Pediatrics, Hematology and Oncology, Germany;
| |
Collapse
|
16
|
Kaniowska D, Wenk K, Rademacher P, Weiss R, Fabian C, Schulz I, Guthardt M, Lange F, Greiser S, Schmidt M, Braumann UD, Emmrich F, Koehl U, Jaimes Y. Extracellular Vesicles of Mesenchymal Stromal Cells Can be Taken Up by Microglial Cells and Partially Prevent the Stimulation Induced by β-amyloid. Stem Cell Rev Rep 2022; 18:1113-1126. [PMID: 35080744 PMCID: PMC8942956 DOI: 10.1007/s12015-021-10261-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/22/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have great capacity for immune regulation. MSCs provide protective paracrine effects, which are partially exerted by extracellular vesicles (EVs). It has been reported that MSCs-derived EVs (MSC-EVs) contain soluble factors, such as cytokines, chemokines, growth factors and even microRNAs, which confer them similar anti-inflammatory and regenerative effects to MSCs. Moreover, MSCs modulate microglia activation through a dual mechanism of action that relies both on cell contact and secreted factors. Microglia cells are the central nervous system immune cells and the main mediators of the inflammation leading to neurodegenerative disorders. Here, we investigated whether MSC-EVs affect the activation of microglia cells by β-amyloid aggregates. We show that the presence of MSC-EVs can prevent the upregulation of pro-inflammatory mediators such as tumor necrosis factor (TNF)-α and nitric oxide (NO). Both are up-regulated in neurodegenerative diseases representing chronic inflammation, as in Alzheimer’s disease. We demonstrate that MSC-EVs are internalized by the microglia cells. Further, our study supports the use of MSC-EVs as a promising therapeutic tool to treat neuroinflammatory diseases. Significance Statement It has been reported that mesenchymal stromal/stem cells and MSC-derived small extracellular vesicles have therapeutic effects in the treatment of various degenerative and inflammatory diseases. Extracellular vesicles are loaded with proteins, lipids and RNA and act as intercellular communication mediators. Here we show that extracellular vesicles can be taken up by murine microglial cells. In addition, they partially reduce the activation of microglial cells against β-amyloid aggregates. This inhibition of microglia activation may present an effective strategy for the control/therapy of neurodegenerative diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Dorota Kaniowska
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany. .,Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.
| | - Kerstin Wenk
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Phil Rademacher
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Ronald Weiss
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany
| | - Isabell Schulz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany
| | - Max Guthardt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany
| | - Sebastian Greiser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Ulf-Dietrich Braumann
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany.,Faculty of Engineering, Leipzig University of Applied Sciences (HTWK), Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Yarúa Jaimes
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103, Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Cluster of Excellence for Immune-mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
17
|
Bennstein SB, Weinhold S, Degistirici Ö, Oostendorp RAJ, Raba K, Kögler G, Meisel R, Walter L, Uhrberg M. Efficient In Vitro Generation of IL-22-Secreting ILC3 From CD34 + Hematopoietic Progenitors in a Human Mesenchymal Stem Cell Niche. Front Immunol 2021; 12:797432. [PMID: 35003122 PMCID: PMC8739490 DOI: 10.3389/fimmu.2021.797432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Sabrina B. Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Robert A. J. Oostendorp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III – Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Preclinical Assessment of Mesenchymal-Stem-Cell-Based Therapies in Spinocerebellar Ataxia Type 3. Biomedicines 2021; 9:biomedicines9121754. [PMID: 34944570 PMCID: PMC8698556 DOI: 10.3390/biomedicines9121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)—or Machado–Joseph disease (MJD)—is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation—particularly in the cerebellum and basal ganglia—while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.
Collapse
|
19
|
Quality control methods in musculoskeletal tissue engineering: from imaging to biosensors. Bone Res 2021; 9:46. [PMID: 34707086 PMCID: PMC8551153 DOI: 10.1038/s41413-021-00167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/23/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.
Collapse
|
20
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
21
|
Fengyun W, LiXin Z, Xinhua Q, Bin F. Mesenchymal Stromal Cells Attenuate Infection-Induced Acute Respiratory Distress Syndrome in Animal Experiments: A Meta-Analysis. Cell Transplant 2021; 29:963689720969186. [PMID: 33164559 PMCID: PMC7784610 DOI: 10.1177/0963689720969186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy is a potential therapy for treating acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), which was widely studied in the last decade. The purpose of our meta-analysis was to investigate the efficacy of MSCs for simulated infection-induced ALI/ARDS in animal trials. PubMed and EMBASE were searched to screen relevant preclinical trials with a prespecified search strategy. 57 studies met the inclusion criteria and were included in our study. Our meta-analysis showed that MSCs can reduce the lung injury score of ALI caused by lipopolysaccharide or bacteria (standardized mean difference (SMD) = −2.97, 95% CI [−3.64 to −2.30], P < 0.00001) and improve the animals’ survival (odds ratio = 3.64, 95% CI [2.55 to 5.19], P < 0.00001). Our study discovered that MSCs can reduce the wet weight to dry weight ratio of the lung (SMD = −2.58, 95% CI [−3.24 to −1.91], P < 0.00001). The proportion of the alveolar sac in the MSC group was higher than that in the control group (SMD = 1.68, 95% CI [1.22 to 2.13], P < 0.00001). Moreover, our study detected that MSCs can downregulate the levels of proinflammatory factors such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the lung and it can upregulate the level of anti-inflammatory factor IL-10. MSCs were also found to reduce the level of neutrophils and total protein in bronchoalveolar lavage fluid, decrease myeloperoxidase (MPO) activity in the lung, and improve lung compliance. MSC therapy may be a promising treatment for ALI/ARDS since it may mitigate the severity of lung injury, modulate the immune balance, and ameliorate the permeability of lung vessels in ALI/ARDS, thus facilitating lung regeneration and repair.
Collapse
Affiliation(s)
- Wang Fengyun
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| | - Zhou LiXin
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| | - Qiang Xinhua
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| | - Fang Bin
- Department of Critical Care Medicine, 66278The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
22
|
Sharma S, Jeyaraman M, Muthu S, Anudeep TC, Jeyaraman N, Shringeri AS, Kumar V, Somasundaram R, Jain R, Jha SK. A Step Toward Optimizing Regenerative Medicine Principle to Combat COVID-19. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1731597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractDrugs are currently not licensed in specific to pulverize COVID-19. On an emergency basis, vaccines were approved to prevent the further spread of COVID-19. This serves as a potential background for considering the optimization of biologics. In this context, evidence on convalescent plasma and stem cells has shown a beneficial role. Here, we have considered this as plausible therapy, and further hypothesize that their cocktails will synergistically boost the immunogenicity to relegate COVID-19. This warrants a large volume clinical trial on an emergent basis, because the sooner we establish a safe and effective cure, the better.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | | | | | | | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Lechanteur C, Briquet A, Bettonville V, Baudoux E, Beguin Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells 2021; 10:1320. [PMID: 34073206 PMCID: PMC8227789 DOI: 10.3390/cells10061320] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Following European regulation 1394/2007, mesenchymal stromal cell (MSCs) have become an advanced therapy medicinal product (ATMP) that must be produced following the good manufacturing practice (GMP) standards. We describe the upgrade of our existing clinical-grade MSC manufacturing process to obtain GMP certification. Staff organization, premises/equipment qualification and monitoring, raw materials management, starting materials, technical manufacturing processes, quality controls, and the release, thawing and infusion were substantially reorganized. Numerous studies have been carried out to validate cultures and demonstrate the short-term stability of fresh or thawed products, as well their stability during long-term storage. Detailed results of media simulation tests, validation runs and early MSC batches are presented. We also report the validation of a new variant of the process aiming to prepare fresh MSCs for the treatment of specific lesions of Crohn's disease by local injection. In conclusion, we have successfully ensured the adaptation of our clinical-grade MSC production process to the GMP requirements. The GMP manufacturing of MSC products is feasible in the academic setting for a limited number of batches with a significant cost increase, but moving to large-scale production necessary for phase III trials would require the involvement of industrial partners.
Collapse
Affiliation(s)
- Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Virginie Bettonville
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
- Division of Hematology, Department of Medicine, CHU of Liège, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
24
|
Ragni E, Papait A, Perucca Orfei C, Silini AR, Colombini A, Viganò M, Libonati F, Parolini O, de Girolamo L. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med 2021; 10:1044-1062. [PMID: 33656805 PMCID: PMC8235131 DOI: 10.1002/sctm.20-0390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Human amniotic membrane‐derived mesenchymal stromal cells (hAMSCs) are easily obtained in large quantities and free from ethical concerns. Promising therapeutic results for both hAMSCs and their secreted factors (secretome) were described by several in vitro and preclinical studies, often for treatment of orthopedic disorders such as osteoarthritis (OA) and tendinopathy. For clinical translation of the hAMSC secretome as cell‐free therapy, a detailed characterization of hAMSC‐secreted factors is mandatory. Herein, we tested the presence of 200 secreted factors and 754 miRNAs in extracellular vesicles (EVs). Thirty‐seven cytokines/chemokines were identified at varying abundance, some of which involved in both chemotaxis and homeostasis of inflammatory cells and in positive remodeling of extracellular matrix, often damaged in tendinopathy and OA. We also found 336 EV‐miRNAs, 51 of which accounted for more than 95% of the genetic message. A focused analysis based on miRNAs related to OA and tendinopathy showed that most abundant EV‐miRNAs are teno‐ and chondro‐protective, able to induce M2 macrophage polarization, inhibit inflammatory T cells, and promote Treg. Functional analysis on IL‐1β treated tenocytes and chondrocytes resulted in downregulation of inflammation‐associated genes. Overall, presence of key regulatory molecules and miRNAs explain the promising therapeutic results of hAMSCs and their secretome for treatment of musculoskeletal conditions and are a groundwork for similar studies in other pathologies. Furthermore, identified molecules will pave the way for future studies aimed at more sharply predicting disease‐targeted clinical efficacy, as well as setting up potency and release assays to fingerprint clinical‐grade batches of whole secretome or purified components.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Francesca Libonati
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| |
Collapse
|
25
|
Döring M, Cabanillas Stanchi KM, Lenglinger K, Treuner C, Gieseke F, Erbacher A, Mezger M, Vaegler M, Schlegel PG, Greil J, Bettoni da Cunha Riehm C, Faul C, Schumm M, Lang P, Handgretinger R, Müller I. Long-Term Follow-Up After the Application of Mesenchymal Stromal Cells in Children and Adolescents with Steroid-Refractory Graft-Versus-Host Disease. Stem Cells Dev 2021; 30:234-246. [PMID: 33446053 DOI: 10.1089/scd.2020.0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Steroid-refractory graft-versus-host disease (GvHD) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation (alloHSCT). Alternative treatment options are often insufficient. Several studies have proven the efficacy of mesenchymal stromal cells (MSCs) in the treatment of therapy-refractory acute GvHD in adult and pediatric patients. Long-term data in pediatric patients are scarce. In this retrospective analysis, a total of 25 patients with a median age of 10.6 years (range 0.6-22.1 years) who received bone marrow-derived MSCs after alloHSCT for the treatment of steroid-refractory III and IV GvHD were analyzed. The median observation period of the surviving patients was 9.3 years (1.3-12.7 years) after HSCT. Among the 25 patients, 10 (40.0%) died [relapse (n = 3), multiorgan failure (n = 6), cardiorespiratory failure (n = 1)] at median 0.5 years (0.2-2.3 years) after HSCT. Partial response and complete remission (PR, CR) of the GvHD were achieved in 76.0% and 24.0% of the patients, respectively. Transplant-related mortality was 0% in the patients who achieved CR after MSC treatment and 26.3% for those with PR. A median improvement by one intestinal or liver GvHD stage (range 1-4) could be achieved after MSC application. No potentially MSC-related long-term adverse effects, for example, secondary malignancy, were identified. In conclusion, the intravenous application of allogeneic MSCs was safe and proved effective for the treatment of steroid-refractory GvHD. However, larger, prospective, and randomized trials are needed to evaluate these findings.
Collapse
Affiliation(s)
- Michaela Döring
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | | | - Katrin Lenglinger
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Claudia Treuner
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Friederike Gieseke
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Annika Erbacher
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Markus Mezger
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Martin Vaegler
- Experimental and Clinical Research Center, GMP-Facility for Cellular Therapies, Charité Universitätsmedizin Berlin, Campus Berlin Buch, Berlin, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology and Oncology, University of Würzburg, Würzburg, Germany
| | - Johann Greil
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Christoph Faul
- University Hospital and Comprehensive Cancer Center Tübingen, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michael Schumm
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Peter Lang
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department I-General Pediatrics, Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ingo Müller
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol 2021; 9:632717. [PMID: 33665190 PMCID: PMC7921162 DOI: 10.3389/fcell.2021.632717] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Following their discovery over 50 years ago, mesenchymal stromal cells (MSCs) have become one of the most studied cellular therapeutic products by both academia and industry due to their regenerative potential and immunomodulatory properties. The promise of MSCs as a therapeutic modality has been demonstrated by preclinical data yet has not translated to consistent, successful clinical trial results in humans. Despite the disparities across the field, MSC shareholders are unified under one common goal-to use MSCs as a therapeutic modality to improve the quality of life for those suffering from a malady in which the standard of care is suboptimal or no longer effective. Currently, there is no Food and Drug Administration (FDA)-approved MSC therapy on the market in the United States although several MSC products have been granted regulatory approval in other countries. In this review, we intend to identify hurdles that are impeding therapeutic progress and discuss strategies that may aid in accomplishing this universal goal of widespread therapeutic use.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Marne L Arthaud-Day
- Department of Management, Kansas State University, Manhattan, KS, United States
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States.,Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
27
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Wang F, Fang B, Qiang X, Shao J, Zhou L. The efficacy of mesenchymal stromal cell-derived therapies for acute respiratory distress syndrome-a meta-analysis of preclinical trials. Respir Res 2020; 21:307. [PMID: 33218340 PMCID: PMC7677103 DOI: 10.1186/s12931-020-01574-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background The investigation of mesenchymal stromal cell (MSC)-conditioned medium or extracellular vesicles (exosomes or microvesicles) as a remedy for acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) has become a fast-growing field in recent years. Our purpose was to conduct a meta-analysis to investigate the efficacy of MSC-derived therapies (MDTs) for ALI/ARDS in animal models. Methods A meta-analysis of MDTs for ALI/ARDS in animal trials was performed. PubMed and EMBASE were searched to screen relevant preclinical trials with a predetermined search strategy. Results A total of 17 studies that compared MDT with the ALI control group were included in our study. The pooled result derived from the comparison of the two groups suggested that MDT could significantly reduce the lung injury score (standardized mean difference (SMD) = − 4.02, 95% CI [− 5.28, − 2.23], P < 0.0001) and improve animal survival (OR = − 6.45, 95% CI [2.78, 14.97], P < 0.0001). MDT mitigated the infiltration of neutrophils in alveoli (SMD = − 3.38, 95% CI [− 4.58, − 2.18], P < 0.00001). MDT also reduced the wet-dry weight ratio of the lung (SMD = − 2.34, 95% CI [− 3.42, − 1.26], P < 0.0001) and the total protein in BALF (SMD = − 2.23, 95% CI [− 3.07, − 1.40], P < 0.00001). Furthermore, MDT was found to downregulate proinflammatory mediators such as IL-1, IL-6 and TNF-a and to upregulate anti-inflammatory mediators such as IL-10. Conclusion MDT reduces lung injury and improves survival in animal ARDS models since it can ameliorate lung permeability, decrease inflammatory cell infiltration, downregulate proinflammatory mediators, and upregulate anti-inflammatory mediators. However, more animal studies and human trials are needed for further investigation.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Bin Fang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Xinhua Qiang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Jingsong Shao
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Lixin Zhou
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China.
| |
Collapse
|
29
|
Lu J, Wei W. Considerations on chemistry, manufacturing, and control of stem cell products for Investigational New Drug application in China. Biologicals 2020; 68:3-8. [PMID: 33097376 DOI: 10.1016/j.biologicals.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
Tremendous progress has been made in recent years to produce functional cells for cell therapy products. Hundreds of clinical trials of stem cell products (SCPs) have shown promising therapeutic potential worldwide, including the products derived from human pluripotent stem cells (hPSCs), adult stem cells and mesenchymal stem cells (MSC). Before starting a clinical trial, comprehensive chemistry, manufacturing and control (CMC) study is required to assure the safety and quality consistency of SCPs. The heterogeneity of stem cell products arises from the variability in the donor tissues, isolation of cells and differentiation processes, and appropriate testing approaches are needed to characterize and release SCPs. Here we summarize the regulatory considerations of CMC study in Investigational New Drug (IND) application of SCPs in China based on the current knowledge, and they will be updated in the future with the advance of stem cell biology and regulatory science.
Collapse
Affiliation(s)
- Jiaqi Lu
- Center for Drug Evaluation (CDE), National Medical Products Administration, Beijing, 100022, China.
| | - Wei Wei
- Center for Drug Evaluation (CDE), National Medical Products Administration, Beijing, 100022, China
| |
Collapse
|
30
|
Johnstone BH, Miller HM, Beck MR, Gu D, Thirumala S, LaFontaine M, Brandacher G, Woods EJ. Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities. Cytotherapy 2020; 22:617-628. [PMID: 32873509 PMCID: PMC8919862 DOI: 10.1016/j.jcyt.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
Background: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different disease indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. A key contributor to the present high cost of goods sold for MSC manufacturing is the need to create master cell banks from multiple donors, which leads to variability in large-scale manufacturing runs. Therefore, the availability of large single donor depots of primary MSCs would greatly benefit the cell therapy market by reducing costs associated with manufacturing. Methods: We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs to distinguish this population from loosely associated MSCs recovered through aspiration or rinsing of the bone marrow compartment. Results: Pilot banking and expansion were performed with vBA-MSCs obtained from 3 deceased donors, and it was demonstrated that bank sizes averaging 2.9 × 108 ± 1.35 × 108 vBA-MSCs at passage 1 were obtainable from only 5 g of digested VB bone fragments. Each bank of cells demonstrated robust proliferation through a total of 9 passages, without significant reduction in population doubling times. The theoretical total cell yield from the entire amount of bone fragments (approximately 300 g) from each donor with limited expansion through 4 passages is 100 trillion (1 × 1014) vBA-MSCs, equating to over 105 doses at 10 × 106 cells/kg for an average 70-kg recipient. Discussion: Thus, we have established a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.
Collapse
Affiliation(s)
- Brian H Johnstone
- Ossium Health, Inc, Indianapolis, Indiana, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA.
| | - Hannah M Miller
- Ossium Health, Inc, Indianapolis, Indiana, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA
| | - Madelyn R Beck
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dongsheng Gu
- Ossium Health, Inc, Indianapolis, Indiana, USA; Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sreedhar Thirumala
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael LaFontaine
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erik J Woods
- Ossium Health, Inc, Indianapolis, Indiana, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
31
|
The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev Rep 2020; 15:356-373. [PMID: 30937640 DOI: 10.1007/s12015-019-09886-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.
Collapse
|
32
|
Olm F, Lim HC, Schallmoser K, Strunk D, Laurell T, Scheding S. Acoustophoresis Enables the Label‐Free Separation of Functionally Different Subsets of Cultured Bone Marrow Stromal Cells. Cytometry A 2020; 99:476-487. [DOI: 10.1002/cyto.a.24171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Franziska Olm
- Department of Laboratory Medicine, Lund Stem Cell Center and Molecular Hematology Lund University Lund Sweden
| | - Hooi Ching Lim
- Department of Laboratory Medicine, Lund Stem Cell Center and Molecular Hematology Lund University Lund Sweden
| | - Katharina Schallmoser
- Department of Transfusion Medicine, Spinal Cord Injury and Tissue Regeneration Center Paracelsus Medical University Salzburg Austria
| | - Dirk Strunk
- Department of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Paracelsus Medical University Salzburg Austria
| | - Thomas Laurell
- Department of Biomedical Engineering Lund University Lund Sweden
| | - Stefan Scheding
- Department of Laboratory Medicine, Lund Stem Cell Center and Molecular Hematology Lund University Lund Sweden
- Department of Haematology Skåne University Hospital Lund Sweden
| |
Collapse
|
33
|
Döring M, Kluba T, Cabanillas Stanchi KM, Kahle P, Lenglinger K, Tsiflikas I, Treuner C, Vaegler M, Mezger M, Erbacher A, Schumm M, Lang P, Handgretinger R, Müller I. Longtime Outcome After Intraosseous Application of Autologous Mesenchymal Stromal Cells in Pediatric Patients and Young Adults with Avascular Necrosis After Steroid or Chemotherapy. Stem Cells Dev 2020; 29:811-822. [PMID: 32295491 DOI: 10.1089/scd.2020.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Avascular necrosis (AVN) is a severe complication of immunosuppressant therapy or chemotherapy. A beneficial AVN therapy with core decompression (CD) and intraosseous infusion of mesenchymal stromal cells (MSCs) has been described in adult patients, but there are only few data on MSC applications in pediatric and young adult patients (PYAP). Between 2006 and 2015, 14 AVN lesions of 10 PYAP (6 females) with a median age of 16.9 years (range 8.5-25.8 years) received CD and intraosseous application of autologous MSCs. Data of these patients were analyzed regarding efficacy, safety, and feasibility of this procedure as AVN therapy and compared with a control group of 13 AVN lesions of 11 PYAP (5 females) with a median age of 17.9 years (range 13.5-27.5 years) who received CD only. During the follow-up analysis [MSC group: median 3.1 (1.6-5.8) years after CD; CD group: median 2.0 (1.5-8.5) years after CD], relative lesion sizes (as assessed by magnetic resonance imaging) compared with the initial lesion volume, were significantly lower (P < 0.05) in the MSC group (volume reduction to a median of 18.5%) when compared with the CD group (58.0%). One lesion in the MSC group comprised a complete remission. Size progression was not observed in either group. Clinical improvement (pain, mobility) was not significantly different between the two groups. None of the patients experienced treatment-related adverse effects. CD and additional MSC application was regarded safe, effective, feasible, and superior in reducing the lesion size when compared with CD only. Prospective, randomized clinical trials are needed to further evaluate these findings.
Collapse
Affiliation(s)
- Michaela Döring
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Torsten Kluba
- Department of Orthopedic Surgery, Städtisches Klinikum Dresden, Dresden, Germany
| | - Karin Melanie Cabanillas Stanchi
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Peter Kahle
- Department of Orthopedics, University Hospital Tuebingen, Tuebingen, Germany
| | - Katrin Lenglinger
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Ilias Tsiflikas
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Treuner
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Martin Vaegler
- Charité - Universitätsmedizin Berlin, Campus Berlin Buch, Experimental and Clinical Research Center, Zellkulturlabor für Klinische Prüfung ZKP, Berlin, Germany
| | - Markus Mezger
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Annika Erbacher
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Michael Schumm
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| | - Ingo Müller
- Department I-General Pediatrics, Hematology and Oncology, University Hospital Tuebingen-Children's Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
34
|
Xu J, Lian W, Chen J, Li W, Li L, Huang Z. Chemical-defined medium supporting the expansion of human mesenchymal stem cells. Stem Cell Res Ther 2020; 11:125. [PMID: 32192530 PMCID: PMC7083066 DOI: 10.1186/s13287-020-01641-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/04/2022] Open
Abstract
Objectives Mesenchymal stem cells (MSCs) have been intensively investigated as to their therapeutic potentials. However, the full chemical-defined medium supporting the isolation and expansion of human MSCs has not been developed yet. Materials and methods Here, we developed the full chemical-defined medium, NBVbe medium, via RNA sequencing, bioinformatic analysis, and growth factor screening. Results The NBVbe medium contains N2B27 medium with the BSA (bovine serum albumin) replaced by the recombinant human albumin, bFGF (basic fibroblast growth factor), vitamin C, and EGF (epidermal growth factor). The NBVbe medium could support the isolation and expansion of human MSCs from the umbilical cords. Conclusions The full chemical-defined medium supporting the isolation and expansion of human MSCs has been developed. This would be helpful for further optimization of the MSC medium, their clinical applications, and molecular characterization.
Collapse
Affiliation(s)
- Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Wei Lian
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, 518055, People's Republic of China
| | - Wenlei Li
- Department of Obstetrics, Women and Children Health Institute of Futian, Shenzhen, 518055, People's Republic of China
| | - Lingyun Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Zhong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, Nanhai Avenue 3688, Shenzhen, 518060, Guangdong, People's Republic of China
| |
Collapse
|
35
|
Improved therapeutic consistency and efficacy of mesenchymal stem cells expanded with chemically defined medium for systemic lupus erythematosus. Cell Mol Immunol 2020; 17:1104-1106. [PMID: 32024977 PMCID: PMC7608228 DOI: 10.1038/s41423-020-0364-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/08/2022] Open
|
36
|
Vollrath I, Mathaes R, Sediq AS, Jere D, Jörg S, Huwyler J, Mahler HC. Subvisible Particulate Contamination in Cell Therapy Products—Can We Distinguish? J Pharm Sci 2020; 109:216-219. [DOI: 10.1016/j.xphs.2019.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
|
37
|
Godoy JAP, Paiva RMA, Souza AM, Kondo AT, Kutner JM, Okamoto OK. Clinical Translation of Mesenchymal Stromal Cell Therapy for Graft Versus Host Disease. Front Cell Dev Biol 2019; 7:255. [PMID: 31824942 PMCID: PMC6881464 DOI: 10.3389/fcell.2019.00255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Graft versus host disease (GVHD) is a common condition in patients subjected to allogeneic hematopoietic stem cell transplantation (HSCT). The immune cells derived from the grafted stem cells attack recipient's tissues, including those from the skin, liver, eyes, mouth, lungs, gastrointestinal tract, neuromuscular system, and genitourinary tract, may lead to severe morbidity and mortality. Acute GVHD can occur within few weeks after the allogeneic cells have engrafted in the recipient while chronic GVHD may occur any time after transplant, typically within months. Although treatable by systemic corticosteroid administration, effective responses are not achieved for a significant proportion of patients, a condition associated with poor prognosis. The use of multipotent mesenchymal stromal cells (MSCs) as an alternative to treat steroid-refractory GVHD had improved last decade, but the results are still controversial. Some studies have shown improvement in the life quality of patients after MSCs treatment, while others have found no significant benefits. In addition to variations in trial design, discrepancies in protocols for MSCs isolation, characterization, and ex vivo manipulation, account for inconsistent clinical results. In this review, we discuss the immunomodulatory properties supporting the therapeutic use of MSCs in GVHD and contextualize the main clinical findings of recent trials using these cells. Critical parameters for the clinical translation of MSCs, including consistent production of MSCs according to Good Manufacturing Practices (GMPs) and informative potency assays for product quality control (QC), are addressed.
Collapse
Affiliation(s)
- Juliana A. P. Godoy
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel M. A. Paiva
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Aline M. Souza
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Andrea T. Kondo
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose M. Kutner
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Oswaldo K. Okamoto
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Guadix JA, López-Beas J, Clares B, Soriano-Ruiz JL, Zugaza JL, Gálvez-Martín P. Principal Criteria for Evaluating the Quality, Safety and Efficacy of hMSC-Based Products in Clinical Practice: Current Approaches and Challenges. Pharmaceutics 2019; 11:pharmaceutics11110552. [PMID: 31652984 PMCID: PMC6921040 DOI: 10.3390/pharmaceutics11110552] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) play an important role as new therapeutic alternatives in advanced therapies and regenerative medicine thanks to their regenerative and immunomodulatory properties, and ability to migrate to the exact area of injury. These properties have made hMSCs one of the more promising cellular active substances at present, particularly in terms of the development of new and innovative hMSC-based products. Currently, numerous clinical trials are being conducted to evaluate the therapeutic activity of hMSC-based products on specific targets. Given the rapidly growing number of hMSC clinical trials in recent years and the complexity of these products due to their cellular component characteristics and medicinal product status, there is a greater need to define more stringent, specific, and harmonized requirements to characterize the quality of the hMSCs and enhance the analysis of their safety and efficacy in final products to be administered to patients. These requirements should be implemented throughout the manufacturing process to guarantee the function and integrity of hMSCs and to ensure that the hMSC-based final product consistently meets its specifications across batches. This paper describes the principal phases involved in the design of the manufacturing process and updates the specific technical requirements needed to address the appropriate clinical use of hMSC-based products. The challenges and limitations to evaluating the safety, efficacy, and quality of hMSCs have been also reviewed and discussed.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, Málaga E-29071, Spain.
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), c/ Severo Ochoa nº25, Campanillas, Málaga E-29590, Spain.
| | - Javier López-Beas
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville 41092, Spain.
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
| | - José Luis Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
| | - José Luis Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa E-48940, Spain.
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, building 205, Zamudio E-48170, Spain.
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Bilbao E-48013, Spain.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain.
- R&D Human Health, Bioibérica S.A.U., Barcelona E-08029, Spain.
| |
Collapse
|
39
|
Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, Moll G, Cox CS. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front Immunol 2019; 10:1645. [PMID: 31417542 PMCID: PMC6685059 DOI: 10.3389/fimmu.2019.01645] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings.
Collapse
Affiliation(s)
- Henry Caplan
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mitchell George
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela Wenzel
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
40
|
Abstract
Introduction: Bronchopulmonary dysplasia (BPD) is a common long-term adverse complication of very premature delivery. Affected infants can suffer chronic respiratory morbidities including lung function abnormalities and reduced exercise capacity even as young adults. Many studies have investigated possible preventative strategies; however, it is equally important to identify optimum management strategies for infants with evolving or established BPD. Areas covered: Respiratory support modalities and established and novel pharmacological treatments. Expert opinion: Respiratory support modalities including proportional assist ventilation and neurally adjusted ventilatory assist are associated with short term improvements in oxygenation indices. Such modalities need to be investigated in appropriate RCTs. Many pharmacological treatments are routinely used with a limited evidence base, for example diuretics. Stem cell therapies in small case series are associated with promising results. More research is required before it is possible to determine if such therapies should be investigated in large RCTs with long-term outcomes.
Collapse
Affiliation(s)
- Emma Williams
- a Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London , UK.,b The Asthma UK Centre for Allergic Mechanisms in Asthma, King's College London , UK
| | - Anne Greenough
- a Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London , UK.,c NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London , London , UK
| |
Collapse
|
41
|
Menneteau T, Fabre B, Garrigues L, Stella A, Zivkovic D, Roux-Dalvai F, Mouton-Barbosa E, Beau M, Renoud ML, Amalric F, Sensébé L, Gonzalez-de-Peredo A, Ader I, Burlet-Schiltz O, Bousquet MP. Mass Spectrometry-based Absolute Quantification of 20S Proteasome Status for Controlled Ex-vivo Expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells. Mol Cell Proteomics 2019; 18:744-759. [PMID: 30700495 PMCID: PMC6442357 DOI: 10.1074/mcp.ra118.000958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/21/2019] [Indexed: 01/18/2023] Open
Abstract
The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.
Collapse
Affiliation(s)
- Thomas Menneteau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;; §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Bertrand Fabre
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Garrigues
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Alexandre Stella
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Dusan Zivkovic
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Mathilde Beau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Laure Renoud
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - François Amalric
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Sensébé
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Anne Gonzalez-de-Peredo
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Isabelle Ader
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| | - Marie-Pierre Bousquet
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| |
Collapse
|
42
|
Rojewski MT, Lotfi R, Gjerde C, Mustafa K, Veronesi E, Ahmed AB, Wiesneth M, Körper S, Sensebé L, Layrolle P, Hellem S, Schrezenmeier H. Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. Cytotherapy 2019; 21:468-482. [PMID: 30926359 DOI: 10.1016/j.jcyt.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/22/2018] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental settings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of alveolar bone. METHODS Key parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were compared with 11 expansions manufactured for the clinical trial "Jaw bone reconstruction using a combination of autologous mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)" aimed at reconstruction of alveolar bone. RESULTS Despite variations of the starting material, the robust protocol led to stable performance characteristics of expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible, requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population doublings. CONCLUSIONS Clinical use of freshly prepared MSCs, manufactured according to a standardized and validated protocol, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Several parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells (MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid unnecessary costs for MSC manufacturing due to insufficient cell expansion rates.
Collapse
Affiliation(s)
- Markus Thomas Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany.
| | - Ramin Lotfi
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany
| | - Cecilie Gjerde
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Elena Veronesi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Aymen B Ahmed
- Section for Haematology, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Markus Wiesneth
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany
| | - Luc Sensebé
- UMR5273 Centre national de la recherche scientifique (CNRS), UPS, Établissement francais du sang (EFS)-INSERM U1031, STROMAlab, Toulouse, France; Établissement francais du sang (EFS) Pyrénées-Méditeranée, Toulouse, France
| | - Pierre Layrolle
- Inserm U957, Laboratory for Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - Sølve Hellem
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg - Hessia, Ulm, Germany
| |
Collapse
|
43
|
Born S, Dörfel MJ, Hartjen P, Haschemi Yekani SA, Luecke J, Meutsch JK, Westphal JK, Birkelbach M, Köhnke R, Smeets R, Krueger M. A short-term plastic adherence incubation of the stromal vascular fraction leads to a predictable GMP-compliant cell-product. ACTA ACUST UNITED AC 2019; 9:161-172. [PMID: 31508331 PMCID: PMC6726751 DOI: 10.15171/bi.2019.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
![]()
Introduction:Mesenchymal stromal/stem cells (MSCs) derived from fat tissue are an encouraging tool for regenerative medicine. They share properties similar to the bone marrow-derived MSCs, but the amount of MSCs per gram of fat tissue is 500x higher. The fat tissue can easily be digested by collagenase, releasing a heterogeneous cell fraction called stromal vascular fraction (SVF) which contains a variable amount of stromal/stem cells. In Europe, cell products like the SVF derived from fat tissue are considered advanced therapy medicinal product (ATMPs). As a consequence, the manufacturing process has to be approved via GMP-compliant process validation. The problem of the process validation for SVF is the heterogeneity of this fraction.
Methods: Here, we modified existing purification strategies by adding an additional plastic adherence incubation of maximal 20 hours after SVF isolation. The resulting cell fraction was characterized and compared to SVF as well as cultivated adipose-derived stromal/stem cells (ASCs) with respect to viability and cell yield, the expression of surface markers, differentiation potential and cytokine expression.
Results: Short-term incubation significantly reduced the heterogeneity of the resulting cell fraction compared to SVF. The cells were able to differentiate into adipocytes, chondrocytes, and osteoblasts. More importantly, they expressed trophic proteins which have been previously associated with the beneficial effects of MSCs. Furthermore, GMP compliance of the production process described herein was acknowledged by the national regulatory agencies (DE_BB_01_GMP_2017_1018).
Conclusion: Addition of a short purification-step after the SVF isolation is a cheap and fast strategy to isolate a homogeneous uncultivated GMP-compliant cell fraction of ASCs.
Collapse
Affiliation(s)
| | | | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | - Moritz Birkelbach
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Köhnke
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Division, Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
44
|
Bursch F, Rath KJ, Sarikidi A, Böselt S, Kefalakes E, Osmanovic A, Thau-Habermann N, Klöß S, Köhl U, Petri S. Analysis of the therapeutic potential of different administration routes and frequencies of human mesenchymal stromal cells in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. J Tissue Eng Regen Med 2019; 13:649-663. [PMID: 30811816 DOI: 10.1002/term.2846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Cellular therapy represents a novel option for the treatment of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Its major aim is the generation of a protective environment for degenerating motor neurons. Mesenchymal stromal cells secrete different growth factors and have antiapoptotic and immunomodulatory properties. They can easily and safely be isolated from human bone marrow and are therefore considered promising therapeutic candidates. In the present study, we compared intraventricular application of human mesenchymal stromal cells (hMSCs) versus single and repeated intraspinal injections in the mutant SOD1G93A transgenic ALS mouse model. We observed significant reduction of lifespan of animals treated by intraventricular hMSC injection compared with the vehicle treated control group, accompanied by changes in weight, general condition, and behavioural assessments. A potential explanation for these rather surprising deleterious effects lies in increased microgliosis detected in the hMSC treated animals. Repeated intraspinal injection at two time points resulted in a slight but not significant increase in survival and significant improvement of motor performance although no hMSC-induced changes of motor neuron numbers, astrogliosis, and microgliosis were detected. Quantitative real time polymerase chain reaction showed reduced expression of endothelial growth factor in animals having received hMSCs twice compared with the vehicle treated control group. hMSCs were detectable at the injection site at Day 20 after injection into the spinal cord but no longer at Day 70. Intraspinal injection of hMSCs may therefore be a more promising option for the treatment of ALS than intraventricular injection and repeated injections might be necessary to obtain substantial therapeutic benefit.
Collapse
Affiliation(s)
- Franziska Bursch
- Department of Neurology, Hannover Medical School, Hannover, Germany.,University of Veterinary Medicine, Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Anastasia Sarikidi
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Ekaterini Kefalakes
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Alma Osmanovic
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Stephan Klöß
- Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany.,GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrike Köhl
- Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany.,GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany.,University of Veterinary Medicine, Centre for Systems Neuroscience (ZSN), Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5909524. [PMID: 30805009 PMCID: PMC6360551 DOI: 10.1155/2019/5909524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.
Collapse
|
46
|
Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng 2019; 13:7. [PMID: 30675180 PMCID: PMC6339289 DOI: 10.1186/s13036-019-0140-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated and expanded from many tissues, and are being investigated for use in cell therapies. Though MSC therapies have demonstrated some success, none have been FDA approved for clinical use. MSCs lose stemness ex vivo, decreasing therapeutic potential, and face additional barriers in vivo, decreasing therapeutic efficacy. Culture optimization and genetic modification of MSCs can overcome these barriers. Viral transduction is efficient, but limited by safety concerns related to mutagenicity of integrating viral vectors and potential immunogenicity of viral antigens. Nonviral delivery methods are safer, though limited by inefficiency and toxicity, and are flexible and scalable, making them attractive for engineering MSC therapies. Main text Transfection method and nucleic acid determine efficiency and expression profile in transfection of MSCs. Transfection methods include microinjection, electroporation, and nanocarrier delivery. Microinjection and electroporation are efficient, but are limited by throughput and toxicity. In contrast, a variety of nanocarriers have been demonstrated to transfer nucleic acids into cells, however nanocarrier delivery to MSCs has traditionally been inefficient. To improve efficiency, plasmid sequences can be optimized by choice of promoter, inclusion of DNA targeting sequences, and removal of bacterial elements. Instead of DNA, RNA can be delivered for rapid protein expression or regulation of endogenous gene expression. Beyond choice of nanocarrier and nucleic acid, transfection can be optimized by priming cells with media additives and cell culture surface modifications to modulate barriers of transfection. Media additives known to enhance MSC transfection include glucocorticoids and histone deacetylase inhibitors. Culture surface properties known to modulate MSC transfection include substrate stiffness and specific protein coating. If nonviral gene delivery to MSCs can be sufficiently improved, MSC therapies could be enhanced by transfection for guided differentiation and reprogramming, transplantation survival and directed homing, and secretion of therapeutics. We discuss utilized delivery methods and nucleic acids, and resulting efficiency and outcomes, in transfection of MSCs reported for such applications. Conclusion Recent developments in transfection methods, including nanocarrier and nucleic acid technologies, combined with chemical and physical priming of MSCs, may sufficiently improve transfection efficiency, enabling scalable genetic engineering of MSCs, potentially bringing effective MSC therapies to patients.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE 68583-0726 USA
| |
Collapse
|
47
|
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27:1303-1321. [DOI: 10.1089/scd.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
48
|
Moravcikova E, Meyer EM, Corselli M, Donnenberg VS, Donnenberg AD. Proteomic Profiling of Native Unpassaged and Culture-Expanded Mesenchymal Stromal Cells (MSC). Cytometry A 2018; 93:894-904. [PMID: 30211967 DOI: 10.1002/cyto.a.23574] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022]
Abstract
Human culture-expanded mesenchymal stromal cells (MSC) are being considered for multiple therapeutic applications because of their regenerative and anti-inflammatory properties. Although a large number of MSC can be propagated from a small initial sample, several lines of evidence indicate that MSC lose their immunosuppressive and regenerative potency aftaer multiple passages. In this report, we use the FACSCAP Lyoplate proteomic analysis system to detect changes in cell surface protein expression of CD45- /CD31- /CD34- /CD73+ /CD105+ stromal cells in unpassaged bone marrow (BM) and through 10 serial culture passages. We provide for the first time a detailed characterization of native unpassaged BM MSC (0.08% of BM mononuclear cells) as well as the changes that occur during the initial expansion. Adipogenic and osteogenic differentiative potential was determined though the serial passages and correlated with immunophenotypic changes and senescence. Among the most prominent were striking decreases in Fas ligand, CD98, CD205, and CD106, accompanied by a gain in the expression of CD49c, CD63, CD98, and class 1 and class 2 major histocompatibility complex (MHC) molecules. Other molecules that are down-modulated with later passage include CD24, CD54, CD59, CD243/P-glycoprotein, and CD273/PD-L2. Early senescence, as defined by the loss of replicative capacity occurring with the loss of differentiative capacity, increase in CDKN2A p16, and increased time to confluence, was accompanied by loss of the motility-associated metalloproteinase CD10 and the proliferation-associated transferrin receptor CD71. Among the strongest statistical associations were loss of MAC-inhibitory protein/CD59, loss of ICAM-1/CD54, and increase in CDKN2A as a function of increasing passage, as well as increased CD10 expression with adipogenic and osteogenic capacities. The data provide a clear set of markers that can be used to assess MSC quality. We suggest that clinically relevant numbers of highly functional low passage MSC can be manufactured starting with large quantities of BM, which are readily available from cadaveric organ donors.
Collapse
Affiliation(s)
- Erika Moravcikova
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | | | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Albert D Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Zhang Z, Wilson NA, Chinnadurai R, Panzer SE, Redfield RR, Reese SR, Galipeau J, Djamali A. Autologous Mesenchymal Stromal Cells Prevent Transfusion-elicited Sensitization and Upregulate Transitional and Regulatory B Cells. Transplant Direct 2018; 4:e387. [PMID: 30234156 PMCID: PMC6133404 DOI: 10.1097/txd.0000000000000827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We hypothesized that immunomodulatory properties of mesenchymal stromal cells (MSC) may be considered for desensitization. METHODS Autologous or allogeneic bone marrow derived MSC were infused via tail vein at 0.5 M (0.5 × 106), 1 M, or 2 M cells/dose on days -2, 3, 6, 9, 12 (prevention) or 14, 17, 20, 23, 26 (treatment) relative to transfusion in a Brown Norway to Lewis rat model (10 groups total, n = 6 per group). RESULTS At 4 weeks, pooled analyses demonstrated that autologous and allogeneic MSC were equally effective in reducing IgG1 and IgG2a de novo donor-specific antibody (dnDSA, P < 0.001). Dose-response studies indicated that moderate-dose MSC (5 M total) was most effective in reducing IgG1, IgG2a, and IgG2c dnDSA (P ≤ 0.01). Time course studies determined that preventive and treatment strategies were equally effective in reducing IgG1 and IgG2a dnDSA (P ≤ 0.01). However, individual group analyses determined that moderate-dose (5 M) treatment with autologous MSC was most effective in reducing IgG1, IgG2a, and IgG2c dnDSA (P ≤ 0.01). In this group, dnDSA decreased after 1 week of treatment; regulatory B cells increased in the spleen and peripheral blood mononuclear cells; and transitional B cells increased in the spleen, peripheral blood mononuclear cells, and bone marrow (P < 0.05 for all). CONCLUSIONS Our findings indicate that autologous MSC prevent transfusion-elicited sensitization and upregulate transitional, and regulatory B cells. Additional studies are needed to determine the biological relevance of these changes after kidney transplantation.
Collapse
Affiliation(s)
- Zijian Zhang
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
- Department of Urology, Beijing Chao-Yang Hospital, China Capital Medical University, Beijing, China
| | - Nancy A. Wilson
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Raghavan Chinnadurai
- Division of Hematology-Oncology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Sarah E. Panzer
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Robert R. Redfield
- Division of Transplant, Department of Surgery, University of Wisconsin, Madison, WI
| | - Shannon R. Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Jacques Galipeau
- Division of Hematology-Oncology, Department of Medicine, University of Wisconsin, Madison, WI
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin, Madison, WI
- Division of Transplant, Department of Surgery, University of Wisconsin, Madison, WI
| |
Collapse
|
50
|
Adipose tissue-derived mesenchymal stromal cells for clinical application: An efficient isolation approach. Curr Res Transl Med 2018; 67:20-27. [PMID: 30104160 DOI: 10.1016/j.retram.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE OF THE STUDY Mesenchymal stromal cells (MSCs) are considered a promising tool for cell therapy approaches. The translation of research-based cell culture protocols into procedures that comply with Good Manufacturing Practice (GMP) is critical. The aim of this study was to design a new method for the expansion of MSCs from Adipose Tissue (AT-MSCs) in compliance with GMP, without enzymatic tissue digestion and without the use of animal proteins as source of growth factors. PATIENTS AND METHODS MSCs were expanded from 10 periumbilical biopsies. Our new isolation approach is based on: (1) disruption of AT with an automated, closed system; (2) use of GMP-grade medium without the addition of fetal bovine serum or platelet lysate; (3) use of human recombinant Trypsin. AT-MSCs cultured in α-MEM and minced by scalpel were used as control. RESULTS It was possible to expand MSCs from all the AT-samples for at least eight passages. MSCs displayed the typical spindle-shape morphology, a high viability, multilineage differentiation potential and high expression levels of the typical MSC-specific surface antigens and genes. Compared to standard method, MSCs obtained with the new method showed higher yield, up to passage 6, and higher purity in terms of percentage of CD34 and CD45 markers. All AT-MSCs exhibit in vitro immunosuppressive capacity and possess a normal karyotype. CONCLUSIONS Our data clearly demonstrate that our new approach permits to generate AT-MSCs fully compliant for therapeutic use and better at least in terms of quantity and purity than those obtained with the standard method.
Collapse
|