1
|
Faller KME, Chaytow H, Gillingwater TH. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat Rev Neurol 2025:10.1038/s41582-024-01049-4. [PMID: 39743546 DOI: 10.1038/s41582-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals. Therapies targeting more general mechanisms that underlie motor neuron pathology in ALS are therefore of considerable interest. ALS pathology is associated with disruption to a complex array of key cellular pathways, including RNA processing, proteostasis, metabolism and inflammation. This Review details attempts to restore cellular homeostasis by targeting these pathways in order to develop effective, broadly-applicable ALS therapeutics.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Zhang H, Cao F, Zhou Y, Wu B, Li C. Peripheral Immune Cells Contribute to the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2025; 62:264-270. [PMID: 38842674 DOI: 10.1007/s12035-024-04266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with progressive memory and cognitive loss. Neuroinflammation is a central mechanism involved in the progression of AD. With the disruption of the blood-brain barrier (BBB), peripheral immune cells and inflammatory molecules enter into AD brain. However, the exact relationship between peripheral immune cells and AD remains unknown due to various challenges. This study aimed to investigate the potential causal association between peripheral immune cells and AD by using a two-sample Mendelian randomization (TSMR) analysis. We conducted a TSMR to decipher the causal relationship between AD and 731 types of peripheral immune cell parameters from the TBNK, regulatory T cell (Treg), myeloid cell, monocyte, maturation stages of T cell, dendritic cell (DC), and B cell panels. Various analytical methods were employed, including inverse variance weighting (IVW), MR Egger, and weighted median methods. The Cochran's Q statistic, MR-Egger intercept, and MR-PRESSO tests were used to verify the heterogeneity and horizontal pleiotropy of the results. To further verify our results, we also conducted a replication analysis. The analysis identified CD33 on CD14 + monocyte (OR = 1.03; 95% CI, 1.01-1.04; p = 1.14E-04; adjust-p = 0.042) had an increased risk association for AD, which was verified by the replication study. CD33 on CD33dim HLA DR + CD11b- cell (OR = 1.02; 95% CI, 1.01-1.04; p = 2.87E-04; adjust-p = 0.035) had an increased risk association for AD, while secreting CD4 regulatory T cell %CD4 regulatory T cell (OR = 0.97; 95% CI, 0.96-0.99; p = 1.90E-04; adjust-p = 0.046) and CD25 on switched memory B cell (OR = 0.95; 95% CI, 0.92-0.98; p = 2.87E-04; adjust-p = 0.042) were discovered to be related to a lower risk of AD. However, the causal effect of these three immune cells on AD was insufficiently validated in the replication analysis. The MR analysis suggests a potential causal relationship between peripheral immune cells and the risk of AD. Further extensive research is needed on the specific role of peripheral immune cells in AD.
Collapse
Affiliation(s)
- Houwen Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangzheng Cao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunrong Li
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
3
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
4
|
Ekwe AP, Au R, Zhang P, McEnroe BA, Tan ML, Saldan A, Henden AS, Hutchins CJ, Henderson A, Mudie K, Kerr K, Fuery M, Kennedy GA, Hill GR, Tey SK. Clinical grade multiparametric cell sorting and gene-marking of regulatory T cells. Cytotherapy 2024; 26:719-728. [PMID: 38530690 DOI: 10.1016/j.jcyt.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity. METHODS We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs. RESULTS We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×106 gene-marked cells, sufficient for a cell dose of at least 2 × 106 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A. CONCLUSIONS This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.
Collapse
Affiliation(s)
- Adaeze Precious Ekwe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Raymond Au
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Benjamin A McEnroe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mei Ling Tan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alda Saldan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S Henden
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Cheryl J Hutchins
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ashleigh Henderson
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kari Mudie
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Keri Kerr
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Madonna Fuery
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Glen A Kennedy
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Siok-Keen Tey
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
5
|
Thonhoff JR, Beers DR, Zhao W, Faridar A, Thome A, Wen S, Zhang A, Wang J, Appel SH. A phase 1 proof-of-concept study evaluating safety, tolerability, and biological marker responses with combination therapy of CTLA4-Ig and interleukin-2 in amyotrophic lateral sclerosis. Front Neurol 2024; 15:1415106. [PMID: 38915796 PMCID: PMC11195540 DOI: 10.3389/fneur.2024.1415106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Objective To determine whether a combination therapy with abatacept (CTLA4-Ig) and interleukin-2 (IL-2) is safe and suppresses markers of oxidative stress, inflammation, and degeneration in ALS. Methods In this open-label study, four participants with ALS received subcutaneous injections of low dose IL-2 (1 × 106 IU/injection/day) for 5 consecutive days every 2 weeks and one subcutaneous injection of CTLA4-Ig (125 mg/mL/injection) every 2 weeks coinciding with the first IL-2 injection of each treatment cycle. Participants received a total of 24 treatment cycles during the first 48 weeks in this 56-week study. They were closely monitored for treatment-emergent adverse events (TEAEs) and disease progression with the ALSFRS-R. Phenotypic changes within T cell populations and serum biological markers of oxidative stress [4-hydroxynonenal (4-HNE) and oxidized-LDL (ox-LDL)], inflammation (IL-18), and structural neuronal degeneration [neurofilament light chain (Nf-L)] were assessed longitudinally. Results CTLA4-Ig/IL-2 therapy was safe and well-tolerated in all four participants over the 56-week study. During the first 24 weeks, the average rate of change in the ALSFRS-R was +0.04 points/month. Over the 48-week treatment period, the average rate of change was -0.13 points/month with one participant improving by 0.9 points/month while the other three participants experienced an average decrease of -0.47 points/month, which is slower than the average - 1.1 points/month prior to initiation of therapy. Treg suppressive function and numbers increased during treatment. Responses in the biological markers during the first 16 weeks coincided with minimal clinical progression. Mean levels of 4-HNE decreased by 30%, ox-LDL decreased by 19%, IL-18 decreased by 23%, and Nf-L remained the same, on average, in all four participants. Oxidized-LDL levels decreased in all four participants, 4-HNE and IL-18 levels decreased in three out of four participants, and Nf-L decreased in two out of four participants. Conclusion The combination therapy of CTLA4-Ig and IL-2 in ALS is safe and well-tolerated with promising results of clinical efficacy and suppression of biomarkers of oxidative stress, neuroinflammation and neuronal degeneration. In this open-label study, the efficacy as measured by the ALSFRS-R and corresponding biomarkers suggests the therapeutic potential of this treatment and warrants further study in a phase 2 double-blind, placebo-controlled trial. Clinical trial registration ClinicalTrials.gov, NCT06307301.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stanley H. Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Alarcan H, Bruno C, Emond P, Raoul C, Vourc'h P, Corcia P, Camu W, Veyrune JL, Garlanda C, Locati M, Juntas-Morales R, Saker S, Suehs C, Masseguin C, Kirby J, Shaw P, Malaspina A, De Vos J, Al-Chalabi A, Leigh PN, Tree T, Bensimon G, Blasco H. Pharmacometabolomics applied to low-dose interleukin-2 treatment in amyotrophic lateral sclerosis. Ann N Y Acad Sci 2024; 1536:82-91. [PMID: 38771698 DOI: 10.1111/nyas.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher metabolic modifications occurring in patients treated with ld-IL-2 and its relationship with Treg response. Blood metabolomic profiles were determined on days D1, D64, and D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo (n = 12). We discriminated the three time points for the treatment group (average error rate of 42%). Among the important metabolites, kynurenine increased between D1 and D64, followed by a reduction at D85. The percentage increase of Treg number from D1 to D64, as predicted by the metabolome at D1, was highly correlated with the observed value. This study provided a proof of concept for metabolic characterization of the effect of ld-IL-2 in ALS. These data could present advances toward a personalized medicine approach and present pharmacometabolomics as a key tool to complement genomic and transcriptional data for drug characterization, leading to systems pharmacology.
Collapse
Affiliation(s)
- Hugo Alarcan
- Service de Biochimie et Biologie Moléculaire, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| | - Clément Bruno
- Service de Pharmacologie Médicale, CHRU Bretonneau, Tours, France
| | - Patrick Emond
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
- Laboratoire de Médecine nucléaire in vitro, CHRU Bretonneau, Tours, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
- ALS Reference Center, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Patrick Vourc'h
- Service de Biochimie et Biologie Moléculaire, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
- Service de Neurologie, CHRU Bretonneau, Tours, France
| | - William Camu
- INM, University of Montpellier, INSERM, Montpellier, France
- ALS Reference Center, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Jean-Luc Veyrune
- Institute of Human Genetics, University of Montepllier, Montpellier, France
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Raúl Juntas-Morales
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Carey Suehs
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique, Innovation et Méthodologie (BESPIM), Université de Nîmes, Nîmes, France
| | - Christophe Masseguin
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes, France
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - John De Vos
- Department of Cell and Tissue Engineering, University Montpellier, CHU Montpellier, Montpellier, France
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | | | - Timothy Tree
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Gilbert Bensimon
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique, Innovation et Méthodologie (BESPIM), Université de Nîmes, Nîmes, France
| | - Hélène Blasco
- Service de Biochimie et Biologie Moléculaire, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
7
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
8
|
Liu Z, Zhou J, Wu S, Chen Z, Wu S, Chen L, Zhu X, Li Z. Why Treg should be the focus of cancer immunotherapy: The latest thought. Biomed Pharmacother 2023; 168:115142. [PMID: 37806087 DOI: 10.1016/j.biopha.2023.115142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 10/10/2023] Open
Abstract
Regulatory T cells are a subgroup of T cells with immunomodulatory functions. Different from most cytotoxic T cells and helper T cells, they play a supporting role in the immune system. What's more, regulatory T cells often play an immunosuppressive role, which mainly plays a role in maintaining the stability of the immune system and regulating the immune response in the body. However, recent studies have shown that not only playing a role in autoimmune diseases, organ transplantation, and other aspects, regulatory T cells can also play a role in the immune escape of tumors in the body, through various mechanisms to help tumor cells escape from the demic immune system, weakening the anti-cancer effect in the body. For a better understanding of the role that regulatory T cells can play in cancer, and to be able to use regulatory T cells for tumor immunotherapy more quickly. This review focuses on the research progress of various mechanisms of regulatory T cells in the tumor environment, the related research of tumor cells acting on regulatory T cells, and the existing various therapeutic methods acting on regulatory T cells.
Collapse
Affiliation(s)
- Ziyu Liu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Jiajun Zhou
- Kidney Department, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shihui Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhihong Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Shuhong Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Ling Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
9
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
10
|
Jiang J, Wang Y, Deng M. New developments and opportunities in drugs being trialed for amyotrophic lateral sclerosis from 2020 to 2022. Front Pharmacol 2022; 13:1054006. [PMID: 36518658 PMCID: PMC9742490 DOI: 10.3389/fphar.2022.1054006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 08/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects motor neurons in the brain and spinal cord. In the recent past, there have been just two drugs approved for treatment, riluzole and edaravone, which only prolong survival by a few months. However, there are many novel experimental drugs in development. In this review, we summarize 53 new drugs that have been evaluated in clinical trials from 2020 to 2022, which we have classified into eight mechanistic groups (anti-apoptotic, anti-inflammatory, anti-excitotoxicity, regulated integrated stress response, neurotrophic factors and neuroprotection, anti-aggregation, gene therapy and other). Six were tested in phase 1 studies, 31 were in phase 2 studies, three failed in phase 3 studies and stopped further development, and the remaining 13 drugs were being tested in phase 3 studies, including methylcobalamin, masitinib, MN-166, verdiperstat, memantine, AMX0035, trazodone, CNM-Au8, pridopidine, SLS-005, IONN363, tofersen, and reldesemtiv. Among them, five drugs, including methylcobalamin, masitinib, AMX0035, CNM-Au8, and tofersen, have shown potent therapeutic effects in clinical trials. Recently, AMX0035 has been the third medicine approved by the FDA for the treatment of ALS after riluzole and edaravone.
Collapse
Affiliation(s)
| | | | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Thonhoff JR, Berry JD, Macklin EA, Beers DR, Mendoza PA, Zhao W, Thome AD, Triolo F, Moon JJ, Paganoni S, Cudkowicz M, Appel SH. Combined Regulatory T-Lymphocyte and IL-2 Treatment Is Safe, Tolerable, and Biologically Active for 1 Year in Persons With Amyotrophic Lateral Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/6/e200019. [PMID: 36038262 PMCID: PMC9423710 DOI: 10.1212/nxi.0000000000200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Background and Objectives In a phase 1 amyotrophic lateral sclerosis (ALS) study, autologous infusions of expanded regulatory T-lymphocytes (Tregs) combined with subcutaneous interleukin (IL)-2 were safe and well tolerated. Treg suppressive function increased and disease progression stabilized during the study. The present study was conducted to confirm the reliability of these results. Methods Participants with ALS underwent leukapheresis, and their Tregs were isolated and expanded in a current Good Manufacturing Practice facility. Seven participants were randomly assigned in a 1:1 ratio to receive Treg infusions (1 × 106 cells/kg) IV every 4 weeks and IL-2 (2 × 105 IU/m2) injections 3 times/wk or matching placebo in a 24-week randomized controlled trial (RCT). Six participants proceeded into a 24-week dose-escalation open-label extension (OLE). Two additional participants entered directly into the OLE. The OLE included dose escalation of Treg infusions to 2 × 106 cells/kg and 3 × 106 cells/kg at 4-week intervals. Results The Treg/IL-2 treatments were safe and well tolerated, and Treg suppressive function was higher in the active group of the RCT. A meaningful evaluation of progression rates in the RCT between the placebo and active groups was not possible due to the limited number of enrolled participants aggravated by the COVID-19 pandemic. In the 24-week OLE, the Treg/IL-2 treatments were also safe and well tolerated in 8 participants who completed the escalating doses. Treg suppressive function and numbers were increased compared with baseline. Six of 8 participants changed by an average of −2.7 points per the ALS Functional Rating Scale–Revised, whereas the other 2 changed by an average of −10.5 points. Elevated levels of 2 markers of peripheral inflammation (IL-17C and IL-17F) and 2 markers of oxidative stress (oxidized low-density lipoprotein receptor 1 and oxidized LDL) were present in the 2 rapidly progressing participants but not in the slower progressing group. Discussion Treg/IL-2 treatments were safe and well tolerated in the RCT and OLE with higher Treg suppressive function. During the OLE, 6 of 8 participants showed slow to no progression. The 2 of 8 rapid progressors had elevated markers of oxidative stress and inflammation, which may help delineate responsiveness to therapy. Whether Treg/IL-2 treatments can slow disease progression requires a larger clinical study (ClinicalTrials.gov number, NCT04055623). Classification of Evidence This study provides Class IV evidence that Treg infusions and IL-2 injections are safe and effective for patients with ALS.
Collapse
Affiliation(s)
- Jason R Thonhoff
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - James D Berry
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Eric A Macklin
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - David R Beers
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Patricia A Mendoza
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Weihua Zhao
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Aaron D Thome
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Fabio Triolo
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - James J Moon
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Sabrina Paganoni
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Merit Cudkowicz
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA
| | - Stanley H Appel
- From the Houston Methodist Neurological Institute (J.R.T., D.R.B., P.A.M., W.Z., A.D.T., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; Neurological Clinical Research Institute (J.D.B., S.P., M.C.), Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA; Biostatistics Center (E.A.M.), Massachusetts General Hospital, Boston, MA; Harvard Medical School (E.A.M.), Boston, MA; Department of Pediatric Surgery (F.T.), McGovern Medical School, UTHealth-The University of Texas Health Science Center at Houston, Houston, TX; and Center for Immunology and Inflammatory Diseases (J.J.M.), Massachusetts General Hospital, Boston, MA; and Harvard Medical School (J.J.M.), Boston, MA.
| |
Collapse
|
12
|
Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regen Res 2022; 18:1165-1178. [PMID: 36453390 PMCID: PMC9838142 DOI: 10.4103/1673-5374.357903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem, Jerusalem, Israel,Institute of Gene Therapy, The Hadassah University Hospital-Ein Karem, Jerusalem, Israel,Correspondence to: Mia Levite, or .
| |
Collapse
|
13
|
Yan S, Kotschenreuther K, Deng S, Kofler DM. Regulatory T cells in rheumatoid arthritis: functions, development, regulation, and therapeutic potential. Cell Mol Life Sci 2022; 79:533. [PMID: 36173485 PMCID: PMC9522664 DOI: 10.1007/s00018-022-04563-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects the joints but also leads to systemic inflammation. Auto-reactivity and dysregulation of self-tolerance are thought to play a vital role in disease onset. In the pathogenesis of autoimmune diseases, disturbed immunosuppressive properties of regulatory T cells contribute to the dysregulation of immune homeostasis. In RA patients, the functions of Treg cells and their frequency are reduced. Therefore, focusing on the re-establishment of self-tolerance by increasing Treg cell frequencies and preventing a loss of function is a promising strategy for the treatment of RA. This approach could be especially beneficial for those patients who do not respond well to current therapies. In this review, we summarize and discuss the current knowledge about the function, differentiation and regulation of Treg cells in RA patients and in animal models of autoimmune arthritis. In addition, we highlight the therapeutic potential as well as the challenges of Treg cell targeting treatment strategies.
Collapse
Affiliation(s)
- Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Shuya Deng
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - David M Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
| |
Collapse
|
14
|
Thome AD, Thonhoff JR, Zhao W, Faridar A, Wang J, Beers DR, Appel SH. Extracellular Vesicles Derived From Ex Vivo Expanded Regulatory T Cells Modulate In Vitro and In Vivo Inflammation. Front Immunol 2022; 13:875825. [PMID: 35812435 PMCID: PMC9258040 DOI: 10.3389/fimmu.2022.875825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vehicles (EVs) are efficient biomarkers of disease and participate in disease pathogenesis; however, their use as clinical therapies to modify disease outcomes remains to be determined. Cell-based immune therapies, including regulatory T cells (Tregs), are currently being clinically evaluated for their usefulness in suppressing pro-inflammatory processes. The present study demonstrates that ex vivo expanded Tregs generate a large pool of EVs that express Treg-associated markers and suppress pro-inflammatory responses in vitro and in vivo. Intravenous injection of Treg EVs into an LPS-induced mouse model of inflammation reduced peripheral pro-inflammatory transcripts and increased anti-inflammatory transcripts in myeloid cells as well as Tregs. Intranasal administration of enriched Treg EVs in this model also reduced pro-inflammatory transcripts and the associated neuroinflammatory responses. In a mouse model of amyotrophic lateral sclerosis, intranasal administration of enriched Treg EVs slowed disease progression, increased survival, and modulated inflammation within the diseased spinal cord. These findings support the therapeutic potential of expanded Treg EVs to suppress pro-inflammatory responses in human disease.
Collapse
Affiliation(s)
- Aaron D Thome
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jason R Thonhoff
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Weihua Zhao
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Alireza Faridar
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jinghong Wang
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - David R Beers
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Stanley H Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
15
|
Beers DR, Thonhoff JR, Faridar A, Thome AD, Zhao W, Wen S, Appel SH. Tregs Attenuate Peripheral Oxidative Stress and Acute Phase Proteins in ALS. Ann Neurol 2022; 92:195-200. [PMID: 35445431 PMCID: PMC9545429 DOI: 10.1002/ana.26375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
Oxidative stress (OS) induces inflammation, which in turn exacerbates OS and the expression of acute phase proteins (APPs). Regulatory T lymphocyte (Treg) therapy was assessed for suppression of OS and APP responses in longitudinal serum samples from subjects with amyotrophic lateral sclerosis (ALS) enrolled in a phase I clinical trial. The first round of Treg therapy suppressed levels of oxidized low‐density lipoprotein (ox‐LDL). During a 6‐month washout period, ox‐LDL levels increased. A second round of therapy again suppressed ox‐LDL levels and then rose following the cessation of treatment. Serum levels of APPs, soluble CD14, lipopolysaccharide binding protein, and C‐reactive protein, were stabilized during Treg administrations, but rose during the washout period and again after therapy was discontinued. Treg therapy potentially suppresses peripheral OS and the accompanying circulating pro‐inflammatory induced APPs, both of which may serve as peripheral candidates for monitoring efficacies of immunomodulating therapies. ANN NEUROL 2022;92:195–200
Collapse
Affiliation(s)
- David R Beers
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Jason R Thonhoff
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Alireza Faridar
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Aaron D Thome
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Weihua Zhao
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Shixiang Wen
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Stanley H Appel
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Lavazza C, Budelli S, Montelatici E, Viganò M, Ulbar F, Catani L, Cannone MG, Savelli S, Groppelli E, Lazzari L, Lemoli RM, Cescon M, La Manna G, Giordano R, Montemurro T. Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product. J Transl Med 2022; 20:14. [PMID: 34986854 PMCID: PMC8729072 DOI: 10.1186/s12967-021-03200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A growing number of clinical trials have shown that regulatory T (Treg) cell transfer may have a favorable effect on the maintenance of self-tolerance and immune homeostasis in different conditions such as graft-versus-host disease (GvHD), solid organ transplantation, type 1 diabetes, and others. In this context, the availability of a robust manufacturing protocol that is able to produce a sufficient number of functional Treg cells represents a fundamental prerequisite for the success of a cell therapy clinical protocol. However, extended workflow guidelines for nonprofit manufacturers are currently lacking. Despite the fact that different successful manufacturing procedures and cell products with excellent safety profiles have been reported from early clinical trials, the selection and expansion protocols for Treg cells vary a lot. The objective of this study was to validate a Good Manufacturing Practice (GMP)-compliant protocol for the production of Treg cells that approaches the whole process with a risk-management methodology, from process design to completion of final product development. High emphasis was given to the description of the quality control (QC) methodologies used for the in-process and release tests (sterility, endotoxin test, mycoplasma, and immunophenotype). RESULTS The GMP-compliant protocol defined in this work allows at least 4.11 × 109 Treg cells to be obtained with an average purity of 95.75 ± 4.38% and can be used in different clinical settings to exploit Treg cell immunomodulatory function. CONCLUSIONS These results could be of great use for facilities implementing GMP-compliant cell therapy protocols of these cells for different conditions aimed at restoring the Treg cell number and function, which may slow the progression of certain diseases.
Collapse
Affiliation(s)
- Cristiana Lavazza
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Budelli
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Montelatici
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariele Viganò
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Ulbar
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica E Sperimentale, Università di Bologna, Bologna, Italy
| | - Lucia Catani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica E Sperimentale, Università di Bologna, Bologna, Italy
| | - Marta Giulia Cannone
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Savelli
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Groppelli
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Lazzari
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto M Lemoli
- Department of Internal Medicine (DiMI), Clinic of Hematology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Cescon
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of General Surgery and Transplantation, University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital IRCCS, University of Bologna, Bologna, Italy
| | - Rosaria Giordano
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Montemurro
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
17
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Giovannelli I, Bayatti N, Brown A, Wang D, Mickunas M, Camu W, Veyrune JL, Payan C, Garlanda C, Locati M, Juntas-Morales R, Pageot N, Malaspina A, Andreasson U, Suehs C, Saker S, Masseguin C, de Vos J, Zetterberg H, Al-Chalabi A, Leigh PN, Tree T, Bensimon G, Heath PR, Shaw PJ, Kirby J. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun 2021; 3:fcab141. [PMID: 34409288 PMCID: PMC8364666 DOI: 10.1093/braincomms/fcab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease causing upper and lower motor neuron loss and currently no effective disease-modifying treatment is available. A pathological feature of this disease is neuroinflammation, a mechanism which involves both CNS-resident and peripheral immune system cells. Regulatory T-cells are immune-suppressive agents known to be dramatically and progressively decreased in patients with amyotrophic lateral sclerosis. Low-dose interleukin-2 promotes regulatory T-cell expansion and was proposed as an immune-modulatory strategy for this disease. A randomized placebo-controlled pilot phase-II clinical trial called Immuno-Modulation in Amyotrophic Lateral Sclerosis was carried out to test safety and activity of low-dose interleukin-2 in 36 amyotrophic lateral sclerosis patients (NCT02059759). Participants were randomized to 1MIU, 2MIU-low-dose interleukin-2 or placebo and underwent one injection daily for 5 days every 28 days for three cycles. In this report, we describe the results of microarray gene expression profiling of trial participants' leukocyte population. We identified a dose-dependent increase in regulatory T-cell markers at the end of the treatment period. Longitudinal analysis revealed an alteration and inhibition of inflammatory pathways occurring promptly at the end of the first treatment cycle. These responses are less pronounced following the end of the third treatment cycle, although an activation of immune-regulatory pathways, involving regulatory T-cells and T helper 2 cells, was evident only after the last cycle. This indicates a cumulative effect of repeated low-dose interleukin-2 administration on regulatory T-cells. Our analysis suggested the existence of inter-individual variation amongst trial participants and we therefore classified patients into low, moderate and high-regulatory T-cell-responders. NanoString profiling revealed substantial baseline differences between participant immunological transcript expression profiles with the least responsive patients showing a more inflammatory-prone phenotype at the beginning of the trial. Finally, we identified two genes in which pre-treatment expression levels correlated with the magnitude of drug responsiveness. Therefore, we proposed a two-biomarker based regression model able to predict patient regulatory T-cell-response to low-dose interleukin-2. These findings and the application of this methodology could be particularly relevant for future precision medicine approaches to treat amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ilaria Giovannelli
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Nadhim Bayatti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Abigail Brown
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dennis Wang
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Marius Mickunas
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - William Camu
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Jean-Luc Veyrune
- Clinique du Motoneurone, CHU Gui de Chaliac, University of Montpellier, Montpellier 34295, France
| | - Christine Payan
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, Montpellier 34000, France.,Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France
| | - Cecilia Garlanda
- Department of Pharmacology, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, 75013 France.,Humanitas Clinical & Research Center-IRCCS, Milan 20089, Italy
| | - Massimo Locati
- Humanitas University, Pieve Emanuele, Milan 20090, Italy.,Department of Medical Biotechnologies and Translational Medicine, University Milan, Milan 20133, Italy
| | - Raul Juntas-Morales
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Nicolas Pageot
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Andrea Malaspina
- Department of Neuroimmunology, Barts and the London School of Medicine and Dentistry, Neuroscience and Trauma Centre, Institute of Cell and Molecular Medicine, London E1 2AT, UK
| | - Ulf Andreasson
- Department of Psychiatry & Neurochemistry, University of Gothenburg, Mölndal 41345, Sweden
| | - Carey Suehs
- Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France.,Department of Medical Information, University of Montpellier, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, Montpellier 34090, France
| | - Safa Saker
- DNA and Cell Bank, Genethon, Evry 91000, France
| | - Christophe Masseguin
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes 30029, France
| | - John de Vos
- Clinique du Motoneurone, CHU Gui de Chaliac, University of Montpellier, Montpellier 34295, France
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, University of Gothenburg, Mölndal 41345, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - P Nigel Leigh
- Brighton and Sussex Medical School, The Trafford Centre for Biomedical Research, Falmer, Brighton BN1 9RY, UK
| | - Timothy Tree
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London SE1 9RT, UK
| | - Gilbert Bensimon
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, Montpellier 34000, France.,Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France.,Department of Pharmacology, Sorbonne University Médecine, F-75013 Paris 75013, France
| | - Paul R Heath
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
19
|
Hui Z, Zhang J, Zheng Y, Yang L, Yu W, An Y, Wei F, Ren X. Single-Cell Sequencing Reveals the Transcriptome and TCR Characteristics of pTregs and in vitro Expanded iTregs. Front Immunol 2021; 12:619932. [PMID: 33868236 PMCID: PMC8044526 DOI: 10.3389/fimmu.2021.619932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 01/29/2023] Open
Abstract
Regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance and tumor evasion. However, the relative low proportion of these cells in peripheral blood and tissues has hindered many studies. We sought to establish a rapamycin-based in vitro Treg expansion procedure in patients diagnosed with colorectal cancer and perform single-cell sequencing to explore the characteristics of Treg cells. CD25+ cells enriched from peripheral blood mononuclear cells (PBMC) of colorectal tumor patients were cultured in X-VIVO15 medium, supplemented with 5% human AB serum, L-glutamine, rapamycin, interleukin-2 (IL-2), and Dynabeads human Treg expander for 21 days to expand Tregs. Treg cells with satisfactory phenotype and function were successfully expanded from CD4+CD25+ cells in patients with colorectal cancer. The median expansion fold was 75 (range, 20-105-fold), and >90.0% of the harvest cells were CD4+CD25+CD127dim/- cells. The ratio of CD4+CD25+Foxp3+ cells exceeded 60%. Functional assays showed that iTregs significantly inhibited CD8+T cell proliferation in vitro. Single-cell sequencing showed that the transcriptome of pTreg (CD4+CD25+CD127dim/- cells isolated from PBMC of colorectal cancer patients) and iTreg (CD4+CD25+CD127dim/- cells expanded in vitro according to the above regimen) cells were interlaced. pTregs exhibited enhanced suppressive function, whereas iTregs exhibited increased proliferative capacity. TCR repertoire analysis indicated minimal overlap between pTregs and iTregs. Pseudo-time trajectory analysis of Tregs revealed that pTregs were a continuum composed of three main branches: activated/effector, resting and proliferative Tregs. In contrast, in vitro expanded iTregs were a mixture of proliferating and activated/effector cells. The expression of trafficking receptors was also different in pTregs and iTregs. Various chemokine receptors were upregulated in pTregs. Activated effector pTregs overexpressed the chemokine receptor CCR10, which was not expressed in iTregs. The chemokine CCL28 was overexpressed in colorectal cancer and associated with poor prognosis. CCR10 interacted with CCL28 to mediate the recruitment of Treg into tumors and accelerated tumor progression. Depletion of CCR10+Treg cells from tumor microenvironment (TME) could be used as an effective treatment strategy for colorectal cancer patients. Our data distinguished the transcriptomic characteristics of different subsets of Treg cells and revealed the context-dependent functions of different populations of Treg cells, which was crucial to the development of alternative therapeutic strategies for Treg cells in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Zhenzhen Hui
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiali Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu Zheng
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lili Yang
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang An
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Wei
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
20
|
Rodrigues Lima-Junior J, Sulzer D, Lindestam Arlehamn CS, Sette A. The role of immune-mediated alterations and disorders in ALS disease. Hum Immunol 2021; 82:155-161. [PMID: 33583639 PMCID: PMC7942756 DOI: 10.1016/j.humimm.2021.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that leads to neuronal death in the brain and spinal cord. Over the last decades, evidence has emerged regarding the functional diversity of astrocytes, microglia, and T cells in the central nervous system (CNS), and the role of neuroinflammation in ALS. In this review, we summarize current knowledge regarding neuroinflammation in ALS, both at the level of specific molecular pathways and potential cellular pathways as well as outline questions about the immune mechanisms involved in ALS pathogenesis.
Collapse
Affiliation(s)
| | - David Sulzer
- Department of Neurology, Columbia University; New York State Psychiatric Institute, New York, NY 10032, USA; Departments of Psychiatry and Pharmacology, Columbia University; New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Ulbar F, Villanova I, Giancola R, Baldoni S, Guardalupi F, Fabi B, Olioso P, Capone A, Sola R, Ciardelli S, Del Papa B, Brattelli A, Ricciardi I, Taricani S, Sabbatinelli G, Iuliani O, Passeri C, Sportoletti P, Santarone S, Pierini A, Calabrese G, Falzetti F, Bonfini T, Accorsi P, Ruggeri L, Martelli MF, Velardi A, Di Ianni M. Clinical-Grade Expanded Regulatory T Cells Are Enriched with Highly Suppressive Cells Producing IL-10, Granzyme B, and IL-35. Biol Blood Marrow Transplant 2020; 26:2204-2210. [PMID: 32961369 DOI: 10.1016/j.bbmt.2020.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
In the setting of T cell-depleted, full-haplotype mismatched transplantation, adoptive immunotherapy with regulatory T cells (Tregs) and conventional T cells (Tcons) can prevent graft-versus-host disease (GVHD) and improve post-transplantation immunologic reconstitution and is associated with a powerful graft-versus-leukemia effect. To improve the purity and the quantity of the infused Tregs, good manufacturing practices (GMP)-compatible expansion protocols are needed. Here we expanded Tregs using an automated, clinical-grade protocol. Cells were extensively characterized in vitro, and their efficiency was tested in vivo in a mouse model. Tregs were selected by CliniMacs (CD4+CD25+, 94.5 ± 6.3%; FoxP3+, 63.7 ± 11.5%; CD127+, 20 ± 3%; suppressive activity, 60 ± 7%), and an aliquot of 100 × 106 was expanded for 14 days using the CliniMACS Prodigy System, obtaining 684 ± 279 × 106 cells (CD4+CD25+, 99.6 ± 0.2%; FoxP3+, 82 ± 8%; CD127+, 1.1 ± 0.8%; suppressive activity, 75 ± 12%). CD39 and CTLA4 expression levels increased from 22.4 ± 12% to 58.1 ± 13.3% (P < .05) and from 20.4 ± 6.7% to 85.4 ± 9.8% (P < .01), respectively. TIM3 levels increased from .4 ± .05% to 29 ± 16% (P < .05). Memory Tregs were the prevalent population, whereas naive Tregs almost disappeared at the end of the culture. mRNA analysis displayed significant increases in CD39, IL-10, granzyme B, and IL-35 levels at the end of culture period (P < .05). Conversely, IFNγ expression decreased significantly by day +14. Expanded Tregs were sorted according to TIM3, CD39, and CD62L expression levels (purity >95%). When sorted populations were analyzed, TIM3+ cells showed significant increases in IL-10 and granzyme B (P < .01) .When expanded Tregs were infused in an NSG murine model, mice that received Tcons only died of GVHD, whereas mice that received both Tcons and Tregs survived without GVHD. GMP grade expanded cells that display phenotypic and functional Treg characteristics can be obtained using a fully automated system. Treg suppression is mediated by multiple overlapping mechanisms (eg, CTLA-4, CD39, IL-10, IL-35, TGF-β, granzyme B). TIM3+ cells emerge as a potentially highly suppressive population. © 2020 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Francesca Ulbar
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Ida Villanova
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | | | - Stefano Baldoni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Bianca Fabi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Paola Olioso
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Anita Capone
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Rosaria Sola
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Sara Ciardelli
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | | | - Ilda Ricciardi
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Stefano Taricani
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Giulia Sabbatinelli
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Ornella Iuliani
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Cecilia Passeri
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Paolo Sportoletti
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Stella Santarone
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Antonio Pierini
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Giuseppe Calabrese
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Franca Falzetti
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Tiziana Bonfini
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Patrizia Accorsi
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Loredana Ruggeri
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Massimo Fabrizio Martelli
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy; Department of Oncology Hematology, Pescara Hospital, Pescara, Italy.
| |
Collapse
|
22
|
Suh MK, Batra R, Carson JS, Xiong W, Dale MA, Meisinger T, Killen C, Mitchell J, Baxter BT. Ex vivo expansion of regulatory T cells from abdominal aortic aneurysm patients inhibits aneurysm in humanized murine model. J Vasc Surg 2020; 72:1087-1096.e1. [PMID: 31980239 PMCID: PMC10690961 DOI: 10.1016/j.jvs.2019.08.285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease. Studies of human aneurysm tissue demonstrate dense inflammatory cell infiltrates with CD4+ T cells predominating. Regulatory T cells (Tregs) play an important role in inhibiting pro-inflammatory T cell proliferation, therefore, limiting collateral tissue destruction. The aim of this study was to investigate whether ex vivo augmentation of human Tregs attenuates aneurysm formation in humanized murine model of AAA. METHODS Circulating Treg population in AAA patients and age- and gender-matched controls were determined by real-time polymerase chain reaction and flow cytometry. To create humanized murine model of AAA, irradiated Rag1-deficient (Rag1-/-) mice, without mature T lymphocytes, at 7 weeks of age were given 5 × 106 of human CD4+ T cells intraperitoneally. Then the mice underwent CaCl2 aneurysm induction. Aortic diameters were measured before and at 6 weeks after aneurysm induction. Aortic tissue was collected for histology and protein extraction. Verhoeff-Van Gieson stain was used for staining elastic fiber. CD4+ T cells in the aortic tissue were detected by immunohistochemical staining. RESULTS In human peripheral blood mononuclear cells, the proportion of Tregs are decreased in AAA patients compared with matched control patients with significant vascular disease. We first validated the role of Tregs in the CaCl2 model of AAA. To determine the role of human T cells in AAA formation, Rag1-/- mice, resistant to CaCl2-aneurysm induction, were transplanted with human CD4+ T cells. Human CD4+ T cells were able to drive aneurysm formation in Rag1-/- mice. We show that ex vivo augmentation of human Tregs by interleukin-2 resulted in decreased aneurysm progression. CONCLUSIONS These data suggest that the ex vivo expansion of human Tregs may be a potential therapeutic strategy for inhibiting progression of AAA.
Collapse
MESH Headings
- Adoptive Transfer
- Aged
- Animals
- Aorta, Abdominal/immunology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Calcium Chloride
- Case-Control Studies
- Cell Proliferation
- Cell Separation
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Female
- Homeodomain Proteins/genetics
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Melissa K Suh
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Rishi Batra
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Jeffrey S Carson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Wanfen Xiong
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Matthew A Dale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Neb
| | - Trevor Meisinger
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Cameron Killen
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - John Mitchell
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - B Timothy Baxter
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Neb.
| |
Collapse
|
23
|
Faridar A, Thome AD, Zhao W, Thonhoff JR, Beers DR, Pascual B, Masdeu JC, Appel SH. Restoring regulatory T-cell dysfunction in Alzheimer's disease through ex vivo expansion. Brain Commun 2020; 2:fcaa112. [PMID: 32954348 PMCID: PMC7472911 DOI: 10.1093/braincomms/fcaa112] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/30/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a significant component of Alzheimer’s disease pathology. While neuroprotective microglia are important for containment/clearance of Amyloid plaques and maintaining neuronal survival, Alzheimer inflammatory microglia may play a detrimental role by eliciting tau pathogenesis and accelerating neurotoxicity. Regulatory T cells have been shown to suppress microglia-mediated inflammation. However, the role of regulatory T cells in ameliorating the proinflammatory immune response in Alzheimer’s disease requires further investigation. Forty-six patients with Alzheimer disease, 42 with mild cognitive impairment and 41 healthy controls were studied. The phenotypes of peripheral regulatory T cells were assessed with multicolour flow cytometry. Regulatory T cells were co-cultured with responder T cells and proliferation was determined by 3H-thymidine incorporation. In separate experiments, regulatory T cells were added to induced pluripotent stem cell-derived pro-inflammatory macrophages and changes in interleukin-6/tumour necrosis-alpha transcripts and protein levels were measured. Freshly isolated regulatory T cells were expanded ex vivo in the presence of CD3/CD28 expander beads, interleukin-2 and rapamycin to promote their suppressive function. We found that the suppressive function of regulatory T cells on responder T-cell proliferation was compromised at the Alzheimer disease stage, compared with mild cognitive impairment and healthy controls. CD25 mean fluorescence intensity in regulatory T-cell population was also reduced in Alzheimer dementia patients. Regulatory T cells did not suppress pro-inflammatory macrophages at baseline. Following ex vivo expansion, regulatory T-cell suppression of responder T-cell proliferation and pro-inflammatory macrophage activation increased in both patients and controls. Expanded regulatory T cells exerted their immunoregulatory function on pro-inflammatory macrophages through a contact-mediated mechanism. In conclusion, regulatory T-cell immunophenotype and function are compromised in Alzheimer’s disease. Following ex vivo expansion, the immunomodulatory function of regulatory T cells is enhanced even at advanced stages of Alzheimer’s disease. Restoration of regulatory T-cell function could be explored as a means to modulate the inflammatory status of Alzheimer’s disease.
Collapse
Affiliation(s)
- Alireza Faridar
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Aaron D Thome
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Weihua Zhao
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Jason R Thonhoff
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - David R Beers
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Belen Pascual
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| |
Collapse
|
24
|
Janyst M, Kaleta B, Janyst K, Zagożdżon R, Kozlowska E, Lasek W. Comparative Study of Immunomodulatory Agents to Induce Human T Regulatory (Treg) Cells: Preferential Treg-Stimulatory Effect of Prednisolone and Rapamycin. Arch Immunol Ther Exp (Warsz) 2020; 68:20. [PMID: 32533319 PMCID: PMC7292810 DOI: 10.1007/s00005-020-00582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
T regulatory (Treg) cells play a critical role in the maintenance of self-tolerance, as well as in inhibition of inflammation and exaggerated immune response against exogenous antigens. They develop in the thymus (tTreg cells) but also may be generated at the peripheral tissues, including tumor microenvironment (pTreg cells), or induced in vitro in the presence of transforming growth factor (TGF)-β (iTreg cells). Since tTreg cells constitute a minor fraction of peripheral blood lymphocytes in physiological conditions, an alternative way to obtain high number of functional Treg cells for therapeutic purposes is their generation in vitro from conventional T cells. In our studies, we compared effectiveness of several pharmacological agents with suggested immunomodulatory effects on Treg development (rapamycin, prednisolone, inosine pranobex, glatiramer acetate, sodium butyrate, and atorvastatin) to optimize Treg-inducing protocols. All but one (atorvastatin) immunomodulators augmented induction of polyclonal Treg cells in cultures. They were effective both in increasing the number of CD4+CD25highFoxp3high cells and Foxp3 expression. Rapamycin and prednisolone were found the most effective. Both drugs prolonged also phenotypic stability of Treg cells and induced fully active Treg cells in a functional assay. In the assay, prednisolone appeared superior versus rapamycin. The results, on the one hand, may be helpful in planning optimal protocols for generation of Treg cells for clinical application and, on the other hand, shed some light on mechanisms of the immunomodulatory activity of some tested agents observed in vivo.
Collapse
Affiliation(s)
- Michał Janyst
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Janyst
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Kozlowska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Witold Lasek
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Giovannelli I, Heath P, Shaw PJ, Kirby J. The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:435-444. [PMID: 32484719 DOI: 10.1080/21678421.2020.1752246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, meaning the establishment of a diffuse inflammatory condition in the CNS, is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, a crucial role of regulatory T cells (Tregs) in this disease has been outlined. Tregs are a T cell subpopulation with immunomodulatory properties. In this review, we discuss the physiology of Tregs and their role in ALS disease onset and progression. Evidence has demonstrated that in ALS patients Tregs are dramatically and progressively reduced in number and are less effective in promoting immune suppression. In addition, Tregs levels correlate with the rate of disease progression and patient survival. For this reason, Tregs are now considered a promising therapeutic target for neuroprotection in ALS. In this review, the clinical impact of these cells will be discussed and an overview of the current clinical trials targeting Tregs is also provided.
Collapse
Affiliation(s)
- I Giovannelli
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P Heath
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Kirby
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Rajabinejad M, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: A clinical and preclinical systematic review. J Cell Physiol 2019; 235:5030-5040. [PMID: 31788795 DOI: 10.1002/jcp.29401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. The role of the immune system has been concentrated by researchers in the etiopathogenesis of the disease. Given the inhibitory roles of regulatory T cells (Tregs), it is expected that increasing or activating their populations in patients with ALS can have significant therapeutic effects. Here we searched databases, including CENTRAL, MEDLINE, CINAHL Plus, clinicaltrials.gov, and ICTRP for randomized clinical trials (RCTs) and non-RCTs until March 2019. For preclinical studies, we searched PubMed, Scopus, and Google Scholar up to June 2019. We also included preclinical studies, due to the lack of clinical information available, which used Tregs (or directly targeting them) for treating mice models of ALS. We identified 29 records (CENTRAL 7, MEDLINE 4, CINAHL Plus 8, and clinicaltrials.gov 10) and removed 10 duplicated publications. After screening, we identified one RCT which had been published as an abstract, three non-RCTs, and four ongoing studies. We also identified 551 records (PubMed 446, Google Scholar 68, and Scopus 37) for preclinical studies and performed a meta-analysis. Finally, we found three papers that matched our inclusion criteria for preclinical studies. Results indicated the effectiveness of the application of Tregs in the treatment of ALS. Our meta-analysis on preclinical studies revealed that Tregs significantly prolonged survival in mice models of ALS. Overall, our analysis testified that exertion of Tregs in the treatment of ALS is a promising approach, that notwithstanding, requires further evaluations.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Cryopreservation timing is a critical process parameter in a thymic regulatory T-cell therapy manufacturing protocol. Cytotherapy 2019; 21:1216-1233. [PMID: 31810768 DOI: 10.1016/j.jcyt.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Regulatory T cells (Tregs) are a promising therapy for several immune-mediated conditions but manufacturing a homogeneous and consistent product, especially one that includes cryopreservation, has been challenging. Discarded pediatric thymuses are an excellent source of therapeutic Tregs with advantages including cell quantity, homogeneity and stability. Here we report systematic testing of activation reagents, cell culture media, restimulation timing and cryopreservation to develop a Good Manufacturing Practice (GMP)-compatible method to expand and cryopreserve Tregs. By comparing activation reagents, including soluble antibody tetramers, antibody-conjugated beads and artificial antigen-presenting cells (aAPCs) and different media, we found that the combination of Dynabeads Treg Xpander and ImmunoCult-XF medium preserved FOXP3 expression and suppressive function and resulted in expansion that was comparable with a single stimulation with aAPCs. Cryopreservation tests revealed a critical timing effect: only cells cryopreserved 1-3 days, but not >3 days, after restimulation maintained high viability and FOXP3 expression upon thawing. Restimulation timing was a less critical process parameter than the time between restimulation and cryopreservation. This systematic testing of key variables provides increased certainty regarding methods for in vitro expansion and cryopreservation of Tregs. The ability to cryopreserve expanded Tregs will have broad-ranging applications including enabling centralized manufacturing and long-term storage of cell products.
Collapse
|
28
|
Evans FL, Dittmer M, de la Fuente AG, Fitzgerald DC. Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Front Immunol 2019; 10:2171. [PMID: 31572381 PMCID: PMC6751344 DOI: 10.3389/fimmu.2019.02171] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogenic mechanisms of T cells in several central nervous system (CNS) disorders are well-established. However, more recent studies have uncovered compelling beneficial roles of T cells in neurological diseases, ranging from tissue protection to regeneration. These divergent functions arise due to the diversity of T cell subsets, particularly CD4+ T cells. Here, we review the beneficial impact of T cell subsets in a range of neuroinflammatory and neurodegenerative diseases including multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and CNS trauma. Both T cell-secreted mediators and direct cell contact-dependent mechanisms deliver neuroprotective, neuroregenerative and immunomodulatory signals in these settings. Understanding the molecular details of these beneficial T cell mechanisms will provide novel targets for therapeutic exploitation that can be applied to a range of neurological disorders.
Collapse
Affiliation(s)
- Frances L Evans
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alerie G de la Fuente
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Denise C Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Neuroinflammation is increasingly recognized as an important mediator of disease progression in patients with amyotrophic lateral sclerosis (ALS), and is characterized by reactive central nervous system (CNS) microglia and astroglia as well as infiltrating peripheral monocytes and lymphocytes. Anti-inflammatory and neuroprotective factors sustain the early phase of the disease whereas inflammation becomes proinflammatory and neurotoxic as disease progression accelerates. Initially, motor neurons sustain injuries through multiple mechanisms resulting from harmful mutations causing disruptions of critical intracellular pathways. Injured motor neurons release distress signal(s), which induce inflammatory processes produced by surrounding glial cells in the CNS as well as peripheral innate and adaptive immune cells. This review will focus on mechanisms of neuroinflammation and their essential contributions in ALS pathogenesis. RECENT FINDINGS Regulatory T lymphocytes (Tregs) are a subpopulation of immunosuppressive T lymphocytes that become reduced and dysfunctional as the disease progresses in ALS patients. Their degree of dysfunction correlates with the extent and rapidity of the disease. Treg numbers are boosted in transgenic mutant SOD1 (mSOD1) mice through the passive transfer of Tregs or through treatment with an interleukin-2/ interleukin-2 monoclonal antibody complex and rapamycin. Treating the transgenic mice with either of these modalities delays disease progression and prolongs survival. In addition, Treg function is restored when dysfunctional Tregs are isolated from ALS patients and expanded ex vivo in the presence of interleukin-2 and rapamycin. Based on these findings, a first-in-human phase 1 trial has been completed in which expanded autologous Tregs were infused back into ALS patients as a potential treatment. The infusions were safe and shown to 'hit target' by enhancing both Treg numbers and suppressive functions. SUMMARY A delicate balance between anti-inflammatory and proinflammatory factors modulates the rates of disease progression and survival times in ALS. Tipping the balance toward the anti-inflammatory mediators shows promise in slowing the progression of this devastating disease.
Collapse
|
30
|
MacDonald KN, Piret JM, Levings MK. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 2019; 197:52-63. [PMID: 30913302 DOI: 10.1111/cei.13297] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cell (Treg ) therapy has shown promise in early clinical trials for treating graft-versus-host disease, transplant rejection and autoimmune disorders. A challenge has been to isolate sufficiently pure Tregs and expand them to a clinical dose. However, there has been considerable progress in the development and optimization of these methods, resulting in a variety of manufacturing protocols being tested in clinical trials. In this review, we summarize methods that have been used to manufacture Tregs for clinical trials, including the choice of cell source and protocols for cell isolation and expansion. We also discuss alternative culture or genome editing methods for modulating Treg specificity, function or stability that could be applied to future clinical manufacturing protocols to increase the efficacy of Treg therapy.
Collapse
Affiliation(s)
- K N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - M K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Regulatory T Cells and Their Derived Cytokine, Interleukin-35, Reduce Pain in Experimental Autoimmune Encephalomyelitis. J Neurosci 2019; 39:2326-2346. [PMID: 30651334 DOI: 10.1523/jneurosci.1815-18.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/18/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Sensory problems such as neuropathic pain are common and debilitating symptoms in multiple sclerosis (MS), an autoimmune inflammatory disorder of the CNS. Regulatory T (Treg) cells are critical for maintaining immune homeostasis, but their role in MS-associated pain remains unknown. Here, we demonstrate that Treg cell ablation is sufficient to trigger experimental autoimmune encephalomyelitis (EAE) and facial allodynia in immunized female mice. In EAE-induced female mice, adoptive transfer of Treg cells and spinal delivery of the Treg cell cytokine interleukin-35 (IL-35) significantly reduced facial stimulus-evoked pain and spontaneous pain independent of disease severity and increased myelination of the facial nociceptive pathway. The effects of intrathecal IL-35 therapy were Treg-cell dependent and associated with upregulated IL-10 expression in CNS-infiltrating lymphocytes and reduced monocyte infiltration in the trigeminal afferent pathway. We present evidence for a beneficial role of Treg cells and IL-35 in attenuating pain associated with EAE independently of motor symptoms by decreasing neuroinflammation and increasing myelination.SIGNIFICANCE STATEMENT Pain is a highly prevalent symptom affecting the majority of multiple sclerosis (MS) patients and dramatically affects overall health-related quality of life; however, this is a research area that has been largely ignored. Here, we identify for the first time a role for regulatory T (Treg) cells and interleukin-35 (IL-35) in suppressing facial allodynia and facial grimacing in animals with experimental autoimmune encephalomyelitis (EAE). We demonstrate that spinal delivery of Treg cells and IL-35 reduces pain associated with EAE by decreasing neuroinflammation and increasing myelination independently of motor symptoms. These findings increase our understanding of the mechanisms underlying pain in EAE and suggest potential treatment strategies for pain relief in MS.
Collapse
|
32
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Thonhoff JR, Beers DR, Zhao W, Pleitez M, Simpson EP, Berry JD, Cudkowicz ME, Appel SH. Expanded autologous regulatory T-lymphocyte infusions in ALS: A phase I, first-in-human study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e465. [PMID: 29845093 PMCID: PMC5961523 DOI: 10.1212/nxi.0000000000000465] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
Objective To determine whether autologous infusions of expanded regulatory T lymphoctyes (Tregs) into patients with amyotrophic lateral sclerosis (ALS) are safe and tolerable during early and later stages of disease. Methods Three patients with ALS, with no family history of ALS, were selected based on their differing sites of disease onset and rates of progression. Patients underwent leukapheresis, and Tregs were subsequently isolated and expanded ex vivo. Tregs (1 × 106 cells/kg) were administered IV at early stages (4 doses over 2 months) and later stages (4 doses over 4 months) of disease. Concomitant interleukin-2 (2 × 105 IU/m2/injection) was administered subcutaneously 3 times weekly over the entire study period. Patients were closely monitored for adverse effects and changes in disease progression rates. Treg numbers and suppressive function were assayed during and following each round of Treg infusions. Results Infusions of Tregs were safe and well tolerated in all patients. Treg numbers and suppressive function increased after each infusion. The infusions slowed progression rates during early and later stages of disease. Spearman correlation analyses showed that increased Treg suppressive function correlated with slowing of disease progression per the Appel ALS scale for each patient: patient 1: ρ (rho) = −0.60, p = 0.003; patient 2: ρ = −0.71, p = 0.0026; and patient 3: ρ = −0.54, p = 0.016. Measures of maximal inspiratory pressure also stabilized, particularly in 2 patients, during Treg infusions. Conclusions These results demonstrate the safety and potential benefit of expanded autologous Treg infusions, warranting further clinical trials in patients with ALS. The correlation between Treg suppressive function and disease progression underscores the significance of using Treg suppressive function as an indicator of clinical status. Classification of evidence This study provides Class IV evidence. This is a phase I trial with no controls.
Collapse
Affiliation(s)
- Jason R Thonhoff
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - David R Beers
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - Weihua Zhao
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - Milvia Pleitez
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - Ericka P Simpson
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - James D Berry
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - Merit E Cudkowicz
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| | - Stanley H Appel
- Houston Methodist Neurological Institute (J.R.T., D.R.B., W.Z., M.P., E.P.S., S.H.A.), Houston Methodist Hospital Research Institute, Stanley H. Appel Department of Neurology, Houston, TX; and Neurological Clinical Research Institute (J.D.B., M.E.C.), Massachusetts General Hospital, Boston, MA
| |
Collapse
|
34
|
Abe K. [An early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development]. Rinsho Shinkeigaku 2018; 58:141-165. [PMID: 29491329 DOI: 10.5692/clinicalneurol.cn-001095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present review focuses an early history of Japanese amyotrophic lateral sclerosis (ALS)-related diseases and the current development. In relation to foreign previous reports, five topics are introduced and discussed on ALS with dementia, ALS/Parkinsonism dementia complex (ALS/PDC), familial ALS (FALS), spinal bulbar muscular atrophy (SBMA), and multisystem involvement especially in cerebellar system of ALS including ALS/SCA (spinocerebellar ataxia) crossroad mutation Asidan. This review found the great contribution of Japanese reports on the above five topics, and confirmed the great development of ALS-related diseases over the past 120 years.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Okayama University Medical School
| |
Collapse
|
35
|
Pennati A, Asress S, Glass JD, Galipeau J. Adoptive transfer of IL-10 + regulatory B cells decreases myeloid-derived macrophages in the central nervous system in a transgenic amyotrophic lateral sclerosis model. Cell Mol Immunol 2018; 15:727-730. [PMID: 29307886 DOI: 10.1038/cmi.2017.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrea Pennati
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and University of Wisconsin Carbone Cancer Center, Madison, 53706, USA, WI
| | - Seneshaw Asress
- Department of Neurology, Emory University, Atlanta, 30322, USA, GA
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, 30322, USA, GA.
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin School of Medicine and Public Health and University of Wisconsin Carbone Cancer Center, Madison, 53706, USA, WI.
| |
Collapse
|
36
|
Liberman AC, Trias E, da Silva Chagas L, Trindade P, Dos Santos Pereira M, Refojo D, Hedin-Pereira C, Serfaty CA. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 2018; 25:246-270. [PMID: 30517945 DOI: 10.1159/000494761] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross talk seems to be crucial for normal brain function, development, and recovery. However, under certain conditions neuroinflammatory interactions between brain cells and neuroimmune cells influence disease outcome and brain pathology. Microglial cells express a range of functional states with dynamically pleomorphic profiles from a surveilling status of synaptic transmission to an active player in major events of development such as synaptic elimination, regeneration, and repair. Also, inflammation mediates a series of neurotoxic roles in neuropsychiatric conditions and neurodegenerative diseases. The present review discusses data on the involvement of neuroinflammatory conditions that alter neuroimmune interactions in four different pathologies. In the first section of this review, we discuss the ability of the early developing brain to respond to a focal lesion with a rapid compensatory plasticity of intact axons and the role of microglial activation and proinflammatory cytokines in brain repair. In the second section, we present data of neuroinflammation and neurodegenerative disorders and discuss the role of reactive astrocytes in motor neuron toxicity and the progression of amyotrophic lateral sclerosis. In the third section, we discuss major depressive disorders as the consequence of dysfunctional interactions between neural and immune signals that result in increased peripheral immune responses and increase proinflammatory cytokines. In the last section, we discuss autism spectrum disorders and altered brain circuitries that emerge from abnormal long-term responses of innate inflammatory cytokines and microglial phenotypic dysfunctions.
Collapse
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina,
| | - Emiliano Trias
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Pablo Trindade
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| | - Marissol Dos Santos Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Cecilia Hedin-Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- VPPCB, Fiocruz, Rio de Janeiro, Brazil
| | - Claudio A Serfaty
- Neuroscience Program, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
37
|
Peters S, Zitzelsperger E, Kuespert S, Iberl S, Heydn R, Johannesen S, Petri S, Aigner L, Thal DR, Hermann A, Weishaupt JH, Bruun TH, Bogdahn U. The TGF-β System As a Potential Pathogenic Player in Disease Modulation of Amyotrophic Lateral Sclerosis. Front Neurol 2017; 8:669. [PMID: 29326641 PMCID: PMC5736544 DOI: 10.3389/fneur.2017.00669] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a fatal orphan disease with high unmet medical need, and a life time risk of approx. 1/400 persons per population. Based on increasing knowledge on pathophysiology including genetic and molecular changes, epigenetics, and immune dysfunction, inflammatory as well as fibrotic processes may contribute to the heterogeneity and dynamics of ALS. Animal and human studies indicate dysregulations of the TGF-β system as a common feature of neurodegenerative disorders in general and ALS in particular. The TGF-β system is involved in different essential developmental and physiological processes and regulates immunity and fibrosis, both affecting neurogenesis and neurodegeneration. Therefore, it has emerged as a potential therapeutic target for ALS: a persistent altered TGF-β system might promote disease progression by inducing an imbalance of neurogenesis and neurodegeneration. The current study assessed the activation state of the TGF-β system within the periphery/in life disease stage (serum samples) and a late stage of disease (central nervous system tissue samples), and a potential influence upon neuronal stem cell (NSC) activity, immune activation, and fibrosis. An upregulated TGF-β system was suggested with significantly increased TGF-β1 protein serum levels, enhanced TGF-β2 mRNA and protein levels, and a strong trend toward an increased TGF-β1 protein expression within the spinal cord (SC). Stem cell activity appeared diminished, reflected by reduced mRNA expression of NSC markers Musashi-1 and Nestin within SC—paralleled by enhanced protein contents of Musashi-1. Doublecortin mRNA and protein expression was reduced, suggesting an arrested neurogenesis at late stage ALS. Chemokine/cytokine analyses suggest a shift from a neuroprotective toward a more neurotoxic immune response: anti-inflammatory chemokines/cytokines were unchanged or reduced, expression of proinflammatory chemokines/cytokines were enhanced in ALS sera and SC postmortem tissue. Finally, we observed upregulated mRNA and protein expression for fibronectin in motor cortex of ALS patients which might suggest increased fibrotic changes. These data suggest that there is an upregulated TGF-β system in specific tissues in ALS that might lead to a “neurotoxic” immune response, promoting disease progression and neurodegeneration. The TGF-β system therefore may represent a promising target in treatment of ALS patients.
Collapse
Affiliation(s)
- Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Zitzelsperger
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Kuespert
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Hematology, University Hospital Regensburg, Regensburg, Germany
| | - Rosmarie Heydn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Petri
- Department of Neurology, University Hospital MHH, Hannover, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dietmar R Thal
- Department for Neuroscience, Laboratory for Neuropathology, University of Leuven, Leuven, Belgium
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden and German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, Dresden, Germany
| | | | - Tim-Henrik Bruun
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res 2017; 96:951-968. [DOI: 10.1002/jnr.24073] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Samuel S. Duffy
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Brooke A. Keating
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Chamini J. Perera
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| |
Collapse
|
39
|
Michaelson N, Facciponte D, Bradley W, Stommel E. Cytokine expression levels in ALS: A potential link between inflammation and BMAA-triggered protein misfolding. Cytokine Growth Factor Rev 2017; 37:81-88. [PMID: 28532674 DOI: 10.1016/j.cytogfr.2017.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
Abstract
Recently, it has been shown that proinflammatory cytokines play a complex and important role in the pathogenesis of many neurological disorders, including amyotrophic lateral sclerosis (ALS). To help facilitate future discoveries and more effective treatment strategies, we highlight the role that both innate and adaptive immune systems play in ALS and summarize the main observations that relate to cytokine expression levels in this disease. Furthermore, we propose a mechanism by which a known neurotoxin, β-N-methylamino-l-alanine (BMAA), may trigger this cytokine expression profile through motor neuron protein misfolding and subsequent NLRP3 (nucleotide-binding domain (NOD)-like receptor protein 3) inflammasome activation.
Collapse
Affiliation(s)
- Nara Michaelson
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | | | - Walter Bradley
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elijah Stommel
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
40
|
Beers DR, Zhao W, Wang J, Zhang X, Wen S, Neal D, Thonhoff JR, Alsuliman AS, Shpall EJ, Rezvani K, Appel SH. ALS patients' regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight 2017; 2:e89530. [PMID: 28289705 PMCID: PMC5333967 DOI: 10.1172/jci.insight.89530] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression.
Collapse
Affiliation(s)
- David R. Beers
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Weihua Zhao
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Jinghong Wang
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Xiujun Zhang
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Shixiang Wen
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Dan Neal
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Jason R. Thonhoff
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Abdullah S. Alsuliman
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katy Rezvani
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stanley H. Appel
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
41
|
Gasco S, Rando A, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Hematopoietic stem and progenitor cells as novel prognostic biomarkers of longevity in a murine model for amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2016; 311:C910-C919. [PMID: 27681176 DOI: 10.1152/ajpcell.00081.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a difficult diagnosis and prognosis. In this regard, new and more reliable biomarkers for the disease are needed. We propose peripheral blood, and, more specifically, the hematopoietic stem and progenitor cells (HSPCs) as potential prognostic biomarkers in the SOD1G93A murine model of ALS. We accurately and serially studied three HSPCs-hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs)-in both control and SOD1G93A mice along the disease's progression by RT-PCR and flow cytometry analysis. We found interesting differences for every HSPC type in the transgenic mice compared with the control mice at every time point selected, as well as differences along the disease course. The results showed a maintained compensatory increase of HSCs along disease progression. However, the downregulated levels of CLPs and CMPs suggested an exit of these cell populations to the peripheral tissues, probably due to their supporting role to the damaged tissues. In addition, a positive correlation of the percentage of CLPs and CMPs with the longevity was found, as well as a positive correlation of HSCs and CMPs with motor function and weight, thus reinforcing the idea that HSPCs play a relevant role in the longevity of the SOD1G93A mice. On the basis of these results, both CLPs and CMPs could be considered prognostic biomarkers of longevity in this animal model, opening the door to future studies in human patients for their potential clinical use.
Collapse
Affiliation(s)
- Samanta Gasco
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Amaya Rando
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Alberto García-Redondo
- Biochemistry Department, Centre for Biomedical Network Research on Rare Diseases, Health Research Institute, October 12th Hospital, Madrid, Spain
| | - Ana Cristina Calvo
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Rosario Osta
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| |
Collapse
|