1
|
Xiao F, Qi J, Ma S, Sun L, Sun Y. Research Progress on the Role and Mechanism in the Change of Cardiac Structure and Function of Cardiac Fibrosis in the Elderly. Cardiol Rev 2025:00045415-990000000-00457. [PMID: 40167333 DOI: 10.1097/crd.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Heart failure is closely related to aging. Elderly patients with heart failure are often able to retain normal systolic function, manifested by left ventricular hypertrophy with decreased diastolic function. Relevant studies have shown that age-related cardiac fibrosis plays an important role in the pathogenesis of cardiac diastolic heart failure. Activation of fibroblasts in the heart, the acquisition of a pro-fibrotic phenotype, and age-dependent accumulation of collagen can lead to progressive increases in myocardial stiffness and impaired diastolic function. The renin-angiotensin-aldosterone system, reactive oxygen species, and angiotensin II are closely related to fibrotic remodeling of the heart in the elderly, and their pro-fibrotic effects may be mainly mediated by transforming growth factor β. In this review, we summarize the research progress of the role and mechanism of cardiac fibrosis in the structural and functional changes of the elderly.
Collapse
Affiliation(s)
- Fei Xiao
- From the Department of Cardiology, Zi-Bo Central Hospital, Zibo, China
| | - Jia Qi
- From the Department of Cardiology, Zi-Bo Central Hospital, Zibo, China
| | - Shanshan Ma
- Department of Geriatrics, Zi-Bo Central Hospital, Zibo, China
| | - Lei Sun
- Shinva Medical Instrument Co.Ltd, Zibo, China
| | - Yongchen Sun
- Department of Geriatrics, Zi-Bo Central Hospital, Zibo, China
| |
Collapse
|
2
|
Gautam RK, Laltanpuia, Singh N, Kushwaha S. A particle of concern: explored and proposed underlying mechanisms of microplastic-induced lung damage and pulmonary fibrosis. Inhal Toxicol 2025; 37:1-17. [PMID: 39932476 DOI: 10.1080/08958378.2025.2461048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE In the past decade, microplastics (MPs) have drawn significant attention as widespread environmental contaminants, with research increasingly highlighting their harmful effects on respiratory health in aquatic and terrestrial organisms. Findings revealed microplastics in human lung tissues, raising concerns about their potential role in damaging lung tissue integrity and contributing to pulmonary fibrosis-a chronic inflammatory condition characterized by scarring of lung epithelial tissues due to accumulated extracellular matrix, triggered by factors such as alcohol, pathogens, genetic mutations, and environmental pollutants. OBJECTIVE In this review, we explore both well-studied and lesser-studied mechanisms and signaling pathways, aiming to shed light on how microplastics might act as mediators that activate distinct, often overlooked signaling cascades. MATERIALS AND METHODS This review searched PubMed and Google Scholar using keywords like "plastic," "microplastic," "lung fibrosis," "pulmonary system," "exposure route," and "signaling pathways," combined with "OR" and "AND" in singular and plural forms. RESULTS These pathways could not only induce lung damage but also play a significant role in the development of pulmonary fibrosis. DISCUSSION AND CONCLUSIONS These signaling pathways could also be targeted to reduce microplastic-induced pulmonary fibrosis, opening new avenues for future treatments.
Collapse
Affiliation(s)
- Rohit Kumar Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Laltanpuia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Nishant Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
3
|
Cariba S, Srivastava A, Bronsema K, Kouthouridis S, Zhang B, Payne SL. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. ACS Biomater Sci Eng 2024; 10:7566-7576. [PMID: 39601321 PMCID: PMC11633653 DOI: 10.1021/acsbiomaterials.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cutaneous wound healing is a complex process involving various cellular and molecular interactions, resulting in the formation of a collagen-rich scar with imperfect function and morphology. Dermal fibroblasts are crucial to successful wound healing, migrating to the wound site where they are activated to provide extracellular matrix remodeling and wound closure. Peripheral nerves have been shown to play an important role in wound healing, with loss or damage to these nerves often leading to impaired healing and the formation of chronic nonhealing wounds. Previous research has suggested that sensory nerves secrete trophic factors that can regulate wound healing, including fibroblast activation; however, the direct cell-cell interaction between nerves and fibroblasts has not been extensively studied. To address this knowledge gap, we developed an in vitro co-culture model using a device called the IFlowPlate. This model supports the long-term viability of multiple cell types while allowing for direct contact between sensory nerve cells and dermal fibroblasts. Using the IFlowPlate, we demonstrate that co-culture of dorsal root ganglia with dermal fibroblasts increases fibroblast proliferation, collagen and α-smooth muscle actin expression, and secretion of pro-wound healing factors, suggesting that nerves can promote wound healing by modulating fibroblast activation. The IFlowPlate offers a user-friendly and high-throughput platform to study the in vitro interactions between nerves and a variety of cell types that can be applied to wound healing and other important biological processes.
Collapse
Affiliation(s)
- Solsa Cariba
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Avika Srivastava
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Kendra Bronsema
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Sonya Kouthouridis
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Boyang Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Samantha L. Payne
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
4
|
Pan H, Song J, An Q, Chen J, Zheng W, Zhang L, Gu J, Deng C, Yang B. Inhibition of Ubiquitin C-Terminal Hydrolase L1 Facilitates Cutaneous Wound Healing via Activating TGF-β/Smad Signalling Pathway in Fibroblasts. Exp Dermatol 2024; 33:e15186. [PMID: 39367569 DOI: 10.1111/exd.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/27/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing. Murine full-thickness excisional wound model was utilised to study the effects of UCHL1 on wound healing through topical administration of the UCHL1 inhibitor LDN57444, followed by assessment of wound areas and histological alterations. Subsequently, ethynyldeoxyuridine, scratch and transwell assays were performed to examine fibroblast migration and proliferation. The extracellular matrix (ECM)-related genes expression and transforming growth factor-β (TGF-β)/Smad signalling pathways activation were investigated by immuno-fluorescent staining, Western blots and quantitative reverse transcription polymerase chain reaction. We identified elevated UCHL1 expression in non-healing wound tissues. The UCHL1 expression displayed a dynamic change and reached a peak on Day-7 post-wounding during the healing process in mice. Cutaneous administration of LDN57444 promoted wound healing by facilitating collagen deposition, myofibroblast activation and angiogenesis. In vitro experiments demonstrated that UCHL1 concentration dependently inhibited migration, ECM synthesis and activation of human dermal fibroblasts, which was mechanistically related to downregulation of TGF-β/Smad signalling. Furthermore, these effects could be reversed by TGF-β inhibitor SB431542. Our findings reveal that UCHL1 is a negative regulator of cutaneous wound healing and considered as a novel prospective therapeutic target for effective wound healing.
Collapse
Affiliation(s)
- Huihui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing An
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenyue Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Gu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengcheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Kim SH, Oh JM, Roh H, Lee KW, Lee JH, Lee WJ. Zinc-Alpha-2-Glycoprotein Peptide Downregulates Type I and III Collagen Expression via Suppression of TGF-β and p-Smad 2/3 Pathway in Keloid Fibroblasts and Rat Incisional Model. Tissue Eng Regen Med 2024; 21:1079-1092. [PMID: 39105875 PMCID: PMC11416446 DOI: 10.1007/s13770-024-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Keloids and hypertrophic scars result from abnormal collagen accumulation and the inhibition of its degradation. Although the pathogenesis remains unclear, excessive accumulation of the extracellular matrix (ECM) is believed to be associated with the TGF-β/SMAD pathway. Zinc-alpha-2-glycoprotein (ZAG) inhibits TGF-β-mediated epithelial-to-mesenchymal transdifferentiation and impacts skin barrier functions. In this study, we investigated the potential of a small ZAG-derived peptide against hypertrophic scars and keloids. METHODS The study examined cell proliferation and mRNA expression of collagen types I and III in human dermal fibroblast (HDF) cell lines and keloid-derived fibroblasts (KF) following ZAG peptide treatment. A rat incisional wound model was used to evaluate the effect of ZAG peptide in scar tissue. RESULTS Significantly lower mRNA levels of collagen types I and III were observed in ZAG-treated fibroblasts, whereas matrix metalloproteinase (MMP)-1 and MMP-3 mRNA levels were significantly increased in HDFs and KFs. Furthermore, ZAG peptide significantly reduced protein expression of collagen type I and III, TGF-β1, and p-Smad2/3 complex in KFs. Rat incisional scar models treated with ZAG peptide presented narrower scar areas and reduced immature collagen deposition, along with decreased expression of collagen type I, α-SMA, and p-Smad2/3. CONCLUSION ZAG peptide effectively suppresses the TGF-β and p-Smad2/3 pathway and inhibits excessive cell proliferation during scar formation, suggesting its potential therapeutic implications against keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Shin Hyun Kim
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jung Min Oh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Hyun Roh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd, 82, Naruteo-Ro, Seocho-Gu, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Qin M, Zhao C, Xu S, Pan Y, Zhang S, Jiang J, Yu C, Li J, Tian J, Zhao X, Liu W. Role of sRNAs protein molecules in extracellular vesicles derived from Lactobacillus plantarum rejuvenate against ultraviolet B-induced photoaging in human keratinocytes. Int J Biol Macromol 2024; 276:133988. [PMID: 39032887 DOI: 10.1016/j.ijbiomac.2024.133988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ultraviolet B (UVB) radiation accelerates the aging process of skin cells by triggering oxidative stress and inflammatory responses. The aim of this study was to investigate the mechanism of action of sRNAs and protein molecules in the regenerative extracellular vesicles of Lactobacillus plantarum against the UVB-induced photoaging process of human keratinocytes. The extracellular vesicles regenerated by Lactobacillus plantarum were isolated and purified to identify sRNAs and protein components. Human keratinocytes were treated with UVB radiation to simulate the photoaging model. The effects of different concentrations of vesicle extract on cell survival rate, oxidative stress index and inflammatory marker expression were evaluated in control group and treatment group. The results showed that the regenerated extracellular vesicles of L. plantarum significantly improved the survival rate of keratinocytes after UVB radiation, and delayed the aging process of skin cells by reducing oxidative stress and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Mengyao Qin
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chunyu Zhao
- Division of General Practice, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shanshan Xu
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Yu Pan
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Song Zhang
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Jiaping Jiang
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Chunjing Yu
- Heilongjiang Academy of Sciences, Harbin 150000, China
| | - Jianing Li
- Division of General Practice, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiaoyu Zhao
- Heilongjiang Academy of Sciences, Harbin 150000, China.
| | - Wei Liu
- Key Laboratory of Myocardial Ischemia, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
7
|
Lotfizadeh F, Masoudi AA, Vaez Torshizi R, Emrani H. Genome-wide association study of copy number variations with shank traits in a F 2 crossbred chicken population. Anim Genet 2024; 55:559-574. [PMID: 38764135 DOI: 10.1111/age.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Copy number variations (CNVs) are large-scale changes in the DNA sequence that can affect the genetic structure and phenotype of an organism. The purpose of this study was to investigate the existing CNVs and their associations with the shank diameter (ShD) and shank length (ShL) traits using data from an F2 crossbred chicken population. To carry out the study, 312 chickens were genotyped using the Illumina 60k SNP Beadchip. The shank traits of the birds were measured from day 1 to 12 weeks of age. penncnv and cnvruler tools were used to find copy numbers and regions with copy number changes (CNVR), respectively. The CNVRanger package was used to perform a genome-wide association study between shank traits and CNVs. Gene ontology research in CNVRs was carried out using the david database. In this investigation, 966 CNVs and 606 regions with copy number changes were discovered. The copy number states and variations were randomly distributed along the length of the autosomal chromosomes. Weeks 1-4, 9 and 12 of growth revealed a significant association of copy number variations with shank traits, false discovery rate (FDR-corrected p-value < 0.01), and the majority of CNVs that were statistically significant were found on chromosomes 1-3. These CNV segments are nearby genes such as KCNJ12, FGF6 and MYF5, which are fundamental to growth and development. In addition, gene set analyses revealed terms related to muscle physiology, regulation of cellular processes and potassium channels.
Collapse
Affiliation(s)
- Fateme Lotfizadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hossein Emrani
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
8
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
9
|
Khan F, Judge EP, Das JP, White D, Ingram C, Keane MP, Butler MW. Effects of Active Chronic Cigarette-Smoke Exposure on Circulating Fibrocytes. Lung 2024; 202:431-440. [PMID: 38935158 PMCID: PMC11272705 DOI: 10.1007/s00408-024-00720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE This study aimed to evaluate the hypothesis that active smoking impacts upon mediators and abundance of circulating fibrocyte cells in smoking-related disease characterised by fibrosis. METHODS Flow cytometry and enzyme-linked immunosorbent assays were used to investigate blood from five patient groups: healthy never-smokers, healthy current smokers, stable chronic obstructive pulmonary disease (COPD) active smokers, idiopathic pulmonary fibrosis (IPF) never-smokers, and IPF active smokers. RESULTS A significant inverse dose-response relationship was observed in healthy smokers among cumulative smoking burden (pack-years) and fibrocyte abundance (p = 0.006, r = -0.86). Among serum profibrotic fibrocyte chemokines measured, CCL18 rose significantly alongside fibrocyte numbers in all five subject groups, while having an inverse dose-response relationship with pack-year burden in healthy smokers (p = 0.003, r = -0.89). In IPF, CCL2 rose in direct proportion to fibrocyte abundance irrespective of smoking status but had lower serum levels in those currently smoking (p = < 0.001). For the study population, CXCL12 was decreased in pooled current smokers versus never-smokers (p = 0.03). CONCLUSION The suppressive effect of current, as distinct from former, chronic smoking on circulating fibrocyte abundance in healthy smokers, and modulation of regulatory chemokine levels by active smoking may have implications for future studies of fibrocytes in smoking-related lung diseases as a potential confounding variable.
Collapse
Affiliation(s)
- Faheem Khan
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin P Judge
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Jeeban P Das
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Daniel White
- University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Michael P Keane
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- University College Dublin, Belfield, Dublin 4, Ireland
| | - Marcus W Butler
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
- University College Dublin, Belfield, Dublin 4, Ireland.
- Education & Research Centre, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| |
Collapse
|
10
|
Peltier S, Adib Y, Nicosia L, Ly Ka So S, Da Silva C, Serror K, Duciel L, Proust R, Mimoun M, Bagot M, Bensussan A, des Courtils C, Michel L. In vitro effects of wound-dressings on key wound healing properties of dermal fibroblasts. Exp Dermatol 2024; 33:e15098. [PMID: 38770557 DOI: 10.1111/exd.15098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Healing of complex wounds requires dressings that must, at least, not hinder and should ideally promote the activity of key healing cells, in particular fibroblasts. This in vitro study assessed the effects of three wound-dressings (a pure Ca2+ alginate: Algostéril®, a Ca2+ alginate + carboxymethylcellulose: Biatain alginate® and a polyacrylate impregnated with lipido-colloid matrix: UrgoClean®) on dermal fibroblast activity. The results showed the pure calcium alginate to be non-cytotoxic, whereas the other wound-dressings showed moderate to strong cytotoxicity. The two alginates stimulated fibroblast migration and proliferation, whereas the polyacrylate altered migration and had no effect on proliferation. The pure Ca2+ alginate significantly increased the TGF-β-induced fibroblast activation, which is essential to healing. This activation was confirmed by a significant increase in Vascular endothelial growth factor (VEGF) secretion and a higher collagen production. The other dressings reduced these fibroblast activities. The pure Ca2+ alginate was also able to counteract the inhibitory effect of NK cell supernatants on fibroblast migration. These in vitro results demonstrate that tested wound-dressings are not equivalent for fibroblast activation. Only Algostéril was found to promote all the fibroblast activities tested, which could contribute to its healing efficacy demonstrated in the clinic.
Collapse
Affiliation(s)
- S Peltier
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - Y Adib
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - L Nicosia
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | - S Ly Ka So
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
| | - C Da Silva
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
| | - K Serror
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Chirurgie plastique, reconstructive et esthétique, APHP, Hôpital Saint-Louis, Paris, France
| | - L Duciel
- Laboratoires Brothier, Nanterre, France
| | - R Proust
- Laboratoires Brothier, Nanterre, France
| | - M Mimoun
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Chirurgie plastique, reconstructive et esthétique, APHP, Hôpital Saint-Louis, Paris, France
| | - M Bagot
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Dermatologie, APHP, Hôpital Saint Louis, Paris, France
| | - A Bensussan
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
| | | | - Laurence Michel
- Inserm UMRS_976, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Paris, France
- Service de Dermatologie, APHP, Hôpital Saint Louis, Paris, France
| |
Collapse
|
11
|
Voisin T, Joannes A, Morzadec C, Lagadic-Gossmann D, Naoures CL, De Latour BR, Rouze S, Jouneau S, Vernhet L. Antifibrotic effects of vitamin D3 on human lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. J Nutr Biochem 2024; 125:109558. [PMID: 38185349 DOI: 10.1016/j.jnutbio.2023.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-β1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- β1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.
Collapse
Affiliation(s)
- Tom Voisin
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France
| | - Cécile Le Naoures
- Department of pathology and cytology, Rennes University Hospital, France
| | | | - Simon Rouze
- Department of Thoracic, cardiac and vascular surgery, Rennes University Hospital, France
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Diseases, Rennes University Hospital, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, France.
| |
Collapse
|
12
|
Kimyon AS, Çetinkaya A, Hallıoğlu Kılınç O, Aras N. The evaluation of the SMAD1 rs1016792 polymorphism and gene expression on pulmonary hypertension due to congenital heart disease in children: a preliminary study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1302-1315. [PMID: 38410024 DOI: 10.1080/15257770.2024.2322109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Smad Family Member (SMAD), a protein family responsible for transducing the signal induced by TGF-β into the nucleus, is thought to play a role in the pathology of many heart diseases. Therefore, we aimed to evaluate the influence of the SMAD1 rs1016792 polymorphism and gene expression on pulmonary arterial hypertension (PAH) due to congenital heart disease (CHD) in children. A total of 90 children, 45 of whom were PAH-CHD children and 45 healthy children, were included in the study. Patients were selected from those who were diagnosed and followed in the Department of Pediatric Cardiology.The SMAD1 rs1016792 genotyping and expression analysis was performed using a real-time polymerase chain reaction (RT-PCR)-based system. It was determined that the left ventricular end-diastolic diameter (LVEDD) value was lower in the patient group than in the control group, while the pulmonary artery pressure (PAP) value was higher in the patient group than in the control group. When the SMAD1 gene expression level was examined, a statistically significant difference was found between the patient and control groups. Patients had decreased SMAD1 expression compared to controls (p˂0.001). We found no significant difference between the patient and control groups in terms of SMAD1 rs1016792 genotype distribution or allele frequency (p > 0.05). There was no difference between genotype distribution and SMAD1 expression levels in the groups. In this study, we showed for the first time that SMAD1 expression is decreased in children with PAH-CHD. These results will be a preliminary step toward understanding the role of SMAD1 in the etiopathogenesis of CHD.
Collapse
Affiliation(s)
- Adnan Selim Kimyon
- Department of Medical Biology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ayşegül Çetinkaya
- Department of Medical Biology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | | | - Nurcan Aras
- Department of Medical Biology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
13
|
Liu Y, Zhao J, Mu X, Deng J, Wu X, He W, Liu Y, Gu R, Han F, Nie X. Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117266. [PMID: 37783408 DOI: 10.1016/j.jep.2023.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centella asiatica (L.) Urban is an ethnobotanical herb. The main bioactive components of Centella asiatica are pentacyclic triterpenoid glycosides, namely asiaticoside and hydroxyasiaticoside. Asiaticoside possess a diverse array of pharmacological properties, such as wound-healing, anti-inflammatory, antioxidant, anti-allergic, antidepressant, anxiolytic, anti-fibrotic, antibacterial, anti-arthritic, anti-tumor, and immunomodulatory activities. AIM OF THE STUDY The purpose of this investigation is to explore potential therapeutic interventions for the delayed healing of wounds in diabetic patients (DW) facilitated by Asiaticoside-Nitric Oxide. To clarify the key molecular mechanism of miRNA-21-5p in DW wound repair and to deepen the understanding of DW disease pathogenesis. MATERIALS AND METHODS Firstly, miRNA microarray technology, bioinformatics, and RT-qPCR were used to analyze DW patients' and normal controls' skin tissue samples. Secondly, in order to investigate the role of miRNA-21-5p, a hyperglycemic model was established using HaCaT cells. Overexpressing as well as interfering HaCaT cell lines were constructed by lentiviral infection to further explore the proliferative and migratory effects of Asiaticoside-Nitric Oxide. The next step was to search for potential target genes of miRNA-21-5p and verify them with dual-luciferase reporter assay. Finally, the expression levels of target genes and proteins were detected through the utilization of RT-qPCR and Western blotting under the influence of Asiaticoside-Nitric Oxide. RESULTS A library of miRNAs and target genes expressed explicitly in DW patients and rats was established. The study confirmed the upregulation of miRNA-21-5p in DW patients and identified its involvement in signaling pathways related to chronic ulcer wound repair. Overexpression of LV-miRNA-21-5p significantly promoted cell proliferation, while treatments of Asiaticoside-Low dose (AC-L) and Asiaticoside-Medium dose (AC-M) enhanced proliferation and migration, particularly when combined with nitroprusside (SNP). Further analysis revealed potential target genes of miRNA-21-5p, such as TGF-β1, SMAD7, and TIMP3. Their interaction with miRNA-21-5p was confirmed through dual luciferase assays. The study found that anti-DW drugs increased the expression of TGF-β1 and SMAD7 while inhibiting TIMP3 expression in a high-glucose environment. CONCLUSIONS The research concluded that miRNA-21-5p plays a crucial role in the delayed healing of diabetic wounds, and that the combination treatment of AC + SNP shows promise in promoting wound healing in DW rats. Target genes, including TGF-β1, SMAD7, and TIMP3, may contribute to the regulatory mechanisms involved in diabetic wound healing. These findings provide valuable insights for developing novel therapeutic approaches for DW.
Collapse
Affiliation(s)
- Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China
| | - Jiufeng Zhao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi, 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563006, China; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
14
|
Lin LC, Liu ZY, Tu B, Song K, Sun H, Zhou Y, Sha JM, Zhang Y, Yang JJ, Zhao JY, Tao H. Epigenetic signatures in cardiac fibrosis: Focusing on noncoding RNA regulators as the gatekeepers of cardiac fibroblast identity. Int J Biol Macromol 2024; 254:127593. [PMID: 37898244 DOI: 10.1016/j.ijbiomac.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Gocer Z, Elek A, Caska H, Bozgeyik I. MicroRNAs and cardiac fibrosis: A comprehensive update on mechanisms and consequences. Pathol Res Pract 2023; 251:154853. [PMID: 37857035 DOI: 10.1016/j.prp.2023.154853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Fibrosis is a pathological wound-healing mechanism that results by the overactivation of fibroblasts. Fibrosis can become obstructive and deleterious during regeneration of various body tissues including cardiac muscle. This ultimately results in the development of cardiac fibrosis, characterized by an excessive buildup of extracellular matrix proteins. Thus, it could lead to arrhythmias and heart failure which creates a leading public health burden worldwide. MiRNAs are small non-coding RNAs with great potential for diagnostic and therapeutic purposes. Mounting evidence indicates that miRNAs are involved in the deregulation of tissue homeostasis during myocardial fibrosis. For instance, miRNAs that are implicated in the regulation of TGF-beta signaling pathway have been reported to be significantly altered in myocardial fibrosis. Accordingly, in this comprehensive review, we discuss and highlight recent available data on the role of miRNAs during myocardial fibrosis, providing valuable insights into the miRNA modulation of cardiac fibrosis and miRNAs targets that can be used in the future therapeutic interventions to cardiac fibrosis.
Collapse
Affiliation(s)
- Zekihan Gocer
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Alperen Elek
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - Halil Caska
- Department of Medical Biology and Genetics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
16
|
Li Z, Song X, Fan Y, Bao Y, Hou H. Physicochemical properties and cell proliferation and adhesive bioactivity of collagen-hyaluronate composite gradient membrane. Front Bioeng Biotechnol 2023; 11:1287359. [PMID: 37954023 PMCID: PMC10634474 DOI: 10.3389/fbioe.2023.1287359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Membrane materials were widely used in guided tissue regeneration (GTR) to prevent fibroblast invasion and form a confined area for preferentially growing of osteoblast. A novel collagen-hyaluronate composite gradient membrane was prepared by Tilapia (Oreochromis mossambicus) skin collagen and sodium hyaluronate for potential GTR applications and their bioactivities were investigated by cellular viability. SEM results indicated the membrane showed a dense outer and a porous inner surface for effectively guiding the growth of bone tissue. Physicochemical and biosafety experiments showed the tensile strength of membrane was 466.57 ± 44.31 KPa and contact angle was 74.11°, and the membrane showed perfect biocompatibility and cytocompatibility as well, which met the requirements of GTR material. Cell morphology revealed that the membrane could facilitate the adherence and proliferation of fibroblast and osteoblast. The results of qRT-PCR and ELISA demonstrated that the membrane could effectively activate TGF-β/Smad pathway in fibroblast, and promote the expressions of TGF-β1, FN1 and VEGF. Remarkably, RUNX2 was stimulated in BMP2 pathway by the membrane to regulate osteoblast differentiation. In summary, the collagen-hyaluronate composite gradient membrane not only fulfills the prerequisites for use as a GTR material but also demonstrates substantial potential for practical applications in the field.
Collapse
Affiliation(s)
- Zhaoxuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xue Song
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Bao
- Institute of Feed Research of Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, China
| |
Collapse
|
17
|
Ma X, Xie Y, Gong Y, Hu C, Qiu K, Yang Y, Shen H, Zhou X, Long C, Lin X. Silibinin Prevents TGFβ-Induced EMT of RPE in Proliferative Vitreoretinopathy by Inhibiting Stat3 and Smad3 Phosphorylation. Invest Ophthalmol Vis Sci 2023; 64:47. [PMID: 37906058 PMCID: PMC10619698 DOI: 10.1167/iovs.64.13.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose The purpose of this study was to investigate the effects of silibinin on epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) and proliferative vitreoretinopathy (PVR) formation, as well as its underlying molecular mechanism. Methods Cellular morphological change and EMT molecular markers were evaluated by using phase contrast imaging, qPCR, and Western blot (WB) to investigate the impact of silibinin on the EMT of ARPE-19 cells. Scratch assay and transwell assay were used to study the effect of silibinin on cell migration. An intravitreally injected RPE-induced rat PVR model was used to assess the effect of silibinin on PVR in vivo. RNA-seq was applied to study the molecular mechanism of silibinin-mediated PVR prevention. Results Silibinin inhibited TGFβ1-induced EMT and migration of RPE in a dose-dependent manner in vitro. Moreover, silibinin prevented proliferative membrane formation in an intravitreal injected RPE-induced rat PVR model. In line with these findings, RNA-seq revealed a global suppression of TGFβ1-induced EMT and migration-related genes by silibinin in RPEs. Mechanistically, silibinin reduced TGFβ1-induced phosphorylation levels of Smad3 and Stat3, and Smad3 nuclear translocation in RPE. Conclusions Silibinin inhibits the EMT of RPE cells in vitro and prevents the formation of PVR membranes in vivo. Mechanistically, silibinin inhibits Smad3 phosphorylation and suppresses Smad3 nuclear translocation through the inhibition of Stat3 phosphorylation. These findings suggest that silibinin may serve as a potential treatment for PVR.
Collapse
Affiliation(s)
- Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yiyu Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chuxuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Kairui Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolai Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Wegner E, Mickan T, Truffel S, Slotina E, Müller L, Wunderlich F, Harper A, Ritz U, Rommens PM, Gercek E, Drees P, Baranowski A. The effect of losartan on the development of post-traumatic joint stiffness in a rat model. Biomed Pharmacother 2023; 166:115291. [PMID: 37557010 DOI: 10.1016/j.biopha.2023.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Post-traumatic joint stiffness (PTJS) is accompanied by a multidimensional disturbance of joint architecture. Pharmacological approaches represent promising alternatives as the traumatic nature of current therapeutic standards may lead to PTJS' progression. Losartan is an auspicious candidate, as it has demonstrated an antifibrotic effect in other organs. Forty-eight Sprague Dawley rats were randomized into equally sized losartan or control groups. After a standardized knee trauma, the joint was immobilized for either 2 weeks (n = 16), 4 weeks (n = 16) or 4 weeks with re-mobilization for an additional 4 weeks (n = 16). Pharmacotherapy with losartan or placebo (30 mg/kg/day) was initiated on the day of trauma and continued for the entire course. Joint contracture was measured alongside histological and molecular biological assessments. There were no significant biomechanical changes in joint contracture over time, comparing short-term (2 weeks) with long-term losartan therapy (4 weeks). However, comparing the formation of PTJS with that of the control, there was a trend toward improvement of joint mobility of 10.5° (p 0.09) under the influence of losartan. During the re-mobilization phase, no significant effect of losartan on range of motion (ROM) was demonstrated. At a cellular level, losartan significantly reduced myofibroblast counts by up to 72 % (4 weeks, p ≤ 0.001) without effecting the capsular configuration. Differences in expression levels of profibrotic factors (TGF-β, CTGF, Il-6) were most pronounced at week 4. The antifibrotic properties of losartan are not prominent enough to completely prevent the development of PTJS after severe joint injury.
Collapse
Affiliation(s)
- Erik Wegner
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Tim Mickan
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Sebastian Truffel
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Ekaterina Slotina
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; Mainz Research School of Translational Biomedicine, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Felix Wunderlich
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Austin Harper
- St. George's University School of Medicine, True Blue, St. George, Grenada
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Erol Gercek
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Philipp Drees
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Andreas Baranowski
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany.
| |
Collapse
|
19
|
Brown S, Nores GDG, Sarker A, Ly C, Li C, Park HJ, Hespe GE, Gardenier J, Kuonqui K, Campbell A, Shin J, Kataru RP, Aras O, Mehrara BJ. Topical captopril: a promising treatment for secondary lymphedema. Transl Res 2023; 257:43-53. [PMID: 36736951 PMCID: PMC10192126 DOI: 10.1016/j.trsl.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-β1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-β1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-β1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriela D G Nores
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ananta Sarker
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Ly
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claire Li
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey E Hespe
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Gardenier
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Kuonqui
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adana Campbell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omer Aras
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
20
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Pei Z, Ji J, Gao Y, Wang H, Wu Y, Yang J, Yang Q, Zhang L. Exercise reduces hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice via its effects against inflammation and oxidative stress. Sci Rep 2023; 13:9134. [PMID: 37277452 DOI: 10.1038/s41598-023-36145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Cardiovascular disease is a high incidence and mortality rate disease worldwide. Exercise training has become an established evidence-based treatment strategy that is beneficial for many cardiovascular diseases. This study aimed to investigate the effects of exercise on hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient (ApoE-/-) mice. Male ApoE-/- mice were randomly divided into the following four groups: normal diet (ND), normal diet + exercise training (ND + E), high-fat diet (HFD), and high-fat diet + exercise training (HFD + E). Exercise training consisted of swimming for 40 min, 5 days/week for 12 weeks. After 12 weeks, histopathological alterations in cardiac tissue and the serum were measured. Furthermore, the NOX4, NRF2, SIRT1, TGF-β, HO-1, collagen III, Smad3, Bax, Bak, Bcl-2, Bcl-xl, IL-1β, IL-6, and IL-18 expression levels were evaluated using immunohistochemistry and western blotting; Results: the serum levels of SIRT1, GSH-Px, and SOD were lower in ApoE-/- HFD mice compared with those in ApoE-/- HFD + E mice. Significant pathological changes were observed in the ApoE-/- HFD + E group compared with those in the ApoE-/- HFD group. Increased levels of oxidative stress, fibrosis, and apoptosis, and decreased antioxidant expression in the ApoE-/- HFD group compared with those in ApoE-/- HFD + E mice. Exercise exerts protective effects against cardiac damage caused by hyperlipidemia.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Jun Ji
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Yanyan Gao
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Heshuang Wang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Yuanyuan Wu
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Jin Yang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Qin Yang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu, China
| | - Li Zhang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China.
| |
Collapse
|
22
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
23
|
Lee JS, Cho HG, Lee JW, Oh EJ, Kim HM, Ko UH, Kang M, Shin JH, Chung HY. Influence of Transforming Growth Factors beta 1 and beta 3 in the Scar Formation Process. J Craniofac Surg 2023; 34:904-909. [PMID: 36730874 DOI: 10.1097/scs.0000000000009087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGF-β) plays an instrumental role in forming scars and keloids. TGF-β isoforms exhibit differential expression, indicating distinct wound healing and scar formation functions. However, the role of TGF-β1 and TGF-β3 in wound healing and scar formation remains unclear. This study aimed to compare the specific roles of TGF-β1 and TGF-β3 in wound healing and scar formation by biomolecular analysis. MATERIALS AND METHODS The study was conducted by cell isolation and culture cells from a total of 20 human samples. Normal human fibroblasts (NHF) were isolated from normal human samples and myofibroblasts from the different scar types, namely hypertrophic (HT) and keloid (K) scars. NHF and cells from the HT, and K scar, each of which were divided into 3 sample groups: the untreated control, TGF-β1 (10 µg/mL)-treated group, and TGF-β3 (10 µg/mL)-treated group. The results of confocal microscopy and fluorescence-activated cell sorting experiments were compared. RESULTS Both the HT and K groups had higher α-smooth muscle actin (α-SMA) expression than the NHF group in the untreated control group. In comparison with the untreated group, NHFs showed a significant increase in α-SMA expression in the TGF-β1-treated group. HT showed a high α-SMA level, which was statistically significant compared with the normal fibroblasts. In the TGF-β3-treated group, α-SMA expression was slightly increased in NHF as compared with the untreated group. TGF-β3 treated HT exhibited a greater reduction in α-SMA expression than in the TGF-β1 treated HT. K, on the other hand, had only a minimal effect on the treatment of TGF-β1 and TGF-β3. CONCLUSIONS The findings suggest that TGF-β3 may play a regulatory role in the wound repair process, which could be useful in the development of scar-reducing therapies for patients with scar-related cosmetic concerns.
Collapse
Affiliation(s)
| | | | | | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University
- Kyungpook National University Bio-Medical Research Institute, Kyungpook National University, Kyungpook National University Hospital, Korea
| |
Collapse
|
24
|
Akoto T, Cai J, Nicholas S, McCord H, Estes AJ, Xu H, Karamichos D, Liu Y. Unravelling the Impact of Cyclic Mechanical Stretch in Keratoconus-A Transcriptomic Profiling Study. Int J Mol Sci 2023; 24:7437. [PMID: 37108600 PMCID: PMC10139219 DOI: 10.3390/ijms24087437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Biomechanical and molecular stresses may contribute to the pathogenesis of keratoconus (KC). We aimed to profile the transcriptomic changes in healthy primary human corneal (HCF) and KC-derived cells (HKC) combined with TGFβ1 treatment and cyclic mechanical stretch (CMS), mimicking the pathophysiological condition in KC. HCFs (n = 4) and HKCs (n = 4) were cultured in flexible-bottom collagen-coated 6-well plates treated with 0, 5, and 10 ng/mL of TGFβ1 with or without 15% CMS (1 cycle/s, 24 h) using a computer-controlled Flexcell FX-6000T Tension system. We used stranded total RNA-Seq to profile expression changes in 48 HCF/HKC samples (100 bp PE, 70-90 million reads per sample), followed by bioinformatics analysis using an established pipeline with Partek Flow software. A multi-factor ANOVA model, including KC, TGFβ1 treatment, and CMS, was used to identify differentially expressed genes (DEGs, |fold change| ≥ 1.5, FDR ≤ 0.1, CPM ≥ 10 in ≥1 sample) in HKCs (n = 24) vs. HCFs (n = 24) and those responsive to TGFβ1 and/or CMS. PANTHER classification system and the DAVID bioinformatics resources were used to identify significantly enriched pathways (FDR ≤ 0.05). Using multi-factorial ANOVA analyses, 479 DEGs were identified in HKCs vs. HCFs including TGFβ1 treatment and CMS as cofactors. Among these DEGs, 199 KC-altered genes were responsive to TGFβ1, thirteen were responsive to CMS, and six were responsive to TGFβ1 and CMS. Pathway analyses using PANTHER and DAVID indicated the enrichment of genes involved in numerous KC-relevant functions, including but not limited to degradation of extracellular matrix, inflammatory response, apoptotic processes, WNT signaling, collagen fibril organization, and cytoskeletal structure organization. TGFβ1-responsive KC DEGs were also enriched in these. CMS-responsive KC-altered genes such as OBSCN, CLU, HDAC5, AK4, ITGA10, and F2RL1 were identified. Some KC-altered genes, such as CLU and F2RL1, were identified to be responsive to both TGFβ1 and CMS. For the first time, our multi-factorial RNA-Seq study has identified many KC-relevant genes and pathways in HKCs with TGFβ1 treatment under CMS, suggesting a potential role of TGFβ1 and biomechanical stretch in KC development.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Hayden McCord
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Desai VG, Azevedo-Pouly A, Vijay V, Phanavanh B, Moland CL, Han T, Revollo J, Aryal B, Rao VA, Fuscoe JC. Potential role of the apelin-APJ pathway in sex-related differential cardiotoxicity induced by doxorubicin in mice. J Appl Toxicol 2023; 43:557-576. [PMID: 36227756 DOI: 10.1002/jat.4405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Preclinical and clinical findings suggest sexual dimorphism in cardiotoxicity induced by a chemotherapeutic drug, doxorubicin (DOX). However, molecular alterations leading to sex-related differential vulnerability of heart to DOX toxicity are not fully explored. In the present study, RNA sequencing in hearts of B6C3F1 mice indicated more differentially expressed genes in males than females (224 vs. 19; ≥1.5-fold, False Discovery Rate [FDR] < 0.05) at 1 week after receiving 24 mg/kg total cumulative DOX dose that induced cardiac lesions only in males. Pathway analysis further revealed probable inactivation of cardiac apelin fibroblast signaling pathway (p = 0.00004) only in DOX-treated male mice that showed ≥1.25-fold downregulation in the transcript and protein levels of the apelin receptor, APJ. In hearts of DOX-treated females, the transcript levels of apelin (1.24-fold) and APJ (1.47-fold) were significantly (p < 0.05) increased compared to saline-treated controls. Sex-related differential DOX effect was also observed on molecular targets downstream of the apelin-APJ pathway in cardiac fibroblasts and cardiomyocytes. In cardiac fibroblasts, upregulation of Tgf-β2, Ctgf, Sphk1, Serpine1, and Timp1 (fibrosis; FDR < 0.05) in DOX-treated males and upregulation of only Tgf-β2 and Timp1 (p < 0.05) in females suggested a greater DOX toxicity in hearts of males than females. Additionally, Ryr2 and Serca2 (calcium handling; FDR < 0.05) were downregulated in conjunction with 1.35-fold upregulation of Casp12 (sarcoplasmic reticulum-mediated apoptosis; FDR < 0.05) in DOX-treated male mice. Drug effect on the transcript level of these genes was less severe in female hearts. Collectively, these data suggest a likely role of the apelin-APJ axis in sex-related differential DOX-induced cardiotoxicity in our mouse model.
Collapse
Affiliation(s)
- Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ana Azevedo-Pouly
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bounleut Phanavanh
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carrie L Moland
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Baikuntha Aryal
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - V Ashutosh Rao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
26
|
Miao Y, Wang Y, Bi Z, Huang K, Gao J, Li X, Li S, Wei L, Zhou H, Yang C. Antifibrotic mechanism of avitinib in bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 2023; 23:94. [PMID: 36949426 PMCID: PMC10031887 DOI: 10.1186/s12890-023-02385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by alveolar epithelial cell injury and lung fibroblast overactivation. At present, only two drugs are approved by the FDA for the treatment of IPF, including the synthetic pyridinone drug, pirfenidone, and the tyrosine kinase inhibitor, nintedanib. Avitinib (AVB) is a novel oral and potent third-generation tyrosine kinase inhibitor for treating non-small cell lung cancer (NSCLC). However, the role of avitinib in pulmonary fibrosis has not yet been established. In the present study, we used in vivo and in vitro models to evaluate the role of avitinib in pulmonary fibrosis. In vivo experiments first verified that avitinib significantly alleviated bleomycin-induced pulmonary fibrosis in mice. Further in vitro molecular studies indicated that avitinib inhibited myofibroblast activation, migration and extracellular matrix (ECM) production in NIH-3T3 cells, mainly by inhibiting the TGF-β1/Smad3 signalling pathways. The cellular experiments also indicated that avitinib improved alveolar epithelial cell injury in A549 cells. In conclusion, the present findings demonstrated that avitinib attenuates bleomycin-induced pulmonary fibrosis in mice by inhibiting alveolar epithelial cell injury and myofibroblast activation.
Collapse
Affiliation(s)
- Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Kai Huang
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Luqing Wei
- Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin, 300400, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
27
|
CD73-Positive Cell Spheroid Transplantation Attenuates Colonic Atrophy. Pharmaceutics 2023; 15:pharmaceutics15030845. [PMID: 36986706 PMCID: PMC10051511 DOI: 10.3390/pharmaceutics15030845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The incidence of inflammatory bowel diseases (IBD) is increasing worldwide. Mesenchymal stem/stromal cells (MSCs) have immunomodulatory functions and are a promising source for cell transplantation therapy for IBD. However, owing to their heterogeneous nature, their therapeutic efficacy in colitis is controversial and depends on the delivery route and form of transplanted cells. Cluster of differentiation (CD) 73 is widely expressed in MSCs and used to obtain a homogeneous MSC population. Herein, we determined the optimal method for MSC transplantation using CD73+ cells in a colitis model. mRNA sequencing analysis showed that CD73+ cells exhibited a downregulation of inflammatory gene expression and an upregulation of extracellular matrix-related gene expression. Furthermore, three-dimensional CD73+ cell spheroids showed enhanced engraftment at the injured site through the enteral route, facilitated extracellular matrix remodeling, and downregulated inflammatory gene expression in fibroblasts, leading to the attenuation of colonic atrophy. Therefore, the interaction between intestinal fibroblasts and exogenous MSCs via tissue remodeling is one mechanism that can be exploited for colitis prevention. Our results highlight that the transplantation of homogeneous cell populations with well-characterized properties is beneficial for IBD treatment.
Collapse
|
28
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
30
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
31
|
Chen S, Wei Y, Li S, Miao Y, Gu J, Cui Y, Liu Z, Liang J, Wei L, Li X, Zhou H, Yang C. Zanubrutinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β1 signaling pathway. Int Immunopharmacol 2022; 113:109316. [DOI: 10.1016/j.intimp.2022.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
32
|
Wang Y, Yodgee J, Del Borgo M, Spizzo I, Nguyen L, Aguilar MI, Denton KM, Samuel CS, Widdop RE. The Novel AT2 Receptor Agonist β-Pro7-AngIII Exerts Cardiac and Renal Anti-Fibrotic and Anti-Inflammatory Effects in High Salt-Fed Mice. Int J Mol Sci 2022; 23:ijms232214039. [PMID: 36430518 PMCID: PMC9696912 DOI: 10.3390/ijms232214039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
A high salt (HS) diet is associated with an increased risk for cardiovascular diseases (CVDs) and fibrosis is a key contributor to the organ dysfunction involved in CVDs. The activation of the renin angiotensin type 2 receptor (AT2R) has been considered as organ protective in many CVDs. However, there are limited AT2R-selective agonists available. Our first reported β-substituted angiotensin III peptide, β-Pro7-AngIII, showed high selectivity for the AT2R. In the current study, we examine the potential anti-fibrotic and anti-inflammatory effects of this novel AT2R-selective peptide on HS-induced organ damage. FVB/N mice fed with a 5% HS diet for 8 weeks developed cardiac and renal fibrosis and inflammation, which were associated with increased TGF-β1 levels in heart, kidney and plasma. Four weeks' treatment (from weeks 5-8) with β-Pro7-AngIII inhibited the HS-induced cardiac and renal fibrosis and inflammation. These protective effects were accompanied by reduced local and systemic TGF-β1 as well as reduced cardiac myofibroblast differentiation. Importantly, the anti-fibrotic and anti-inflammatory effects caused by β-Pro7-AngIII were attenuated by the AT2R antagonist PD123319. These results demonstrate, for the first time, the cardio- and reno-protective roles of the AT2R-selective β-Pro7-AngIII, highlighting it as an important therapeutic that can target the AT2R to treat end-organ damage.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Jonathan Yodgee
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Mark Del Borgo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Levi Nguyen
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kate M. Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
33
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
34
|
Wang Y, Zhu J, Chen J, Xu R, Groth T, Wan H, Zhou G. The Signaling Pathways Induced by Exosomes in Promoting Diabetic Wound Healing: A Mini-Review. Curr Issues Mol Biol 2022; 44:4960-4976. [PMID: 36286052 PMCID: PMC9600352 DOI: 10.3390/cimb44100337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired healing of diabetic wounds harms patients' quality of life and even leads to disability and death, which is an urgent issue to be solved clinically. Despite the great progress that has been achieved, it remains a worldwide challenge to develop effective therapeutic treatments for diabetic wounds. Recently, exosomes have attracted special attention because they can be involved in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and other processes. Meanwhile, exosomes have been proven to hold great potential in the treatment of diabetic wounds. Mechanistic studies of exosomes based on signaling pathways could not only help to uncover the mechanisms by which exosomes promote diabetic wound healing but could also provide a theoretical basis for the clinical application of exosomes. Herein, our mini-review aims to summarize the progress of research on the use of various exosomes derived from different cell types to promote diabetic wound healing, with a focus on the classical signaling pathways, including PI3K/Akt, Wnt, NF-κB, MAPK, Notch, Nrf2, HIF-1α/VEGF and TGF-β/Smad. The results show that exosomes could regulate these signaling pathways to down-regulate inflammation, reduce oxidative stress, increase angiogenesis, promote fibroblast proliferation, induce re-epithelization and inhibit scar formation, making exosomes attractive candidates for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Jiayan Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- Correspondence: (H.W.); (G.Z.)
| | - Guoying Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- Correspondence: (H.W.); (G.Z.)
| |
Collapse
|
35
|
Sehgal M, Jakhete SM, Manekar AG, Sasikumar S. Specific epigenetic regulators serve as potential therapeutic targets in idiopathic pulmonary fibrosis. Heliyon 2022; 8:e09773. [PMID: 36061031 PMCID: PMC9434059 DOI: 10.1016/j.heliyon.2022.e09773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a disorder observed mostly in older human beings, is characterised by chronic and progressive lung scarring leading to an irreversible decline in lung function. This health condition has a dismal prognosis and the currently available drugs only delay but fail to reverse the progression of lung damage. Consequently, it becomes imperative to discover improved therapeutic compounds and their cellular targets to cure IPF. In this regard, a number of recent studies have targeted the epigenetic regulation by histone deacetylases (HDACs) to develop and categorise antifibrotic drugs for lungs. Therefore, this review focuses on how aberrant expression or activity of Classes I, II and III HDACs alter TGF-β signalling to promote events such as epithelial-mesenchymal transition, differentiation of activated fibroblasts into myofibroblasts, and excess deposition of the extracellular matrix to propel lung fibrosis. Further, this study describes how certain chemical compounds or dietary changes modulate dysregulated HDACs to attenuate five faulty TGF-β-dependent profibrotic processes, both in animal models and cell lines replicating IPF, thereby identifying promising means to treat this lung disorder.
Collapse
Affiliation(s)
- Manas Sehgal
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Sharayu Manish Jakhete
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Amruta Ganesh Manekar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| | - Satish Sasikumar
- Genetics and Molecular Biology Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, PIN - 411033, India
| |
Collapse
|
36
|
Bell TJ, Nagel DJ, Woeller CF, Kottmann RM. Ogerin mediated inhibition of TGF-β(1) induced myofibroblast differentiation is potentiated by acidic pH. PLoS One 2022; 17:e0271608. [PMID: 35901086 PMCID: PMC9333254 DOI: 10.1371/journal.pone.0271608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023] Open
Abstract
Transforming growth factor beta (TGF-β) induced myofibroblast differentiation is central to the pathological scarring observed in Idiopathic Pulmonary Fibrosis (IPF) and other fibrotic diseases. Our lab has recently identified expression of GPR68 (Ovarian Cancer Gene Receptor 1, OGR1), a pH sensing G-protein coupled receptor, as a negative regulator of TGF-β induced profibrotic effects in primary human lung fibroblasts (PHLFs). We therefore hypothesized that small molecule activators of GPR68 would inhibit myofibroblast differentiation. Ogerin is a positive allosteric modulator (PAM) of GPR68, inducing a leftward shift of the dose response curve to proton induced signaling. Using PHLFs derived from patients with both non-fibrotic and IPF diagnoses, we show that Ogerin inhibits, and partially reverses TGF-β induced myofibroblast differentiation in a dose dependent manner. This occurs at the transcriptional level without inhibition of canonical TGF-β induced SMAD signaling. Ogerin induces PKA dependent CREB phosphorylation, a marker of Gαs pathway activation. The ability of Ogerin to inhibit both basal and TGF-β induced collagen gene transcription, and induction of Gαs signaling is enhanced at an acidic pH (pH 6.8). Similar findings were also found using fibroblasts derived from dermal, intestinal, and orbital tissue. The biological role of GPR68 in different tissues, cell types, and disease states is an evolving and emerging field. This work adds to the understanding of Gαs coupled GPCRs in fibrotic lung disease, the ability to harness the pH sensing properties of GPR68, and conserved mechanisms of fibrosis across different organ systems.
Collapse
Affiliation(s)
- Tyler J. Bell
- Department of Environmental Medicine Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - David J. Nagel
- Department of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - R. Mathew Kottmann
- Department of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ding Q, Yue J, Xue LF, Xu YX, Xiao WL. Inhibition of p38 mitogen-activated protein kinases may attenuate scar proliferation after cleft lip surgery in rabbits via Smads signaling pathway. Eur J Med Res 2022; 27:126. [PMID: 35858881 PMCID: PMC9301840 DOI: 10.1186/s40001-022-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Cleft lip repair surgery always results in visible scarring. It has been proved that scar formation can be reduced by inhibiting the p38 mitogen-activated protein kinases (p38MAPKs) signaling pathway. However, the interaction between p38MAPK and Smads in scar formation is still controversial. Methods This study was designed to investigate whether inhibition of p38MAPK reduces postoperative scar formation of cleft lips on rabbits via the Smads signaling pathway. Scar models in rabbits after cleft lip surgery were created and their fibroblasts were extracted. Then the expression of p38MAPK was disturbed by adenovirus in vitro and Vivo. The scar thickness was measured and scar tissues were excised for Sirius red staining and immunohistochemistry to detect the expression of type I collagen (col I), type III collagen (col III), and α-smooth muscle actin (α-SMA). The underlying mechanisms of p38MAPK knockdown on the extracellular matrix and Smad signaling pathway were invested in vitro using the EdU assay, Western blot, RT PCR, and immunofluorescence. Results p38MAPK knockdown suppresses the expression of p-smad3 and p-smad2 in fibroblasts, modulating the expression of its target genes, such as α-SMA, col I, and col III. When Ad-P38MAPK-1 was injected into lip scar, it reduced the expression of scar-related genes and scar thickness when compared to the negative control groups. Conclusions In rabbits, inhibiting p38MAPK expression prevents scar proliferation through inhibiting the Smad signaling pathway after cleft lip surgery.
Collapse
Affiliation(s)
- Qian Ding
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Jin Yue
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ling-Fa Xue
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yao-Xiang Xu
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wen-Lin Xiao
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
38
|
Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung Fibrosis and Fibrosis in the Lungs: Is It All about Myofibroblasts? Biomedicines 2022; 10:biomedicines10061423. [PMID: 35740444 PMCID: PMC9220162 DOI: 10.3390/biomedicines10061423] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects the interstitial space, there are many fibrotic events that have high and dangerous consequences for the lungs. Asthma, chronic obstructive pulmonary disease (COPD), excessive allergies, clearance of infection or COVID-19, all are frequent diseases that show lung fibrosis. In this review, we describe the different kinds of fibrosis and analyse the main types of cells involved-myofibroblasts and other cells, like macrophages-and review the main fibrotic mechanisms. Finally, we analyse present treatments for fibrosis in the lungs and highlight potential targets for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Faculty of Medicine-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | | | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
39
|
Liu X, Song YJ, Chen X, Huang MY, Zhao CX, Zhou X, Zhou X. Asiaticoside Combined With Carbon Ion Implantation to Improve the Biocompatibility of Silicone Rubber and to Reduce the Risk of Capsule Contracture. Front Bioeng Biotechnol 2022; 10:810244. [PMID: 35646845 PMCID: PMC9133697 DOI: 10.3389/fbioe.2022.810244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Capsular contracture caused by silicone rubber is a critical issue in plastic surgery that urgently needs to be solved. Studies have shown that carbon ion implant in silicone rubber (carbon silicone rubber, C-SR) can significantly improve the capsular structure, but the effect of this improvement only appear 2months or later. In this study, asiaticoside combined with carbon silicone rubber was used to explore the changes in the capsule to provide a reference for the treatment of capsule contracture. Human fibroblasts (HFF-1) were used for in vitro experiments. The combined effect of asiaticoside and carbon silicone rubber on cell proliferation was determined by the CCK8 method, cell migration changes were measured by Transwell assays, cell cycle changes were measured by flow cytometry, and the expression levels of fibroblast transformation markers (vimentin and α-SMA), collagen (Col-1A1) and TGF-β/Smad signaling pathway-related proteins (TGF-β1, TβRI, TβRII and Smad2/3) were detected by immunofluorescence. In vivo experiments were carried out by subcutaneous implantation of the material in SD rats, and asiaticoside was oral administered simultaneously. WB and ELISA were used to detect changes in the expression of TGF-β/Smad signaling pathway-related proteins. TGF-β/Smad signaling pathway proteins were then detected and confirmed by HE, Masson and immunohistochemical staining. The results shown that asiaticoside combined with carbon ion implantation inhibited the viability, proliferation and migration of fibroblasts on silicone rubber. In vitro immunofluorescence showed that the secretion levels of α-SMA and Col-1A1 were significantly decreased, the transformation of fibroblasts into myofibroblasts was weakened, and the TGF-β/Smad signaling pathway was inhibited. In vivo experimental results showed that asiaticoside combined with carbon silicone rubber inhibited TGF-β1 secretion and inhibited the TGF-β/Smad signaling pathway, reducing the thickness of the capsule and collagen deposition. These results imply that carbon silicone rubber combined with asiaticoside can regulate the viability, proliferation and migration of fibroblasts by inhibiting the TGF-β/Smad signaling pathway and reduce capsule thickness and collagen deposition, which greatly reduces the incidence of capsule contracture.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ya-Jun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Meng-Ya Huang
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chen-Xi Zhao
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xun Zhou
- Department of Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Xun Zhou, ; Xin Zhou,
| | - Xin Zhou
- Department of Pathology, Bishan Hospital, The Chongqing Medical University, Chongqing, China
- *Correspondence: Xun Zhou, ; Xin Zhou,
| |
Collapse
|
40
|
Effects of the Higenamine, a Potent Compound from Aconitum, on UVB-Induced Photoaging in Hairless Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9116642. [PMID: 35529934 PMCID: PMC9068300 DOI: 10.1155/2022/9116642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023]
Abstract
Aim Higenamine [1-[(4-hydroxyphenyl) methyl]-1, 2, 3, 4-tetrahydroisoquinoline-6, 7-diol], a potent cardiotonic compound from Aconitum, contributes to vascular relaxation and bronchodilation. However, the effects and mechanisms of action of higenamine on skin aging remain poorly understood. In this study, the effects of higenamine on UVB-induced photoaging were examined in the hairless mouse model. Methods The dorsal skin of hairless mice (CrlOri : SKH1) was exposed to chronic UVB irradiation (100–300 mJ/cm2 for 6 weeks), with subsequent administration of higenamine (1–20 mg/kg, p.o.) for 2 weeks. TGF-β, Smad3 DNA-binding phosphorylation, and COL1A1 levels were analyzed by immunohistochemistry, and histological analysis of the skin was performed via H&E and MT staining. Results Higenamine increased TGF-β, Smad3 DNA-binding phosphorylation, and COL1A1 expression in primary human fibroblast cells and mouse skin. Higenamine suppressed UVB-induced photoaging via skin recovery, improved epidermal thickness, and prevented Smad3, DNA-binding phosphorylation, and COL1A1 depletion via TGF-β signaling. Conclusion Higenamine enhances collagen production in the skin through TGF-β/Smad3 signaling and potentially suppresses UVB-induced skin aging.
Collapse
|
41
|
Han X, Zhang Y, Zhang X, Ji H, Wang W, Qiao O, Li X, Wang J, Liu C, Huang L, Gao W. Targeting adipokines: A new strategy for the treatment of myocardial fibrosis. Pharmacol Res 2022; 181:106257. [DOI: 10.1016/j.phrs.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
|
42
|
A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022; 23:ijms23084302. [PMID: 35457114 PMCID: PMC9027193 DOI: 10.3390/ijms23084302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.
Collapse
|
43
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
44
|
Shin MJ, Im SH, Kim W, Ahn H, Shin TJ, Chung HJ, Yoon DK. Recyclable Periodic Nanostructure Formed by Sublimable Liquid Crystals for Robust Cell Alignment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3765-3774. [PMID: 35302783 DOI: 10.1021/acs.langmuir.1c03359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate a facile method to fabricate a recyclable cell-alignment scaffold using nanogrooves based on sublimable liquid crystal (LC) material. Randomly and uniaxially arranged smectic LC structures are obtained, followed by sublimation and recondensation processes, which directly produce periodic nanogrooves with dimensions of a couple of hundreds of nanometers. After treatment with osmium tetroxide (OsO4), the nanogroove can serve as a scaffold to efficiently induce directed cell growth without causing cytotoxicity, and it can be used repeatedly. Together, various cell types are applied to the nanogroove, proving the scaffold's broad applicability. Depending on the nanotopography of the LC structures, cells exhibit different morphologies and gene expression patterns, compared to cells on standard glass substrates, according to microscopic observation and qPCR. Furthermore, cell sheets can be formed, which consist of oriented cells that can be repeatedly formed and transferred to other substrates, while maintaining its organization. We believe that our cell-aligning scaffold may pave the way for the soft material field to bioengineering, which can involve fundamentals in cell behavior and function, as well as applications for regenerative medicine.
Collapse
Affiliation(s)
- Min Jeong Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wantae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, orea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, orea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
45
|
Chattopadhyay S, Teixeira LBC, Kiessling LL, McAnulty JF, Raines RT. Bifunctional Peptide that Anneals to Damaged Collagen and Clusters TGF-β Receptors Enhances Wound Healing. ACS Chem Biol 2022; 17:314-321. [PMID: 35084170 DOI: 10.1021/acschembio.1c00745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor-β (TGF-β) plays important roles in wound healing. The activity of TGF-β is initiated upon the binding of the growth factor to the extracellular domains of its receptors. We sought to facilitate the activation by clustering these extracellular domains. To do so, we used a known peptide that binds to TGF-β receptors without diminishing their affinity for TGF-β. We conjugated this peptide to a collagen-mimetic peptide that can anneal to the damaged collagen in a wound bed. We find that the conjugate enhances collagen deposition and wound closure in mice in a manner consistent with the clustering of TGF-β receptors. This strategy provides a means to upregulate the TGF-β signaling pathway without adding exogenous TGF-β and could inspire means to treat severe wounds.
Collapse
Affiliation(s)
- Sayani Chattopadhyay
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan F. McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Liu L, Wang W, Hong W, Jin Y, Wang L, Liu S, Wang A, Liu X. Photothermal 2D Nanosheets Combined With Astragaloside IV for Antibacterial Properties and Promoting Angiogenesis to Treat Infected Wounds. Front Bioeng Biotechnol 2022; 9:826011. [PMID: 35223823 PMCID: PMC8864217 DOI: 10.3389/fbioe.2021.826011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection, inflammatory disorder, and poor angiogenesis of tissue in chronic wounds are the main reasons why wounds are difficult to heal. In this study, a novel MSN-PEG@AS/BP nano-spray was designed to solve these issues. Astragaloside IV (AS) was loaded in mesoporous silica nanoparticles (MSN) to enhance angiogenesis and regulate inflammation, and the two-dimensional (2D) nanosheet black phosphorus (BP) was used to kill bacteria through a photothermal effect. Under thermal decomposition, the covalent bond of polyethylene glycol (PEG) was broken, releasing AS to promote the proliferation of fibroblasts, the formation of blood vessels, and the resolution of inflammation. AS can promote the polarization of the anti-inflammatory (M2) macrophage phenotype to enhance the deposition of extracellular matrix and the formation of blood vessels. Besides, BP showed a significant photothermal effect and nearly 99.58% of Escherichia coli and 99.13% of Staphylococcus aureus were killed in an antibacterial study. This nano-spray would be a novel therapeutic agent for infected wound treatment.
Collapse
Affiliation(s)
- Lichang Liu
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Wenfeng Wang
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Weihong Hong
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Yuyan Jin
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Lichun Wang
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Sujun Liu
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Ailin Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Xusheng Liu,
| |
Collapse
|
47
|
Zhou X, Guo Y, Yang K, Liu P, Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114662. [PMID: 34555452 DOI: 10.1016/j.jep.2021.114662] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The diabetic wound is one of the common chronic complications of diabetes, which seriously affects patients' quality of life and even causes disability and death. Traditional Chinese medicine (TCM) is a unique and precious resource in China, which has a good curative effect and safety. At present, it has been found that Chinese herbal compounds and effective active ingredients can effectively promote diabetic wound healing, and its mechanism needs to be further studied. Signaling pathways are involved in the pathogenesis and progression of diabetic wounds, which is one of the main targets for the pathologic mechanism of diabetic wounds and the pharmacological research of therapeutic drugs. AIM OF THE REVIEW This study has been carried out to reveal the classical signaling pathways and potential targets by the action of TCM on diabetic wound healing and provides evidence for its clinical efficacy. MATERIALS AND METHODS "diabetic wound", "diabetic foot ulcer", "traditional Chinese medicine", "natural plant" and "medicinal plant", were selected as the main keywords, and various online search engines, such as PubMed, Web of Science, CNKI and other publication resources, were used for searching literature. RESULTS The results showed that TCM could regulate the signaling pathways to promote diabetic wound healing, such as Wnt, Nrf2/ARE, MAPK, PI3K/Akt, NF-κB, Notch, TGF-β/Smad, HIF-1α/VEGF, which maintaining inflammatory interaction balance, inhibiting oxidative stress and regulating abnormal glucose metabolism. CONCLUSION The effect of TCM on diabetic wound healing was reflected in multiple levels and multiple pathways. It is envisaged to carry out further research from precision-targeted therapy, provide ideas for screening the core target of TCM in treating diabetic wounds and create modern innovative drugs based on this target.
Collapse
Affiliation(s)
- Xin Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanling Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Kun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Peng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
48
|
Mohamed R, Shajimoon A, Afroz R, Gabr M, Thomas WG, Little PJ, Kamato D. Akt acts as a switch for GPCR transactivation of the TGF-β receptor type 1. FEBS J 2021; 289:2642-2656. [PMID: 34826189 DOI: 10.1111/febs.16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/12/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor (TGF)-β signalling commences with the engagement of TGF-β ligand to cell surface TGF-β receptors (TGFBR) stimulating Smad2 carboxyl-terminal phosphorylation (phospho-Smad2C) and downstream biological responses. In several cell models, G protein-coupled receptors (GPCRs) transactivate the TGF-β receptors type-1 (TGFBR1) leading to phospho-Smad2C, however, we have recently published that in keratinocytes thrombin did not transactivate the TGFBR1. The bulk of TGFBRs reside in the cytosol and in response to protein kinase B (Akt phosphorylation) can translocate to the cell surface increasing the cell's responsiveness to TGF-β. In this study, we investigate the role of Akt in GPCR transactivation of the TGFBR1. We demonstrate that angiotensin II and thrombin do not phosphorylate Smad2C in human vascular smooth muscle cells and in keratinocytes respectively. We used Akt agonist, SC79 to sensitise the cells to Akt and observed that Ang II and thrombin phosphorylate Smad2C via Akt/AS160-dependent pathways. We show that SC79 rapidly translocates TGFBRs to the cell surface thus increasing the cell's response to the GPCR agonist. These findings highlight novel mechanistic insight for the role of Akt in GPCR transactivation of the TGFBR1.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Aravindra Shajimoon
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Mai Gabr
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| |
Collapse
|
49
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
50
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|