1
|
Han AR, Ryu HW, Jin CH. Silybin Derivatives Produced by γ-Irradiation and Their Tyrosinase Inhibitory Activities. Molecules 2024; 29:5332. [PMID: 39598721 PMCID: PMC11596366 DOI: 10.3390/molecules29225332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Silybin, which belongs to the flavonolignan group, is the major component of the fruit extract of Silybum marianum (common name: milk thistle). Silybin is a medicinal compound with hepatoprotective, antioxidant, and anticancer properties. In this study, silybin derivatives were produced through γ-radiolysis, and their tyrosinase inhibitory activities were evaluated to explore the enhanced activities of silybin derivatives compared to silybin (1). Isosilandrin (2) and 2,3-dehydrosilybin (3) were obtained from a silybin sample irradiated at 300 kGy. The optimal dose showed significant changes in radiolysis product content. Compounds 2 and 3 exhibited an IC50 of 274.6 and 109.5 μM, respectively, which are more potent than that of 1 (IC50 > 500 μM). In addition, a molecular docking simulation revealed the binding affinity of these compounds to tyrosinase and their mechanisms of inhibition. Thus, γ-irradiation is an effective method for structural modification of silybin. We also demonstrated that 2,3-dehydrosilybin is a potential tyrosinase inhibitor.
Collapse
Affiliation(s)
- Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeonbuk-do, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju-si 28116, Chungbuk-do, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeonbuk-do, Republic of Korea
| |
Collapse
|
2
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
3
|
Villegas-Aguilar MDC, Sánchez-Marzo N, Fernández-Ochoa Á, Del Río C, Montaner J, Micol V, Herranz-López M, Barrajón-Catalán E, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions against Different Therapeutic Targets. Antioxidants (Basel) 2024; 13:217. [PMID: 38397815 PMCID: PMC10886104 DOI: 10.3390/antiox13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant extracts rich in phenolic compounds have been reported to exert different bioactive properties. Despite the fact that there are plant extracts with completely different phenolic compositions, many of them have been reported to have similar beneficial properties. Thus, the structure-bioactivity relationship mechanisms are not yet known in detail for specific classes of phenolic compounds. In this context, this work aims to demonstrate the relationship of extracts with different phenolic compositions versus different bioactive targets. For this purpose, five plant matrices (Theobroma cacao, Hibiscus sabdariffa, Silybum marianum, Lippia citriodora, and Olea europaea) were selected to cover different phenolic compositions, which were confirmed by the phytochemical characterization analysis performed by HPLC-ESI-qTOF-MS. The bioactive targets evaluated were the antioxidant potential, the free radical scavenging potential, and the inhibitory capacity of different enzymes involved in inflammatory processes, skin aging, and neuroprotection. The results showed that despite the different phenolic compositions of the five matrices, they all showed a bioactive positive effect in most of the evaluated assays. In particular, matrices with very different phenolic contents, such as T. cacao and S. marianum, exerted a similar inhibitory power in enzymes involved in inflammatory processes and skin aging. It should also be noted that H. sabdariffa and T. cacao extracts had a low phenolic content but nevertheless stood out for their bioactive antioxidant and anti-radical capacity. Hence, this research highlights the shared bioactive properties among phenolic compounds found in diverse matrices. The abundance of different phenolic compound families highlights their elevated bioactivity against diverse biological targets.
Collapse
Affiliation(s)
| | - Noelia Sánchez-Marzo
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Carmen Del Río
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (C.D.R.); (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (C.D.R.); (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
4
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
5
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
6
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
7
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Hormesis: Wound healing and keratinocytes. Pharmacol Res 2022; 183:106393. [PMID: 35961478 DOI: 10.1016/j.phrs.2022.106393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
Hormetic dose responses (i.e., a biphasic dose/concentration response characterized by a low dose stimulation and a high dose inhibition) are shown herein to be commonly reported in the dermal wound healing process, with the particular focus on cell viability, proliferation, and migration of human keratinocytes in in vitro studies. Hormetic responses are induced by a wide range of substances, including endogenous agents, numerous drug and nanoparticle preparations and especially plant derived extracts, including many well-known dietary supplements as well as physical stressor agents, such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings suggest that the concept of hormesis plays a fundamental role in wound healing, with important potential implications for agent screening and evaluation, as well as clinical strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology; School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
8
|
Bajgar R, Moukova A, Chalupnikova N, Kolarova H. Differences in the Effects of Broad-Band UVA and Narrow-Band UVB on Epidermal Keratinocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312480. [PMID: 34886205 PMCID: PMC8656598 DOI: 10.3390/ijerph182312480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Background: The sun is a natural source of UV radiation. It can be divided into three bands, UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm), where the radiation up to 290 nm is very effectively eliminated by the stratospheric ozone. Although UV radiation can have a beneficial effect on our organism and can be used in the treatment of several skin diseases, it must primarily be considered harmful. Methods: In the presented work, we focused on the study of the longer-wavelength UV components (UVA and UVB) on the human epidermal keratinocyte line HaCaT. As UVA and UVB radiation sources, we used commercially available UVA and UVB tubes from Philips (Philips, Amsterdam, The Netherlands), which are commonly employed in photochemotherapy. We compared their effects on cell viability and proliferation, changes in ROS production, mitochondrial function and the degree of DNA damage. Results: Our results revealed that UVB irradiation, even with significantly lower irradiance, caused greater ROS production, depolarization of mitochondrial membrane potential and greater DNA fragmentation, along with significantly lowering cell viability and proliferative capacity. Conclusions: These results confirm that UV radiation causes severe damages in skin cells, and they need to be protected from it, or it needs to be applied more cautiously, especially if the component used is UVB.
Collapse
Affiliation(s)
- Robert Bajgar
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic; (A.M.); (N.C.); (H.K.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-585-632-106
| | - Anna Moukova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic; (A.M.); (N.C.); (H.K.)
| | - Nela Chalupnikova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic; (A.M.); (N.C.); (H.K.)
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic; (A.M.); (N.C.); (H.K.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
9
|
Xian D, Guo M, Xu J, Yang Y, Zhao Y, Zhong J. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Rep 2021; 26:134-146. [PMID: 34355664 PMCID: PMC8354022 DOI: 10.1080/13510002.2021.1962094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Skin, as a crucial external defense organ, is more vulnerable to oxidative stress (OS) insult, reactive oxygen species (ROS)-mediated OS in particular. OS results from a redox imbalance caused by various extrinsic stimuli and occurs once the oxidants production overwhelming the antioxidants capacity, through mediating in DNA damage, lipid peroxidation (LPO), protein oxidation and a serial of signaling pathways activation/inactivation, thereby offering favorable conditions for the occurrence and development of numerous diseases especially some dermatoses, e.g. psoriasis, vitiligo, skin photodamage, skin cancer, systemic sclerosis (SSc), chloasma, atopic dermatitis (AD), pemphigus, etc. Targeting OS molecular mechanism, a variety of anti-OS agents emerge, in which flavonoids, natural plant extracts, stand out. OBJECTIVES To discuss the possible mechanisms of OS mediating in dermatoses and summarize the properties of flavonoids as well as their applications in OS-related skin disorders. METHODS Published papers on flavonoids and OS-related skin diseases were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS It has been confirmed that flavonoids, belonging to polyphenols, are a class of plant secondary metabolites widely distributed in various plants and possess diverse bioactivities especially their potent antioxidant capacity. Moreover, flavonoids benefit to suppress OS via eliminating free radicals and mediating the corresponding signals, further excellently working in the prevention and management of OS-related skin diseases. CONCLUSION Flavonoids have the potential therapeutic effects on oxidative stress-related dermatoses. However, more studies on specific mechanism as well as the dosage of flavonoids are needed in future.
Collapse
Affiliation(s)
- Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, People's Republic of China
| | - Menglu Guo
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jixiang Xu
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yang Yang
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yangmeng Zhao
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jianqiao Zhong
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
10
|
Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo. Antioxidants (Basel) 2021; 10:antiox10050679. [PMID: 33925336 PMCID: PMC8146032 DOI: 10.3390/antiox10050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.
Collapse
|
11
|
Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11644-11664. [PMID: 33045827 DOI: 10.1021/acs.jafc.0c04791] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silybum marianum (SM), a well-known plant used as both a medicine and a food, has been widely used to treat various diseases, especially hepatic diseases. The seeds and fruits of SM contain a flavonolignan complex called silymarin, the active compounds of which include silybin, isosilybin, silychristin, dihydrosilybin, silydianin, and so on. In this review, we thoroughly summarize high-quality publications related to the pharmacological effects and underlying mechanisms of SM. SM has antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, neuroprotective, skin-protective, antidiabetic, and other effects. Importantly, SM also counteracts the toxicities of antibiotics, metals, and pesticides. The diverse pharmacological activities of SM provide scientific evidence supporting its use in both humans and animals. Multiple signaling pathways associated with oxidative stress and inflammation are the common molecular targets of SM. Moreover, the flavonolignans of SM are potential agonists of PPARγ and ABCA1, PTP1B inhibitors, and metal chelators. At the end of the review, the potential and perspectives of SM are discussed, and these insights are expected to facilitate the application of SM and the discovery and development of new drugs. We conclude that SM is an interesting dietary medicine for health enhancement and drug discovery and warrants further investigation.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
12
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
13
|
Takada-Takatori Y, Tomii Y, Takemasa S, Takeda Y, Izumi Y, Akaike A, Tsuchida K, Kume T. Protective Effects of 2′,3′-Dihydroxy-4′,6′-dimethoxychalcone Derived from Green Perilla Leaves against UV Radiation-Induced Cell Injury in Human Cultured Keratinocytes. Biol Pharm Bull 2019; 42:1936-1941. [DOI: 10.1248/bpb.b19-00618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuri Tomii
- Faculty of Pharmaceutical Sciences, Doshisha Women's College
| | - Shota Takemasa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuka Takeda
- Faculty of Pharmaceutical Sciences, Doshisha Women's College
| | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
- Laboratory of Pharmacology, Kobe Pharmaceutical University
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
- Department of Pharmacology, Graduate School of Medicine, Wakayama Medical University
| | | | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
- Department of Applied Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
14
|
A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch Dermatol Res 2019; 311:477-490. [PMID: 31079190 DOI: 10.1007/s00403-019-01928-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
The exposure of naked unprotected skin to solar radiation may result in numerous acute and chronic undesirable effects. Evidence suggests that silymarin, a standardized extract from Silybum marianum (L.) Gaertn. seeds, and its major component silybin suppress UVB-induced skin damage. Here, we aimed to investigate the UVA-protective effects of silymarin's less abundant flavonolignans, specifically isosilybin (ISB), silychristin (SC), silydianin (SD), and 2,3-dehydrosilybin (DHSB). Normal human dermal fibroblasts (NHDF) pre-treated for 1 h with flavonolignans were then exposed to UVA light using a solar simulator. Their effects on reactive oxygen species (ROS), carbonylated proteins and glutathione (GSH) level, caspase-3 activity, single-strand breaks' (SSBs) formation and protein level of matrix metalloproteinase-1 (MMP-1), heme oxygenase-1 (HO-1), and heat shock protein (HSP70) were evaluated. The most pronounced preventative potential was found for DHSB, a minor component of silymarin, and SC, the second most abundant flavonolignan in silymarin. They had significant effects on most of the studied parameters. Meanwhile, a photoprotective effect of SC was mostly found at double the concentration of DHSB. ISB and SD protected against GSH depletion, the generation of ROS, carbonylated proteins and SSBs, and caspase-3 activation, but had no significant effect on MMP-1, HO-1, or HSP70. In summary, DHSB and to a lesser extent other silymarin flavonolignans are potent UVA-protective compounds. However, due to the in vitro phototoxic potential of DHSB published elsewhere, further studies are needed to exclude phototoxicity for humans as well as to confirm our results on human skin ex vivo and in vivo.
Collapse
|
15
|
Fidrus E, Ujhelyi Z, Fehér P, Hegedűs C, Janka EA, Paragh G, Vasas G, Bácskay I, Remenyik É. Silymarin: Friend or Foe of UV Exposed Keratinocytes? Molecules 2019; 24:molecules24091652. [PMID: 31035502 PMCID: PMC6540143 DOI: 10.3390/molecules24091652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
The application of natural plant extracts in UV-protection is popular and intensively studied. Silymarin (from Silibum marianum), a naturally occurring polyphenol, has recently received attention due to its antioxidant, anti-inflammatory and anti-apoptotic effects. However, its role in the UV-mediated keratinocyte cell response is still controversial. In this study, we investigated the effects of Silibum marianum extracts with different origins and formulations on UVA-exposed HaCaT keratinocytes in vitro. Our results show, that silymarin treatment caused an inverse dose-dependent photosensitivity relationship (at higher doses, a decrease in cell viability and ROS production) after UVA exposure. The attenuation of the UVA-induced ROS generation after silymarin treatment was also observed. Moreover, silymarin pre-treatment increased the cyclobutane pyrimidine dimer photolesions in keratinocytes after UVA exposure. These results indicated the dual role of silymarin in UVA-exposed keratinocytes. It scavenges ROS but still induces phototoxicity. Based on our results dermatological applications of silymarin and related compounds should be considered very carefully.
Collapse
Affiliation(s)
- Eszter Fidrus
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Pálma Fehér
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Csaba Hegedűs
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| | - Eszter Anna Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| | - György Paragh
- Departments of Dermatology and Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gábos Vasas
- Department of Pharmacognosy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| |
Collapse
|
16
|
Eltobshy SAG, Hussein AM, Elmileegy AA, Askar MH, Khater Y, Metias EF, Helal GM. Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:203-217. [PMID: 31080351 PMCID: PMC6488703 DOI: 10.4196/kjpp.2019.23.3.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asaad A Elmileegy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
17
|
Vostálová J, Tinková E, Biedermann D, Kosina P, Ulrichová J, Rajnochová Svobodová A. Skin Protective Activity of Silymarin and its Flavonolignans. Molecules 2019; 24:E1022. [PMID: 30875758 PMCID: PMC6470681 DOI: 10.3390/molecules24061022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its polyphenols effect on activity of enzymes participating in the (photo)aging process is limited. Therefore, evaluation of SM and its flavonolignans potential to inhibit collagenase, elastase, and hyaluronidase in tube tests was the goal of this study. The antioxidant and UV screening properties of SM and its flavonolignans silybin, isosilybin, silydianin, silychristin and 2,3-dehydrosilybin (DHSB) were also evaluated by a DPPH assay and spectrophotometrical measurement. DHSB showed the highest ability to scavenge DPPH radical and also revealed the highest UVA protection factor (PF-UVA) that corresponds with its absorption spectrum. SM and studied flavonolignans were found to exhibit anti-collagenase and anti-elastase activity. The most potent flavonolignan was DHSB. None of studied flavonolignans or SM showed anti-hyaluronidase activity. Our results suggest that SM and its flavonolignans may be useful agents for skin protection against the harmful effects of full-spectrum solar radiation including slowing down skin (photo)aging.
Collapse
Affiliation(s)
- Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Eva Tinková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
18
|
Wen YJ, Zhou ZY, Zhang GL, Lu XX. Metal coordination protocol for the synthesis of-2,3-dehydrosilybin and 19-O-demethyl-2,3-dehydrosilybin from silybin and their antitumor activities. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Rajnochová Svobodová A, Gabrielová E, Michaelides L, Kosina P, Ryšavá A, Ulrichová J, Zálešák B, Vostálová J. UVA-photoprotective potential of silymarin and silybin. Arch Dermatol Res 2018; 310:413-424. [DOI: 10.1007/s00403-018-1828-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
|
20
|
Arif T, Dorjay K, Adil M. Silymarin: An interesting modality in dermatological therapeutics. Indian J Dermatol Venereol Leprol 2018; 84:238-243. [DOI: 10.4103/ijdvl.ijdvl_746_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Herrmann FC, Sivakumar N, Jose J, Costi MP, Pozzi C, Schmidt TJ. In Silico Identification and In Vitro Evaluation of Natural Inhibitors of Leishmania major Pteridine Reductase I. Molecules 2017; 22:molecules22122166. [PMID: 29211037 PMCID: PMC6149668 DOI: 10.3390/molecules22122166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuation of our computational efforts to find new natural inhibitors of a variety of target enzymes from parasites causing neglected tropical diseases (NTDs), we now report on 15 natural products (NPs) that we have identified as inhibitors of Leishmania major pteridine reductase I (LmPTR1) through a combination of in silico and in vitro investigations. Pteridine reductase (PTR1) is an enzyme of the trypanosomatid parasites’ peculiar folate metabolism, and has previously been validated as a drug target. Initially, pharmacophore queries were created based on four 3D structures of LmPTR1 using co-crystallized known inhibitors as templates. Each of the pharmacophore queries was used to virtually screen a database of 1100 commercially available natural products. The resulting hits were submitted to molecular docking analyses in the substrate binding site of the respective protein structures used for the pharmacophore design. This approach led to the in silico identification of a total of 18 NPs with predicted binding affinity to LmPTR1. These compounds were subsequently tested in vitro for inhibitory activity towards recombinant LmPTR1 in a spectrophotometric inhibition assay. Fifteen out of the 18 tested compounds (hit rate = 83%) showed significant inhibitory activity against LmPTR1 when tested at a concentration of 50 µM. The IC50 values were determined for the six NPs that inhibited the target enzyme by more than 50% at 50 µM, with sophoraflavanone G being the most active compound tested (IC50 = 19.2 µM). The NPs identified and evaluated in the present study may represent promising lead structures for the further rational drug design of more potent inhibitors against LmPTR1.
Collapse
Affiliation(s)
- Fabian C Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany.
| | - Nirina Sivakumar
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany.
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, Correnstrasse 48, D-48149 Muenster, Germany.
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany.
| |
Collapse
|
22
|
Polycomb group proteins: Novel molecules associated with ultraviolet A-induced photoaging of human skin. Exp Ther Med 2017; 14:2554-2562. [PMID: 28962194 PMCID: PMC5609303 DOI: 10.3892/etm.2017.4807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Epigenetic repressor polycomb group (PcG) proteins are thought to serve a role in a number of cellular processes, including carcinogenesis, senescence, apoptosis and DNA repair. In the present study, long-wave ultraviolet A (UVA) was used to irradiate human skin fibroblasts (HSFs) and embryonic skin fibroblasts (ESFs) in order to simulate photoaging of the skin. The results of cell proliferation, apoptosis, hyaluronic acid (HA) content and reverse transcription-quantitative polymerase chain reaction assays revealed that the expression levels of genes encoding key PcG proteins (BMI-1 and EZH2) were altered. In addition, the expression levels of these genes were associated with the expression of enzymes that regulate HA synthesis. Furthermore, the expression levels of PcG proteins differed between HSFs and ESFs, suggesting that PcG proteins serve a role in altering HA synthesis during the UVA-induced fibroblast aging process. This signaling pathway may represent a novel molecular mechanism regulating the photoaging of the skin. The findings of the present study provide important insights into the underlying mechanisms of photoaging of the human skin. Further studies are required to clarify the molecular mechanisms underling skin aging and to identify targets for the clinical treatment of photoaging.
Collapse
|
23
|
Verma A, Kushwaha HN, Srivastava AK, Srivastava S, Jamal N, Srivastava K, Ray RS. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:139-148. [PMID: 28550736 DOI: 10.1016/j.jphotobiol.2017.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/13/2017] [Accepted: 05/14/2017] [Indexed: 11/29/2022]
Abstract
Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use.
Collapse
Affiliation(s)
- Ankit Verma
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Radiodiagnosis, King George's Medical University, Lucknow, Uttar Pradesh 226003, India; Department of Radiotherapy, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Hari N Kushwaha
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ajeet K Srivastava
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Saumya Srivastava
- Environmental Information System Centre, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Naseem Jamal
- Department of Radiodiagnosis, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Kriti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Ratan Singh Ray
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
24
|
Wu NL, Lee TA, Wang SF, Li HJ, Chen HT, Chien TC, Huang CC, Hung CF. Green fluorescent protein chromophore derivative suppresses ultraviolet A-induced JNK-signalling and apoptosis in keratinocytes and adverse effects in zebrafish embryos. Exp Dermatol 2016; 25:983-990. [DOI: 10.1111/exd.13168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Nan-Lin Wu
- Department of Medicine; Mackay Medical College; New Taipei City Taiwan
- Department of Dermatology; Mackay Memorial Hospital; Taipei Taiwan
- Mackay Junior College of Medicine, Nursing and Management; New Taipei City Taiwan
| | - Te-An Lee
- Department of Urology; Hsinchu Mackay Memorial Hospital; Hsinchu Taiwan
| | - Sheng-Fen Wang
- Graduate Institute of Basic Medicine; Fu Jen Catholic University; New Taipei City Taiwan
| | - Hsin-Ju Li
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Hui-Ting Chen
- Department of Fragrance and Cosmetic Science; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Tun-Cheng Chien
- Department of Chemistry; National Taiwan Normal University; Taipei Taiwan
| | - Chieh-Chen Huang
- Department of Dermatology; Shin Kong Wu Ho-Su Memorial Hospital; Taipei Taiwan
| | - Chi-Feng Hung
- School of Medicine; Fu Jen Catholic University; New Taipei City Taiwan
| |
Collapse
|
25
|
Fehér P, Ujhelyi Z, Váradi J, Fenyvesi F, Róka E, Juhász B, Varga B, Bombicz M, Priksz D, Bácskay I, Vecsernyés M. Efficacy of Pre- and Post-Treatment by Topical Formulations Containing Dissolved and Suspended Silybum marianum against UVB-Induced Oxidative Stress in Guinea Pig and on HaCaT Keratinocytes. Molecules 2016; 21:molecules21101269. [PMID: 27669200 PMCID: PMC6273683 DOI: 10.3390/molecules21101269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022] Open
Abstract
Plants with high amounts of antioxidants may be a promising therapy for preventing and curing UV-induced oxidative skin damage. The objective of this study was to verify the efficacy of topical formulations containing dissolved and suspended Silybum marianum extract against UVB-induced oxidative stress in guinea pig and HaCaT keratinocytes. Herbal extract was dissolved in Transcutol HP (TC) and sucrose-esters were incorporated as penetration enhancers in creams. Biocompatibility of compositions was tested on HeLa cells and HaCaT keratinocytes as in vitro models. Transepidermal water loss (TEWL) tests were performed to prove the safety of formulations in vivo. Drug release of different compositions was assessed by Franz diffusion methods. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (MDA) activities were evaluated before and after UVB irradiation in a guinea pig model and HaCaT cells. Heme oxygenase-1 (HO-1) enzyme activity was measured in the epidermis of guinea pigs treated by different creams before and after UVB irradiation. Treatment with compositions containing silymarin powder (SM) dissolved in TC and sucrose stearate SP 50 or SP 70 resulted in increased activities of all reactive oxygen species (ROS) eliminating enzymes in the case of pre- and post-treatment as well. Reduction in the levels of lipid peroxidation end products was also detected after treatment with these two compositions. Post-treatment was more effective as the increase of the activity of antioxidants was higher. Lower HO-1 enzyme levels were measured in the case of pre- and post-treatment groups compared to control groups. Therefore, this study demonstrates the effectiveness of topical formulations containing silymarin in inhibiting UVB irradiation induced oxidative stress of the skin.
Collapse
Affiliation(s)
- Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Eszter Róka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| |
Collapse
|
26
|
Biler M, Trouillas P, Biedermann D, Křen V, Kubala M. Tunable optical properties of silymarin flavonolignans. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Apoptosis induction is involved in UVA-induced autolysis in sea cucumber Stichopus japonicus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:130-5. [PMID: 26971278 DOI: 10.1016/j.jphotobiol.2016.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/26/2016] [Accepted: 02/15/2016] [Indexed: 01/13/2023]
Abstract
Autolysis easily happens to sea cucumber (Stichopus japonicus, S. japonicus) for external stimulus like UV exposure causing heavy economic losses. Therefore, it is meaningful to reveal the mechanism of S. japonicas autolysis. In the present study, to examine the involvement of apoptosis induction in UVA-induced autolysis of S. japonicas, we investigated the biochemical events including the DNA fragmentation, caspase-3 activation, mitogen-activated protein kinases (MAPKs) phosphorylation and free radical formation. Substantial morphological changes such as intestine vomiting and dermatolysis were observed in S. japonicus during the incubation after 1-h UVA irradiation (10W/m(2)). The degradation of the structural proteins and enhancement of cathepsin L activity were also detected, suggesting the profound impact of proteolysis caused by the UVA irradiation even for 1h. Furthermore, the DNA fragmentation and specific activity of caspase-3 was increased up to 12h after UVA irradiation. The levels of phosphorylated p38 mitogen activated protein kinase (MAPK) and phosphorylated c-Jun.-N-terminal kinase (JNK) were significantly increased by the UVA irradiation for 1h. An electron spin resonance (ESR) analysis revealed that UVA enhanced the free radical formation in S. japonicas, even through we could not identify the attributed species. These results suggest that UVA-induced autolysis in S. japonicas at least partially involves the oxidative stress-sensitive apoptosis induction pathway. These data present a novel insight into the mechanisms of sea cucumber autolysis induced by external stress.
Collapse
|
28
|
Rajnochová Svobodová A, Zálešák B, Biedermann D, Ulrichová J, Vostálová J. Phototoxic potential of silymarin and its bioactive components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 156:61-8. [DOI: 10.1016/j.jphotobiol.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/28/2022]
|
29
|
Rodrigues D, Viotto AC, Checchia R, Gomide A, Severino D, Itri R, Baptista MS, Martins WK. Mechanism of Aloe Vera extract protection against UVA: shelter of lysosomal membrane avoids photodamage. Photochem Photobiol Sci 2016; 15:334-50. [DOI: 10.1039/c5pp00409h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aloe Vera extract exhibited remarkable ability of reducing both in vitro and in vivo photodamage, even though it does not have anti-radical properties.
Collapse
Affiliation(s)
| | | | | | - Andreza Gomide
- Instituto de Física
- Universidade de São Paulo
- Brazil
- Centro Universitário Padre Anchieta
- Brazil
| | | | | | | | | |
Collapse
|
30
|
Adhikari M, Arora R. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 792:1-11. [PMID: 26433256 DOI: 10.1016/j.mrgentox.2015.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023]
Abstract
Radiation can produce biological damage, mainly oxidative stress, via production of free radicals, including reactive oxygen species (ROS). Nanoparticles are of interest as radioprotective agents, particularly due to their high solubility and bioavailability. Silymarin is a hepatoprotective agent but has poor oral bioavailability. Silymarin was formulated as a nanoemulsion with the aim of improving its bioavailability and therapeutic efficacy. In the present study, we evaluated self-nanoemulsifying drug delivery systems (SNEDDS) formulated with surfactants and co-surfactants. Nano-silymarin was characterized by estimating % transmittance, globule size, and polydispersity index, and by transmission electron microscopy (TEM). The nano-silymarin obtained was in the range of 3-8nm diameter. With regard to DNA damage, measured by a plasmid relaxation assay, maximum protection was obtained at 10μg/mL. Cytotoxicity of nano-silymarin to human embryonic kidney (HEK) cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Protective efficacy against γ-radiation was assessed by reduction in micronucleus frequency and ROS generation, using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. Radiation-induced apoptosis was estimated by microscopic analysis and cell-cycle estimation. Nano-silymarin was radioprotective, supporting the possibility of developing new approaches to radiation protection via nanotechnology.
Collapse
Affiliation(s)
- Manish Adhikari
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Rajesh Arora
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi 110054, India; Office of the Director General-Life Sciences and Distinguished Scientist, DRDO Head Quarters, DRDO Bhawan, Rajaji Marg, New Delhi 110011, India.
| |
Collapse
|
31
|
Hseu YC, Tsai YC, Huang PJ, Ou TT, Korivi M, Hsu LS, Chang SH, Wu CR, Yang HL. The dermato-protective effects of lucidone from Lindera erythrocarpa through the induction of Nrf2-mediated antioxidant genes in UVA-irradiated human skin keratinocytes. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, Sumaya-Martínez MT, Gutiérrez-Salinas J, Bautista M, Morales-González &A, González-Rubio MGLY, Aguilar-Faisal JL, Morales-González JA. Review of natural products with hepatoprotective effects. World J Gastroenterol 2014; 20:14787-14804. [PMID: 25356040 PMCID: PMC4209543 DOI: 10.3748/wjg.v20.i40.14787] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/11/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the most important organs in the body, performing a fundamental role in the regulation of diverse processes, among which the metabolism, secretion, storage, and detoxification of endogenous and exogenous substances are prominent. Due to these functions, hepatic diseases continue to be among the main threats to public health, and they remain problems throughout the world. Despite enormous advances in modern medicine, there are no completely effective drugs that stimulate hepatic function, that offer complete protection of the organ, or that help to regenerate hepatic cells. Thus, it is necessary to identify pharmaceutical alternatives for the treatment of liver diseases, with the aim of these alternatives being more effective and less toxic. The use of some plants and the consumption of different fruits have played basic roles in human health care, and diverse scientific investigations have indicated that, in those plants and fruits so identified, their beneficial effects can be attributed to the presence of chemical compounds that are called phytochemicals. The present review had as its objective the collecting of data based on research conducted into some fruits (grapefruit, cranberries, and grapes) and plants [cactus pear (nopal) and cactus pear fruit, chamomile, silymarin, and spirulina], which are consumed frequently by humans and which have demonstrated hepatoprotective capacity, as well as an analysis of a resin (propolis) and some phytochemicals extracted from fruits, plants, yeasts, and algae, which have been evaluated in different models of hepatotoxicity.
Collapse
|
33
|
Tomankova K, Kolarova H, Pizova K, Binder S, Konecny P, Kriegova E, Malina L, Horakova J, Malohlava J, Kejlova K, Jirova D. Cytotoxicity and Antioxidative Effects of Herbal and Fruit Extracts In Vitro. FOOD BIOPHYS 2014. [DOI: 10.1007/s11483-014-9349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Li F, Li F, Zhao T, Mao G, Zou Y, Zheng D, Takase M, Feng W, Wu X, Yang L. Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement. Appl Microbiol Biotechnol 2013; 97:6725-37. [PMID: 23736873 DOI: 10.1007/s00253-013-5002-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
The industrial solid wastes generated during the production of silymarin from the fruits of milk thistle Silybum marianum was used as the substrate. Preparation and evaluation of the feeds produced by solid-state fermentation (SSF) of the industrial solid wastes was carried out. The protein content of the fermented feed (FF) from a combination of Aspergillus niger and Candida tropicalis was the highest among the examined strains. The optimal process parameters for protein enrichment with SSF using A. niger and C. tropicalis included incubation temperature of 30.8 °C, fermentation time of 87.0 h, and initial moisture content of 59.7 %. Under these conditions, the value additions of FF occurred. The fiber of FF was decreased by 25.07 %, while the digestibility of protein, protein content, and the ratio of total essential amino acids to total amino acids were increased by 79.85, 16.22, and 8.21 %, respectively. The analysis indicated that FF contained 1.44 mg/kg flavonoids and 0.5 mg/kg silybin, which significantly increased by 2.42 and 1.63 times, respectively than those in unfermented substrates. FF recorded reduced molecular weight of proteins from 20.1 to 44.3 kDa to below 14.3 kDa. The results of feeding trial of FF replacement with soybean meal in broilers diets for 8 weeks showed that FF significantly improved carcass characteristics including abdominal fat rate, serum biochemical parameters including aspartate transaminase, blood urea nitrogen and high density lipoprotein cholesterol, and immune responses of broilers. A potential feed quality improvement was achieved through mixed strains SSF of industrial solid wastes of S. marianum fruits.
Collapse
Affiliation(s)
- Fang Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, 212013, Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jaszewska E, Soin M, Filipek A, Naruszewicz M. UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:42-6. [PMID: 23892189 DOI: 10.1016/j.jphotobiol.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
UVA radiation stimulates the production of reactive oxygen species (ROS), which react with lipids, proteins and other intracellular molecules leading to oxidative stress, cellular damage and ultimately cell death. There is, therefore, a growing need for substances exhibiting antioxidant activity, which may support repair mechanisms of the skin. This study evaluates the protective effect of the aqueous Oenothera paradoxa Hudziok defatted seeds extract, rich in polyphenolic compounds, against UVA (25 and 50J/cm(2))-induced changes in normal human dermal fibroblasts (NHDFs). The tested extract (0.1-10μg/ml) has decreased, in a concentration-dependent fashion, the UVA-induced release of lactate dehydrogenase (LDH) into the culture medium, the ROS production (with the use of 2',7'-dichlorodihydrofluorescein diacetate) and lipid peroxidation (utilizing redox reactions with ferrous ions) as compared to the control cells (incubated without the extract). Moreover, the extract increased the number of viable (calcein positive) cells decreasing the number of cells in late apoptosis (annexin V-FITC and propidium iodide positive). Thus our results show that O. paradoxa defatted seeds extract may be beneficial for the prevention of UVA skin damage.
Collapse
Affiliation(s)
- Edyta Jaszewska
- Department of Pharmaceutical Care, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Poland
| | | | | | | |
Collapse
|
36
|
Ting H, Deep G, Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J 2013; 15:707-16. [PMID: 23588585 PMCID: PMC3691417 DOI: 10.1208/s12248-013-9486-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023] Open
Abstract
Despite advances in early detection, prostate cancer remains the second highest cancer mortality in American men, and even successful interventions are associated with enormous health care costs as well as prolonged deleterious effects on quality of patient life. Prostate cancer chemoprevention is one potential avenue to alleviate these burdens. It is a regime whereby long-term treatments are intended to prevent or arrest cancer development, in contrast to more direct intervention upon disease diagnosis. Based on this intention, cancer chemoprevention generally focuses on the use of nontoxic chemical agents which are well-tolerated for prolonged usage that is necessary to address prostate cancer's multistage and lengthy period of progression. One such nontoxic natural agent is the flavonoid silibinin, derived from the milk thistle plant (Silybum marianum), which has ancient medicinal usage and potent antioxidant activity. Based on these properties, silibinin has been investigated in a host of cancer models where it exhibits broad-spectrum efficacy against cancer progression both in vitro and in vivo without noticeable toxicity. Specifically in prostate cancer models, silibinin has shown the ability to modulate cell signaling, proliferation, apoptosis, epithelial to mesenchymal transition, invasion, metastasis, and angiogenesis, which taken together provides strong support for silibinin as a candidate prostate cancer chemopreventive agent.
Collapse
Affiliation(s)
- Harold Ting
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Gagan Deep
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rajesh Agarwal
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Room V20-2118, Box C238, Aurora, Colorado 80045 USA
| |
Collapse
|
37
|
Kumar KJS, Yang HL, Tsai YC, Hung PC, Chang SH, Lo HW, Shen PC, Chen SC, Wang HM, Wang SY, Chou CW, Hseu YC. Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and down-regulation of NF-κB signaling pathway. Food Chem Toxicol 2013; 59:55-66. [PMID: 23712098 DOI: 10.1016/j.fct.2013.04.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/06/2013] [Accepted: 04/30/2013] [Indexed: 12/29/2022]
Abstract
We investigated the protective effects of lucidone, a naturally occurring cyclopentenedione isolated from the fruits of Lindera erythrocarpa Makino, against free-radical and inflammation stimulator 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in human keratinocyte (HaCaT) cells, with the aim of revealing the possible mechanisms underlying the protective efficacy. Lucidone pretreatment (0.5-10 μg/mL) markedly increased HaCaT cell viability and suppressed AAPH-induced reactive oxygen species (ROS) generation, lipid peroxidation, and DNA damage. Notably, the antioxidant potential of lucidone was directly correlated with the increased expression of an antioxidant gene, heme oxygenase 1 (HO-1), which was followed by the augmentation of the nuclear translocation and transcriptional activation of NF-E2-related factor-2 (Nrf2), with or without AAPH. Nrf2 knockdown diminished the protective effects of lucidone. We also observed that lucidone pretreatment inhibited AAPH-induced inflammatory chemokine prostaglandin E₂ (PGE₂) production and the expression of cyclooxygenase-2 (COX-2) in HaCaT cells. Lucidone treatment also significantly inhibited AAPH-induced nuclear factor-κB (NF-κB) activation and suppressing the degradation of inhibitor-κB (I-κB). Furthermore, lucidone significantly diminished AAPH-induced COX-2 expression through the down-regulation of the extracellular signal-regulated kinase (ERK) and p38 MAPK signaling pathways. Therefore, lucidone may possess antioxidant and anti-inflammatory properties and may be useful for the prevention of free radical-induced skin damage.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Perumal Vijayaraman K, Muruganantham S, Subramanian M, Shunmugiah KP, Kasi PD. Silymarin attenuates benzo(a)pyrene induced toxicity by mitigating ROS production, DNA damage and calcium mediated apoptosis in peripheral blood mononuclear cells (PBMC). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:79-85. [PMID: 23067546 DOI: 10.1016/j.ecoenv.2012.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 06/01/2023]
Abstract
Benzo(a)pyrene (B(a)P), which is the most studied member of PAH family is released into the environment (air, water and soil) from natural and man-made sources including industrial and automobile exhaust fumes. Since B(a)P is an omnipresent environmental pollutant and is believed to be a risk factor for human chemical carcinogenesis, it is important to identify potent naturally occurring/synthetic agents that could modulate B(a)P-induced toxicity. The present study explores the effect of the flavonoid silymarin (2.4mg/ml) in counteracting the toxicity of B(a)P (1μM) in PBMC. Flourimetry and Confocal Laser Scanning Microscopy results showed that silymarin reduces the B(a)P induced ROS production and DNA damage. Atomic Absorption Spectroscopy analysis and fluorescent microscopic pictures proved that silymarin reduces the increased intracellular calcium and apoptosis induction during B(a)P treatment. Furthermore, silymarin did not show any inhibition for CYP1B1 activity at transcriptional level by semiquantitative RT PCR but it affects the catalytic activity of Phase I CYP1A1/CYP1B1 enzyme (EROD assay) during B(a)P treatment. The findings reveal that silymarin possesses substantial protective effect against B(a)P induced DNA damage and calcium mediated apoptosis by inhibiting the catalytic activity of CYP1B1 and maintaining the intracellular calcium dysregulation; hence, it could be considered as a potential protective agent for environmental contaminant induced immunotoxicity.
Collapse
|
40
|
Hepatoprotective effect of 2,3-dehydrosilybin on carbon tetrachloride-induced liver injury in rats. Food Chem 2012; 138:107-15. [PMID: 23265463 DOI: 10.1016/j.foodchem.2012.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/05/2012] [Accepted: 10/25/2012] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the protective effect of 2,3-dehydrosilybin (DHS) against carbon tetrachloride (CCl(4))-induced liver injury in rats. Administration of DHS significantly attenuated the levels of serum aspartate aminotransferase, alanine aminotransferase, and liver lipid peroxidation in CCl(4)-treated rats. Moreover, we showed that DHS prevented DNA damage and decreased the protein levels of γ-H2AX, which is a specific DNA damage marker, in CCl(4)-treated rat livers. DHS also markedly increased the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in CCl(4)-treated rat livers. Furthermore, we found that DHS significantly inhibited the production of serum nitric oxide as well as the levels of serum IL-6, IFN-γ, and TNF-α in CCl(4)-treated rats. Additionally, DHS significantly suppressed iNOS expression on the protein levels in CCl(4)-treated rat livers. Collectively, the present study suggests that DHS protects the liver from CCl(4)-induced hepatic damage via antioxidant and anti-inflammatory mechanisms.
Collapse
|
41
|
Panapisal V, Charoensri S, Tantituvanont A. Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech 2012; 13:389-99. [PMID: 22350738 DOI: 10.1208/s12249-012-9762-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/02/2012] [Indexed: 12/28/2022] Open
Abstract
Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating-cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.
Collapse
|
42
|
Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol 2012; 50:1245-55. [PMID: 22386815 DOI: 10.1016/j.fct.2012.02.020] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/04/2012] [Accepted: 02/13/2012] [Indexed: 12/11/2022]
Abstract
UV radiation from the sun is a potent environmental risk factor in the pathogenesis of skin damage. Much of the skin damage caused by ultraviolet A (UVA) irradiation from the sun is associated with oxidative stress. The aim of this study was to investigate the protective role of ellagic acid (25-75 μM), a natural antioxidant, against UVA (5-20 J/cm(2))-induced oxidative stress and apoptosis in human keratinocyte (HaCaT) cells and to reveal the possible mechanisms underlying this protective efficacy. Ellagic acid pre-treatment markedly increased HaCaT cell viability and suppressed UVA-induced ROS generation and MDA formation. Moreover, ellagic acid pre-treatment prevented UVA-induced DNA damage as evaluated by the comet assay. Ellagic acid treatment also significantly inhibited the UVA-induced apoptosis of HaCaT cells, as measured by a reduction of DNA fragmentation, mitochondria dysfunction, ER stress, caspase-3 activation, and Bcl-2/Bax deregulation. Notably, the antioxidant potential of ellagic acid was directly correlated with the increased expression of HO-1 and SOD, which was followed by the downregulation of Keap1 and the augmented nuclear translocation and transcriptional activation of Nrf2 with or without UVA irradiation. Nrf2 knockdown diminished the protective effects of ellagic acid. Therefore, ellagic acid may be useful for the treatment of UVA-induced skin damage.
Collapse
|
43
|
Xie H, Liu L, Shi W, Xiao X, Tian L, Jian D, Chen X, Li J. Down regulation of CD147 boosts the premature senescence in human skin fibroblasts by destroying the redox balance and inhibiting klotho. J Dermatol Sci 2011; 64:243-5. [PMID: 22019128 DOI: 10.1016/j.jdermsci.2011.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 09/01/2011] [Accepted: 09/15/2011] [Indexed: 01/24/2023]
|
44
|
Ratz-Lyko A, Arct J, Pytkowska K. Methods for evaluation of cosmetic antioxidant capacity. Skin Res Technol 2011; 18:421-30. [PMID: 22093040 DOI: 10.1111/j.1600-0846.2011.00588.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 01/05/2023]
Abstract
The skin as the largest part of human body is one of the main targets for ultraviolet radiation, environmental pollution, toxic chemicals and some metal ions, which share responsibility for the formation of free radicals. The resulting free radicals, both oxygen and nitrogen species are one of the main causes of aging due to impaired regulation of cell respiratory metabolism involving incomplete oxygen reduction in mitochondria and production a superoxide anion, hydroxyl radicals et al. In modern cosmetology to minimize the adverse effects of free radicals, antioxidants, which inhibit free radical reactions, mainly autoxidation processes are used. Currently, not only many cosmetic products containing antioxidants are available, but a large diversity of methods for determination of cosmetics antioxidant activity is also accessible. These methods can be divided into three main groups: in vitro, in vivo, and ex vivo as reported herein. Due to lack of standardization and validation it is necessary to use a variety of methods as well as conditions for those purposes, which are presented to the context.
Collapse
Affiliation(s)
- Anna Ratz-Lyko
- Academy of Cosmetics and Health Care, Department of Cosmetics Chemistry, Warsaw, Poland
| | | | | |
Collapse
|
45
|
Wu NL, Fang JY, Chen M, Wu CJ, Huang CC, Hung CF. Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8391-8400. [PMID: 21699266 DOI: 10.1021/jf200931t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chrysin (5,7-dihydroxyflavone), a natural flavonoid occurring in various plants and foods such as propolis and honey, reportedly opposes inflammation and carcinogenesis, but has rarely been applied in skin care. This study, therefore, aimed to explore the roles of chrysin in protection against UV-induced damage in HaCaT keratinocytes. Results showed that chrysin can attenuate apoptosis, reactive oxygen species (ROS) production, and cyclooxygenase 2 (COX-2) expression induced by UVB and UVA. Chrysin predominantly reversed the down-regulation of aquaporin 3 (AQP-3) by UVB. It predominantly reversed JNK activation and also mildly inhibited p38 activation triggered by UVA and UVB. Animal studies revealed that chrysin's topical application demonstrated efficient percutaneous absorption and no skin irritation. Overall, results demonstrated significant benefits of chrysin on the protection of keratinocytes against UVA- and UVB-induced injuries and suggested its potential use in skin photoprotection.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Chan F, Sun H, Yan J, Fan D, Zhao D, An J, Zhou D. Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur J Pharmacol 2011; 650:130-7. [DOI: 10.1016/j.ejphar.2010.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/21/2010] [Accepted: 10/04/2010] [Indexed: 02/02/2023]
|
47
|
Deep G, Agarwal R. Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev 2010; 29:447-63. [PMID: 20714788 PMCID: PMC3928361 DOI: 10.1007/s10555-010-9237-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a major health problem around the world. Research efforts in the last few decades have been successful in providing better and effective treatments against both early stage and localized cancer, but clinical options against advanced metastatic stage/s of cancer remain limited. The high morbidity and mortality in most of the cancers are attributed to their metastatic spread to distant organs. Due to its extreme clinical relevance, metastasis has been extensively studied and is now understood as a highly complex biological event that involves multiple steps including acquisition of invasiveness by cancer cells, intravasation into circulatory system, survival in the circulation, arrest in microvasculature, extravasation, and growth at distant organs. The increasing understanding of molecular underpinnings of these events has provided excellent opportunity to target metastasis especially through nontoxic and biologically effective nutraceuticals. Silibinin, a popular dietary supplement isolated from milk thistle seed extracts, is one such natural agent that has shown biological efficacy through pleiotropic mechanisms against a variety of cancers and is currently in clinical trials. Recent preclinical studies have also shown strong efficacy of silibinin to target cancer cell's migratory and invasive characteristics as well as their ability to metastasize to distant organs. Detailed mechanistic analyses revealed that silibinin targets signaling molecules involved in the regulation of epithelial-to-mesenchymal transition, proteases activation, adhesion, motility, invasiveness as well as the supportive tumor-microenvironment components, thereby inhibiting metastasis. Overall, the long history of human use, remarkable nontoxicity, and preclinical efficacy strongly favor the clinical use of silibinin against advanced metastatic cancers.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
48
|
Ren SW, Li J, Wang W, Guan HS. Protective effects of kappa-ca3000+CP against ultraviolet-induced damage in HaCaT and MEF cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:22-30. [PMID: 20638296 DOI: 10.1016/j.jphotobiol.2010.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 12/14/2022]
Abstract
In this study, the complex kappa-ca3000+CP combined collagen peptide with kappa-carrageenan oligosaccharide was tested for its ability to moderate UV-induced damage and investigated for its protective mechanism against UV radiation. Human keratinocytes (HaCaT) and mouse embryonic fibroblasts (MEF) were used to monitor the effects of kappa-ca3000+CP on cell viability, apoptosis, level of collagen I and MMP-1, MAPKs activation and intracellular ROS production after UV-irradiation. The results indicated that application of the kappa-ca3000+CP (100 microg/ml) could significantly attenuate UV-induced HaCaT and MEF death, as well as inhibit the UV-induced apoptosis of HaCaT cells. The decreased collagen I synthesis and the increased MMP-1 expression of MEF by UV radiation were almost restored back to normal level after treatment with kappa-ca3000+CP. Moreover, kappa-ca3000+CP could significantly suppress UV-induced MAPKs activation and intracellular ROS production. Taken together, these results showed that antioxidant property of kappa-ca3000+CP can effectively attenuate UV-caused cell damage and skin photoaging by suppressing cell apoptosis and expression of MMP-1 through the MAPKs signaling pathways. Thus, kappa-ca3000+CP has potential antiaging effects and prominent protective effects on UV-induced skin cell damages, which might be used in pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Shu-Wen Ren
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Vaid M, Katiyar SK. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review). Int J Oncol 2010; 36:1053-60. [PMID: 20372777 PMCID: PMC2852174 DOI: 10.3892/ijo_00000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Changes in life style over the past several decades including much of the time spent outdoors and the use of tanning devices for cosmetic purposes by individuals have led to an increase in the incidence of solar ultraviolet (UV) radiation-induced skin diseases including the risk of skin cancers. Solar UV radiations are considered as the most prevalent environmental carcinogens, and chronic exposure of the skin to UV leads to squamous and basal cell carcinoma and melanoma in human population. A wide variety of phytochemicals have been reported to have substantial anti-carcinogenic activity because of their antioxidant and anti-inflammatory properties. Silymarin is one of them and extensively studied for its skin photoprotective capabilities. Silymarin, a flavanolignan, is extracted from the fruits and seeds of milk thistle (Silybum marianum L. Gaertn.), and has been shown to have chemopreventive effects against photocarcinogenesis in mouse tumor models. Topical treatment of silymarin inhibited photocarcinogenesis in mice in terms of tumor incidence, tumor multiplicity and growth of the tumors. Wide range of in vivo mechanistic studies conducted in a variety of mouse models indicated that silymarin has anti-oxidant, anti-inflammatory and immunomodulatory properties which led to the prevention of photocarcinogenesis in mice. This review summarizes and updates the photoprotective potential of silymarin with the particular emphasis on its in vivo mechanism of actions. It is suggested that silymarin may favorably supplement sunscreen protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and immunomodulatory effects.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
A novel rapid method for simultaneous determination of eight active compounds in silymarin using a reversed-phase UPLC-UV detector. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:4159-63. [DOI: 10.1016/j.jchromb.2009.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/29/2009] [Accepted: 11/01/2009] [Indexed: 11/17/2022]
|