1
|
Ma S, Cao W, Ma X, Ye X, Qin C, Li B, Liu W, Lu Q, Wu C, Fu X. Metabolomics reveals metabolites associated with hair follicle cycle in cashmere goats. BMC Vet Res 2024; 20:208. [PMID: 38760765 PMCID: PMC11100241 DOI: 10.1186/s12917-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The hair follicle is a skin accessory organ that regulates hair development, and its activity varies on a regular basis. However, the significance of metabolites in the hair follicle cycle has long been unknown. RESULTS Targeted metabolomics was used in this investigation to reveal the expression patterns of 1903 metabolites in cashmere goat skin during anagen to telogen. A statistical analysis was used to investigate the potential associations between metabolites and the hair follicle cycle. The findings revealed clear changes in the expression patterns of metabolites at various phases and in various feeding models. The majority of metabolites (primarily amino acids, nucleotides, their metabolites, and lipids) showed downregulated expression from anagen (An) to telogen (Tn), which was associated with gene expression, protein synthesis and transport, and cell structure, which reflected, to some extent, that the cells associated with hair follicle development are active in An and apoptotic in An-Tn. It is worth mentioning that the expression of vitamin D3 and 3,3',5-triiodo-L-thyronine decreased and then increased, which may be related to the shorter and longer duration of outdoor light, which may stimulate the hair follicle to transition from An to catagen (Cn). In the comparison of different hair follicle development stages (An, Cn, and Tn) or feeding modes (grazing and barn feeding), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that common differentially expressed metabolites (DEMs) (2'-deoxyadenosine, L-valine, 2'-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5'-monophosphate) were enriched in ABC transporters. This finding suggested that this pathway may be involved in the hair follicle cycle. Among these DEMs, riboflavin is absorbed from food, and the expression of riboflavin and sugars (D-glucose and glycogen) in skin tissue under grazing was greater and lower than that during barn feeding, respectively, suggesting that eating patterns may also alter the hair follicle cycle. CONCLUSIONS The expression patterns of metabolites such as sugars, lipids, amino acids, and nucleotides in skin tissue affect hair follicle growth, in which 2'-deoxyadenosine, L-valine, 2'-deoxyuridine, riboflavin, cytidine, deoxyguanosine, L-tryptophan, and guanosine-5'-monophosphate may regulate the hair follicle cycle by participating in ABC transporters. Feeding practices may regulate hair follicle cycles by influencing the amount of hormones and vitamins expressed in the skin of cashmere goats.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Wenzhi Cao
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Xiaolin Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Xiaofang Ye
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang, Aksu, 843000, China
| | - Bin Li
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang, Aksu, 843000, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
2
|
Nakane A, Hirose S, Kawai N, Fujimoto N, Kondo E, Asano K. Salmon nasal cartilage proteoglycan stimulates hair growth. Biosci Biotechnol Biochem 2023; 88:107-110. [PMID: 37881018 DOI: 10.1093/bbb/zbad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Hair loss is a commonly encountered problem. In this study, hair growth was enhanced by daily oral ingestion of salmon nasal cartilage proteoglycan (PG) in mice. Proteoglycan stimulated vesicular endothelial growth factor production in human follicle dermal papilla cells through insulin growth factor-1 receptor signaling, suggesting the possibility of hair loss improvement by PG ingestion.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Noriaki Kawai
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naoki Fujimoto
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Eriko Kondo
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Krisana Asano
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
3
|
Amin A, Badenes M, Tüshaus J, de Carvalho É, Burbridge E, Faísca P, Trávníčková K, Barros A, Carobbio S, Domingos PM, Vidal-Puig A, Moita LF, Maguire S, Stříšovský K, Ortega FJ, Fernández-Real JM, Lichtenthaler SF, Adrain C. Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis. Mol Metab 2023; 73:101731. [PMID: 37121509 PMCID: PMC10197113 DOI: 10.1016/j.molmet.2023.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal; Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - André Barros
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Antonio Vidal-Puig
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Francisco J Ortega
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
4
|
The Hair Growth-Promoting Effect of Gardenia florida Fruit Extract and Its Molecular Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8498974. [PMID: 36193135 PMCID: PMC9526658 DOI: 10.1155/2022/8498974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
As a herbal medicine, the extract from the fruits of Gardenia florida has been widely used for its antioxidative, hypoglycemic, and anti-inflammatory properties. However, whether G. florida fruit extract (GFFE) regulates hair growth has been rarely studied. This study was the first application of GFFE on hair growth both in vitro (human dermal papilla cells, hDPCs) and in vivo (C57BL/6 mice). The effects of GFFE on cell proliferation and hair growth-associated gene expression in hDPCs were examined. Moreover, GFFE was applied topically on the hair-shaved skin of male C57BL/6 mice, the hair length was measured, and the skin histological profile was investigated. GFFE promoted the proliferation of hDPCs and significantly stimulated hair growth-promoting genes, including vascular endothelial growth factor (VEGF) and Wnt/β-catenin signals, but suppressed the expression of the hair loss-related gene transforming growth factor-β1 (TGF-β). Furthermore, GFFE treatment resulted in a significant increase in the number, size, and depth of cultured hair follicles and stimulated the growth of hair with local effects in mice. In summary, the results provided the preclinical data to support the much potential use of the natural product GFFE as a promising agent for hair growth.
Collapse
|
5
|
Togo S, Imanishi H, Hayashi M, Koyama M, Kira Y, Sugawara K, Tsuruta D. Exploring the impact of ovariectomy on hair growth: can ovariectomized mouse serve as a model for investigating female pattern hair loss in humans? Med Mol Morphol 2022; 55:210-226. [PMID: 35486188 DOI: 10.1007/s00795-022-00320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Female pattern hair loss (FPHL), a type of hair disease common in pre- and postmenopausal women, is characterized by thinning of hair to O-type, mainly at the crown. Although a mouse model of this disease has recently been established, its details are still unknown, and thus, warrants further analysis. In this study, 3 week-old and 7- to 8 week-old C57BL/6 female mice were divided into two groups: one group underwent ovariectomy (OVX), while the other underwent sham surgery. In the 3 week-old mice, the dorsal skin was collected at seven weeks of age, while in the 7- to 8 week-old mice, it was collected at 12 and 24 weeks of age. In the former group, both the pore size of the hair follicles (HFs) and diameter of the hair shaft of telogen HFs decreased upon OVX; while in the latter group, these factors increased significantly. Notably, the thickness of the dermis and subcutis increased significantly in the OVX group. It needs to be further elucidated whether OVX mouse could serve as an ideal mouse model for FPHL, but our results upon evaluation of skin thickness indicate that it could be used to establish a novel treatment for non-hair-related diseases, such as post-menopause-related skin condition.
Collapse
Affiliation(s)
- Sayaka Togo
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hisayoshi Imanishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukimi Kira
- Department of Research Support Platform, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
6
|
Abdin R, Zhang Y, Jimenez JJ. Treatment of Androgenetic Alopecia Using PRP to Target Dysregulated Mechanisms and Pathways. Front Med (Lausanne) 2022; 9:843127. [PMID: 35372424 PMCID: PMC8965895 DOI: 10.3389/fmed.2022.843127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Androgenetic alopecia (“AGA”) is the most prevalent type of progressive hair loss, causing tremendous psychological and social stress in patients. However, AGA treatment remains limited in scope. The pathogenesis of androgenetic alopecia is not completely understood but is known to involve a hair follicle miniaturization process in which terminal hair is transformed into thinner, softer vellus-like hair. This process is related to the dysregulation of the Wnt/β-catenin signaling pathway, which causes premature termination of the anagen growth phase in hair follicles. Historically used for wound healing, platelet rich plasma (“PRP”) has recently been at the forefront of potential AGA treatment. PRP is an autologous preparation of plasma that contains a high number of platelets and their associated growth factors such as EGF, IGF-1, and VEGF. These factors are known to individually play important roles in regulating hair follicle growth. However, the clinical effectiveness of PRP is often difficult to characterize and summarize as there are wide variabilities in the PRP preparation and administration protocols with no consensus on which protocol provides the best results. This study follows the previous review from our group in 2018 by Cervantes et al. to analyze and discuss recent clinical trials using PRP for the treatment of AGA. In contrast to our previous publication, we include recent clinical trials that assessed PRP in combination or in direct comparison with standard of care procedures for AGA such as topical minoxidil and/or oral finasteride. Overall, this study aims to provide an in-depth analysis of PRP in the treatment of AGA based on the evaluation of 17 recent clinical trials published between 2018 and October 2021. By closely examining the methodologies of each clinical trial included in our study, we additionally aim to provide an overall consensus on how PRP can be best utilized for the treatment of AGA.
Collapse
Affiliation(s)
- Rama Abdin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
7
|
Chen L, You Q, Liu M, Li S, Wu Z, Hu J, Ma Y, Xia L, Zhou Y, Xu N, Zhang S. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. eLife 2022; 11:72443. [PMID: 35324426 PMCID: PMC8947768 DOI: 10.7554/elife.72443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy–associated cutaneous toxicity is a syndrome characterized by papulopustular rash, local inflammation, folliculitis, and microbial infection, resulting in a decrease in quality of life and dose interruption. However, no effective clinical intervention is available for this adverse effect. Here, we report the atrophy of dermal white adipose tissue (dWAT), a highly plastic adipose tissue with various skin-specific functions, correlates with rash occurrence and exacerbation in a murine model of EGFR inhibitor-induced rash. The reduction in dWAT is due to the inhibition of adipogenic differentiation by defects in peroxisome proliferator-activated receptor γ (PPARγ) signaling, and increased lipolysis by the induced expression of the lipolytic cytokine IL6. The activation of PPARγ by rosiglitazone maintains adipogenic differentiation and represses the transcription of IL6, eventually improving skin functions and ameliorating the severity of rash without altering the antitumor effects. Thus, activation of PPARγ represents a promising approach to ameliorate cutaneous toxicity in patients with cancer who receive anti-EGFR therapy.
Collapse
Affiliation(s)
- Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
9
|
Suzuki B, Sugiyama T, Yoshida C, Nakao T. Short communication: Temporal changes in the skin morphology of dairy cows during the periparturient period. J Dairy Sci 2018; 101:6616-6621. [PMID: 29627240 DOI: 10.3168/jds.2017-13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/27/2018] [Indexed: 11/19/2022]
Abstract
Management of dairy cow productivity requires monitoring of their nutritional status by visual observation. It has been suggested that changes in hair coat appearance are among the indicators of nutritional state in dairy cows. Temporal changes in the skin morphology in cows, however, have not been reported. In this study, we examined the changes in the skin of dairy cows that occur during the peripartum period. Seven pluriparous cows were used. Skin samples were collected at 28 d before the due date and 28 d and 56 d after calving for morphological examination. Hair follicle width was 108.8 ± 5.9 µm (±SD) in the dry period, 95.5 ± 5.5 µm at 28 d after calving, and 104.2 ± 5.3 µm at 56 d postpartum. The percentages of anagen hair follicles during these 3 periods were 41.4 ± 3.4, 18.5 ± 3.4, and 32.3 ± 3.3%, respectively. The corresponding sebaceous gland sizes were 8,362.0 ± 707.6, 7,800.0 ± 831.4, and 9,186.8 ± 962.6 µm2, respectively. Hair follicle width was positively correlated with percentage of anagen hair follicles. The thickness of epidermal and proliferation rate of epidermal cell were also correlated. However, the hair follicle width, sebaceous gland size and cell proliferation rate, and thickness and proliferation rate of epidermal cells did not show any marked changes.
Collapse
Affiliation(s)
- Banri Suzuki
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Niigata, Japan
| | - Toshie Sugiyama
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Niigata, Japan
| | - Chikako Yoshida
- Field Center for Sustainable Agriculture and Forestry, Niigata University, 6934 Ishizone, Gosen, Niigata, Japan.
| | - Toshihiko Nakao
- Faculty of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodaimidoricho, Ebetsu, Hokkaido, Japan
| |
Collapse
|
10
|
Miranda M, Christofk H, Jones DL, Lowry WE. Topical Inhibition of the Electron Transport Chain Can Stimulate the Hair Cycle. J Invest Dermatol 2017; 138:968-972. [PMID: 29106930 DOI: 10.1016/j.jid.2017.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Matilde Miranda
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA; Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Heather Christofk
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA; Eli and Edythe Broad Center for Regenerative Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - D Leanne Jones
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA; Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA; Eli and Edythe Broad Center for Regenerative Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - William E Lowry
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA; Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA; Eli and Edythe Broad Center for Regenerative Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
11
|
Stojadinovic O, Wikramanayake TC, Villasante Fricke AC, Yin NC, Liang L, Hinde E, Escandon J, Tomic-Canic M, Ansell DM, Paus R, Jimenez JJ. Wound healing protects against chemotherapy-induced alopecia in young rats via up-regulating interleukin-1β-mediated signaling. Heliyon 2017; 3:e00309. [PMID: 28607955 PMCID: PMC5454141 DOI: 10.1016/j.heliyon.2017.e00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex process regulated by various cell types and a plethora of mediators. While interactions between wounded skin and the hair follicles (HFs) could induce HF neogenesis or promote wound healing, it remains unknown whether the wound healing-associated signaling milieu can be manipulated to protect against alopecia, such as chemotherapy-induced alopecia (CIA). Utilizing a well-established neonatal rat model of CIA, we show here that skin wounding protects from alopecia caused by several clinically relevant chemotherapeutic regimens, and that protection is dependent on the time of wounding and hair cycle stage. Gene expression profiling unveiled a significant increase in interleukin-1 beta (IL-1β) mediated signaling by skin wounding. Subsequently, we showed that IL-1β is sufficient and indispensable for mediating the CIA-protective effect. Administration of IL-1β alone to unwounded rats exhibited local CIA protection while IL-1β neutralization abrogated CIA protection by wounding. Mechanistically, IL-1β retarded postnatal HF morphogenesis, making HFs at the wound sites or IL-1β treated areas damage-resistant while the rats developed total alopecia elsewhere. We conclude that wound healing switches the cutaneous cytokine milieu to an IL-1β-dominated state thus retarding HF growth progression and rendering the HFs resistant to chemotherapy agents. In the future, manipulation of HF progression through interfering with the IL-1β signaling milieu may provide therapeutic benefits to a variety of conditions, from prevention of CIA to inhibition of hair growth and treatment of hirsutism.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tongyu C Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Molecular Cell and Developmental Biology, Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexandra C Villasante Fricke
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie C Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liang Liang
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eleanor Hinde
- The Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Julia Escandon
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Human Genetics and Genomics Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,The Ronald O. Perelman Department of Dermatology, Langone Medical Center, New York, NY, USA
| | - David M Ansell
- The Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ralf Paus
- The Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Deptartment of Dermatology, University of Münster, Münster, Germany
| | - Joaquin J Jimenez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Paus R, Burgoa I, Platt CI, Griffiths T, Poblet E, Izeta A. Biology of the eyelash hair follicle: an enigma in plain sight. Br J Dermatol 2016; 174:741-52. [PMID: 26452071 DOI: 10.1111/bjd.14217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
Because of their crucial impact on our perception of beauty, eyelashes constitute a prime target for the cosmetic industry. However, when compared with other hair shafts and the mini-organs that produce them [eyelash hair follicles (ELHFs)], knowledge on the biology underlying growth and pigmentation of eyelashes is still rudimentary. This is due in part to the extremely restricted availability of human ELHFs for experimental study, underappreciation of their important sensory and protective functions and insufficient interest in understanding why they are distinct from scalp hair follicles (HFs) (e.g. ELHFs produce shorter hair shafts, do not possess an arrector pili muscle, have a shorter hair cycle and undergo greying significantly later than scalp HFs). Here we synthesize the limited current knowledge on the biology of ELHFs, in humans and other species, their role in health and disease, the known similarities with and differences from other HF populations, and their intrinsic interethnic variations. We define major open questions in the biology of these intriguing mini-organs and conclude by proposing future research directions. These include dissecting the molecular and cellular mechanisms that underlie trichomegaly and the development of in vitro models in order to interrogate the distinct molecular controls of ELHF growth, cycling and pigmentation and to probe novel strategies for the therapeutic and cosmetic manipulation of ELHFs beyond prostaglandin receptor stimulation.
Collapse
Affiliation(s)
- R Paus
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, University of Münster, Münster, Germany
| | - I Burgoa
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| | - C I Platt
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - T Griffiths
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - E Poblet
- Department of Pathology, Hospital Universitario Reina Sofía, Murcia, Spain
| | - A Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| |
Collapse
|
13
|
Fang DR, Lv ZF, Qiao G. Dynamic Wnt5a expression in murine hair follicle cycle and its inhibitory effects on follicular. ASIAN PAC J TROP MED 2014; 7:285-8. [PMID: 24507677 DOI: 10.1016/s1995-7645(14)60039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 03/15/2014] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To analyze the dynamic expression of Wnt family member 5A (Wingless-type MMTV integration Wnt site family, member 5a) in murine hair cycle and its inhibitory effects on follicle in vivo. METHODS Situ hybridization in full-thickness skin was used to observe the change of mouse protein expression in different growth stages, and Ad-Wnt5a was injected after defeathering to observe the hair follicle growth in vivo. RESULTS The Wnt5a mRNA was expressed at birth, and was firstly increased then decreased along with the progress of the hair cycle. It reached the peak in advanced stage of growth cycle (P<0.05). Rhoa and β-catenin expression levels were significantly decreased in three groups. Rac2 expression was significantly up-regulated, and the expression level of Wnt5a, Shh and Frizzled2 was increased, but less significantly than group 2. CONCLUSIONS The expression of Wnt5a mRNA is consistent with change of murine follicle cycle, and has obvious inhibitory effects on the growth of hair follicle in vivo, indicating that it is antagonistic to Wnts pathway and interferes the growth of follicle together.
Collapse
Affiliation(s)
- De-Ren Fang
- Department of Dermatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Zhong-Fa Lv
- Department of Dermatology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Gang Qiao
- Department of Dermatology, the Third People's Hospital of Hanghzhou, Hanghzhou, 310009 China
| |
Collapse
|
14
|
Coulson-Thomas VJ, Gesteira TF, Esko J, Kao W. Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis. J Biol Chem 2014; 289:25211-26. [PMID: 25053416 DOI: 10.1074/jbc.m114.572511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1(StEpiΔ/StEpiΔ) mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1(StEpiΔ/StEpiΔ) mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling.
Collapse
Affiliation(s)
| | - Tarsis Ferreira Gesteira
- From the Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio 45267-0838, Division of Developmental Biology, Cincinnati Children's Hospital and Research, Cincinnati, Ohio 45229-3039, and
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687
| | - Winston Kao
- From the Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio 45267-0838
| |
Collapse
|
15
|
White AC, Khuu JK, Dang CY, Hu J, Tran KV, Liu A, Gomez S, Zhang Z, Yi R, Scumpia P, Grigorian M, Lowry WE. Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nat Cell Biol 2013; 16:99-107. [PMID: 24335650 PMCID: PMC3874399 DOI: 10.1038/ncb2889] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022]
Abstract
In some organs, adult stem cells are uniquely poised to serve as cancer cells of origin. It is unclear, however, whether tumorigenesis is influenced by the activation state of the adult stem cell. Hair follicle stem cells (HFSCs) act as cancer cells of origin for cutaneous squamous cell carcinoma (SCC) and undergo defined cycles of quiescence and activation. The data presented here show that HFSCs are unable to initiate tumors during the quiescent phase of the hair cycle, indicating that the mechanisms that keep HFSCs dormant are dominant to the gain of oncogenes (Ras) or the loss of tumor suppressors (p53). Furthermore, Pten activity is necessary for quiescence based tumor suppression, as its deletion alleviates tumor suppression without affecting proliferation. These data demonstrate that stem cell quiescence is a form of tumor suppression in HFSCs, and that Pten plays a role in maintaining quiescence in the presence of tumorigenic stimuli.
Collapse
Affiliation(s)
- A C White
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - J K Khuu
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - C Y Dang
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - J Hu
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - K V Tran
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - A Liu
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - S Gomez
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - Z Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - R Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - P Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine, UCLA, California 90095, USA
| | - M Grigorian
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA
| | - W E Lowry
- 1] Department of Molecular Cell and Developmental Biology, UCLA, California 90095, USA [2] Eli and Edythe Broad Center for Regenerative Medicine, UCLA, California 90095, USA [3] Jonsson Cancer Research Center, UCLA, California 90095, USA [4] Molecular Biology Institute, UCLA, California 90095, USA
| |
Collapse
|
16
|
EGFR-ras-raf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. Int J Mol Sci 2013; 14:19361-84. [PMID: 24071938 PMCID: PMC3821561 DOI: 10.3390/ijms141019361] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions.
Collapse
|
17
|
Wojciechowicz K, Gledhill K, Ambler CA, Manning CB, Jahoda CAB. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLoS One 2013; 8:e59811. [PMID: 23555789 PMCID: PMC3608551 DOI: 10.1371/journal.pone.0059811] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/18/2013] [Indexed: 12/05/2022] Open
Abstract
The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.
Collapse
Affiliation(s)
- Kamila Wojciechowicz
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham, United Kingdom
- Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, North Holland, The Netherlands
| | - Karl Gledhill
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham, United Kingdom
- * E-mail:
| | - Carrie A. Ambler
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham, United Kingdom
| | - Craig B. Manning
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham, United Kingdom
| | - Colin A. B. Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham, County Durham, United Kingdom
| |
Collapse
|
18
|
Abstract
Here, we explore the established and potential roles for intradermal adipose tissue in communication with hair follicle biology. The hair follicle delves deep into the rich dermal macroenvironment as it grows to maturity where it is surrounded by large lipid-filled adipocytes. Intradermal adipocytes regenerate with faster kinetics than other adipose tissue depots and in parallel with the hair cycle, suggesting an interplay exists between hair follicle cells and adipocytes. While adipocytes have well-established roles in metabolism and energy storage, until recently, they were overlooked as niche cells that provide important growth signals to neighbouring skin cells. We discuss recent data supporting adipocytes as niche cells for the skin and skin pathologies that may be related to alterations in skin adipose tissue defects.
Collapse
Affiliation(s)
- Barbara Schmidt
- Department of Molecular, Cell and Developmental Biology, Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | | |
Collapse
|
19
|
Lei M, Bai X, Yang T, Lai X, Qiu W, Yang L, Lian X. Gsdma3 is a new factor needed for TNF-α-mediated apoptosis signal pathway in mouse skin keratinocytes. Histochem Cell Biol 2012; 138:385-96. [DOI: 10.1007/s00418-012-0960-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 01/01/2023]
|
20
|
Dahlhoff M, Rose C, Wolf E, Schneider MR. Decreased incidence of papillomas in mice with impaired EGFR function during multi-stage skin carcinogenesis. Exp Dermatol 2011; 20:290-3. [PMID: 21323750 DOI: 10.1111/j.1600-0625.2010.01192.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetically modified mouse lines revealed that the epidermal growth factor receptor (EGFR) is essential for the development and homoeostasis of the epidermis and hair follicles. However, more detailed studies have been precluded by the shortened lifespan of Egfr knockout mice. We employed the mouse line Wa5 (carrying a point mutation resulting in the expression of a dominant negative receptor) to analyse the impact of significantly reduced EGFR signalling during multi-stage chemical skin carcinogenesis. Seven-week-old Wa5 females and control littermates received a single application of 7,12-dimethylbenz(a)anthracene followed by multiple applications of 12-O-tetradecanoylphorbol-13-acetate for 26 weeks. Wa5 mice remained free of papillomas for a longer time and developed significantly fewer tumors than control littermates. In contrast, the mean tumor size was not different between groups. The present data indicate that EGFR signalling contributes to tumor growth during multi-stage chemical carcinogenesis of the skin in mice possibly by acting as a survival factor for skin tumor cells.
Collapse
|
21
|
Ramot Y, Tiede S, Bíró T, Abu Bakar MH, Sugawara K, Philpott MP, Harrison W, Pietilä M, Paus R. Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions. PLoS One 2011; 6:e22564. [PMID: 21818338 PMCID: PMC3144892 DOI: 10.1371/journal.pone.0022564] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rapidly regenerating tissues need sufficient polyamine synthesis. Since the hair follicle (HF) is a highly proliferative mini-organ, polyamines may also be important for normal hair growth. However, the role of polyamines in human HF biology and their effect on HF epithelial stem cells in situ remains largely unknown. METHODS AND FINDINGS We have studied the effects of the prototypic polyamine, spermidine (0.1-1 µM), on human scalp HFs and human HF epithelial stem cells in serum-free organ culture. Under these conditions, spermidine promoted hair shaft elongation and prolonged hair growth (anagen). Spermidine also upregulated expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro. Inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboyxlase (ODC), downregulated intrafollicular K15 expression. In primary human epidermal keratinocytes, spermidine slightly promoted entry into the S/G2-M phases of the cell cycle. By microarray analysis of human HF mRNA extracts, spermidine upregulated several key target genes implicated e.g. in the control of cell adherence and migration (POP3), or endoplasmic reticulum and mitochondrial functions (SYVN1, NACA and SLC25A3). Excess spermidine may restrict further intrafollicular polyamine synthesis by inhibiting ODC gene and protein expression in the HF's companion layer in situ. CONCLUSIONS These physiologically and clinically relevant data provide the first direct evidence that spermidine is a potent stimulator of human hair growth and a previously unknown modulator of human epithelial stem cell biology.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Shirakata Y. Regulation of epidermal keratinocytes by growth factors. J Dermatol Sci 2010; 59:73-80. [PMID: 20570492 DOI: 10.1016/j.jdermsci.2010.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/07/2010] [Indexed: 01/16/2023]
Abstract
Epidermal keratinocytes are the main component cells of the epidermis and their function is regulated by various kinds of growth factors, cytokines, and chemokines. Of these, members of the epidermal growth factor and fibroblast growth factor families, as wells as hepatocyte growth factor and insulin-like growth factor, play central roles in keratinocyte proliferation, while transforming growth factor-beta, vitamin D3, and interferon-gamma are important inhibitors of keratinocyte growth. Keratinocytes are known to produce many of the currently identified growth factors, cytokines and chemokines. Keratinocyte-derived growth factors and cytokines regulate immune and inflammatory responses, and play important roles in pathological skin conditions. This review focuses on the regulation of keratinocytes by growth factors, cytokines, and chemokines.
Collapse
Affiliation(s)
- Yuji Shirakata
- Department of Dermatology, Center for Regenerative Medicine, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon City, Ehime 791-0295, Japan.
| |
Collapse
|