1
|
Sukseree S, Karim N, Nagelreiter IM, Rice RH, Eckhart L. Identification of autophagy-regulated proteins by proteomic analysis of tape-stripped stratum corneum. Arch Dermatol Res 2024; 316:740. [PMID: 39499319 DOI: 10.1007/s00403-024-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Affiliation(s)
- Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, CA, 95616-8588, USA
| | | | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA, 95616-8588, USA
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Liu H, Su P, Li Y, Hoover A, Hu S, King SA, Zhao J, Guan JL, Chen SY, Zhao Y, Tan M, Wu X. VAMP2 controls murine epidermal differentiation and carcinogenesis by regulation of nucleophagy. Dev Cell 2024; 59:2005-2016.e4. [PMID: 38810653 PMCID: PMC11303110 DOI: 10.1016/j.devcel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.
Collapse
Affiliation(s)
- Han Liu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Peihong Su
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yuanyuan Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sophie Hu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarah A King
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jing Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Lecomte K, Toniolo A, Hoste E. Cell death as an architect of adult skin stem cell niches. Cell Death Differ 2024; 31:957-969. [PMID: 38649745 PMCID: PMC11303411 DOI: 10.1038/s41418-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Our skin provides a physical and immunological barrier against dehydration and environmental insults ranging from microbial attacks, toxins and UV irradiation to wounding. Proper functioning of the skin barrier largely depends on the interplay between keratinocytes- the epithelial cells of the skin- and immune cells. Two spatially distinct populations of keratinocyte stem cells (SCs) maintain the epidermal barrier function and the hair follicle. These SCs are inherently long-lived, but cell death can occur within their niches and impacts their functionality. The default cell death programme in skin is apoptosis, an orderly and non-inflammatory suicide programme. However, recent findings are shedding light on the significance of various modes of regulated necrotic cell death, which are lytic and can provoke inflammation within the local skin environment. While the presence of dying cells was generally regarded as a mere consequence of inflammation, findings in various human dermatological conditions and experimental mouse models of aberrant cell death control demonstrated that cell death programmes in keratinocytes (KCs) can drive skin inflammation and even tumour initiation. When cells die, they need to be removed by phagocytosis and KCs can function as non-professional phagocytes of apoptotic cells with important implications for their SC capacities. It is becoming apparent that in conditions of heightened SC activity, distinct cell death modalities differentially impact the different skin SC populations in their local niches. Here, we describe how regulated cell death modalities functionally affect epidermal SC niches along with their relevance to injury repair, inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Kim Lecomte
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Annagiada Toniolo
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Conway S, Jefferson M, Warren DT, Wileman T, Morris CJ. The WD Domain of Atg16l1 Crucial for LC3-Associated Phagocytosis Is Not Required for Preserving Skin Barrier Function in Mice. JID INNOVATIONS 2024; 4:100283. [PMID: 38827330 PMCID: PMC11137747 DOI: 10.1016/j.xjidi.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
The skin is a multifunctional organ, forming a barrier between the external and internal environment, thereby functioning as a safeguard against extrinsic factors. Autophagy has been implicated in epidermal differentiation and in preserving skin homeostasis. LC3-associated phagocytosis (LAP) uses some but not all components of autophagy. The Atg16l1 (Δ WD) mouse model lacks the WD40 domain required for LAP and has been widely used to study the effects of LAP deficiency and autophagy on tissue homeostasis and response to infection. In this study, the Δ WD model was used to study the relationship between LAP and skin homeostasis by determining whether LAP-deficient mice display a cutaneous phenotype. Skin histology of wild-type and Δ WD mice aged 1 year revealed minor morphological differences in the tail skin dermal layer. RT-qPCR and western blot analysis showed no differences in key keratin expression between genotypes. Skin barrier formation, assessed by dye permeation assays, demonstrated full and proper formation of the skin barrier at embryonic day 18.5 in both genotypes. Biomechanical analysis of the skin showed decreased skin elasticity in aged Δ WD but not wild-type mice. In summary, the LAP-deficient Δ WD mice displayed subtle alterations in dermal histology and age-related biomechanical changes.
Collapse
Affiliation(s)
- Shannon Conway
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
| | - Matthew Jefferson
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Derek T. Warren
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
| | - Thomas Wileman
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | |
Collapse
|
6
|
Alexander MH, Cousins WJ, Ewen T, South AP, Lovat P, Stefanos N. The combined immunohistochemical expression of AMBRA1 and SQSTM1 identifies patients with poorly differentiated cutaneous squamous cell carcinoma at risk of metastasis: A proof of concept study. J Cutan Pathol 2024; 51:450-458. [PMID: 38421158 DOI: 10.1111/cup.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) incidence continues to increase globally with, as of yet, an unmet need for reliable prognostic biomarkers to identify patients at increased risk of metastasis. The aim of the present study was to test the prognostic potential of the combined immunohistochemical expression of the autophagy regulatory biomarkers, AMBRA1 and SQSTM1, to identify high-risk patient subsets. METHODS A retrospective cohort of 68 formalin-fixed paraffin-embedded primary cSCCs with known 5-year metastatic outcomes were subjected to automated immunohistochemical staining for AMBRA1 and SQSTM1. Digital images of stained slides were annotated to define four regions of interest: the normal and peritumoral epidermis, the tumor mass, and the tumor growth front. H-score analysis was used to semi-quantify AMBRA1 or SQSTM1 expression in each region of interest using Aperio ImageScope software, with receiver operator characteristics and Kaplan-Meier analysis used to assess prognostic potential. RESULTS The combined loss of expression of AMBRA1 in the tumor growth front and SQSTM1 in the peritumoral epidermis identified patients with poorly differentiated cSCCs at risk of metastasis (*p < 0.05). CONCLUSIONS Collectively, these proof of concept data suggest loss of the combined expression of AMBRA1 in the cSCC growth front and SQSTM1 in the peritumoral epidermis as a putative prognostic biomarker for poorly differentiated cSCC.
Collapse
Affiliation(s)
- Michael H Alexander
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William J Cousins
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Tom Ewen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Penny Lovat
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Niki Stefanos
- Cellular Pathology, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
7
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Graña X, Hamilton KE, Whelan KA. Autophagy Contributes to Homeostasis in Esophageal Epithelium Where High Autophagic Vesicle Level Marks Basal Cells With Limited Proliferation and Enhanced Self-Renewal Potential. Cell Mol Gastroenterol Hepatol 2024; 18:15-40. [PMID: 38452871 PMCID: PMC11126828 DOI: 10.1016/j.jcmgh.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND & AIMS Autophagy plays roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelial homeostasis. METHODS We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histologic and biochemical analyses. We fluorescence-activated cell sorted esophageal basal cells based on fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID and then subjected these cells to transmission electron microscopy, image flow cytometry, three-dimensional organoid assays, RNA sequencing, and cell cycle analysis. Three-dimensional organoids were subjected to passaging, single-cell RNA sequencing, cell cycle analysis, and immunostaining. RESULTS Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells under homeostatic conditions and also was associated with significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Esophageal basal cells with high AV level (Cyto-IDHigh) displayed limited organoid formation capability on initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-IDLow). RNA sequencing suggested increased autophagy in Cyto-IDHigh esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. Single-cell RNA sequencing of three-dimensional organoids generated by Cyto-IDLow and Cyto-IDHigh cells identified expansion of 3 cell populations and enrichment of G2/M-associated genes in the Cyto-IDHigh group. Ki67 expression was also increased in organoids generated by Cyto-IDHigh cells, including in basal cells localized beyond the outermost cell layer. CONCLUSIONS Autophagy contributes to maintenance of the esophageal proliferation-differentiation gradient. Esophageal basal cells with high AV level exhibit limited proliferation and generate three-dimensional organoids with enhanced self-renewal capacity.
Collapse
Affiliation(s)
- Alena Klochkova
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Adam L Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Annie D Fuller
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Louis R Parham
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Surali R Panchani
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Shruthi Natarajan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Anbin Mu
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Amanda B Muir
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xavier Graña
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Sukseree S, Karim N, Jaeger K, Zhong S, Rossiter H, Nagelreiter IM, Gruber F, Tschachler E, Rice RH, Eckhart L. Autophagy Controls the Protein Composition of Hair Shafts. J Invest Dermatol 2024; 144:170-173.e4. [PMID: 37517514 DOI: 10.1016/j.jid.2023.06.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Karin Jaeger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shaomin Zhong
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Peking University First Hospital, Beijing, China
| | | | | | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Quan T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023; 13:1614. [PMID: 38002296 PMCID: PMC10669284 DOI: 10.3390/biom13111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The skin is the most-extensive and -abundant tissue in the human body. Like many organs, as we age, human skin experiences gradual atrophy in both the epidermis and dermis. This can be primarily attributed to the diminishing population of epidermal stem cells and the reduction in collagen, which is the primary structural protein in the human body. The alterations occurring in the epidermis and dermis due to the aging process result in disruptions to the structure and functionality of the skin. This creates a microenvironment conducive to age-related skin conditions such as a compromised skin barrier, slowed wound healing, and the onset of skin cancer. This review emphasizes the recent molecular discoveries related to skin aging and evaluates preventive approaches, such as the use of topical retinoids. Topical retinoids have demonstrated promise in enhancing skin texture, diminishing fine lines, and augmenting the thickness of both the epidermal and dermal layers.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Van Hove L, Toniolo A, Ghiasloo M, Lecomte K, Boone F, Ciers M, Raaijmakers K, Vandamme N, Roels J, Maschalidi S, Ravichandran KS, Kasper M, van Loo G, Hoste E. Autophagy critically controls skin inflammation and apoptosis-induced stem cell activation. Autophagy 2023; 19:2958-2971. [PMID: 37615626 PMCID: PMC10549204 DOI: 10.1080/15548627.2023.2247742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023] Open
Abstract
Macroautophagy/autophagy is a cellular recycling program regulating cell survival and controlling inflammatory responses in a context-dependent manner. Here, we demonstrate that keratinocyte-selective ablation of Atg16l1, an essential autophagy mediator, results in exacerbated inflammatory and neoplastic skin responses. In addition, mice lacking keratinocyte autophagy exhibit precocious onset of hair follicle growth, indicating altered activation kinetics of hair follicle stem cells (HFSCs). These HFSCs also exhibit expanded potencies in an autophagy-deficient context as shown by de novo hair follicle formation and improved healing of abrasion wounds. ATG16L1-deficient keratinocytes are markedly sensitized to apoptosis. Compound deletion of RIPK3-dependent necroptotic and CASP8-dependent apoptotic responses or of TNFRSF1A/TNFR1 reveals that the enhanced sensitivity of autophagy-deficient keratinocytes to TNF-dependent cell death is driving altered activation of HFSCs. Together, our data demonstrate that keratinocyte autophagy dampens skin inflammation and tumorigenesis but curtails HFSC activation by restraining apoptotic responses.Abbreviations: ATG16L1: autophagy related 16 like 1; DMBA: 2,4-dimethoxybenzaldehyde; DP: dermal papilla; EpdSCs: epidermal stem cells; Gas6: growth arrest specific 6; HF: hair follicle; HFSC: hair follicle stem cell; IFE: interfollicular epidermis; KRT5: keratin 5; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PMK: primary mouse keratinocyte; RIPK3: receptor-interacting serine-threonine kinase 3; scRNAseq: single-cell RNA-sequencing; SG: sebaceous gland; TEWL: transepidermal water loss; TPA: 12-O-tetradecanoylphorbol-13-acetate; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a; UMAP: uniform manifold approximation and projection.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Annagiada Toniolo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mohammad Ghiasloo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Kim Lecomte
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fleur Boone
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Maarten Ciers
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kris Raaijmakers
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Niels Vandamme
- VIB Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, Ghent-Leuven, Belgium
| | - Jana Roels
- VIB Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, Ghent-Leuven, Belgium
| | - Sophia Maschalidi
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Hamilton KE, Whelan KA. Autophagy contributes to homeostasis in esophageal epithelium where high autophagic vesicle content marks basal cells with limited proliferation and enhanced self-renewal potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558614. [PMID: 37781581 PMCID: PMC10541137 DOI: 10.1101/2023.09.20.558614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background & Aims Autophagy has been demonstrated to play roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelium under homeostatic conditions. Methods We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histological and biochemical analyses. We FACS sorted esophageal basal cells based upon fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID, then subjected these cells to transmission electron microscopy, image flow cytometry, 3D organoid assays, RNA-Sequencing (RNA-Seq), and cell cycle analysis. 3D organoids were subjected to passaging, single cell (sc) RNA-Seq, cell cycle analysis, and immunostaining. Results Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells. Esophageal basal cells with high AV level (Cyto-ID High ) displayed limited organoid formation capability upon initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-ID Low ). RNA-Seq suggested increased autophagy in Cyto- ID High esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. scRNA-Seq of 3D organoids generated by Cyto-ID Low and Cyto- ID High cells identified expansion of 3 cell populations, enrichment of G2/M-associated genes, and aberrant localization of cell cycle-associated genes beyond basal cell populations in the Cyto- ID High group. Ki67 expression was also increased in organoids generated by Cyto-ID High cells, including in cells beyond the basal cell layer. Squamous epithelial-specific autophagy inhibition induced significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Conclusions High AV level identifies esophageal epithelium with limited proliferation and enhanced self-renewal capacity that contributes to maintenance of the esophageal proliferation- differentiation gradient in vivo .
Collapse
|
13
|
Priem D, Huyghe J, Bertrand MJM. LC3-independent autophagy is vital to prevent TNF cytotoxicity. Autophagy 2023; 19:2585-2589. [PMID: 37014272 PMCID: PMC10392734 DOI: 10.1080/15548627.2023.2197760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The (macro)autophagy field is facing a paradigm shift after the recent discovery that cytosolic cargoes can still be selectively targeted to phagophores (the precursors to autophagosomes) even in the absence of LC3 or other Atg8-protein family members. Several in vitro studies have indeed reported on the existence of an unconventional selective autophagic pathway that involves the in-situ formation of an autophagosome around the cargo through the direct selective autophagy receptor-mediated recruitment of RB1CC1/FIP200, thereby bypassing the requirement of LC3. In an article recently published in Science, we demonstrate the physiological importance of this unconventional autophagic pathway in the context of TNF (tumor necrosis factor) signaling. We show that it promotes the degradation of the cytotoxic TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex II that assembles upon TNF sensing and thereby protects mice from TNFRSF1A-driven embryonic lethality and skin inflammation.Abbreviations: ATG: autophagy related; CASP: caspase; FIR: RB1CC1/FIP200-interacting region; LIR: LC3-interacting region; M1: linear; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase; TNF: tumor necrosis factor; TNFRSF1A: TNF receptor superfamily member 1A.
Collapse
Affiliation(s)
- Dario Priem
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jon Huyghe
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu JM Bertrand
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Ikutama R, Peng G, Tsukamoto S, Umehara Y, Trujillo-Paez JV, Yue H, Nguyen HLT, Takahashi M, Kageyama S, Komatsu M, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. Cathelicidin LL-37 Activates Human Keratinocyte Autophagy through the P2X₇, Mechanistic Target of Rapamycin, and MAPK Pathways. J Invest Dermatol 2022; 143:751-761.e7. [PMID: 36455652 DOI: 10.1016/j.jid.2022.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Abstract
Human cathelicidin LL-37 is a multifunctional antimicrobial peptide that exhibits antimicrobial and immunomodulatory activities. LL-37 regulates skin barrier function and was recently reported to activate autophagy in macrophages. Because autophagy deficiency is associated with skin diseases characterized by a dysfunctional epidermal barrier, we hypothesized that LL-37 might regulate the skin barrier through autophagy modulation. We showed that LL-37 activated autophagy in human keratinocytes and three-dimensional skin equivalent models as indicated by increases in LC3 puncta formation, decreases in p62, and autophagosome and autolysosome formation. LL-37‒induced autophagy was suppressed by P2X7 receptor, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 inhibitors, suggesting that the P2X7, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 pathways are involved. Moreover, LL-37 enhanced the phosphorylation of adenosine monophosphate‒activated protein kinase and unc-51-like kinase 1. In addition, LL-37‒mediated autophagy involves the mechanistic target of rapamycin and MAPK pathways. Interestingly, the LL-37‒induced distribution of tight junction proteins and improvement in the tight junction barrier were inhibited in autophagy-deficient keratinocytes and keratinocytes and skin models treated with autophagy inhibitors, indicating that the LL-37‒mediated tight junction barrier is associated with autophagy activation. Collectively, these findings suggest that LL-37 is a potential therapeutic target for skin diseases characterized by dysfunctional autophagy and skin barriers.
Collapse
Affiliation(s)
- Risa Ikutama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saya Tsukamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shun Kageyama
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
15
|
Barresi C, Rossiter H, Buchberger M, Pammer J, Sukseree S, Sibilia M, Tschachler E, Eckhart L. Inactivation of Autophagy in Keratinocytes Reduces Tumor Growth in Mouse Models of Epithelial Skin Cancer. Cells 2022; 11:cells11223691. [PMID: 36429119 PMCID: PMC9688105 DOI: 10.3390/cells11223691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a ubiquitous degradation mechanism, which plays a critical role in cellular homeostasis. To test whether autophagy suppresses or supports the growth of tumors in the epidermis of the skin, we inactivated the essential autophagy gene Atg7 specifically in the epidermal keratinocytes of mice (Atg7∆ep) and subjected such mutant mice and fully autophagy-competent mice to tumorigenesis. The lack of epithelial Atg7 did not prevent tumor formation in response to 7, 12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O tetradecanoylphorbol-13-acetate (TPA) as the promoter of tumor growth. However, the number of tumors per mouse was reduced in mice with epithelial Atg7 deficiency. In the K5-SOS EGFRwa2/wa2 mouse model, epithelial tumors were initiated by Son of sevenless (SOS) in response to wounding. Within 12 weeks after tumor initiation, 60% of the autophagy-competent K5-SOS EGFRwa2/wa2 mice had tumors of 1 cm diameter and had to be sacrificed, whereas none of the Atg7∆ep K5-SOS EGFRwa2/wa2 mice formed tumors of this size. In summary, the deletion of Atg7 reduced the growth of epithelial tumors in these two mouse models of skin cancer. Thus, our data show that the inhibition of autophagy limits the growth of epithelial skin tumors.
Collapse
Affiliation(s)
- Caterina Barresi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heidemarie Rossiter
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Pammer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Sibilia
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (E.T.); (L.E.)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (E.T.); (L.E.)
| |
Collapse
|
16
|
Consequences of Autophagy Deletion on the Age-Related Changes in the Epidermal Lipidome of Mice. Int J Mol Sci 2022; 23:ijms231911110. [PMID: 36232414 PMCID: PMC9569666 DOI: 10.3390/ijms231911110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.
Collapse
|
17
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
18
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
19
|
Rossiter H, Copic D, Direder M, Gruber F, Zoratto S, Marchetti-Deschmann M, Kremslehner C, Sochorová M, Nagelreiter IM, Mlitz V, Buchberger M, Lengauer B, Golabi B, Sukseree S, Mildner M, Eckhart L, Tschachler E. Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy 2021; 18:1005-1019. [PMID: 34491140 DOI: 10.1080/15548627.2021.1966716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Preputial glands are large lipid and hormone secreting sebaceous organs of mice, and present a convenient model for the investigation of biological processes in sebocytes. Suppression of ATG7-dependent macroautophagy/autophagy in epithelial cells of murine skin causes enlargement of hair follicle-associated sebaceous glands and alters the lipid profile of sebum. We have now extended these studies to the preputial glands and find that autophagy significantly delays the onset of age-related ductal ectasia, influences lipid droplet morphology and contributes to the complete dissolution of the mature sebocytes during holocrine secretion. Single cell RNA sequencing showed that many genes involved in lipid metabolism and oxidative stress response were downregulated in immature and mature epithelial cells of ATG7-deficient glands. When analyzing the lipid composition of control and mutant glands, we found that levels of all phospholipid classes, except choline plasmalogen, were decreased in the mutant glands, with a concomitant accumulation of diacyl glycerides. Mass spectrometric imaging (MSI) demonstrated that phospholipid species, specifically the dominant phosphatidylcholine (PC 34:1), were decreased in immature and mature sebocytes. In addition, we found a strong reduction in the amounts of the pheromone, palmityl acetate. Thus, autophagy in the preputial gland is not only important for homeostasis of the gland as a whole and an orderly breakdown of cells during holocrine secretion, but also regulates phospholipid and fatty acid metabolism, as well as pheromone production.AbbreviationsATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.
Collapse
Affiliation(s)
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Samuele Zoratto
- Institute of Chemical Technologies and Analytics, Technical University of Vienna, Vienna, Austria
| | | | | | - Michaela Sochorová
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Lengauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Mahanty S, Setty SRG. Epidermal Lamellar Body Biogenesis: Insight Into the Roles of Golgi and Lysosomes. Front Cell Dev Biol 2021; 9:701950. [PMID: 34458262 PMCID: PMC8387949 DOI: 10.3389/fcell.2021.701950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Epidermal lamellar bodies (eLBs) are secretory organelles that carry a wide variety of secretory cargo required for skin homeostasis. eLBs belong to the class of lysosome-related organelles (LROs), which are cell-type-specific organelles that perform diverse functions. The formation of eLBs is thought to be related to that of other LROs, which are formed either through the gradual maturation of Golgi/endosomal precursors or by the conversion of conventional lysosomes. Current evidence suggests that eLB biogenesis presumably initiate from trans-Golgi network and receive cargo from endosomes, and also acquire lysosome characteristics during maturation. These multistep biogenesis processes are frequently disrupted in human skin disorders. However, many gaps remain in our understanding of eLB biogenesis and their relationship to skin diseases. Here, we describe our current understanding on eLB biogenesis with a focus on cargo transport to this LRO and highlight key areas where future research is needed.
Collapse
Affiliation(s)
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
21
|
Bahamondes Lorca VA, Wu S. Role of constitutive nitric oxide synthases in the dynamic regulation of the autophagy response of keratinocytes upon UVB exposure. Photochem Photobiol Sci 2021; 19:1559-1568. [PMID: 33030168 DOI: 10.1039/d0pp00280a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultraviolet B (UVB) radiation induces autophagy responses, which play a role in the regulation of the oncogenic processes of irradiated cells. However, the mechanism of autophagy responses post-UVB irradiation remains to be fully elucidated. Previous studies indicate that UVB radiation induces the activation and uncoupling of constitutive nitric oxide synthases (cNOS), which produce nitric oxide and peroxynitrite; both have been shown to regulate autophagy responses. In this study, the UVB-induced autophagy responses were analysed in cell line- and UVB dose-dependent manners, and the role of cNOS in UVB-induced autophagy responses was also studied. Our data showed that UVB induces both autophagosome formation and degradation, and that cNOS is involved in the regulation of autophagy responses post UVB exposure. Both nitric oxide and peroxynitrite, the two products that are produced in cells immediately after UVB exposure, could upregulate autophagy in a dose-dependent manner. Furthermore, cNOS is involved in the UVB-induced downregulation of SQSTM1/p62, a scaffold protein used as a reporter of the autophagy response. However, the cNOS-mediated reduction of SQSTM1/p62 is autophagy-independent post UVB irradiation. Our results indicated that autophagy responses post UVB exposure are a dynamic balance of autophagosome formation and degradation, with cNOS playing a role in the regulation of the balance.
Collapse
Affiliation(s)
- Verónica A Bahamondes Lorca
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA. and Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shiyong Wu
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
22
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
23
|
Xiao T, Chen Y, Song C, Xu S, Lin S, Li M, Chen X, Gu H. Possible treatment for UVB-induced skin injury: Anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes. J Dermatol Sci 2021; 102:25-35. [PMID: 33642112 DOI: 10.1016/j.jdermsci.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Excessive inflammation and cell death induced by ultraviolet (UV) cause skin photodamage. Metformin possesses anti-inflammatory and cytoprotective effects. However, whether metformin inhibits inflammation and cell death in UVB-induced acute skin damage is unclear. OBJECTIVE To evaluate the anti-inflammatory and cytoprotective effects of metformin in vitro and in vivo. Furthermore, its potential mechanism has been explored. METHODS Transcriptome sequencing and multiplex cytokines analysis were used to evaluate the validity of in vitro UVB-induced acute damage keratinocyte model and anti-inflammatory effects of metformin. We also determined the expression and nuclear translocation of CCAAT/enhancer-binding protein beta (C/EBPβ), an important transcriptional factor of Interleukin-1beta (IL-1β). Cell viability and cell death of keratinocytes were evaluated upon UVB irradiation in the presence or absence of metformin. 0.6% metformin cream was applied on UVB-irradiated mice to explore its pharmacological effects in vivo. RESULTS Transcriptional landscape of 50 mJ/cm2 UVB-irradiated HaCaT cells is typical of UVB-induced acute damage keratinocyte model in vitro. Metformin alleviated transcription and secretion of IL-1β, Tumor Necrosis Factor-alpha, and Fibroblast Growth Factor 2, expression and nuclear translocation of C/EBPβ in this model. Metformin also protected keratinocytes from cell death caused by UVB-induced cellular secretions, which contributed to its cytoprotective effects. Topical administration of 0.6% metformin cream alleviated UVB-induced skin damage in mice. CONCLUSION We proved the protective roles of metformin in UVB-challenged keratinocytes and UVB-irradiated mice, which indicated the potential value of metformin in topical therapy against skin photodamage.
Collapse
Affiliation(s)
- Ta Xiao
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yujie Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Changjun Song
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Shangqing Lin
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
24
|
Shao Z, Ni L, Hu S, Xu T, Meftah Z, Yu Z, Tian N, Wu Y, Sun L, Wu A, Pan Z, Chen L, Gao W, Zhou Y, Zhang X, Wang X. RNA-binding protein HuR suppresses senescence through Atg7 mediated autophagy activation in diabetic intervertebral disc degeneration. Cell Prolif 2021; 54:e12975. [PMID: 33372336 PMCID: PMC7848958 DOI: 10.1111/cpr.12975] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Diabetes is a risk factor for intervertebral disc degeneration (IVDD). Studies have demonstrated that diabetes may affect IVDD through transcriptional regulation; however, whether post-transcriptional regulation is involved in diabetic IVDD (DB-IVDD) is still unknown. This study was performed to illustrate the role of HuR, an RNA-binding protein, in DB-IVDD development and its mechanism. MATERIALS AND METHODS The expression of HuR was evaluated in nucleus pulposus (NP) tissues from diabetic IVDD patients and in high glucose-treated NP cells. Senescence and autophagy were assessed in HuR over-expressing and downregulation NP cells. The mRNAs that were regulated by HuR were screened, and immunoprecipitation was applied to confirm the regulation of HuR on targeted mRNAs. RESULTS The results showed that the expression of HuR was decreased in diabetic NP tissues and high glucose-treated NP cells. Downregulation of HuR may lead to increased senescence in high glucose-treated NP cells, while autophagy activation attenuates senescence in HuR deficient NP cells. Mechanistic study showed that HuR prompted Atg7 mRNA stability via binding to the AU-rich elements. Furthermore, overexpression of Atg7, but not HuR, may ameliorate DB-IVDD in rats in vivo. CONCLUSIONS In conclusion, HuR may suppress senescence through autophagy activation via stabilizing Atg7 in diabetic NP cells; while Atg7, but not HuR, may serve as a potential therapeutic target for DB-IVDD.
Collapse
|
25
|
Impaired autophagy increases susceptibility to endotoxin-induced chronic pancreatitis. Cell Death Dis 2020; 11:889. [PMID: 33087696 PMCID: PMC7578033 DOI: 10.1038/s41419-020-03050-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Chronic pancreatitis (CP) is associated with elevated plasma levels of bacterial lipopolysaccharide (LPS) and we have demonstrated reduced acinar cell autophagy in human CP tissue. Therefore, we investigated the role of autophagy in experimental endotoxin-induced pancreatic injury and aimed to identify LPS in human CP tissue. Pancreatic Atg7-deficient mice were injected with a single sub-lethal dose of LPS. Expression of autophagy, apoptosis, necroptosis, and inflammatory markers was determined 3 and 24 h later utilizing immunoblotting and immunofluorescence. The presence of LPS in pancreatic tissue from mice and from patients and healthy controls was determined using immunohistochemistry, immunoblots, and chromogenic assay. Mice lacking pancreatic autophagy exhibited local signs of inflammation and were particularly sensitive to the toxic effect of LPS injection as compared to control mice. In response to LPS, Atg7Δpan mice exhibited enhanced vacuolization of pancreatic acinar cells, increase in TLR4 expression coupled to enhanced expression of NF-κΒ, JNK, and pro-inflammatory cytokines by acinar cells and enhanced infiltration by myeloid cells (but not Atg7F/F controls). Cell death was enhanced in Atg7Δpan pancreata, but only necroptosis and trypsin activation was further amplified following LPS injection along with elevated pancreatic LPS. The presence of LPS was identified in the pancreata from all 14 CP patients examined but was absent in the pancreata from all 10 normal controls. Altogether, these results support a potential role for metabolic endotoxemia in the pathogenesis of CP. Moreover, the evidence also supports the notion that autophagy plays a major cytoprotective and anti-inflammatory role in the pancreas, and blunting metabolic endotoxemia-induced CP.
Collapse
|
26
|
Qiang L, Yang S, Cui YH, He YY. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy 2020; 17:2128-2143. [PMID: 32866426 DOI: 10.1080/15548627.2020.1816342] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that is implicated in several physiological and pathological processes. However, the role of epidermal autophagy in wound healing remains unknown. Here, using mice with genetic ablation of the essential Atg5 (autophagy related 5) or Atg7 (autophagy related 7) in their epidermis to inhibit autophagy, we show that keratinocyte autophagy regulates wound healing in mice. Wounding induces the expression of autophagy genes in mouse skin. Epidermis-specific autophagy deficiency inhibits wound closure, re-epithelialization, keratinocyte proliferation and differentiation, dermal granulation tissue formation, and infiltration of immune cells including macrophages, neutrophils, and mast cells, while it does not affect angiogenesis. Using cytokine array screening, we found that autophagy deficiency inhibits the transcription and production of the cytokine CCL2/MCP-1 by TNF. At the molecular level, TNF induces autophagic flux and the expression of autophagy genes through NFKB in epidermal keratinocytes. TNF promotes CCL2 transcription through the autophagy-AMPK-BRAF-MAPK1/3/ERK-activator protein 1 (AP1) pathway. Indeed, treating mice with recombinant CCL2 can reverse the effect of autophagy deficiency in keratinocytes. At the cellular level, we found that CCL2 induction via autophagy in keratinocytes is required not only for keratinocyte migration and proliferation but also for dermal fibroblast activation. Our findings demonstrate a critical role of epidermal autophagy in wound healing in vivo and elucidate a critical molecular machinery coordinating keratinocyte-fibroblast interaction in skin repair.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle; ACTB: β-actin; ADGRE1: adhesion G protein-coupled receptor E1; AMPK: AMP-activated protein kinase; AP1: activator protein 1; AP1-RE: AP1 response element; ATG: autophagy-related; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; BRAF: B-Raf proto-oncogene, serine/threonine kinase; C5: complement C5; CCL2/MCP-1: C-C motif chemokine ligand 2; CCL3: C-C motif chemokine ligand 3; CK: cytokeratin; cKO: conditional knockout; CRTC1: CREB-regulated transcription coactivator 1; CXCL1: C-X-C motif chemokine ligand 1; CXCL2: C-X-C motif chemokine ligand 2; ECM: extracellular matrix; EGF: epidermal growth factor; FGF7: fibroblast growth factor 7; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HBEGF: heparin binding EGF like growth factor; HPRT1: hypoxanthine phosphoribosyltransferase 1; IHC: immunohistochemical; IL1B: interleukin 1 beta; KRT10: keratin 10; KRT14: keratin 14; MAP1LC3B/LC3B-I/II: microtubule-associated protein 1 light chain 3 beta; MAPK1/3/ERK: mitogen-activated protein kinase 1/3; MKI67/Ki-67: marker of proliferation; MPO: myeloperoxidase; NFKB: NF-kappa B, nuclear factor kappa-light-chain-enhancer of activated B cells; NFKB-RE: NFKB response element; PDGF: platelet-derived growth factor; PECAM1: platelet and endothelial cell adhesion molecule 1; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; RELA/p65: RELA proto-oncogene, NFKB subunit; shCON: small hairpin negative control; siNC: negative control; siRNA: small interfering RNA; SP1: sp1 transcription factor; SQSTM1/p62: sequestosome 1; TGFA: transforming growth factor alpha; TGFB1: transforming growth factor beta 1; TIMP1: TIMP metallopeptidase inhibitor 1; TNF/TNF-alpha: tumor necrosis factor; TREM1: triggering receptor expressed on myeloid cells 1; WT: wild-type.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA.,School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Jaeger K, Sukseree S, Zhong S, Phinney BS, Mlitz V, Buchberger M, Narzt MS, Gruber F, Tschachler E, Rice RH, Eckhart L. Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton. Apoptosis 2020; 24:62-73. [PMID: 30552537 PMCID: PMC6373260 DOI: 10.1007/s10495-018-1505-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epidermal keratinocytes undergo cornification to form the cellular building blocks of hard skin appendages such as nails and the protective layer on the surface of the skin. Cornification requires the cross-linking of structural proteins and the removal of other cellular components to form mechanically rigid and inert corneocytes. Autophagy has been proposed to contribute to this intracellular remodelling process, but its molecular targets in keratinocytes, if any, have remained elusive. Here, we deleted the essential autophagy factor Atg7 in K14-positive epithelia of mice and determined by proteomics the impact of this deletion on the abundance of individual proteins in cornified nails. The genetic suppression of autophagy in keratinocytes resulted in a significant increase in the number of proteins that survived cornification and in alterations of their abundance in the nail proteome. A broad range of enzymes and other non-structural proteins were elevated whereas the amounts of cytoskeletal proteins of the keratin and keratin-associated protein families, cytolinker proteins and desmosomal proteins were either unaltered or decreased in nails of mice lacking epithelial autophagy. Among the various types of non-cytoskeletal proteins, the subunits of the proteasome and of the TRiC/CCT chaperonin were most strongly elevated in mutant nails, indicating a particularly important role of autophagy in removing these large protein complexes during normal cornification. Taken together, the results of this study suggest that autophagy is active during nail keratinocyte cornification and its substrate specificity depends on the accessibility of proteins outside of the cytoskeleton and their presence in large complexes.
Collapse
Affiliation(s)
- Karin Jaeger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Shaomin Zhong
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Brett S Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA, USA
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marie Sophie Narzt
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616-8588, USA.
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
28
|
Ipponjima S, Umino Y, Nagayama M, Denda M. Live imaging of alterations in cellular morphology and organelles during cornification using an epidermal equivalent model. Sci Rep 2020; 10:5515. [PMID: 32218450 PMCID: PMC7099034 DOI: 10.1038/s41598-020-62240-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
The stratum corneum plays a crucial role in epidermal barrier function. Various changes occur in granular cells at the uppermost stratum granulosum during cornification. To understand the temporal details of this process, we visualized the cell shape and organelles of cornifying keratinocytes in a living human epidermal equivalent model. Three-dimensional time-lapse imaging with a two-photon microscope revealed that the granular cells did not simply flatten but first temporarily expanded in thickness just before flattening during cornification. Moreover, before expansion, intracellular vesicles abruptly stopped moving, and mitochondria were depolarized. When mitochondrial morphology and quantity were assessed, granular cells with fewer, mostly punctate mitochondria tended to transition to corneocytes. Several minutes after flattening, DNA leakage from the nucleus was visualized. We also observed extension of the cell-flattening time induced by the suppression of filaggrin expression. Overall, we successfully visualized the time-course of cornification, which describes temporal relationships between alterations in the transition from granular cells to corneocytes.
Collapse
Affiliation(s)
- Sari Ipponjima
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.
| | - Yuki Umino
- Shiseido Global Innovation Center, Yokohama, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
29
|
Sukseree S, Schwarze UY, Gruber R, Gruber F, Quiles Del Rey M, Mancias JD, Bartlett JD, Tschachler E, Eckhart L. ATG7 is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. Autophagy 2020; 16:1851-1857. [PMID: 31880208 DOI: 10.1080/15548627.2019.1709764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The incisors of rodents comprise an iron-rich enamel and grow throughout adult life, making them unique models of iron metabolism and tissue homeostasis during aging. Here, we deleted Atg7 (autophagy related 7) in murine ameloblasts, i.e. the epithelial cells that produce enamel. The absence of ATG7 blocked the transport of iron from ameloblasts into the maturing enamel, leading to a white instead of yellow surface of maxillary incisors. In aging mice, lack of ATG7 was associated with the growth of ectopic incisors inside severely deformed primordial incisors. These results suggest that 2 characteristic features of rodent incisors, i.e. deposition of iron on the enamel surface and stable growth during aging, depend on autophagic activity in ameloblasts. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; CMV: cytomegalovirus; Cre: Cre recombinase; CT: computed tomography; FTH1: ferritin heavy polypeptide 1; GFP: green fluorescent protein; KRT5: keratin 5; KRT14: keratin 14; LGALS3: lectin, galactose binding, soluble 3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NCOA4: nuclear receptor coactivator 4; NRF2: nuclear factor, erythroid 2 like 2; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna , Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| | - Maria Quiles Del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, The Ohio State University , Columbus, OH, USA
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
30
|
Koenig U, Robenek H, Barresi C, Brandstetter M, Resch GP, Gröger M, Pap T, Hartmann C. Cell death induced autophagy contributes to terminal differentiation of skin and skin appendages. Autophagy 2019; 16:932-945. [PMID: 31379249 PMCID: PMC7144843 DOI: 10.1080/15548627.2019.1646552] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In the adult mammalian skin, cells are constantly renewing, differentiating and moving upward, to finally die in a yet not fully understood manner. Here, we provide evidence that macroautophagy/autophagy has a dual role in the skin. In addition to its known catabolic protective role as an evolutionary conserved upstream regulator of lysosomal degradation, we show that autophagy induced cell death (CDA) occurs in epithelial lineage-derived organs, such as the inter-follicular epidermis, the sebaceous- and the Harderian gland. By utilizing GFP-LC3 transgenic and ATG7-deficient mice, we show that CDA is initiated during terminal differentiation at a stage when the cells have become highly resistant to apoptosis. In these transitional cells, the Golgi compartment expands, which accounts for the formation of primary lysosomes, and the nucleus starts to condense. During CDA a burst of autophagosome formation is observed, first the endoplasmic reticulum (ER) is phagocytosed followed by autophagy of the nucleus. By this selective form of cell death, most of the cytoplasmic organelles are degraded, but structural proteins remain intact. In the absence of autophagy, consequently, parts of the ER, ribosomes, and chromatin remain. A burst of autophagy was stochastically observed in single cells of the epidermis and collectively in larger areas of ductal cells, arguing for a coordinated induction. We conclude that autophagy is an integral part of cell death in keratinocyte lineage cells and participates in their terminal cell fate. Abbreviations: Atg7: autophagy related 7; BECN1: beclin 1; CDA: cell death-induced autophagy; Cre: Cre-recombinase; DAPI: 4′,6-diamidino-2-phenylindole; ER: endoplasmatic reticulum; GFP: green fluorescent protein; HaGl: haderian gland; IVL: involucrin; KRT14: keratin 14; LD: lipid droplet; LSM: laser scanning microscope; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PN: perinuclear space; RB: residual body; rER: rough endoplasmatic reticulum; SB: sebum; SG-SC: stratum granulosum – stratum corneum; SGl: sebaceous gland; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labelling.
Collapse
Affiliation(s)
- Ulrich Koenig
- Institute of Musculoskeletal Medicine, Dept. Molecular Medicine, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Previous Address: Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Horst Robenek
- Institute of Musculoskeletal Medicine, Dept. Bone and Skeletal Research, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caterina Barresi
- Previous Address: Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Current Address: Children´s Cancer Research Institute, Vienna, Austria
| | - Marlene Brandstetter
- Electron Microscopy Facility, Vienna Biocenter Core Facilities GmbH, Vienna, Austria
| | - Guenter P Resch
- Electron Microscopy Facility, Vienna Biocenter Core Facilities GmbH, Vienna, Austria.,Current Address: Nexperion e.U.-Solutions for Electron Microscopy, Vienna, Austria
| | - Marion Gröger
- Imaging Unit, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, Dept. Molecular Medicine, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Dept. Bone and Skeletal Research, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
31
|
Eckhart L, Tschachler E, Gruber F. Autophagic Control of Skin Aging. Front Cell Dev Biol 2019; 7:143. [PMID: 31417903 PMCID: PMC6682604 DOI: 10.3389/fcell.2019.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin forms the barrier to the environment. Maintenance of this barrier during aging requires orchestrated responses to variable types of stress, the continuous renewal of the epithelial compartment, and the homeostasis of long-lived cell types. Recent experimental evidence suggests that autophagy is critically involved in skin homeostasis and skin aging is associated with and partially caused by defects of autophagy. In the outer skin epithelium, autophagy is constitutively active during cornification of keratinocytes and increases the resistance to environmental stress. Experimental suppression of autophagy in the absence of stress is tolerated by the rapidly renewing epidermal epithelium, whereas long-lived skin cells such as melanocytes, Merkel cells and secretory cells of sweat glands depend on autophagy for cellular homeostasis and normal execution of their functions during aging. Yet other important roles of autophagy have been identified in the dermis where senescence of mesenchymal cells and alterations of the extracellular matrix (ECM) are hallmarks of aging. Here, we review the evidence for cell type-specific roles of autophagy in the skin and their differential contributions to aging.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
32
|
Mahanty S, Dakappa SS, Shariff R, Patel S, Swamy MM, Majumdar A, Setty SRG. Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis. Cell Death Dis 2019; 10:269. [PMID: 30890691 PMCID: PMC6425001 DOI: 10.1038/s41419-019-1478-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/09/2023]
Abstract
Keratinocytes maintain epidermal integrity through cellular differentiation. This process enhances intraorganelle digestion in keratinocytes to sustain nutritional and calcium-ionic stresses observed in upper skin layers. However, the molecular mechanisms governing keratinocyte differentiation and concomitant increase in lysosomal function is poorly understood. Here, by using primary neonatal human epidermal keratinocytes, we identified the molecular link between signaling pathways and cellular differentiation/lysosome biogenesis. Incubation of keratinocytes with CaCl2 induces differentiation with increased cell size and early differentiation markers. Further, differentiated keratinocytes display enhanced lysosome biogenesis generated through ATF6-dependent ER stress signaling, but independent of mTOR-MiT/TFE pathway. In contrast, chemical inhibition of mTORC1 accelerates calcium-induced keratinocyte differentiation, suggesting that activation of autophagy promotes the differentiation process. Moreover, differentiation of keratinocytes results in lysosome dispersion and Golgi fragmentation, and the peripheral lysosomes showed colocalization with Golgi-tethering proteins, suggesting that these organelles possibly derived from Golgi. In line, inhibition of Golgi function, but not the depletion of Golgi-tethers or altered lysosomal acidity, abolishes keratinocyte differentiation and lysosome biogenesis. Thus, ER stress regulates lysosome biogenesis and keratinocyte differentiation to maintain epidermal homeostasis. Lysosomes are the key digestive organelles of differentiated keratinocytes in the epidermis. Mahanty et al. show that ER stress but not mTOR-MiT/TFE factors promotes lysosome biogenesis during keratinocyte differentiation, which is critical for epidermal homeostasis.
Collapse
Affiliation(s)
- Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Shruthi Shirur Dakappa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
33
|
Cau L, Takahara H, Thompson PR, Serre G, Méchin MC, Simon M. Peptidylarginine Deiminase Inhibitor Cl-Amidine Attenuates Cornification and Interferes with the Regulation of Autophagy in Reconstructed Human Epidermis. J Invest Dermatol 2019; 139:1889-1897.e4. [PMID: 30878672 DOI: 10.1016/j.jid.2019.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Deimination, a post-translational modification catalyzed by a family of enzymes called peptidylarginine deiminases (PADs), is the conversion of arginine into citrulline residues in a protein. Deimination has been associated with numerous physiological and pathological processes. Our aim was to study its implication in the homeostasis of human epidermis, where three PADs are expressed, namely PAD1, 2, and 3. Three-dimensional reconstructed human epidermis (RHEs) were treated for 2 days with increased concentrations (0-800 μM) of Cl-amidine, a specific PAD inhibitor. Cl-amidine treatments inhibited deimination in a dose-dependent manner and were not cytotoxic for keratinocytes. At 800 μM , Cl-amidine was shown to reduce deimination by half, alter keratinocyte differentiation, decrease the number of corneocyte layers, significantly increase the number of transitional cells, induce clustering of mitochondria and of heterogeneous vesicles in the cytoplasm of granular keratinocytes, and upregulate the expression of autophagy proteins, including LC3-II, sestrin-2, and p62/SQSTM1. LC3 and PADs were further shown to partially co-localize in the upper epidermis. These results demonstrated that Cl-amidine treatments slow down cornification and alter autophagy in the granular layer. They suggest that PAD1 and/or PAD3 play a role in the constitutive epidermal autophagy process that appears as an important step in cornification.
Collapse
Affiliation(s)
- Laura Cau
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Hidenari Takahara
- Department of Applied Biological Resource Sciences, School of Agriculture, University of Ibaraki, Ibaraki, Japan
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France.
| |
Collapse
|
34
|
Noguchi S, Honda S, Saitoh T, Matsumura H, Nishimura E, Akira S, Shimizu S. Beclin 1 regulates recycling endosome and is required for skin development in mice. Commun Biol 2019; 2:37. [PMID: 30701202 PMCID: PMC6347619 DOI: 10.1038/s42003-018-0279-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Beclin 1 is a key regulator of autophagy and endocytosis. However, its autophagy-independent functions remain poorly understood. Here, we report that Beclin 1 regulates recycling endosome and is required for skin development in vivo. We first established keratinocyte-specific Beclin 1-knockout mice and found that these mutant mice died owing to severe impairment of epidermal barrier. Beclin 1 plays a role in autophagy and the endocytic pathway in cooperation with Atg14 and UVRAG, respectively, and keratinocyte-specific Atg14-knockout mice do not show any abnormal phenotypes, suggesting that Beclin 1 has a role in skin development via the endocytic pathway. Furthermore, we found that Beclin 1 deficiency causes mislocalization of integrins via a defect of recycling endosome, abnormal cell detachment of basal cells and their immature differentiation, and abnormal skin development. These results provide the first genetic evidence showing the roles of Beclin 1 in recycling endosome and skin development.
Collapse
Affiliation(s)
- Saori Noguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871 Japan
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Hiroyuki Matsumura
- Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Emi Nishimura
- Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
35
|
Rossiter H, Stübiger G, Gröger M, König U, Gruber F, Sukseree S, Mlitz V, Buchberger M, Oskolkova O, Bochkov V, Eckhart L, Tschachler E. Inactivation of autophagy leads to changes in sebaceous gland morphology and function. Exp Dermatol 2018; 27:1142-1151. [PMID: 30033522 DOI: 10.1111/exd.13752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
We have reported recently that inactivation of the essential autophagy-related gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 ΔKC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFP-LC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 ΔKC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as age-matched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5-fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (58-60 carbon atoms) were increased, while shorter species (54-55 carbon atoms) were under-represented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.
Collapse
Affiliation(s)
- Heidemarie Rossiter
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Gerald Stübiger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Ulrich König
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Olga Oskolkova
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valery Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Sil P, Wong SW, Martinez J. More Than Skin Deep: Autophagy Is Vital for Skin Barrier Function. Front Immunol 2018; 9:1376. [PMID: 29988591 PMCID: PMC6026682 DOI: 10.3389/fimmu.2018.01376] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The skin is a highly organized first line of defense that stretches up to 1.8 m2 and is home to more than a million commensal bacteria. The microenvironment of skin is driven by factors such as pH, temperature, moisture, sebum level, oxidative stress, diet, resident immune cells, and infectious exposure. The skin has a high turnover of cells as it continually bares itself to environmental stresses. Notwithstanding these limitations, it has devised strategies to adapt as a nutrient-scarce site. To perform its protective function efficiently, it relies on mechanisms to continuously remove dead cells without alarming the immune system, actively purging the dying/senescent cells by immunotolerant efferocytosis. Both canonical (starvation-induced, reactive oxygen species, stress, and environmental insults) and non-canonical (selective) autophagy in the skin have evolved to perform astute due-diligence and housekeeping in a quiescent fashion for survival, cellular functioning, homeostasis, and immune tolerance. The autophagic “homeostatic rheostat” works tirelessly to uphold the delicate balance in immunoregulation and tolerance. If this equilibrium is upset, the immune system can wreak havoc and initiate pathogenesis. Out of all the organs, the skin remains under-studied in the context of autophagy. Here, we touch upon some of the salient features of autophagy active in the skin.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
37
|
Sukseree S, Bergmann S, Pajdzik K, Sipos W, Gruber F, Tschachler E, Eckhart L. Suppression of Epithelial Autophagy Compromises the Homeostasis of Sweat Glands during Aging. J Invest Dermatol 2018; 138:2061-2063. [PMID: 29571941 DOI: 10.1016/j.jid.2018.03.1502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophie Bergmann
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kinga Pajdzik
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
38
|
Lysosomes Support the Degradation, Signaling, and Mitochondrial Metabolism Necessary for Human Epidermal Differentiation. J Invest Dermatol 2018. [PMID: 29526763 DOI: 10.1016/j.jid.2018.02.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Keratinocytes undergo significant structural remodeling during epidermal differentiation, including a broad transformation of the proteome coupled with a reduction in total cellular biomass. This suggests that intracellular digestion of proteins and organelles is necessary for keratinocyte differentiation. Here, we use both genetic and pharmacologic approaches to demonstrate that autophagy and lysosomal functions are required for keratinocyte differentiation in organotypic human skin. Lysosomal activity was required for mechanistic target of rapamycin signaling and mitochondrial oxidative metabolism. In turn, mitochondrial reactive oxygen species, produced as a natural byproduct of oxidative phosphorylation, were necessary for keratinocyte differentiation. Finally, treatment with exogenous reactive oxygen species rescued the differentiation defect in lysosome-inhibited keratinocytes. These findings highlight a reciprocal relationship between lysosomes and mitochondria, in which lysosomes support mitochondrial metabolism and the associated production of mitochondrial reactive oxygen species. The mitochondrial reactive oxygen species released to the cytoplasm in suprabasal keratinocytes triggers autophagy and lysosome-mediated degradation necessary for epidermal differentiation. As defective lysosome-dependent autophagy is associated with common skin diseases including psoriasis and atopic dermatitis, a better understanding of the role of lysosomes in epidermal homeostasis may guide future therapeutic strategies.
Collapse
|
39
|
Wang S, Kobeissi A, Dong Y, Kaplan N, Yang W, He C, Zeng K, Peng H. MicroRNAs-103/107 Regulate Autophagy in the Epidermis. J Invest Dermatol 2018; 138:1481-1490. [PMID: 29452119 DOI: 10.1016/j.jid.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
We have shown that microRNAs-103 and -107 (miRs-103/107) positively regulate end-stage autophagy by ensuring dynamin activity in cultured keratinocytes. Most work in end-stage autophagy has been conducted using in vitro model systems. In vivo regulation of end-stage autophagy in epidermis remains unknown. Here, we used antagomirs to subcutaneously knock down miR-107 in the skin; conversely, we delivered miR-107 mimic subcutaneously via in vivo transfection to increase this miR. We found that antagomir-107 treatment in epidermis: (i) depleted endogenous miR-107; (ii) increased GFP-LC3 puncta in epidermal basal layers of GFP-LC3 transgenic mice, indicative of an accumulation of autophagosomes; (iii) inhibited LC3 turnover and increased p62, suggesting an inhibition of autophagy flux; and (iv) increased phosphorylated dynamin (p-dynamin, an inactive form), a key enzyme in end-stage autophagy. Conversely, miR-107 mimic treatment in mouse epidermis: decreased GFP-LC3 puncta in basal layer, as well as p62 protein levels; and diminished p-dynamin, indicative of activation of this enzyme. In human epidermal keratinocytes, antagos-103/107 cause the formation of large vacuoles and an increase in p-dynamin, which can be rescued by inhibition of protein kinase C pathway. Collectively, these results suggest that the miR-103/107 family has a critical role in regulating end-stage autophagy in mouse epidermis via PLD1/2-protein kinase C-dynamin pathway.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Aya Kobeissi
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Ying Dong
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA; Department of Ophthalmology, the First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Congcong He
- Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
40
|
Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy 2018; 12:752-69. [PMID: 26986453 DOI: 10.1080/15548627.2016.1156822] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The incidence of maternal obesity and its co-morbidities (diabetes, cardiovascular disease) continues to increase at an alarming rate, with major public health implications. In utero exposure to maternal obesity has been associated with development of cardiovascular and metabolic diseases in the offspring as a result of developmental programming. The placenta regulates maternal-fetal metabolism and shows significant changes in its function with maternal obesity. Autophagy is a cell-survival process, which is responsible for the degradation of damaged organelles and misfolded proteins. Here we show an activation of autophagosomal formation and autophagosome-lysosome fusion in placentas of males but not females from overweight (OW) and obese (OB) women vs. normal weight (NW) women. However, total autophagic activity in these placentas appeared to be decreased as it showed an increase in SQSTM1/p62 and a decrease in lysosomal biogenesis. A mouse model with a targeted deletion of the essential autophagy gene Atg7 in placental tissue showed significant placental abnormalities comparable to those seen in human placenta with maternal obesity. These included a decrease in expression of mitochondrial genes and antioxidants, and decreased lysosomal biogenesis. Strikingly, the knockout mice were developmentally programmed as they showed an increased sensitivity to high-fat diet-induced obesity, hyperglycemia, hyperinsulinemia, increased adiposity, and cardiac remodeling. In summary, our results indicate a sexual dimorphism in placental autophagy in response to maternal obesity. We also show that autophagy plays an important role in placental function and that inhibition of placental autophagy programs the offspring to obesity, and to metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Xiaoli Gao
- b The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center , San Antonio , TX , USA
| | - Susan Weintraub
- b The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center , San Antonio , TX , USA
| | - Leslie Myatt
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA.,c Department of Ob/Gyn , Oregon Health and Science University , Portland , OR , USA
| | - Alina Maloyan
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA.,d Knight Cardiovascular Institute, Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
41
|
Sukseree S, Bergmann S, Pajdzik K, Tschachler E, Eckhart L. Suppression of autophagy perturbs turnover of sequestosome-1/p62 in Merkel cells but not in keratinocytes. J Dermatol Sci 2018; 90:209-211. [PMID: 29395578 DOI: 10.1016/j.jdermsci.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophie Bergmann
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kinga Pajdzik
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Li L, Chen X, Gu H. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 2018; 7:50682-50697. [PMID: 27191982 PMCID: PMC5226613 DOI: 10.18632/oncotarget.9330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.
Collapse
Affiliation(s)
- Li Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
43
|
Rogerson C, Bergamaschi D, O'Shaughnessy RFL. Uncovering mechanisms of nuclear degradation in keratinocytes: A paradigm for nuclear degradation in other tissues. Nucleus 2018; 9:56-64. [PMID: 29205081 PMCID: PMC5973266 DOI: 10.1080/19491034.2017.1412027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic nuclei are essential organelles, storing the majority of the cellular DNA, comprising the site of most DNA and RNA synthesis, controlling gene expression and therefore regulating cellular function. The majority of mammalian cells retain their nucleus throughout their lifetime, however, in three mammalian tissues the nucleus is entirely removed and its removal is essential for cell function. Lens fibre cells, erythroblasts and epidermal keratinocytes all lose their nucleus in the terminal differentiation pathways of these cell types. However, relatively little is known about the pathways that lead to complete nuclear removal and about how these pathways are regulated. In this review, we aim to discuss the current understanding of nuclear removal mechanisms in these three cell types and expand upon how recent studies into nuclear degradation in keratinocytes, an easily accessible experimental model, could contribute to a wider understanding of these molecular mechanisms in both health and pathology.
Collapse
Affiliation(s)
- Clare Rogerson
- a Centre for Cell Biology and Cutaneous Research , Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Daniele Bergamaschi
- a Centre for Cell Biology and Cutaneous Research , Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Ryan F L O'Shaughnessy
- a Centre for Cell Biology and Cutaneous Research , Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| |
Collapse
|
44
|
Fischer H, Buchberger M, Napirei M, Tschachler E, Eckhart L. Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. Sci Rep 2017; 7:6433. [PMID: 28743926 PMCID: PMC5527052 DOI: 10.1038/s41598-017-06652-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
The stratum corneum of the epidermis constitutes the mammalian skin barrier to the environment. It is formed by cornification of keratinocytes, a process which involves the removal of nuclear DNA. Here, we investigated the mechanism of cornification-associated DNA degradation by generating mouse models deficient of candidate DNA-degrading enzymes and characterizing their epidermal phenotypes. In contrast to Dnase1l2−/− mice and keratinocyte-specific DNase2 knockout mice (Dnase2Δep), Dnase1l2−/−Dnase2Δep mice aberrantly retained nuclear DNA in the stratum corneum, a phenomenon commonly referred to as parakeratosis. The DNA within DNase1L2/DNase2-deficient corneocytes was partially degraded in a DNase1-independent manner. Isolation of corneocytes, i.e. the cornified cell components of the stratum corneum, and labelling of DNA demonstrated that corneocytes of Dnase1l2−/−Dnase2Δep mice contained DNA in a nucleus-shaped compartment that also contained nucleosomal histones but lacked the nuclear intermediate filament protein lamin A/C. Parakeratosis was not associated with altered corneocyte resistance to mechanical stress, changes in transepidermal water loss, or inflammatory infiltrates in Dnase1l2−/−Dnase2Δep mice. The results of this study suggest that cornification of epidermal keratinocytes depends on the cooperation of DNase1L2 and DNase2 and indicate that parakeratosis per se does not suffice to cause skin pathologies.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.,Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
45
|
Zhou X, Xie L, Xia L, Bergmann F, Büchler MW, Kroemer G, Hackert T, Fortunato F. RIP3 attenuates the pancreatic damage induced by deletion of ATG7. Cell Death Dis 2017; 8:e2918. [PMID: 28703808 PMCID: PMC5550860 DOI: 10.1038/cddis.2017.313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022]
Abstract
Invalidation of pancreatic autophagy entails pancreatic atrophy, endocrine and exocrine insufficiency and pancreatitis. The aim of this study was to investigate whether depletion of Rip3, which is involved in necroptotic signaling, may attenuate the pancreatic atrophy and pancreatitis resulting from autophagy inhibition. Autophagy and necroptosis signaling were evaluated in mice lacking expression of Rip3 in all organs and Atg7 in the pancreas. Acinar cell death, inflammation and fibrosis were evaluated by using of a compendium of immunofluorescence methods and immunoblots. Mice deficient for pancreatic Atg7 developed acute pancreatitis, which progressed to chronic pancreatitis. This phenotype reduces autophagy, increase apoptosis and necroptosis, inflammation and fibrosis, as well as premature death of the animals. Knockout of Rip3 exacerbated the apoptotic death of acinar cells, increased tissue damage, reduced macrophage infiltration and further accelerated the death of the mice with Atg7-deficient pancreas. The pancreatic degeneration induced by autophagy inhibition was exacerbated by Rip3 deletion.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Germany.,Affiliated People's Hospital of Jiangsu, University Zhenjiang, Jiangsu, China
| | - Li Xie
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Germany.,Affiliated People's Hospital of Jiangsu, University Zhenjiang, Jiangsu, China
| | - Leizhou Xia
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Germany.,Affiliated People's Hospital of Jiangsu, University Zhenjiang, Jiangsu, China
| | - Frank Bergmann
- Institute of Pathology, University Clinic Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Germany
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Germany
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, University Clinic Heidelberg, Germany.,Section Surgical Research, University Clinic Heidelberg, Germany
| |
Collapse
|
46
|
Tschachler E, Eckhart L. Autophagy - how to control your intracellular diet. Br J Dermatol 2017; 176:1417-1419. [DOI: 10.1111/bjd.15566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- E. Tschachler
- Research Division of Biology and Pathobiology of the Skin; Department of Dermatology; Medical University of Vienna; Vienna Austria
| | - L. Eckhart
- Research Division of Biology and Pathobiology of the Skin; Department of Dermatology; Medical University of Vienna; Vienna Austria
| |
Collapse
|
47
|
Jacquin E, Leclerc-Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy 2017; 13:854-867. [PMID: 28296541 PMCID: PMC5446083 DOI: 10.1080/15548627.2017.1287653] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
The modulation of canonical macroautophagy/autophagy for therapeutic benefit is an emerging strategy of medical and pharmaceutical interest. Many drugs act to inhibit autophagic flux by targeting lysosome function, while others were developed to activate the pathway. Here, we report the surprising finding that many therapeutically relevant autophagy modulators with lysosomotropic and ionophore properties, classified as inhibitors of canonical autophagy, are also capable of activating a parallel noncanonical autophagy pathway that drives MAP1LC3/LC3 lipidation on endolysosomal membranes. Further, we provide the first evidence supporting drug-induced noncanonical autophagy in vivo using the local anesthetic lidocaine and human skin biopsies. In addition, we find that several published inducers of autophagy and mitophagy are also potent activators of noncanonical autophagy. Together, our data raise important issues regarding the interpretation of LC3 lipidation data and the use of autophagy modulators, and highlight the need for a greater understanding of the functional consequences of noncanonical autophagy.
Collapse
Affiliation(s)
- Elise Jacquin
- Signalling Programme, The Babraham Institute, Babraham, UK
| | | | | | - Emmanuelle Blanchard
- Centre Hospitalier Régional Universitaire, University François-Rabelais, Faculty of Medicine, Tours, France
- INSERM, U966, Tours, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, MAGEC-Necker Team, Paris, France
| | - Oliver Florey
- Signalling Programme, The Babraham Institute, Babraham, UK
| |
Collapse
|
48
|
Song X, Narzt MS, Nagelreiter IM, Hohensinner P, Terlecki-Zaniewicz L, Tschachler E, Grillari J, Gruber F. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol 2017; 11:219-230. [PMID: 28012437 PMCID: PMC5192251 DOI: 10.1016/j.redox.2016.12.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
Autophagy allows cells fundamental adaptations to metabolic needs and to stress. Using autophagic bulk degradation cells can clear crosslinked macromolecules and damaged organelles that arise under redox stress. Accumulation of such debris results in cellular dysfunction and is observed in aged tissue and senescent cells. Conversely, promising anti-aging strategies aim at inhibiting the mTOR pathway and thereby activating autophagy, to counteract aging associated damage. We have inactivated autophagy related 7 (Atg7), an essential autophagy gene, in murine keratinocytes (KC) and have found in an earlier study that this resulted in increased baseline oxidative stress and reduced capacity to degrade crosslinked proteins after oxidative ultraviolet stress. To investigate whether autophagy deficiency would promote cellular aging, we studied how Atg7 deficient (KO) and Atg7 bearing cells (WT) would respond to stress induced by paraquat (PQ), an oxidant drug commonly used to induce cellular senescence. Atg7 deficient KC displayed increased prostanoid signaling and a pro- mitotic gene expression signature as compared to the WT. After exposure to PQ, both WT and KO cells showed an inflammatory and stress-related transcriptomic response. However, the Atg7 deficient cells additionally showed drastic DNA damage- and cell cycle arrest signaling. Indeed, DNA fragmentation and -oxidation were strongly increased in the stressed Atg7 deficient cells upon PQ stress but also after oxidizing ultraviolet A irradiation. Damage associated phosphorylated histone H2AX (γH2AX) foci were increased in the nuclei, whereas expression of the nuclear lamina protein lamin B1 was strongly decreased. Similarly, in both, PQ treated mouse tail skin explants and in UVA irradiated mouse tail skin, we found a strong increase in γH2AX positive nuclei within the basal layer of Atg7 deficient epidermis. Atg7 deficiency significantly affected expression of lipid metabolic genes. Therefore we performed lipid profiling of keratinocytes which demonstrated a major dysregulation of cellular lipid metabolism. We found accumulation of autophagy agonisitic free fatty acids, whereas triglyceride levels were strongly decreased. Together, our data show that in absence of Atg7/autophagy the resistance of keratinocytes to intrinsic and environmental oxidative stress was severely impaired and resulted in DNA damage, cell cycle arrest and a disturbed lipid phenotype, all typical for premature cell aging.
Collapse
Affiliation(s)
- Xiuzu Song
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria; Department of Dermatology, The Third Hospital of Hangzhou, 38 Xihu Road, Hangzhou, Zhejiang, 310009, PR China
| | - Marie Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Philipp Hohensinner
- Department of Internal Medicine II - Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
49
|
Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5930639. [PMID: 28400912 PMCID: PMC5376460 DOI: 10.1155/2017/5930639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.
Collapse
|
50
|
Fischer H, Fumicz J, Rossiter H, Napirei M, Buchberger M, Tschachler E, Eckhart L. Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. J Invest Dermatol 2017; 137:587-594. [PMID: 27771328 DOI: 10.1016/j.jid.2016.10.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Sebaceous glands produce sebum via holocrine secretion, a largely uncharacterized mode of programmed cell death that contributes to the homeostasis and barrier function of the skin. To determine the mechanism of DNA degradation during sebocyte cell death, we have inactivated candidate DNA-degrading enzymes by targeted gene deletions in mice. DNase1 and DNase1-like 2 were dispensable for nuclear DNA degradation in sebocytes. By contrast, epithelial cell-specific deletion of lysosomal DNase2 blocked DNA degradation in these cells. DNA breakdown during sebocyte differentiation coincided with the loss of LAMP1 and was accelerated by the abrogation of autophagy, the central cellular program of lysosome-dependent catabolism. Suppression of DNA degradation by the deletion of DNase2 resulted in aberrantly increased concentrations of residual DNA and decreased amounts of the DNA metabolite uric acid in secreted sebum. These results define holocrine secretion as a DNase2-mediated form of programmed cell death and suggest that autophagy-dependent metabolism, DNA degradation, and the molecular composition of sebum are mechanistically linked.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Judith Fumicz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Rossiter
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|