1
|
Ezairjawi MSM, Ünüvar ÖC, Akben C, Taha EM, Ünlü ES. Mulberry's healing Touch: Exploring ethnobotanical roots and medicinal potentials in the treatment of atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118981. [PMID: 39442826 DOI: 10.1016/j.jep.2024.118981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L., mulberry, has played a significant role in providing food, medicine, and materials throughout human history. From its historical importance to its diverse cultural uses, mulberry remains a versatile and valuable resource, enriching various aspects of human life across civilizations. Mulberry exhibits ethnopharmacological applications for treating various ailments including atopic dermatitis, also known as eczema. AIM OF THE STUDY The objective of the study was extracting the putative active substances from white mulberry, evaluating potential of the extract in treating and reducing reliance on chemical medications by providing a chemical composition of the extract along with effect of extracts on eczema symptoms. MATERIALS AND METHODS For testing the impact of mulberry extract on relieving eczema symptoms, white mulberry fruit extracts were prepared by butanol extraction. Water-in-oil (W/O) emulsification was used to prepare ointment. Analysis of the mulberry extract was conducted using GC-MS after additional processing of extracts. Clinical trials on 110 individuals, divided into patient-treatment, normal-treatment, and patient-placebo groups, involved applying the ointment containing 0.5% mulberry fruit extract for 4-6 weeks, with blood sample analysis before and after the trial. Blood samples were analyzed for various parameters including Granzyme B, Vit. E, TC, TG, HDL, and LDL levels. The antibacterial activity of the extract against Staphylococcus aureus was determined using involve growth curve analysis and inhibition of colony formation on LB plates. Morus alba L. name was checked from "World Flora Online" (www.worldfloraonline.org) and MPNS (mpns.kew.org) RESULTS: We monitored a noticeable enhancement in the skin ulceration after the treatment. In addition, Granzyme B, Vitamin E, TC, TG, HDL, and LDL levels were improved in the patient-treatment group closer to healthy levels, indicating potential therapeutic benefits of Morus alba extract. The extract's efficacy was also tested on S. aureus, a bacterium commonly associated with eczema. Results showed that extract obtained from white mulberry fruits has an inhibitory impact on S. aureus growth. CONCLUSIONS The findings suggest that Morus alba extract holds promise as a therapeutic intervention for atopic dermatitis, demonstrating significant improvements in key biomarkers towards levels observed in healthy individuals.
Collapse
Affiliation(s)
- Mariam Sabeeh Madhloom Ezairjawi
- University of Baghdad, College of Science for Women, Department of Chemistry, Baghdad, Iraq; Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry Bolu, 14030, Turkiye.
| | - Ömer Can Ünüvar
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Biology Bolu, 14030, Turkiye; Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry Bolu, 14030, Turkiye.
| | - Cantürk Akben
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Psychology, Bolu, 14030, Turkiye.
| | - Ekhlass M Taha
- University of Baghdad, College of Science for Women, Department of Chemistry, Baghdad, Iraq.
| | - Ercan Selçuk Ünlü
- Bolu Abant İzzet Baysal University, Faculty of Arts and Science, Department of Chemistry Bolu, 14030, Turkiye.
| |
Collapse
|
2
|
Zhou Y, Zhou Y, Zhang S, Yu S, Li Z, Yang Z, Wu Y, Zhao Z, Zhang H, Li C. Identification of novel hub genes and immune infiltration in atopic dermatitis using integrated bioinformatics analysis. Sci Rep 2024; 14:23054. [PMID: 39367003 PMCID: PMC11452488 DOI: 10.1038/s41598-024-73244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
The aim of this study was to identify key genes and investigate the immunological mechanisms of atopic dermatitis (AD) at the molecular level via bioinformatics analysis. Gene expression profiles (GSE32924, GSE107361, GSE121212, and GSE230200) were obtained for screening common differentially expressed genes (co-DEGs) from the gene expression omnibus database. Functional enrichment analysis, protein-protein interaction network and module construction, and identification of common hub genes were performed. Hub genes were validated using receiver operating characteristic curve analysis based on GSE130588 and GSE16161. NetworkAnalyst was used to detect microRNAs (miRNAs) and transcription factors (TFs) associated with the hub genes. The immune cell infiltration was analyzed using the CIBERSORT algorithm to further analyze the correlation between hub genes and immune cells. A total of 146 co-DEGs were obtained, showing significant enrichment in cytokine-cytokine receptor interaction and JAK-STAT signaling pathway. Seven hub genes were identified by Cytoscape and validated with external datasets. Subsequent prediction of miRNAs and TFs targeting these hub genes revealed their regulatory roles. Analysis of immune cell infiltration and correlation revealed a significant positive correlation between CCL22 expression and the number of dendritic cells activated. The identified hub genes represent potential diagnostic and therapeutic targets in the immunological pathogenesis of AD.
Collapse
Affiliation(s)
- Yaguang Zhou
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Dermatology, Hainan Hospital of PLA General Hospital, Sanya, 572013, Hainan Province, China
| | - Yong Zhou
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Suli Zhang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shui Yu
- Department of Dermatology, Hainan Hospital of PLA General Hospital, Sanya, 572013, Hainan Province, China
| | - Zizhuo Li
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Zhou Yang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - You Wu
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Zigang Zhao
- Department of Dermatology, Hainan Hospital of PLA General Hospital, Sanya, 572013, Hainan Province, China.
| | - Han Zhang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Chengxin Li
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
He S, Liu L, Long X, Ge M, Cai M, Zhang J. Single-cell analysis and machine learning identify psoriasis-associated CD8 + T cells serve as biomarker for psoriasis. Front Genet 2024; 15:1387875. [PMID: 38915827 PMCID: PMC11194350 DOI: 10.3389/fgene.2024.1387875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the etiology of which has not been fully elucidated, in which CD8+ T cells play an important role in the pathogenesis of psoriasis. However, there is a lack of in-depth studies on the molecular characterization of different CD8+ T cell subtypes and their role in the pathogenesis of psoriasis. This study aims to further expound the pathogenesy of psoriasis at the single-cell level and to explore new ideas for clinical diagnosis and new therapeutic targets. Our study identified a unique subpopulation of CD8+ T cells highly infiltrated in psoriasis lesions. Subsequently, we analyzed the hub genes of the psoriasis-specific CD8+ T cell subpopulation using hdWGCNA and constructed a machine-learning prediction model, which demonstrated good efficacy. The model interpretation showed the influence of each independent variable in the model decision. Finally, we deployed the machine learning model to an online website to facilitate its clinical transformation.
Collapse
Affiliation(s)
- Sijia He
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Lyuye Liu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyan Long
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, China
| | - Man Ge
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menghan Cai
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junling Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
4
|
de Lima JF, Teixeira FME, Ramos YÁL, de Carvalho GC, Castelo Branco ACC, Pereira NV, Sotto MN, Aoki V, Sato MN, Orfali RL. Outlining the skin-homing and circulating CLA +NK cells in patients with severe atopic dermatitis. Sci Rep 2024; 14:2663. [PMID: 38302650 PMCID: PMC10834414 DOI: 10.1038/s41598-024-53224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Atopic dermatitis (AD) is a complex, multifactorial skin disease, characterized by pruritus and predominant Th2 inflammation. Innate immune cells may play a role in AD development and are composed of granulocytes, macrophages, innate-like T cells, and innate lymphoid cells. This study investigates the phenotypic and functional profile of circulating CLA+ natural killer (NK) cells and its role in the skin-homing to NK cells infiltrated in adults' skin with AD. We selected 44 AD patients and 27 non-AD volunteers for the study. The results showed increased frequencies of both CLA+CD56bright and CLA+CD56dim NK cell populations in the peripheral blood, mainly in severe AD patients. Upon SEB stimulation, we observed an augmented percentage of CLA+CD56dim NK cells expressing CD107a, IFN-γ, IL-10, and TNF, reinforcing the role of staphylococcal enterotoxins in AD pathogenesis. Additionally, we demonstrated increased dermal expression of both NK cell markers NCAM-1/CD56 and pan-granzyme, corroborating the skin-homing, mostly in severe AD. Further studies are necessary to elucidate the potential role of NK cells in the chronification of the inflammatory process in AD skin, as well as their possible relationship with staphylococcal enterotoxins, and as practicable therapeutic targets.
Collapse
Affiliation(s)
- Josenilson Feitosa de Lima
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Yasmim Álefe Leuzzi Ramos
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Gabriel Costa de Carvalho
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Anna Claudia Calvielli Castelo Branco
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Naiura Vieira Pereira
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Mírian Nacagami Sotto
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Valéria Aoki
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Maria Notomi Sato
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Raquel Leao Orfali
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil.
| |
Collapse
|
5
|
Jia H, Wan H, Zhang D. Innate lymphoid cells: a new key player in atopic dermatitis. Front Immunol 2023; 14:1277120. [PMID: 37908364 PMCID: PMC10613734 DOI: 10.3389/fimmu.2023.1277120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Atopic dermatitis (AD) is a common allergic inflammatory skin condition mainly caused by gene variants, immune disorders, and environmental risk factors. The T helper (Th) 2 immune response mediated by interleukin (IL)-4/13 is generally believed to be central in the pathogenesis of AD. It has been shown that innate lymphoid cells (ILCs) play a major effector cell role in the immune response in tissue homeostasis and inflammation and fascinating details about the interaction between innate and adaptive immunity. Changes in ILCs may contribute to the onset and progression of AD, and ILC2s especially have gained much attention. However, the role of ILCs in AD still needs to be further elucidated. This review summarizes the role of ILCs in skin homeostasis and highlights the signaling pathways in which ILCs may be involved in AD, thus providing valuable insights into the behavior of ILCs in skin homeostasis and inflammation, as well as new approaches to treating AD.
Collapse
Affiliation(s)
- Haiping Jia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huiying Wan
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Dawodu D, Sand S, Nikolouli E, Werfel T, Mommert S. The mRNA expression and secretion of granzyme B are up-regulated via the histamine H2 receptor in human CD4 + T cells. Inflamm Res 2023; 72:1525-1538. [PMID: 37470818 PMCID: PMC10499701 DOI: 10.1007/s00011-023-01759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Granzyme B (GZMB), a serine protease with cytotoxic and immunomodulatory functions, shows elevated levels in blood plasma of patients with atopic dermatitis (AD). It has been observed that GZMB expression in CD4+ and CD8+ T cells is higher in lesional skin in AD than in healthy skin. Since histamine is present in high concentration in the skin of AD patients, we investigated the regulation of GZMB in human CD4+ T cells by histamine. METHODS Naïve CD4+ T cells polarized into Th2 cells, total CD4+ T cells treated with IL-4 for 72 h and CD4+ T cells isolated from healthy donors and AD patients were investigated. The cells were stimulated with histamine or with different histamine-receptor agonists. Gene expression was evaluated by RNA-Seq. GZMB mRNA expression was detected by quantitative real time PCR, whereas GZMB secretion was measured by ELISpot and ELISA. T cell degranulation was evaluated by flow cytometry using CD107a surface expression as a degranulation marker. RESULTS By RNA-Seq, we identified the up-regulation of various genes of the cytotoxic pathway, in particular of GZMB, by histamine in Th2-polarized CD4+ T cells. In Th2-polarized CD4+ T cells and in CD4+ T cells activated by IL-4 the mRNA expression of GZMB was significantly up-regulated by histamine and by histamine H2 receptor (H2R) agonists. The induction of GZMB secretion by histamine was significantly higher in CD4+ T cells from AD patients than in those from healthy donors. CD107a surface expression was up-regulated by trend in response to histamine in Th2-polarized CD4+ T cells. CONCLUSION Our findings may help to elucidate novel mechanisms of the H2R and to achieve a better understanding of the role of GZMB in the pathogenesis of AD.
Collapse
Affiliation(s)
- Damilola Dawodu
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sophie Sand
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Eirini Nikolouli
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Wu W, Chen G, Zhang Z, He M, Li H, Yan F. Construction and verification of atopic dermatitis diagnostic model based on pyroptosis related biological markers using machine learning methods. BMC Med Genomics 2023; 16:138. [PMID: 37330465 PMCID: PMC10276470 DOI: 10.1186/s12920-023-01552-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE The aim of this study was to construct a model used for the accurate diagnosis of Atopic dermatitis (AD) using pyroptosis related biological markers (PRBMs) through the methods of machine learning. METHOD The pyroptosis related genes (PRGs) were acquired from molecular signatures database (MSigDB). The chip data of GSE120721, GSE6012, GSE32924, and GSE153007 were downloaded from gene expression omnibus (GEO) database. The data of GSE120721 and GSE6012 were combined as the training group, while the others were served as the testing groups. Subsequently, the expression of PRGs was extracted from the training group and differentially expressed analysis was conducted. CIBERSORT algorithm calculated the immune cells infiltration and differentially expressed analysis was conducted. Consistent cluster analysis divided AD patients into different modules according to the expression levels of PRGs. Then, weighted correlation network analysis (WGCNA) screened the key module. For the key module, we used Random forest (RF), support vector machines (SVM), Extreme Gradient Boosting (XGB), and generalized linear model (GLM) to construct diagnostic models. For the five PRBMs with the highest model importance, we built a nomogram. Finally, the results of the model were validated using GSE32924, and GSE153007 datasets. RESULTS Nine PRGs were significant differences in normal humans and AD patients. Immune cells infiltration showed that the activated CD4+ memory T cells and Dendritic cells (DCs) were significantly higher in AD patients than normal humans, while the activated natural killer (NK) cells and the resting mast cells were significantly lower in AD patients than normal humans. Consistent cluster analysis divided the expressing matrix into 2 modules. Subsequently, WGCNA analysis showed that the turquoise module had a significant difference and high correlation coefficient. Then, the machine model was constructed and the results showed that the XGB model was the optimal model. The nomogram was constructed by using HDAC1, GPALPP1, LGALS3, SLC29A1, and RWDD3 five PRBMs. Finally, the datasets GSE32924 and GSE153007 verified the reliability of this result. CONCLUSIONS The XGB model based on five PRBMs can be used for the accurate diagnosis of AD patients.
Collapse
Affiliation(s)
- Wenfeng Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaofei Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
| | - Zexin Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixing He
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyi Li
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Yang B, Wilkie H, Das M, Timilshina M, Bainter W, Woods B, Daya M, Boorgula MP, Mathias RA, Lai P, Petty CR, Weller E, Harb H, Chatila TA, Leung DYM, Beck LA, Simpson EL, Hata TR, Barnes KC, Phipatanakul W, Leyva-Castillo JM, Geha RS. The IL-4Rα Q576R polymorphism is associated with increased severity of atopic dermatitis and exaggerates allergic skin inflammation in mice. J Allergy Clin Immunol 2023; 151:1296-1306.e7. [PMID: 36690254 PMCID: PMC10164706 DOI: 10.1016/j.jaci.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by TH2-dominated skin inflammation and systemic response to cutaneously encountered antigens. The TH2 cytokines IL-4 and IL-13 play a critical role in the pathogenesis of AD. The Q576->R576 polymorphism in the IL-4 receptor alpha (IL-4Rα) chain common to IL-4 and IL-13 receptors alters IL-4 signaling and is associated with asthma severity. OBJECTIVE We sought to investigate whether the IL-4Rα R576 polymorphism is associated with AD severity and exaggerates allergic skin inflammation in mice. METHODS Nighttime itching interfering with sleep, Rajka-Langeland, and Eczema Area and Severity Index scores were used to assess AD severity. Allergic skin inflammation following epicutaneous sensitization of mice 1 or 2 IL-4Rα R576 alleles (QR and RR) and IL-4Rα Q576 (QQ) controls was assessed by flow cytometric analysis of cells and quantitative RT-PCR analysis of cytokines in skin. RESULTS The frequency of nighttime itching in 190 asthmatic inner-city children with AD, as well as Rajka-Langeland and Eczema Area and Severity Index scores in 1116 White patients with AD enrolled in the Atopic Dermatitis Research Network, was higher in subjects with the IL-4Rα R576 polymorphism compared with those without, with statistical significance for the Rajka-Langeland score. Following epicutaneous sensitization of mice with ovalbumin or house dust mite, skin infiltration by CD4+ cells and eosinophils, cutaneous expression of Il4 and Il13, transepidermal water loss, antigen-specific IgE antibody levels, and IL-13 secretion by antigen-stimulated splenocytes were significantly higher in RR and QR mice compared with QQ controls. Bone marrow radiation chimeras demonstrated that both hematopoietic cells and stromal cells contribute to the mutants' exaggerated allergic skin inflammation. CONCLUSIONS The IL-4Rα R576 polymorphism predisposes to more severe AD and increases allergic skin inflammation in mice.
Collapse
Affiliation(s)
- Barbara Yang
- Division of Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | | | - Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Brian Woods
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Michelle Daya
- University of Colorado Anschutz Medical Campus, Aurora, Colo
| | | | | | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Mass
| | - Carter R Petty
- ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Boston, Mass
| | - Edie Weller
- ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Boston, Mass
| | - Hani Harb
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | | | - Lisa A Beck
- Departments of Dermatology, Medicine, and Pathology, University of Rochester School of Medicine, Rochester, NY
| | - Eric L Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Ore
| | - Tissa R Hata
- Department of Dermatology, University of California, San Diego, Calif
| | | | | | | | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Mass.
| |
Collapse
|
9
|
Gleave A, Granville DJ. Granzyme B in Autoimmune Skin Disease. Biomolecules 2023; 13:388. [PMID: 36830757 PMCID: PMC9952967 DOI: 10.3390/biom13020388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Autoimmune diseases often present with cutaneous symptoms that contribute to dysfunction, disfigurement, and in many cases, reduced quality-of-life. Unfortunately, treatment options for many autoimmune skin diseases are limited. Local and systemic corticosteroids remain the current standard-of-care but are associated with significant adverse effects. Hence, there is an unmet need for novel therapies that block molecular drivers of disease in a local and/or targeted manner. Granzyme B (GzmB) is a serine protease with known cytotoxic activity and emerging extracellular functions, including the cleavage of cell-cell junctions, basement membranes, cell receptors, and other structural proteins. While minimal to absent in healthy skin, GzmB is markedly elevated in alopecia areata, interface dermatitis, pemphigoid disease, psoriasis, systemic sclerosis, and vitiligo. This review will discuss the role of GzmB in immunity, blistering, apoptosis, and barrier dysfunction in the context of autoimmune skin disease. GzmB plays a causal role in the development of pemphigoid disease and carries diagnostic and prognostic significance in cutaneous lupus erythematosus, vitiligo, and alopecia areata. Taken together, these data support GzmB as a promising therapeutic target for autoimmune skin diseases impacted by impaired barrier function, inflammation, and/or blistering.
Collapse
Affiliation(s)
- Anna Gleave
- British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - David J. Granville
- British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
10
|
Aubert A, Lane M, Jung K, Granville DJ. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets 2022; 26:979-993. [PMID: 36542784 DOI: 10.1080/14728222.2022.2161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Granzyme B is a serine protease extensively studied for its implication in cytotoxic lymphocyte-mediated apoptosis. In recent years, the paradigm that the role of granzyme B is restricted to immune cell-mediated killing has been challenged as extracellular roles for the protease have emerged. While mostly absent from healthy tissues, granzyme B levels are elevated in several autoimmune and/or chronic inflammatory conditions. In the skin, its accumulation significantly impairs proper wound healing. AREAS COVERED After an overview of the current knowledge on granzyme B, a description of newly identified functions will be presented, focussing on granzyme B ability to promote cell-cell and dermal-epidermal junction disruption, extracellular matrix degradation, vascular permeabilization, and epithelial barrier dysfunction. Progress in granzyme B inhibition, as well as the use of granzyme B inhibitors for the treatment of tissue damage, will be discussed. EXPERT OPINION The absence of endogenous extracellular inhibitors renders extracellular granzyme B accumulation deleterious for the proper healing of chronic wounds due to sustained proteolytic activity. Consequently, specific granzyme B inhibitors have been developed as new therapeutic approaches. Beyond applications in wound healing, other autoimmune and/or chronic inflammatory conditions related to exacerbated granzyme B activity may also benefit from the development of these inhibitors.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
11
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Zhang Q, Wang Q, Zhang LX. Granzyme B: A novel therapeutic target for treatment of atopic dermatitis. Indian J Dermatol Venereol Leprol 2022; 89:166-169. [PMID: 36331826 DOI: 10.25259/ijdvl_260_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Granzyme B is a serine protease that can play multiple roles in intracellular and extracellular perforin-dependent or non-perforin-dependent mechanisms. Granzyme B has been found to be an important factor involved in the pathogenesis of atopic dermatitis and is increased in both skin lesions and peripheral blood of atopic dermatitis patients. In this article, we review the correlation between granzyme B and atopic dermatitis to provide a novel therapeutic targeting option for clinical treatment of the latter.
Collapse
Affiliation(s)
| | | | - Li-Xia Zhang
- Department of Dermatology & Venerology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
14
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Hiroyasu S, Hiroyasu A, Granville DJ, Tsuruta D. Pathological functions of granzyme B in inflammatory skin diseases. J Dermatol Sci 2021; 104:76-82. [PMID: 34772583 DOI: 10.1016/j.jdermsci.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Dysregulated skin immunity is a hallmark of many skin diseases such as atopic dermatitis, autoimmune blistering diseases, and interface dermatitis. Current treatment options for the inflammatory skin diseases are limited and sometimes ineffective, therefore further understanding of pathomechanisms in the inflammatory skin conditions is necessary to develop new therapeutic alternatives. Recent studies suggest that the serine protease, granzyme B, is a key mediator in multiple inflammatory skin diseases, implying that strategies targeting granzyme B may be an attractive treatment option for such diseases. Specifically, granzyme B exhibits not only an intracellular apoptotic function but also extracellular proteolytic roles in inflammatory skin diseases including infectious diseases, pemphigoid diseases, atopic dermatitis, alopecia areata, and interface dermatitis. In this review, we summarize the current understanding with respect to the functions of granzyme B in the pathomechanism of various inflammatory skin diseases and evaluate the possibility of therapeutics targeting granzyme B.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada; BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Misery L, Brenaut E, Pierre O, Le Garrec R, Gouin O, Lebonvallet N, Abasq-Thomas C, Talagas M, Le Gall-Ianotto C, Besner-Morin C, Fluhr JW, Leven C. Chronic itch: emerging treatments following new research concepts. Br J Pharmacol 2021; 178:4775-4791. [PMID: 34463358 DOI: 10.1111/bph.15672] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Until recently, itch pathophysiology was poorly understood and treatments were poorly effective in relieving itch. Current progress in our knowledge of the itch processing, the numerous mediators and receptors involved has led to a large variety of possible therapeutic pathways. Currently, inhibitors of IL-31, IL-4/13, NK1 receptors, opioids and cannabinoids, JAK, PDE4 or TRP are the main compounds involved in clinical trials. However, many new targets, such as Mas-related GPCRs and unexpected new pathways need to be also explored.
Collapse
Affiliation(s)
- Laurent Misery
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Emilie Brenaut
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | | | - Olivier Gouin
- LIEN, Univ Brest, Brest, France.,INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France.,University of Paris, Paris, France
| | | | - Claire Abasq-Thomas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Matthieu Talagas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | - Catherine Besner-Morin
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Joachim W Fluhr
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Department of Dermatology, Charité Universitätsmedizin, Berlin, Germany
| | - Cyril Leven
- LIEN, Univ Brest, Brest, France.,EA3878, FCRIN INNOVTE, groupe d'étude thrombose Bretagne Occidentale, Brest, France.,Department of Biochemistry and Pharmaco-Toxicology, University Hospital of Brest, Brest, France
| |
Collapse
|
17
|
Zhang Y, Zhang H, Jiang B, Tong X, Yan S, Lu J. Current views on neuropeptides in atopic dermatitis. Exp Dermatol 2021; 30:1588-1597. [PMID: 33963624 DOI: 10.1111/exd.14382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease involving skin barrier dysfunction and immune imbalance. However, the mechanism of AD is not clear completely and may be related to heredity and environment. Neuropeptides are a class of peptides secreted by nerve endings, they may play roles in promoting vasodilation, plasma extravasation, chemotaxis of inflammatory cells and mediating pruritus. Since itching and immune cell infiltration are the main manifestations of atopic dermatitis, to further investigate the impact of neuropeptides on AD, our review summarized the mechanisms of several common neuropeptides in AD and hypothesized that neuropeptides may be the novel potential targets in AD treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanyi Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Boyue Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyu Yan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Yang H, Yang YL, Li GQ, Yu Q, Yang J. Identifications of immune-responsive genes for adaptative traits by comparative transcriptome analysis of spleen tissue from Kazakh and Suffolk sheep. Sci Rep 2021; 11:3157. [PMID: 33542475 PMCID: PMC7862382 DOI: 10.1038/s41598-021-82878-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Aridity and heat are significant environmental stressors that affect sheep adaptation and adaptability, thus influencing immunity, growth, reproduction, production performance, and profitability. The aim of this study was to profile mRNA expression levels in the spleen of indigenous Kazakh sheep breed for comparative analysis with the exotic Suffolk breed. Spleen histomorphology was observed in indigenous Kazakh sheep and exotic Suffolk sheep raised in Xinjiang China. Transcriptome sequencing of spleen tissue from the two breeds were performed via Illumina high-throughput sequencing technology and validated by RT-qPCR. Blood cytokine and IgG levels differed between the two breeds and IgG and IL-1β were significantly higher in Kazakh sheep than in Suffolk sheep (p < 0.05), though spleen tissue morphology was the same. A total of 52.04 Gb clean reads were obtained and the clean reads were assembled into 67,271 unigenes using bioinformatics analysis. Profiling analysis of differential gene expression showed that 1158 differentially expressed genes were found when comparing Suffolk with Kazakh sheep, including 246 up-regulated genes and 912 down-regulated genes. Utilizing gene ontology annotation and pathway analysis, 21 immune- responsive genes were identified as spleen-specific genes associated with adaptive traits and were significantly enriched in hematopoietic cell lineage, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, and in the intestinal immune network for IgA production. Four pathways and up-regulated genes associated with immune responses in indigenous sheep played indispensable and promoting roles in arid and hot environments. Overall, this study provides valuable transcriptome data on the immunological mechanisms related to adaptive traits in indigenous and exotic sheep and offers a foundation for research into adaptive evolution.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Yong-Lin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Guo-Qing Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
19
|
Turner CT, Zeglinski MR, Richardson KC, Santacruz S, Hiroyasu S, Wang C, Zhao H, Shen Y, Sehmi R, Lima H, Gauvreau GM, Granville DJ. Granzyme B Contributes to Barrier Dysfunction in Oxazolone-Induced Skin Inflammation through E-Cadherin and FLG Cleavage. J Invest Dermatol 2020; 141:36-47. [PMID: 32504614 DOI: 10.1016/j.jid.2020.05.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/24/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin condition. Skin barrier dysfunction is of major importance in AD because it facilitates allergen sensitization and systemic allergic responses. Long regarded as a pro-apoptotic protease, emerging studies indicate granzyme B (GzmB) to have extracellular roles involving the proteolytic cleavage of extracellular matrix, cell adhesion proteins, and basement membrane proteins. Minimally expressed in normal skin, GzmB is elevated in AD and is positively correlated with disease severity and pruritus. We hypothesized that GzmB contributes to AD through extracellular protein cleavage. A causative role for GzmB was assessed in an oxazolone-induced murine model of dermatitis, comparing GzmB-/- mice with wild-type mice, showing significant reductions in inflammation, epidermal thickness, and lesion formation in GzmB-/- mice. Topical administration of a small-molecule GzmB inhibitor reduced disease severity compared with vehicle-treated controls. Mechanistically, GzmB impaired epithelial barrier function through E-cadherin and FLG cleavage. GzmB proteolytic activity contributes to impaired epidermal barrier function and represents a valid therapeutic target for AD.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Matthew R Zeglinski
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Stephanie Santacruz
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Christine Wang
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Yue Shen
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Roma Sehmi
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hermenio Lima
- Division of Dermatology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada.
| |
Collapse
|
20
|
Turner CT, Hiroyasu S, Granville DJ. Granzyme B as a therapeutic target for wound healing. Expert Opin Ther Targets 2019; 23:745-754. [PMID: 31461387 DOI: 10.1080/14728222.2019.1661380] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Granzyme B is a serine protease traditionally understood as having a role in immune-mediated cytotoxicity. Over the past decade, this dogma has been challenged, with a new appreciation that granzyme B can exert alternative extracellular roles detrimental to wound closure and remodeling. Granzyme B is elevated in response to tissue injury, chronic inflammation and/or autoimmune skin diseases, resulting in impaired wound healing. Areas covered: This review provides a historical background of granzyme B and a description of how it is regulated. Details are provided on the role of granzyme B in apoptosis as well as newly identified extracellular roles, focusing on those affecting wound healing, including on inflammation, dermal-epidermal junction separation, re-epithelialization, scarring and fibrosis, and autoimmunity. Finally, the use of pharmacological granzyme B inhibitors as potential therapeutic options for wound treatment is discussed. Expert opinion: Endogenous extracellular granzyme B inhibitors have not been identified in human bio-fluids, thus in chronic wound environments granzyme B appears to remain uncontrolled and unregulated. In response, targeted granzyme B inhibitors have been developed for therapeutic applications in wounds. Animal studies trialing inhibitors of granzyme B show improved healing outcomes, and may therefore provide a novel therapeutic approach for wound treatment.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| |
Collapse
|
21
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
22
|
Urinary Biomarkers and Benign Prostatic Hyperplasia. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Yang L, Qiu Y, Liu J, Lin R, Yu P, Fu X, Hao B, Lei B. Retinal Transcriptome Analysis in the Treatment of Endotoxin-Induced Uveitis with Tetramethylpyrazine Eye Drops. J Ocul Pharmacol Ther 2019; 35:235-244. [PMID: 30994400 DOI: 10.1089/jop.2018.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose: To investigate retinal gene expression of tetramethylpyrazine (TMP) eye drop-treated endotoxin-induced uveitis (EIU) in mice and to explore the mechanisms. Methods: The inflammatory signs of the anterior segment were evaluated, and clinical scores were graded. The retinal transcriptome from the TMP eye drop-treated and the untreated mice was identified by RNA sequencing (RNA-seq) strategy. Differentially expressed genes (DEGs) were validated by real-time PCR. The protein-protein interaction was analyzed using the STRING software. Results: Compared with the TMP-treated group, the inflammatory responses of the untreated control group were much severe and clinical score was remarkably higher (P < 0.001) at 24 h after lipopolysaccharide administration. RNA-seq assay identified 407 DEGs, among which 356 were upregulated and 51 were downregulated. There were 12 upregulated gene ontology terms enriched and 27 upregulated pathways. Seven DEGs, including inflammation-related, complement system-related, and interferon-related genes, were validated using quantitative PCR. Conclusions: TMP exerted anti-inflammatory effect in EIU. Local application of TMP inhibited retinal inflammatory response by regulating the inflammation-related genes, suggesting that TMP may be a potential novel therapeutic drug for ocular inflammation.
Collapse
Affiliation(s)
- Lin Yang
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yiguo Qiu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jingyang Liu
- 2 People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| | - Ru Lin
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Peng Yu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xinyu Fu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Bingtao Hao
- 3 Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Bo Lei
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,2 People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Meyer NH, Gibbs B, Schmelz M, Homey B, Raap U. [Neurophysiology of atopic pruritus]. Hautarzt 2018; 69:204-209. [PMID: 29396640 DOI: 10.1007/s00105-018-4128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pruritus is one of the major symptoms of inflammatory skin diseases and strongly affects the quality of life in patients. Although the perception of pruritus and pain are closely intertwined, pruritus represents a distinct sensation, which is also significantly different to pain at a neurophysiological level. The pathophysiological basis of chronic and acute pruritus is not fully understood. Besides histamine, a plethora of different neuromediators of itch, including neurotrophins, neuropeptides and their corresponding receptors, have been identified. In atopic dermatitis the release of these mediators leads to an activation of immune cells, such as mast cells and eosinophilic granulocytes, which in turn release neuromediators and cytokines that activate peripheral neurons. This review focuses on the neurophysiological interactions which regulate pruritus and summarizes the function of neurological and inflammatory mediators in atopic pruritus.
Collapse
Affiliation(s)
- N H Meyer
- Department für Humanmedizin, Universitätsklinik für Dermatologie und Allergie, Universität Oldenburg, Rahel-Straus-Str. 10, 26133, Oldenburg, Deutschland
| | - B Gibbs
- Department für Humanmedizin, Universitätsklinik für Dermatologie und Allergie, Universität Oldenburg, Rahel-Straus-Str. 10, 26133, Oldenburg, Deutschland
| | - M Schmelz
- Experimentelle Schmerzforschung, Medizinische Fakultät Mannheim, Universität Heidelberg, Heidelberg, Deutschland
| | - B Homey
- Dept. für Dermatologie und Allergologie, Universität Düsseldorf, Düsseldorf, Deutschland
| | - U Raap
- Department für Humanmedizin, Universitätsklinik für Dermatologie und Allergie, Universität Oldenburg, Rahel-Straus-Str. 10, 26133, Oldenburg, Deutschland.
| |
Collapse
|
25
|
IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv 2017; 1:577-589. [PMID: 29296700 DOI: 10.1182/bloodadvances.2016002352] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
Innate lymphoid cells (ILCs) represent a distinct branch of the lymphoid lineage composed of 3 major subpopulations: ILC1, ILC2, and ILC3. ILCs are mainly described as tissue-resident cells but can be detected at low levels in human blood. However, unlike mouse ILCs, there is still no consistent methodology to purify and culture these cells that enables in-depth analysis of their intrinsic biology. Here, we describe defined culture conditions for ILC2s, which allowed us to dissect the roles of interleukin 2 (IL-2), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) individually, or in combination, in modulating ILC2 phenotype and function. We show that TSLP is important for ILC2 survival, while ILC2 activation is more dependent on IL-33, especially when in combination with IL-2 or TSLP. We found that activation of ILC2s by IL-33 and TSLP dramatically upregulated their surface expression of c-Kit and downregulated expression of the canonical markers IL-7Rα and CRTH2. IL-2 further amplified ILC2 production of IL-5, IL-13, and granulocyte-macrophage colony-stimulating factor but also induced a more natural killer (NK)-like phenotype in ILC2, with upregulation of granzyme B production by these cells. Furthermore, ILC2 plasticity was observed in serum-free SFEM II media in response to IL-33, IL-25, and TSLP stimulation and independently of IL-12 and IL-1β. This is the first comprehensive report of an in vitro culture system for human ILC2s, without the use of feeder layers, which additionally evaluates the impact of IL-25, IL-33, and TSLP alone or in combination on ILC2 surface phenotype and activation status.
Collapse
|
26
|
Ariizumi H, Sasaki Y, Harada H, Uto Y, Azuma R, Isobe T, Kishimoto K, Shiozawa E, Takimoto M, Ohike N, Mori H. Post-cytokine-release Salt Wasting as Inverse Tumor Lysis Syndrome in a Non-cerebral Natural Killer-cell Neoplasm. Intern Med 2017; 56:1855-1861. [PMID: 28717082 PMCID: PMC5548679 DOI: 10.2169/internalmedicine.56.8125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of cerebral/renal salt-wasting syndrome remains unknown. We herein present a case of salt-wasting syndrome with a natural killer-cell neoplasm without cerebral invasion. A 78-year-old man with hemophagocytic syndrome received two cycles of chemotherapy that did not induce tumor lysis syndrome, but repeatedly caused polyuria and natriuresis. The expression of tumor necrosis factor-α in the neoplasm led us to hypothesize that an oncolysis-induced cytokine storm may have caused renal tubular damage and salt wasting. Our theory may explain the pathogenic mechanism of cerebral/renal salt-wasting syndrome associated with other entities, including cerebral disorders, owing to the elevation of cytokine levels after subarachnoid hemorrhage.
Collapse
Affiliation(s)
| | - Yosuke Sasaki
- Department of Pathology, Showa University School of Medicine, Japan
| | - Hiroshi Harada
- Department of Hematology, Showa University Fujigaoka Hospital, Japan
| | - Yui Uto
- Department of Hematology, Showa University Fujigaoka Hospital, Japan
| | - Remi Azuma
- Department of Hematology, Showa University Fujigaoka Hospital, Japan
| | - Tomohide Isobe
- Department of Pathology, Showa University Fujigaoka Hospital, Japan
| | - Koji Kishimoto
- Department of Pathology, Showa University Fujigaoka Hospital, Japan
| | - Eisuke Shiozawa
- Department of Pathology, Showa University School of Medicine, Japan
| | | | - Nobuyuki Ohike
- Department of Pathology, Showa University Fujigaoka Hospital, Japan
| | - Hiraku Mori
- Department of Hematology, Showa University Fujigaoka Hospital, Japan
| |
Collapse
|