1
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2025; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
2
|
Feng J, Song X, Zhang B, Xiang W. Establishing an animal model for post-inflammatory hyperpigmentation following fractional CO 2 laser application. Lasers Med Sci 2025; 40:17. [PMID: 39808337 DOI: 10.1007/s10103-025-04282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO2 laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited. METHODS This study aimed to establish an animal model to investigate PIH following AFR CO2 laser application, focusing on the dynamic changes in melanin, inflammatory cytokines, growth factors, and skin structures as PIH developed. We employed pigmented guinea pigs as our experimental subjects and conducted our research in two phases. In the first phase, we utilized three modes of AFR CO2 laser to identify which laser mode could induce PIH by monitoring dynamic melanin changes. In the second phase, the laser mode that most reliably induced PIH was applied to re-establish the PIH model. Pathophysiological changes during PIH progression were investigated through histopathological observations, real-time quantitative polymerase chain reaction, and two-photon microscopy. RESULTS We successfully established a replicable animal model for PIH following AFR CO2 laser application. We observed a significant increase in inflammatory cytokines and growth factors within the skin tissue by the second week, with stable pigmentation becoming apparent by the third week. CONCLUSIONS Our research provides a promising animal model for understanding and further investigating the mechanisms of PIH after laser procedures. EBM LEVEL V (animal study).
Collapse
Affiliation(s)
| | - Xiuzu Song
- Hangzhou Third People's Hospital, Hangzhou, China
| | - Beilei Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | | |
Collapse
|
3
|
Hamzavi IH, Ganesan AK, Mahmoud BH, Weiss E, Ahmed AM, Robinson D, Goldman MP, Munavalli G, Kahn SA, Huang V, Waibel J, Desai A, Elbuluk N, Desai S, Pandya AG. Effective and durable repigmentation for stable vitiligo: A randomized within-subject controlled trial assessing treatment with autologous skin cell suspension transplantation. J Am Acad Dermatol 2024; 91:1104-1112. [PMID: 39182674 DOI: 10.1016/j.jaad.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Vitiligo lesions are often challenging to repigment with conventional medical therapies. Surgical autologous melanocyte transfer methods can be utilized for stable vitiligo but demand specialized skills and equipment. A point-of-care autologous cell harvesting device was designed enabling simple preparation of autologous skin cell suspension (ASCS) containing melanocytes, keratinocytes, and fibroblasts providing a straightforward approach for cellular transplantation. OBJECTIVE To evaluate the safety and effectiveness of ASCS for repigmentation of stable vitiligo lesions among adults. METHODS A US multicenter, randomized, within-subject controlled trial compared ASCS to narrow band ultraviolet B only (Control) in similar vitiligo lesions. ASCS was applied after laser skin resurfacing and followed by narrow band ultraviolet B treatment. The primary effectiveness endpoint was the proportion of lesions achieving ≥80% repigmentation at week-24. Repigmentation durability was assessed at week-52. RESULTS Among 25 subjects, 36% of ASCS-treated lesions achieved ≥80% repigmentation at week-24 compared to 0% for Control (P < .025), with durability through week-52. The safety profile of ASCS was acceptable, with favorable patient- and investigator-reported outcomes. LIMITATIONS Study sample size limited robust subgroup analyses. CONCLUSION Application of ASCS has potential as a treatment for repigmentation of stable vitiligo lesions with the potential to improve health-related quality of life and reduce burden of disease.
Collapse
Affiliation(s)
- Iltefat H Hamzavi
- Department of Dermatology, Henry Ford Health System, Dermatology Research, Detroit, Michigan.
| | - Anand K Ganesan
- Department of Dermatology, University of California Irvine, Irvine, California
| | - Bassel H Mahmoud
- Department of Dermatology, University of Massachusetts, Worcester, Massachusetts
| | | | - Ammar M Ahmed
- Department of Internal Medicine, Dell Medical School at the University of Texas at Austin, Austin, Texas
| | | | - Mitchel P Goldman
- Cosmetic Laser Dermatology: A Platinum Dermatology Partners Company, San Diego, California
| | - Girish Munavalli
- Dermatology, Laser, & Vein Specialists of the Carolinas, Charlotte, North Carolina
| | - Steven A Kahn
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Victor Huang
- Department of Dermatology, University of California, Sacramento, California
| | - Jill Waibel
- Miami Dermatology & Laser Research, Miami, Florida
| | - Alpesh Desai
- Heights Dermatology & Aesthetic Center, Houston, Texas
| | - Nada Elbuluk
- Department of Dermatology, Keck School of Medicine USC, Los Angeles, California
| | - Seemal Desai
- Innovative Dermatology, Plano, Texas; Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amit G Pandya
- Palo Alto Foundation Medical Group, Sunnyvale, California
| |
Collapse
|
4
|
Meng J, Li J, Zhao Y. Comprehensive analysis of lncRNAs modified by m6A methylation in sheep skin. Anim Biosci 2024; 37:1887-1990. [PMID: 38754841 PMCID: PMC11541038 DOI: 10.5713/ab.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE N6-methyladenosine (m6A) is the most prevalent methylation of mRNA and plays crucial roles in various physiological processes, including pigmentation. Yet, the regulatory mechanisms, including long noncoding RNAs (lncRNAs) m6A methylation contributing to pigmentation in sheep skin remains unclear. The purpose of this study was to identify potential lncRNAs and the m6A methylation of lncRNAs associated with pigmentation. METHODS RNA-seq and MeRIP-seq were performed to study the expression of lncRNAs and the m6A methylation of lncRNAs in black and white sheep skin. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the consistency with the RNA-seq and MeRIP-seq data. RESULTS We identified 168 differentially expressed lncRNAs between the two sheep skin colors. The differentially expressed lncRNAs enriched in the pathway of ECM-receptor interaction, Rap1 signaling pathway, and Non-homologous end-joining may play essential roles in pigmentation. We identified 577 m6A peaks and 617 m6A peaks in black and white sheep skin, respectively, among which 20 m6A peaks showed significant differences. The enriched motif in sheep skin was "GGACU", which aligned with the consensus motif "RRACH" (R = A or G, H = A, C or U). Differently methylated lncRNAs enriched in PI3K-Akt signaling pathway and Wnt signaling pathway might participate in skin pigmentation. ENSOARG00020015168 was the unique lncRNA with high expression and methylation (Hyper-Up) in black sheep shin. A lncRNA-mRNA network was constructed, with pigmentation-related genes, such as PSEN2, CCND3, COL2A1, and ERCC3. CONCLUSION The m6A modifications of lncRNAs in black and white colored sheep skin were analyzed comprehensively, providing new candidates for the regulation of pigmentation.
Collapse
Affiliation(s)
- Jinzhu Meng
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou 554300,
China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128,
China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin 132000,
China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou 554300,
China
| |
Collapse
|
5
|
Jeayeng S, Saelim M, Muanjumpon P, Buraphat P, Kanchanapiboon P, Sampattavanich S, Panich U. Protective Effects of Keratinocyte-Derived GCSF and CCL20 on UVB-Induced Melanocyte Damage. Cells 2024; 13:1661. [PMID: 39404423 PMCID: PMC11475719 DOI: 10.3390/cells13191661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The skin microenvironment created by keratinocytes (KC) influences the stress responses of melanocytes (MC) to UVB insults. This study employed RNA sequencing analysis as well as in vitro and in vivo models to elucidate the underlying mechanisms. Our RNA-Seq analysis revealed a statistically significant upregulation of GCSF and CCL20 genes in UVB-irradiated KC, correlating with the protective effects of KC on MC responses to UVB exposure. Recombinant GCSF and CCL20 exhibited the most pronounced modulation of UVB-induced MC responses. These effects included the attenuation of apoptosis and reduction of ROS formation, along with the upregulation of tyrosinase and tyrosinase-related protein-1, which are involved in the melanogenic pathway. ELISA was also used to confirm that UVB could induce the secretion of GCSF and CCL20 from KC. A similar correlation between GCSF and CCL20 expression in KC and tyrosinase levels in MC was observed in UVB-irradiated mouse skin. Our study provides novel insights into the protective role of GCSF and CCL20 in the paracrine effects of KC on UVB-induced MC damage through the modulation of stress response pathways, the MITF-tyrosinase axis, and the regulation of p53. These findings have implications for the development of pharmacological strategies targeting KC-derived paracrine factors for the prevention of skin photodamage.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Pongsakorn Buraphat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Potjanee Kanchanapiboon
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somponnat Sampattavanich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| |
Collapse
|
6
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Hair regrowth in alopecia areata and re-pigmentation in vitiligo in response to treatment: Commonalities and differences. J Eur Acad Dermatol Venereol 2024. [PMID: 39258892 DOI: 10.1111/jdv.20311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Collapse
Affiliation(s)
- Hiroki L Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, Pennsylvania, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Lin YJ, Wu BQ, Chang CC, Huang YH, Wang YJ. Laser-induced optical breakdown is a prior strategy for acquired melanin-increased disorder in dermal layer. Lasers Med Sci 2024; 39:216. [PMID: 39141143 DOI: 10.1007/s10103-024-04170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
This brief report discusses the challenges in treating dermal melanosis and the limitations of current laser treatments due to inadequate tissue penetration and potential side effects. It introduces laser-induced optical breakdown (LIOB) as a novel therapeutic approach using a picosecond laser with a diffractive lens array (DLA) to target dermal pigmentation effectively. LIOB induces multiphoton ionization, leading to melanin clearance through phagocytosis and apoptotic cell removal, while also promoting dermal remodeling and collagen synthesis. We present a case of successful treatment of dermal pigmentation in a 55-year-old woman using 755 nm-picosecond alexandrite laser therapy, demonstrating significant improvement without recurrence. The findings suggest that LIOB offers a promising solution for acquired dermal hypermelanosis by addressing both diffuse and localized pigmentation effectively, leading to skin rejuvenation with minimal downtime and high patient satisfaction.
Collapse
Affiliation(s)
- Yun-Jhen Lin
- China Medical University, Medicine, No.91 Hsueh-Shih Road, Taichung, TW, Taiwan
| | - Bing-Qi Wu
- China Medical University, Medicine, No.91 Hsueh-Shih Road, Taichung, TW, Taiwan
| | - Chang-Cheng Chang
- Department of Plastic Surgery, China Medical University Hospital, No2 Yuder Rd, Taichung, TW, Taiwan.
- Institute of Imaging and Biomedical Photonics, National Chiao Tung University, Tainan, TW, Taiwan.
| | - Yung-Hsueh Huang
- Department of Cosmetology, Yung-Hsueh Huang Dermatology Clinic, Changhua, TW, Taiwan
| | - Yen-Jen Wang
- Mackay Memorial Hospital, Dermatology, No. 92, Sec. 2, Zhongshan N. Rd, Taipei, TW, Taiwan
| |
Collapse
|
8
|
Cavinato M, Martic I, Wedel S, Pittl A, Koziel R, Weinmmüllner R, Schosserer M, Jenewein B, Bobbili MR, Arcalis E, Haybaeck J, Pierer G, Ploner C, Hermann M, Romani N, Schmuth M, Grillari J, Jansen‐Dürr P. Elimination of damaged mitochondria during UVB-induced senescence is orchestrated by NIX-dependent mitophagy. Aging Cell 2024; 23:e14186. [PMID: 38761001 PMCID: PMC11320349 DOI: 10.1111/acel.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024] Open
Abstract
Skin aging is the result of two types of aging, "intrinsic aging" an inevitable consequence of physiologic and genetically determined changes and "extrinsic aging," which is dependent on external factors such as exposure to sunlight, smoking, and dietary habits. UVB causes skin injury through the generation of free radicals and other oxidative byproducts, also contributing to DNA damage. Appearance and accumulation of senescent cells in the skin are considered one of the hallmarks of aging in this tissue. Mitochondria play an important role for the development of cellular senescence, in particular stress-induced senescence of human cells. However, many aspects of mitochondrial physiology relevant to cellular senescence and extrinsic skin aging remain to be unraveled. Here, we demonstrate that mitochondria damaged by UVB irradiation of human dermal fibroblasts (HDF) are eliminated by NIX-dependent mitophagy and that this process is important for cell survival under these conditions. Additionally, UVB-irradiation of human dermal fibroblasts (HDF) induces the shedding of extracellular vesicles (EVs), and this process is significantly enhanced in UVB-irradiated NIX-depleted cells. Our findings establish NIX as the main mitophagy receptor in the process of UVB-induced senescence and suggest the release of EVs as an alternative mechanism of mitochondrial quality control in HDF.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Ines Martic
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Sophia Wedel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Annabella Pittl
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
- Present address:
Department of Internal Medicin V, Hematology & OncologyTirol Kliniken InnsbruckInnsbruckAustria
| | - Rafal Koziel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Present address:
Biosens Labs Ltd.WarsawPoland
| | - Regina Weinmmüllner
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Markus Schosserer
- Institute of Medical Genetics, Center for Pathobiochemistry and GeneticsMedical University ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Brigitte Jenewein
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Elsa Arcalis
- Institut für Pflanzenbiotechnologie und ZellbiologieUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
- Department of PathologySaint Vincent Hospital ZamsZamsAustria
- Department of Pathology, Labor TeamGoldachSwitzerland
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Johannes Grillari
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Pidder Jansen‐Dürr
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| |
Collapse
|
9
|
Liu J, Lu Q, Wei Y, Zhang X, Lin L, Li Q. Insights into the mechanism of color formation of the freshwater prawn (Macrobrachium rosenbergii) revealed by de novo assembly transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101237. [PMID: 38729032 DOI: 10.1016/j.cbd.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Body color is an important visual indicator of crustacean quality and plays a major role in consumer acceptability, perceived quality, and the market price of crustaceans. The freshwater prawn (Macrobrachium rosenbergii) has two distinct phenotypic variations, characterized by dark blue and light yellow body colors. However, the underlying mechanisms regulating the body color of M. rosenbergii remain unclear. In this study, the composition of shell color parameters and pigment cells of raw and cooked dark blue and light yellow M. rosenbergii was investigated and the mechanisms associated with body color were elucidated by transcriptome analysis. The results showed significant differences in the raw shells of the dark blue and light yellow M. rosenbergii (L: 26.20 ± 0.53 vs. 29.25 ± 0.45; a: -0.88 ± 0.19 vs. 0.35 ± 0.18; b: 1.73 ± 0.20 vs. 3.46 ± 0.37; dE: 70.33 ± 0.53 vs. 67.34 ± 0.45, respectively, p = 0.000) as well as the cooked shells (L: 58.14 ± 0.81 vs. 55.78 ± 0.55; a: 19.30 ± 0.56 vs. 16.42 ± 0.40; b: 23.60 ± 0.66 vs. 20.30 ± 0.40, respectively, p < 0.05). Transcriptome differential gene analysis obtained 39.02 Gb of raw data and 158,026 unigenes. Comprehensive searches of the SwissProt, Nr, KEGG, Pfam, and KOG databases resulted in successful annotations of 23,902 (33 %), 40,436 (25.59 %), 32,015 (20.26 %), 26,139 (16.54 %), and 22,155 (14.02 %) proteins, respectively. By KEGG pathway analysis, numerous differentially expressed genes were related to pigmentation-related pathways (MAPK signaling pathway, Wnt signaling pathway, melanin production, tyrosine metabolism, and cell-cell communication process). Candidate DEGs that may be involved in body color included apolipoprotein D, crustacyanin, cytochrome P450, and tyrosinase, as verified by quantitative real-time PCR. The results of this study provide useful references to further elucidate the molecular mechanisms of color formation of M. rosenbergii and other crustaceans.
Collapse
Affiliation(s)
- Junhui Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Qifeng Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Yong Wei
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Xingqian Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China.
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China.
| |
Collapse
|
10
|
Wang Q, Yan H, Yao L, Li W, Xiao J. A highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. J Mater Chem B 2024; 12:4467-4477. [PMID: 38629894 DOI: 10.1039/d3tb03032f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| |
Collapse
|
11
|
Wu W, Wang X, He K, Li C, Li S. From mice to men: An assessment of preclinical model systems for the study of vitiligo. Clin Immunol 2024; 262:110171. [PMID: 38462156 DOI: 10.1016/j.clim.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Vitiligo is an autoimmune skin disease of multiple etiology, for which there is no complete cure. This chronic depigmentation is characterized by epidermal melanocyte loss, and causes disfigurement and significant psychosocial distress. Mouse models have been extensively employed to further our understanding of complex disease mechanisms in vitiligo, as well as to provide a preclinical platform for clinical interventional research on potential treatment strategies in humans. The current mouse models can be categorized into three groups: spontaneous mouse models, induced mouse models, and transgenic mice. Despite their limitations, these models allow us to understand the pathology processes of vitiligo at molecule, cell, tissue, organ, and system levels, and have been used to test prospective drugs. In this review, we comprehensively evaluate existing murine systems of vitiligo and elucidate their respective characteristics, aiming to offer a panorama for researchers to select the appropriate mouse models for their study.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xinju Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
12
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
13
|
Di Rosa L, De Pasquale A, Baldassano S, Marguglio N, Drid P, Proia P, Vasto S. New Regenerative and Anti-Aging Medicine Approach Based on Single-Stranded Alpha-1 Collagen for Neo-Collagenesis Induction: Clinical and Instrumental Experience of a New Injective Polycomponent Formulation for Dermal Regeneration. Biomedicines 2024; 12:916. [PMID: 38672270 PMCID: PMC11048055 DOI: 10.3390/biomedicines12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the efficacy of a novel polycomponent formulation (KARISMA Rh Collagen® FACE, Taumedika Srl, Rome, Italy), containing 200 mg/mL of non-crosslinked high-molecular-weight hyaluronic acid (HMW-HA), 200 μg/mL of a human recombinant polypeptide of collagen-1 alpha chain, and 40 mg/mL of carboxymethyl cellulose (CMC) as a regenerative medicine for skin regeneration and rejuvenation. This formulation combines non-crosslinked high-molecular-weight hyaluronic acid, human recombinant polypeptide of collagen-1 alpha chain, and carboxymethyl cellulose to stimulate collagen type I production and enhance skin hydration. This study involved 100 subjects with varying skin conditions, divided into three groups based on skin aging, smoking history, and facial scarring, to evaluate the product's effectiveness in skin regeneration and aesthetic improvement. The methodology included two injections of Karisma (2 mL for each injection) one month apart, with evaluations conducted using FACE-Q questionnaires, the SGAIS Questionnaire, and Antera 3D skin scanner measurements at baseline, 30 days, and 60 days post-treatment. The results demonstrated a significant reduction in skin roughness and an improvement in skin quality across all the groups, with no correlation between the outcomes and the patient's age. The subjective assessments also indicated high satisfaction with the treatment's aesthetic results. The analyzed data allow us to conclude that the single-stranded collagen with hyaluronic acid and carboxymethyl-cellulose formulation is able to stimulate the skin's regenerative response, yielding significant results both in vitro and, through our study, also in vivo. This new polycomponent formulation effectively stimulates skin regeneration, improving skin quality and texture, with significant aesthetic benefits perceived by patients, and a low incidence of adverse events, marking a promising advancement in regenerative medicine.
Collapse
Affiliation(s)
- Luigi Di Rosa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy; (S.B.); (N.M.); (S.V.)
| | | | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy; (S.B.); (N.M.); (S.V.)
| | - Noemi Marguglio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy; (S.B.); (N.M.); (S.V.)
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, 90100 Palermo, Italy;
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy; (S.B.); (N.M.); (S.V.)
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
14
|
Chen J, Wang H, Wu S, Zhang A, Qiu Z, Huang P, Qu JY, Xu J. col1a2+ fibroblasts/muscle progenitors finetune xanthophore countershading by differentially expressing csf1a/1b in embryonic zebrafish. SCIENCE ADVANCES 2024; 10:eadj9637. [PMID: 38578990 PMCID: PMC10997200 DOI: 10.1126/sciadv.adj9637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Animals evolve diverse pigment patterns to adapt to the natural environment. Countershading, characterized by a dark-colored dorsum and a light-colored ventrum, is one of the most prevalent pigment patterns observed in vertebrates. In this study, we reveal a mechanism regulating xanthophore countershading in zebrafish embryos. We found that csf1a and csf1b mutants altered xanthophore countershading differently: csf1a mutants lack ventral xanthophores, while csf1b mutants have reduced dorsal xanthophores. Further study revealed that csf1a is expressed throughout the trunk, whereas csf1b is expressed dorsally. Ectopic expression of csf1a or csf1b in neurons attracted xanthophores into the spinal cord. Blocking csf1 signaling by csf1ra mutants disrupts spinal cord distribution and normal xanthophores countershading. Single-cell RNA sequencing identified two col1a2+ populations: csf1ahighcsf1bhigh muscle progenitors and csf1ahighcsf1blow fibroblast progenitors. Ablation of col1a2+ fibroblast and muscle progenitors abolished xanthophore patterns. Our study suggests that fibroblast and muscle progenitors differentially express csf1a and csf1b to modulate xanthophore patterning, providing insights into the mechanism of countershading.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honggao Wang
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shuting Wu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ao Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Zhongkai Qiu
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Jin Xu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Zhu Y, Li Q. Mitf involved in shell pigmentation by activating tyrosinase-mediated melanin synthesis in Pacific oyster (Crassostrea gigas). Gene 2024; 897:148086. [PMID: 38104952 DOI: 10.1016/j.gene.2023.148086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Pigmentation is frequently observed in the molluscan shells, whereas the molecular regulation about these shell pigments formation is not clear. The microphthalmia-associated transcription factor (Mitf) is an important transactivator in melanin synthesis in vertebrates. Here, the Mitf containing a highly conserved basic helix-loop-helixleucine zipper (bHLH-LZ) domain was identified in an economically important marine bivalve Pacific oyster Crassostrea gigas. The Mitf was found to widespread tissue distribution and the expression was higher in the marginal mantle than in the central mantle. Particularly, the expression level of Mitf was high in black shell color oysters compared with white shell oysters. After injecting siRNA, the expression of Mitf decreased significantly, and the efficiency of RNA interference reached 53%. Besides, knockdown Mitf obviously decreased expression of tyrosinase family genes and tyrosinase activity of mantles, indicating a potential regulatory relationship between Mitf and Tyr or Typs. Simultaneously, there was a sharply reduce in the number of the melanosomes in the outer fold of mantle by silencing of Mitf. Luciferase assays in cell culture further verified that Mitf was involved in transcriptional regulation of Typ-2 and Typ-3 genes through binding to their specific promoter regions. These data argue that Mitf is involved in shell pigmentation through activating tyrosinase-mediated melanin synthesis in C. gigas.
Collapse
Affiliation(s)
- Yijing Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
17
|
Hara Y, Shibata T. Characteristics of dermal vascularity in melasma and solar lentigo. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12953. [PMID: 38353352 DOI: 10.1111/phpp.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND /PURPOSE Melasma and solar lentigo (SL) are major benign hyperpigmented lesions, and both have been shown to involve the dermal vasculature. This review discusses current knowledge regarding the clinical characteristics of dermal vascularity in melasma and SL, as well as the results of relevant molecular biological investigations. METHODS PubMed and Google Scholar were searched in December 2023 to identify articles related to melasma, SL, and the dermal vasculature in these lesions. RESULTS Vascular morphologies in melasma and SL have been detected by histological and non-invasive methods, including modalities such as optical coherence tomography. Biological studies have indicated that factors secreted from vascular endothelial cells, such as stem cell factor and endothelin-1, can promote melanogenesis. With respect to phototherapy, blood vessel-targeting laser treatments are expected to provide long-term suppression of pigmentation, but this regimen is only effective when dilated capillaries are visible. CONCLUSION In both melasma and SL, clinical and experimental investigations are revealing the contributions of dermal vascularity to hyperpigmentation. More effective treatment may require identification of hyperpigmentation subtypes. In the future, knowledge of treatment (including phototherapy) is expected to accumulate through reliable and validated non-invasive measurements.
Collapse
Affiliation(s)
- Yusuke Hara
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Takako Shibata
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| |
Collapse
|
18
|
Hu Z, Su Y, Zong W, Niu N, Zhao R, Liang R, Wang L, Zhang Y, Zhang L. Unveiling the Genetic Secrets of Chinese Indigenous Pigs from Guizhou Province: Diversity, Evolution and Candidate Genes Affecting Pig Coat Color. Animals (Basel) 2024; 14:699. [PMID: 38473084 DOI: 10.3390/ani14050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
The local pig breeds in Guizhou possess exceptional meat quality, robust adaptability, and resilience to harsh feeding conditions, making them ideal for producing high-quality pork. With over 10 local pig breeds in the region, we focused on 7 specific breeds: Baixi pigs (BX), Congjiang Xiang pigs (CJX), Guanling pigs (GL), Jianhe White Xiang pigs (JHBX), Jiangkou Luobo pigs (JKLB), Kele pigs (KL), and Qiandong Hua pigs (QDH). Unfortunately, these breeds face threats such as introduced species and inbreeding, resulting in a decline in population size and numbers. To better protect and utilize these breeds, we employed genome-wide single-nucleotide polymorphism (SNP) markers to investigate the population structure, genetic diversity, and selection characteristics of 283 pigs across these seven breeds. Our findings revealed distinct ancestral sources between Chinese and Western pig breeds, as demonstrated by principal component analysis, adjacent tree analysis, and ADMIXTURE analysis. Notably, JHBX exhibited a distant genetic relationship from the other six local pig breeds in Guizhou province, showcasing unique genetic characteristics. While the genetic diversity of the six Chinese native pig populations, excluding JHBX, was generally moderate in Guizhou province, the JHBX population displayed low genetic diversity. Therefore, it is imperative to intensify selection efforts to prevent inbreeding decline in JHBX while further enhancing the protection measures for the other six pig populations. Additionally, we identified candidate genes influencing the size disparity among pigs in Guizhou province through signal selection. Our study outcomes serve as a reference for developing effective conservation and utilization plans for pig breeds in Guizhou province and deepen our understanding of the genetic mechanisms underlying pig body size.
Collapse
Affiliation(s)
- Ziping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanfang Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ruiping Liang
- Beijing Changping District Center for Animal Disease Prevention and Control, Beijing 102200, China
| | - Lixian Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
19
|
Sinha S, Sardana K, Panesar S, Dorjay K, Malhotra P. Comparison of outcomes of azathioprine, leflunomide and allergen avoidance in patients with patch test-positive pigmented contact dermatitis: a randomized comparative study. Clin Exp Dermatol 2024; 49:247-254. [PMID: 37936305 DOI: 10.1093/ced/llad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Pigmented contact dermatitis (PCD) is a noneczematous form of allergic contact dermatitis characterized by dermal hyperpigmentation. Allergen avoidance is the cornerstone of therapy, but it is difficult to achieve. The use of immunosuppressives seems rational, but data are lacking. OBJECTIVES To compare outcomes with azathioprine (AZA), leflunomide and allergen avoidance (AA) in patients with PCD. METHODS A comparative study was conducted on 28 patients with patch test-positive PCD who were randomly allocated to one of three treatment groups: AZA 2 mg kg-1 daily for 24 weeks + AA (n = 10); leflunomide (LEF) 20 mg daily for 24 weeks + -AA (n = 8); AA alone (n = 10). Patients were followed up for an additional 24 weeks. The Dermal Pigmentation Area and Severity Index (DPASI) score and Hindi Melasma Quality of Life scale (MELASQOL) were used to assess hyperpigmentation and quality of life (QoL). respectively. RESULTS Hair colorants (n = 12) and paraphenylenediamine (n = 8) were the most common allergens. Mean (SD) DPASI score decreased from 30.97 (3.69), 32.35 (3.90) and 31.86 (3.47) to 13.78 (4.25), 21.67 (2.99) and 20.64 (3.82) at 48 weeks in the three groups, respectively (P < 0.001); the maximum percentage decline was seen with AZA (56%). Mean (SD) MELASQOL score was reduced in the three treatment groups from 48.0 (6.46), 46.75 (3.69) and 46.6 (4.65) to 19.6 (6.98), 24.5 (5.80) and 24.0 (5.49), respectively, at 48 weeks (P < 0.001). Reductions in DPASI and Hindi MELASQOL scores were significantly correlated. The most frequent adverse event was transaminitis in both the AZA and LEF groups. CONCLUSIONS Patients on AZA achieved a statistically significantly greater reduction in DPASI and MELASQOL score; therefore, AZA may fulfil an unmet need in PCD treatment. An objective reduction in hyperpigmentation was paralleled by an improvement in QoL score, reiterating the need for active management of this disease.
Collapse
Affiliation(s)
- Surabhi Sinha
- Department of Dermatology, Lady Hardinge Medical College and Associated Hospital, New Delhi, India
| | | | | | | | | |
Collapse
|
20
|
He X, Jin S, Dai X, Chen L, Xiang L, Zhang C. The Emerging Role of Visible Light in Melanocyte Biology and Skin Pigmentary Disorders: Friend or Foe? J Clin Med 2023; 12:7488. [PMID: 38068540 PMCID: PMC10707362 DOI: 10.3390/jcm12237488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 09/03/2024] Open
Abstract
Electromagnetic radiation, notably visible light (VL), has complicated effects on human skin, particularly pigmentation, which have been largely overlooked. In this review, we discuss the photobiological mechanisms, pathological effects, clinical applications and therapeutic strategies of VL at varying wavelengths on melanocyte biology and skin pigmentary disorders. Different VL wavelengths may impose positive or negative effects, depending on their interactions with specific chromophores, photoaging, ROS production, circadian rhythm and other photon-mediated reactions. Further in vivo and in vitro studies are required to establish the pathologic mechanisms and application principles of VL in pigmentary disorders, as well as optimal photoprotection with coverage against VL wavelengths.
Collapse
Affiliation(s)
| | | | | | | | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.H.); (S.J.); (X.D.); (L.C.)
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.H.); (S.J.); (X.D.); (L.C.)
| |
Collapse
|
21
|
da Silva JLG, Viana AR, Passos DF, Krause LMF, Miron VV, Schetinger MRC, Pillat MM, Palma TV, Leal DBR. Istradefylline modulates purinergic enzymes and reduces malignancy-associated factors in B16F10 melanoma cells. Purinergic Signal 2023; 19:633-650. [PMID: 36522571 PMCID: PMC10754812 DOI: 10.1007/s11302-022-09909-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
ATP and adenosine exert pivotal roles in the development, maintenance, and metastatic spreading of melanoma. The action of such key melanoma tumor microenvironment (TME) constituents might be complementary or opposed, and their effects are not exclusive to immune cells but also to other host cells and tumor cells. The effects of ATP are controlled by the axis CD39/73, resulting in adenosine, the main actor in the TME, and A2A is the crucial mediator of its effects. We evaluated ATP and adenosine signaling through A2A on B16F10 melanoma cells using istradefylline (IST) (antiparkinsonian A2A antagonist) and caffeine (CAF) treatments after exposure to ATP and adenosine. Adenosine increased melanoma cell viability and proliferation in a concentration-dependent manner. ATP increases viability only as a substrate by CD39 to produce adenosine. Both IST and CAF are toxic to B16F10 cells, but only IST potentialized paclitaxel-induced cytotoxic effects, even decreasing its IC50 value. IST positively modulated CD39 and CD73 expression. CD39 activity was increased, and E-ADA was reduced, indicating that the melanoma cells promoted compensatory feedback in the production and maintenance of adenosine levels. A2A antagonism by IST reduced the factors associated with malignancy, like migration, adhesion, colony formation, and the capacity to produce melanin. Moreover, IST significantly increases nitric oxide (NO) production, which correlates to a decline in melanoma cell viability by apoptotic events. Altogether, our results suggest that adenosine signaling through A2A is essential for B16F10 cells, and its inhibition by IST causes compensatory purinergic enzymatic modulations. Furthermore, IST is a promising therapy that provides new ways to improve current melanoma treatments.
Collapse
Affiliation(s)
- Jean Lucas Gutknecht da Silva
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia E Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 20, Santa Maria, RS, 97105-900, Brazil
- Programa de Pós-Graduação Em Bioquímica Toxicológica, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Altevir Rossato Viana
- Programa de Pós-Graduação Em Nanociências, Laboratório de Biociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia E Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 20, Santa Maria, RS, 97105-900, Brazil
- Programa de Pós-Graduação Em Bioquímica Toxicológica, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Vanessa Valéria Miron
- Programa de Pós-Graduação Em Bioquímica Toxicológica, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação Em Bioquímica Toxicológica, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Micheli Mainardi Pillat
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia E Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 20, Santa Maria, RS, 97105-900, Brazil
| | - Taís Vidal Palma
- Programa de Pós-Graduação Em Bioquímica Toxicológica, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia E Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Prédio 20, Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica Toxicológica, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
Wang M, Huang X, Ouyang M, Lan J, Huang J, Li H, Lai W, Gao Y, Xu Q. A20 ameliorates advanced glycation end products-induced melanogenesis by inhibiting NLRP3 inflammasome activation in human dermal fibroblasts. J Dermatol Sci 2023; 112:71-82. [PMID: 37741724 DOI: 10.1016/j.jdermsci.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) promote melanogenesis through activating NLRP3 inflammasome in fibroblasts. Although A20 has been highlighted to inhibit NLRP3 inflammasome activation, its roles and mechanisms remain elusive in photoaging-associated pigmentation. OBJECTIVES To determine the significance of fibroblast A20 in AGEs-induced NLRP3 inflammasome activation and pigmentation. METHODS The correlation between A20 and AGEs or melanin was studied in sun-exposed skin and lesions of melasma and solar lentigo. We then investigated A20 level in AGEs-treated fibroblast and the effect of fibroblast A20 overexpression or knockdown on AGEs-BSA-induced NLRP3 inflammasome activation and pigmentation, respectively. Finally, the severity of NLRP3 inflammasome activation and pigmentation was evaluated after mice were injected intradermally with A20-overexpression adeno-associated virus and AGEs-BSA. RESULTS Dermal A20 expression was decreased and exhibited negative correlation with either dermal AGEs deposition or epidermal melanin level in sun-exposed skin and pigmentary lesions. Moreover, both AGEs-BSA and AGEs-collagen robustly decreased A20 expression via binding to RAGE in fibroblasts. Further, A20 overexpression or depletion significantly decreased or augmented AGEs-BSA-induced activation of NF-κB pathway and NLRP3 inflammasome and IL-18 production and secretion in fibroblasts, respectively. Importantly, fibroblast A20 potently repressed AGEs-BSA-stimulated melanin content,tyrosinase activity,and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes. Particularly, fibroblast A20 significantly abrogated AGEs-BSA-promoted melanogenesis in ex vivo skin and mouse models. Additionally, fibroblast A20 inhibited AGEs-BSA-activated MAPKs in melanocytes and the epidermis of ex vivo skin. CONCLUSIONS Fibroblast A20 suppresses AGEs-stimulate melanogenesis in photoaging-associated hyperpigmentation disorders by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Yifeng Gao
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
23
|
Zhang W, Jin M, Lu Z, Li T, Wang H, Yuan Z, Wei C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals (Basel) 2023; 13:3265. [PMID: 37893989 PMCID: PMC10603731 DOI: 10.3390/ani13203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
24
|
Zheng PH, Lu YP, Zhang XX, Luan KE, Zhang ZL, Li JJ, Xu T, Li JT, Xian JA, Guo H, Wang AL. New insights into the regulation mechanism of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas under 4-nonylphenol exposure using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109050. [PMID: 37666313 DOI: 10.1016/j.fsi.2023.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.
Collapse
Affiliation(s)
- Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Ke-Er Luan
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Tong Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, PR China.
| | - Hui Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China.
| | - An-Li Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
25
|
Guo H, Zeng H, Hu Y, Jiang L, Lei L, Hung J, Fu C, Li H, Long Y, Chen J, Zeng Q. UVB promotes melanogenesis by regulating METTL3. J Cell Physiol 2023; 238:2161-2171. [PMID: 37417881 DOI: 10.1002/jcp.31077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Ultraviolet (UV) radiation is the primary exogenous inducer of skin pigmentation, although the mechanism has not been fully elucidated. N6-methyladenosine (m6 A) modification is one of the key epigenetic form of gene regulation that affects multiple biological processes. The aim of this study was to explore the role and underlying mechanisms of m6 A modification in UVB-induced melanogenesis. Low-dose UVB increased global m6 A modification in melanocytes (MCs) and MNT1 melanoma cell line. The GEPIA database predicted that methyltransferase METTL3 is positively correlated with the melanogenic transcription factor MITF in the sun-exposed skin tissues. After METTL3 respectively overexpressed and knocked down in the MNT1, the melanin content and melanogenesis-related genes were significantly upregulated after overexpression of METTL3, especially with UVB irradiation, and downregulated after METTL3 knockdown. METTL3 levels were also higher in melanocytic nevi with high melanin content. METTL3 overexpression and knockdown also altered the protein level of YAP1. SRAMP analysis predicted four high-potential m6 A modification sites on YAP1 mRNA, of which three were confirmed by methylated RNA immunoprecipitation. Inhibition of YAP1 expression can partially reverse melanogenesis induced by overexpression of METTL3. In conclusion, UVB irradiation promotes global m6 A modification in MCs and upregulates METTL3, which increases the expression level of YAP1 through m6 A modification, thereby activating the co-transcription factor TEAD1 and promoting melanogenesis.
Collapse
Affiliation(s)
- Haoran Guo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Hung
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Long
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Kim S, Lee S, Kim GJ, Sohn YC. Gene Expression Profiles of Long-Chain Acyl-Coenzyme A Dehydrogenase, Nuclear Distribution C-Containing Protein 3, and Receptor Tyrosine Kinase Tie-1 in Swimming Larva of Sea Cucumber Apostichopus japonicus. Dev Reprod 2023; 27:91-99. [PMID: 37529014 PMCID: PMC10390100 DOI: 10.12717/dr.2023.27.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023]
Abstract
The sea cucumber, Apostichopus japonicus, is one of the most valuable aquatic species. The color of body wall and appearance are important for the value of sea cucumbers. To examine expression pattern of long-chain acyl-coenzyme A dehydrogenase (LCAD), nuclear distribution C-containing protein 3 (NUDCD3), and receptor tyrosine kinase Tie-1 (TIE1), previously reported as differently expressed genes during the pigmentation of sea cucumber, we analyzed the temporal profiles of LCAD, NUDCD3, and TIE1 mRNAs in LED-exposed and light-shielded A. japonicus. Real-time quantitative PCR revealed that the LCAD, NUDCD3, and TIE1 mRNAs from the juveniles at 40-60 days post-fertilization (dpf) exhibited increasing patterns as compared to those of an early developmental larva (6-dpf). At 60-dpf juveniles, the LCAD and TIE1 mRNA levels of LED-exposed individuals were higher than those of light-shielded ones, whereas at 40-dpf and 50-dpf juveniles, the NUDCD3 mRNA expression was higher in the light-shielded condition (p<0.05). In the pigmented juveniles (90-dpf), the LCAD and TIE1 mRNA levels tended to show higher levels in red individuals than those in green ones, but there was a conversely higher level of NUDCD3 mRNA in green larva. In situ examination of LCAD and NUDCD3 mRNAs in light-shielded 6-dpf larva revealed that both genes are mainly expressed in the internal organs compared to the body surface. Together, these results may provide insights into the differential gene expression of LCAD, NUDCD3, and TIE1 during pigmentation process of the sea cucumber.
Collapse
Affiliation(s)
- Sehwan Kim
- Department of Marine Bioscience,
Gangneung-Wonju National University, Gangneung
25457, Korea
- Samcheok Fisheries Resource
Center, Samcheok 25932, Korea
| | - Seungheon Lee
- Department of Marine Bioscience,
Gangneung-Wonju National University, Gangneung
25457, Korea
| | - Gil Jung Kim
- Department of Marine Bioscience,
Gangneung-Wonju National University, Gangneung
25457, Korea
| | - Young Chang Sohn
- Department of Marine Bioscience,
Gangneung-Wonju National University, Gangneung
25457, Korea
| |
Collapse
|
27
|
Zhang L, Zeng H, Jiang L, Fu C, Zhang Y, Hu Y, Zhang X, Zhu L, Zhang F, Huang J, Chen J, Zeng Q. Heat promotes melanogenesis by increasing the paracrine effects in keratinocytes via the TRPV3/Ca 2+/Hh signaling pathway. iScience 2023; 26:106749. [PMID: 37216091 PMCID: PMC10192915 DOI: 10.1016/j.isci.2023.106749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Global warming and rising temperature significantly increase the incidence of heat stress, which is known to affect the process of inflammation and aging. However, the effect of heat stress on skin melanogenesis is not fully known. We found that healthy foreskin tissues underwent significant pigmentation when exposed to 41°C. Furthermore, heat stress promoted melanogenesis in pigment cells by increasing the paracrine effects of keratinocytes. High-throughput RNA sequencing showed that heat stress activates the Hedgehog (Hh) signaling pathway in keratinocytes. The agonists of Hh signaling promote the paracrine effect of keratinocytes on melanogenesis. In addition, transient receptor potential vanilloid (TRPV) 3 agonists activate the Hh signaling in keratinocytes and augment its paracrine effect on melanogenesis. The heat-induced activation of Hh signaling is dependent on TRPV3-mediated Ca2+ influx. Heat exposure promotes melanogenesis by increasing the paracrine effects in keratinocytes via the TRPV3/Ca2+/Hh signaling pathway. Our findings provide insights into the mechanisms of heat-induced skin pigmentation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Ling Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chuhan Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yushan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yibo Hu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaolin Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lu Zhu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Fan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
28
|
Zhang T, Li H, Larsen PF, Ba H, Shi H, Zhang H, Liu Z. The Genetic Diversity of Mink ( Neovison vison) Populations in China. Animals (Basel) 2023; 13:ani13091497. [PMID: 37174534 PMCID: PMC10177056 DOI: 10.3390/ani13091497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The American mink (Neovison vison) is a semiaquatic species of Mustelid native to North America that is now widespread in China. However, the knowledge of genetic diversity of mink in China is still limited. In this study, we investigated the genetic diversity and identified significant single nucleotide polymorphisms (SNPs) in mink populations of five different color types in three different mink farms in China. Using double-digest restriction site-associated DNA sequencing, we identified a total of 1.3 million SNPs. After filtering the SNPs, phylogenetic tree, Fst, principal component, and population structure analyses were performed. The results demonstrated that red mink and black mink grouped, with separate clustering of all other color types. The population divergence index (Fst) study confirmed that different mink populations were distinct (K = 4). Two populations with different coat colors were subjected to the selection signature analysis, and 2300 genes were found to have a clear selection signature. The genes with a selection signature were subjected to Gene Ontology (GO) categorization and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the results revealed that the genes with a selection signature were enriched in the melanogenesis pathway. These study's findings have set the stage for improved breeding and conservation of genetic resources in real-world practical mink farming.
Collapse
Affiliation(s)
- Tietao Zhang
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hu Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Peter Foged Larsen
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Hongyu Shi
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haihua Zhang
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zongyue Liu
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
29
|
Xie Y, Mei X, Shi W. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes. J Cell Mol Med 2023; 27:982-990. [PMID: 36924030 PMCID: PMC10064034 DOI: 10.1111/jcmm.17711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Vitiligo is an autoimmune disease characterized by depigmentation. Kaempferol is a flavonoid compound with broad anti-inflammatory and antioxidant properties. The purpose of this study was to investigate the effect of kaempferol on melanogenesis in PIG1 normal human skin melanocytes and its response to oxidative stress. The effect of kaempferol on melanin synthesis in PIG1 normal human skin melanocytes was explored by measuring tyrosinase activity, melanin content, mRNA and protein expression of key enzymes and expression of related pathway proteins. The effects of kaempferol pretreatment on cell viability, apoptosis, ROS level and HO-1 protein level under H2 O2 stimulation were explored. When treated with kaempferol, the tyrosinase activity and melanin content of PIG1 cells increased, the mRNA and protein expressions of TYR, TRP1, TRP2 and MITF increased, and the phosphorylation level of ERK1/2 increased. Upon the stimulation of H2 O2 , kaempferol reduced the production of ROS, decreased apoptosis and increased the protein expression of HO-1 in PIG1 cells. In addition, kaempferol inhibited oxidative stress-induced melanin reduction and promoted melanin synthesis in PIG1 cells and protected against H2 O2 -induced oxidative stress damage.
Collapse
Affiliation(s)
- Yihui Xie
- Department of Dermatology, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Goncalves K, De Los Santos Gomez P, Costello L, Smith L, Mead H, Simpson A, Przyborski S. Investigation into the effect of skin tone modulators and exogenous stress on skin pigmentation utilizing a novel bioengineered skin equivalent. Bioeng Transl Med 2023; 8:e10415. [PMID: 36925688 PMCID: PMC10013773 DOI: 10.1002/btm2.10415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Human skin equivalents (HSEs) are a popular technology due to limitations in animal testing, particularly as they recapitulate aspects of structure and function of human skin. Many HSEs contain two basic cell types to model dermal and epidermal compartments, however this limits their application, particularly when investigating the effect of exogenous stressors on skin health. We describe the development of a novel platform technology that accurately replicates skin pigmentation in vitro. Through incorporation of melanocytes, specialized pigment producing cells, into the basal layer of the epidermis we are able to re-create skin pigmentation in vitro. We observe apical distribution of melanin within keratinocytes and formation of supranuclear caps (SPNCs), only when the epidermal compartment is co-cultured with a dermal compartment, leading to the conclusion that fibroblast support is essential for correct pigment organization. We also evaluate the commonly observed phenomenon that pigmentation darkens with time in vitro, which we further explore through mechanical exfoliation to remove a build-up of melanin deposits in the stratum corneum. Finally, we demonstrate the application of a pigmented HSE to investigate drug modulation of skin tone and protection from UV-induced damage, highlighting the importance of such a model in the wider context of skin biology.
Collapse
Affiliation(s)
| | | | | | - Lucy Smith
- Department of BiosciencesDurham UniversityDurhamUK
| | - Hugh Mead
- Department of BiosciencesDurham UniversityDurhamUK
| | - Amy Simpson
- Department of BiosciencesDurham UniversityDurhamUK
| | - Stefan Przyborski
- Department of BiosciencesDurham UniversityDurhamUK
- Reprocell Europe LtdGlasgowUK
| |
Collapse
|
31
|
Shojazadeh T, Zolghadr L, JafarKhani S, Gharaghani S, Farasat A, Piri H, Gheibi N. Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme. J Biomol Struct Dyn 2023; 41:1378-1387. [PMID: 34974821 DOI: 10.1080/07391102.2021.2020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperpigmentation is a disorder caused by increased melanin deposition and changes in skin pigmentation. Inhibition of tyrosinase activity contributes to the control of food browning and skin pigmentation diseases. The effects of arachidonic acid (AA) on tyrosinase activity were examined using different spectroscopy methods including UV-VIS spectrophotometry, fluorescence spectroscopy, circular dichroism (CD) differential scanning calorimetry, and molecular dynamics (MD) simulations. Based on the kinetic results, arachidonic acid showed mixed-type of inhibition with Ki = 4.7 µM. Fluorescence and CD studies showed changes of secondary and tertiary structures of enzyme and a reduction of α-helix* amino acids after its incubation with different concentrations of AA, which is also confirmed by DSSP analysis. In addition, differential scanning calorimetry (DSC) studies showed a decrease in thermodynamic stability of enzyme from Tm = 338.65k for sole enzyme after incubation with AA in comparison with complex enzyme with Tm= 334.26k, ΔH =7.52 kJ/mol, and ΔS = 0.15 kJ/mol k. Based on the theoretical methods, it was found that the interaction between enzyme and AA follows an electrostatic manner with ΔG = -8.314 kJ/mol and ΔH = -12.9 kJ/mol. The MD results showed the lowest flexibility in the complex amino acids and minimal fluctuations in AA interaction with tyrosinase in Residue 240 to 260 and 66 to 80. Thus, AA inhibitory and structural and thermodynamic instability of tyrosinase supported advantages of this fatty acid for prevention of medical hyperpigmentation. Therefore, it is a good candidate for cosmetic applications. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Shojazadeh
- Department of Clinical Biochemistry and Genetic, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University Qazvin, Qazvin, Iran
| | - Saeed JafarKhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
32
|
Cohen C, Flouret V, Herlyn M, Fukunaga-Kalabis M, Li L, Bernerd F. Induced pluripotent stem cells reprogramming overcomes technical limitations for highly pigmented adult melanocyte amplification and integration in 3D skin model. Pigment Cell Melanoma Res 2023; 36:232-245. [PMID: 36478412 PMCID: PMC10731472 DOI: 10.1111/pcmr.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Understanding pigmentation regulations taking into account the original skin color type is important to address pigmentary disorders. Biological models including adult melanocytes from different phenotypes allow to perform fine-tuned explorative studies and support discovery of treatments adapted to populations' skin color. However, technical challenges arise when trying to not only isolate but also amplify melanocytes from highly pigmented adult skin. To bypass the initial isolation and growth of cutaneous melanocytes, we harvested and expanded fibroblasts from light and dark skin donors and reprogrammed them into iPSC, which were then differentiated into melanocytes. The resulting melanocyte populations displayed high purity, genomic stability, and strong proliferative capacity, the latter being a critical parameter for dark skin cells. The iPSC-derived melanocyte strains expressed lineage-specific markers and could be successfully integrated into reconstructed skin equivalent models, revealing pigmentation status according to the native phenotype. In both monolayer cultures and 3D skin models, the induced melanocytes demonstrated responsiveness to promelanogenic stimuli. The data demonstrate that the iPSC-derived melanocytes with high proliferative capacity maintain their pigmentation genotype and phenotypic properties up to a proper integration into 3D skin equivalents, even for highly pigmented cells.
Collapse
Affiliation(s)
| | | | | | | | - Ling Li
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
33
|
Liu W, Chen Q, Xia Y. New Mechanistic Insights of Melasma. Clin Cosmet Investig Dermatol 2023; 16:429-442. [PMID: 36817641 PMCID: PMC9936885 DOI: 10.2147/ccid.s396272] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
Melasma is a common acquired disorder of pigmentation that negatively impacts quality of life. Present treatments show poor therapeutic effect with frequent recurrence. This in large part is due to the currently limited understanding of the disease's etiology. It is urgent to elucidate the pathogenesis of melasma to further the discovery of new therapeutic strategies. Recent studies show that melasma is triggered or aggravated by a variety of factors, including genetic susceptibility, ultraviolet radiation, and sex hormone dysregulation. Ultraviolet B radiation upregulates the expression of several melanocyte-specific genes and stimulates the release of key factors that participate in the synthesis of melanin. There is a significant increase in melanin in both the epidermal and dermal layers of affected skin, possibly due to abnormalities in crosstalk between the melanocytes and other cells. Melanogenesis is regulated through various signaling networks including the Wnt/β-catenin, PI3K/Akt, cAMP/PKA, and SCF/c-kit-mediated signaling pathways. In addition, inflammatory mediators, oxidative stress, neuroactive molecules, sebocytes, etc, have also been proved to be related to the pathogenesis of melasma. This review provides a comprehensive update on the current understanding of the pathogenesis of melasma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel +86 29 87679969, Fax +86 29 87678425, Email
| |
Collapse
|
34
|
Kridin K, Lyakhovitsky K, Tzur-Bitan D, Onn E, Lyakhovitsky A, Zoller L, Cohen AD. Vitiligo and systemic sclerosis: Are they associated?- Lessons from a population-based study. Australas J Dermatol 2023; 64:e65-e71. [PMID: 36326157 DOI: 10.1111/ajd.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The epidemiological relationship of vitiligo with systemic sclerosis (SSc) remains to be precisely evaluated. OBJECTIVE To investigate the bidirectional association between vitiligo and SSc. METHODS A population-based study was carried out to compare vitiligo patients (n = 20,851) with age-, sex- and ethnicity-matched control subjects (n = 102,475) regarding the incidence of new-onset and the prevalence of preexisting SSc. Adjusted hazard ratios (HRs) and adjusted odds ratios (ORs) were calculated by the Cox regression and logistic regression, respectively. RESULTS The incidence rate of new-onset SSc was calculated at 2.4 (95% CI, 1.6-3.4) and 0.4 (95% CI, 0.3-0.6) cases per 10,000 person-years among patients with vitiligo and controls, respectively. Patients with vitiligo had an increased risk of SSc (fully adjusted HR, 5.37; 95% CI, 3.03-9.54; p < 0.001). Correspondingly, a history of SSc predicted elevated odds of developing vitiligo (fully adjusted OR, 2.09; 95% CI, 1.23-3.55; p = 0.006). Relative to other patients with vitiligo, those with vitiligo and comorbid SSc were older and had a higher prevalence of ischaemic heart disease, hyperlipidaemia, and hypertension. CONCLUSIONS A robust bidirectional association exists between vitiligo and SSc. This knowledge is valuable for physicians managing patients with both conditions. Patients with vitiligo and comorbid SSc might be monitored for cardiovascular and metabolic comorbidities.
Collapse
Affiliation(s)
- Khalaf Kridin
- Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Dana Tzur-Bitan
- Department of Behavioral Sciences, Ariel University, Ariel, Israel.,Shalvata Mental Health Center, Hod Hasharon, affiliated with the Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Erez Onn
- Baruch Padeh Medical Center, Poriya, Israel
| | - Anna Lyakhovitsky
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Zoller
- Clalit Health Services, Tel-Aviv and Haifa, Tel Aviv, Israel
| | - Arnon D Cohen
- Clalit Health Services, Tel-Aviv and Haifa, Tel Aviv, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
35
|
Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y. The genetic basis and potential molecular mechanism of yellow-albino northern snakehead ( Channa argus). Open Biol 2023; 13:220235. [PMID: 36789536 PMCID: PMC9929503 DOI: 10.1098/rsob.220235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.
Collapse
Affiliation(s)
- Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jianlong Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwei Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zexin Tao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
36
|
Li C, Han J, Duan D, Liu C, Han X, Wang K, Qiao R, Li XL, Li XJ. Lymphoid enhancer binding factor 1 is associated with nose color in Yunong black pigs. Anim Genet 2023; 54:398-402. [PMID: 36649734 DOI: 10.1111/age.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Yunong black pig is an indigenous black pig breed being cultivated that has a pure black whole body. However, some individuals appear with a white spot on the nose. We performed case-control association studies and FST approaches in 76 animals with nose color records (26 white-nosed pigs vs. 50 black-nosed pigs) by Illumina Porcine SNP50 BeadChip data. In total, 76 SNPs, which included 2 genome-wide significant SNPs and 18 chromosome-wide suggestive SNPs, were identified by association study. The top-ranked 0.1% windows of FST results as signals under selection and 24 windows were selected. The lymphoid enhancer binding factor 1 was identified as candidate gene with strong signal in analyses of genome-wide association study and FST in black- and white-nosed pigs. Overall, our findings provide evidence that nose color is a heritable trait influenced by many loci. The results contribute to expand our understanding of pigmentation in pigs and provide SNP markers for skin color and related traits selection in Yunong black pigs. Additional research on the genetic link between nose pigmentation is needed.
Collapse
Affiliation(s)
- Cong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dongdong Duan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Zhong C, Liang G, Li P, Shi K, Li F, Zhou J, Xu D. Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Front Immunol 2023; 14:1009137. [PMID: 36817442 PMCID: PMC9929571 DOI: 10.3389/fimmu.2023.1009137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Hyperpigmentation is a common complication in patients with burn injuries during wound healing; however, the mechanisms underlying its occurrence and development remain unclear. Recently, postinflammatory hyperpigmentation (PIH) was found to result from overproduction of melanin. Local or systemic inflammatory responses are often observed in patients who develop hyperpigmentation. However, we lack studies on the relationship between PIH and burn injury. Therefore, we comprehensively reviewed the existing literature on the melanogenesis of the skin, inflammatory mechanisms in pigmentation, and local or systemic alteration in inflammatory cytokines in patients suffering from burn trauma to elucidate the relationship between PIH and burn injury. We believe that this review will guide further research on regulating melanin production in the burn management process.
Collapse
Affiliation(s)
- Chi Zhong
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Geao Liang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peiting Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Shi
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fuyin Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Xu
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Amano S, Yoshikawa T, Ito C, Mabuchi I, Kikuchi K, Ooguri M, Yasuda C. Prediction and association analyses of skin phenotypes in Japanese females using genetic, environmental, and physical features. Skin Res Technol 2023; 29:e13231. [PMID: 36437544 PMCID: PMC9838785 DOI: 10.1111/srt.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin characteristics show great variation from person to person and are affected by multiple factors, including genetic, environmental, and physical factors, but details of the involvement and contributions of these factors remain unclear. OBJECTIVES We aimed to characterize genetic, environmental, and physical factors affecting 16 skin features by developing models to predict personal skin characteristics. METHODS We analyzed the associations of skin phenotypes with genetic, environmental, and physical features in 1472 Japanese females aged 20-80 years. We focused on 16 skin characteristics, including melanin, brightness/lightness, yellowness, pigmented spots, wrinkles, resilience, moisture, barrier function, texture, and sebum amount. As genetic factors, we selected 74 single-nucleotide polymorphisms of genes related to skin color, vitamin level, hormones, circulation, extracellular matrix (ECM) components and ECM-degrading enzymes, inflammation, and antioxidants. Histories of ultraviolet (UV) exposure and smoking as environmental factors and age, height, and weight as physical factors were acquired by means of a questionnaire. RESULTS A linear association with age was prominent for increase in the area of crow's feet, increase in number of pigmented spots, decrease in forehead sebum, and increase in VISIA wrinkle parameters. Associations were analyzed by constructing linear regression models for skin feature changes and logistic regression models to predict whether subjects show lower or higher skin measurement values in the same age groups. Multiple genetic factors, history of UV exposure and smoking, and body mass index were statistically selected for each skin characteristic. The most important association found for skin spots, such as lentigines and wrinkles, was adolescent sun exposure. CONCLUSION Genetic, environmental, and physical factors associated with interindividual differences of the selected skin features were identified. The developed models should be useful to predict the skin characteristics of individuals and their age-related changes.
Collapse
Affiliation(s)
- Satoshi Amano
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Tatsuya Yoshikawa
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Chiaki Ito
- DYNACOM Co. Ltd., World Business Garden, Mihama-ku, Chiba, Japan
| | - Ikumi Mabuchi
- DYNACOM Co. Ltd., World Business Garden, Mihama-ku, Chiba, Japan
| | - Kumiko Kikuchi
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Motoki Ooguri
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| | - Chie Yasuda
- Shiseido Co. Ltd., MIRAI Technology Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
39
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|
40
|
A Case Series With Acquired Dermal Melanocytosis: A Retrospective Study From 2001 to 2018. Am J Dermatopathol 2022; 44:789-798. [DOI: 10.1097/dad.0000000000002267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Guo J, Ma X, Bouffard F, Zhang SY. A Novel multi-fruit acids formula design on molecular basis for skin brightening via a system biology approach. J Cosmet Dermatol 2022; 21:6145-6155. [PMID: 35713107 DOI: 10.1111/jocd.15163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Fruit acids have long been recognized as highly effective actives with world-wide popularity, covering skin peeling, anti-acne, anti-wrinkle applications, and skin depigmentation. AIMS There are complicated interconnections between the fruit acid formula and skin pigmentation behaviors. However, the lack of systematic researches on multi-ingredient formula restricted our understanding on its mechanism. Therefore, it is of great necessity to study the interactions and cascades among components, potential gene targets, signaling pathways, and biological processes via a system biology approach. METHODS We used system biology, molecular fingerprint, and structural biology to calculate and collect target information of the functional formula. Gene Ontology (GO) enrichment analysis was further applied to study the biological processes and pathways of the formula, and a multi-level network model of "component - molecular target - signaling pathway - skin disease" was established. Besides, the zebrafish model was utilized to verify the formula. RESULTS We obtained 69 hub targets by constructing a protein-protein interaction (PPI) network based on the intersection between multi-fruit acids formula (mandelic acid, lactobionic acid, niacinamide, and hydroxytyrosol) and skin indications targets (whitening-sebum balance). In vitro zebrafish models, including pigmentation, antioxidant, and radiation protection models, showed that the current formula significantly alleviated pigmentation intensity and intracellular free radical content, thus proving the efficacy of skin brightening and UV irradiation protection. CONCLUSIONS This research uncovered the underlying mechanism of multi-fruit acids formula and predicted its function in skin brightening and UV irradiation prevention.
Collapse
Affiliation(s)
- Jiahong Guo
- Innoceuticals Research & Development Center, Hundred Splendor Group, Shanghai, China
| | - Xiaoyu Ma
- Innoceuticals Research & Development Center, Hundred Splendor Group, Shanghai, China
| | | | - Sophia Yi Zhang
- Innoceuticals Research & Development Center, Hundred Splendor Group, Shanghai, China
| |
Collapse
|
42
|
Priya S, Kirschner LS. Abnormal Fibroblasts Drive Pigmentary Skin Lesions in a Mouse Model of Carney Complex. J Invest Dermatol 2022; 142:2850-2852. [DOI: 10.1016/j.jid.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
|
43
|
Yao YZ, Liao ZK, Jiang S, Dong BQ, Luo LF, Miao F, Lei TC. Uncoupling melanogenesis from proliferation in epidermal melanocytes responding to stimulation with psoriasis-related proinflammatory cytokines. J Dermatol Sci 2022; 108:98-108. [PMID: 36577564 DOI: 10.1016/j.jdermsci.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Few studies have addressed the impact of the psoriasis-related proinflammatory cytokines on the proliferation and melanogenesis of melanocytes (MCs) in lesional psoriatic skin. OBJECTIVE We investigated the effects of TNFα, IL17A, and IL8 on the proliferation and melanin synthesis of MCs. METHODS Skin specimens were biopsied from patients with psoriasis vulgaris at the active stage, or from the tail skin of Dct-LacZ mice with imiquimod (IMQ)-induced psoriasiform dermatitis. Cultured keratinocytes (KCs), MCs, and human skin explants were used in this study. The numbers of MCs were measured via β-galactosidase staining, EdU incorporation and HMB45 immunohistochemical staining. The expression of human β-defensin 3 (hBD3) in KCs was silenced by siRNA, the conditioned medium (CM) from siRNA-transfected KCs was used to treat MCs, then followed by αMSH stimulation. The melanogenesis-related genes were examined by using qRT-PCR and western blotting. RESULTS The increased number of MCs and decreased melanin content were highly relevant to the enhanced expression of IL8 and BD3 both in human psoriatic skin and in IMQ-treated mouse tail skin. IL8 expression in KCs and CXCR2 expression in MCs was significantly increased by IL17A and TNFα, the αMSH-induced upregulations of microphthalmia-associated transcription factor (MITF) and tyrosinase in MCs were abrogated by the CM from hBD3-unsilenced KCs, but not from hBD3-silenced KCs. CONCLUSION Our results suggest the roles of IL8-CXCR2 activation in promoting MC proliferation and of BD3 upregulation in reducing melanogenesis. These findings have been implicated in the underlying mechanism that active psoriasis prefers hypopigmentation despite chronic inflammation.
Collapse
Affiliation(s)
- Yun-Zhu Yao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Qi Dong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long-Fei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
44
|
Chow SYA, Nakayama K, Osaki T, Sugiyama M, Yamada M, Takeuchi H, Ikeuchi Y. Human sensory neurons modulate melanocytes through secretion of RGMB. Cell Rep 2022; 40:111366. [PMID: 36130522 DOI: 10.1016/j.celrep.2022.111366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Melanocytes are surrounded by diverse cells, including sensory neurons in our skin, but their interaction and functional importance have been poorly investigated. In this study, we find that melanocytes and nociceptive neurons contact more in human skin color patch tissue than control. Co-culture with human iPSC-derived sensory neurons significantly induces morphogenesis and pigmentation of human melanocytes. To reveal melanocyte-stimulating factors secreted from neurons, we perform proteomic analyses and identify RGMB in the sensory neuron-conditioned medium. RGMB protein induces morphogenesis and melanin production of melanocytes, demonstrating that RGMB is a melanocyte-stimulating factor released from sensory neurons. Transcriptome analysis suggests that the melanosome transport machinery can be controlled by RGMB, leading us to identify the vesicle production response of melanocytes upon RGMB treatment. This study discovers a role of sensory neurons in modulating multiple aspects of human melanocytes through secretion of a key factor: RGMB.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuki Nakayama
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Maki Sugiyama
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Maiko Yamada
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Hirotaka Takeuchi
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
45
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
46
|
Trait Analysis in Domestic Rabbits (Oryctolagus cuniculus f. domesticus) Using SNP Markers from Genotyping-by-Sequencing Data. Animals (Basel) 2022; 12:ani12162052. [PMID: 36009642 PMCID: PMC9404428 DOI: 10.3390/ani12162052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Rabbit breeding is an important branch of agricultural animal breeding; their fur color and weight are desirable traits for artificial breeding. Polymorphism can provide potential molecular markers for studying rabbit traits and improve rabbit breeds with such markers in the future. In this study, single-nucleotide polymorphism markers in genotyping-by-sequencing data were used to analyze rabbit traits. In total, three genes were identified to be associated with fur color and four with weight. The results of this study provide a data base for the research and improvement of rabbit breeding program. Abstract The domestic rabbit (Oryctolagus cuniculus f. domesticus) is a very important variety in biomedical research and agricultural animal breeding. Due to the different geographical areas in which rabbit breeds originated, and the long history of domestication/artificial breeding, rabbits have experienced strong selection pressure, which has shaped many traits of most rabbit varieties, such as color and weight. An efficient genome-wide single-nucleotide polymorphism (SNP) detection strategy is genotyping-by-sequencing (GBS), which has been widely used in many organisms. This study attempted to explore bi-allelic SNPs associated with fur color and weight-related traits using GBS in five rabbit breeds. The data consisted of a total 831,035 SNPs in 150 individuals from Californian rabbits (CF), German Zika rabbits (ZK), Qixing rabbits (QX), Sichuan grey rabbits (SG), and Sichuan white rabbits (SW). In addition, these five breeds of rabbits were obviously independent populations, with high genetic differentiation among breeds and low genetic diversity within breeds. A total of 32,144 SNP sites were identified by selective sweep among the different varieties. The genes that carried SNP loci in these selected regions were related to important traits (fur color and weight) and signal pathways, such as the MAPK/ERK signaling pathway and the Hippo signaling pathway. In addition, genes related to fur color and weight were identified, such as ASIPs, MITFs and KITs, ADCY3s, YAPs, FASs, and ACSL5s, and they had more SNP sites. The research offers the foundation for further exploration of molecular genetic markers of SNPs that are related to traits.
Collapse
|
47
|
Yang J, Zeng J, Lu J. Mechanisms of ultraviolet-induced melasma formation: A review. J Dermatol 2022; 49:1201-1210. [PMID: 35946331 DOI: 10.1111/1346-8138.16542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Melasma, a pigmentation disorder, commonly occurs in exposed skin areas and can be attributed to several factors. Ultraviolet radiation (UVR) is the primary factor that induces and aggravates melasma. Considering gene expression, exposed skin areas experience abnormal gene expression, involving melanin metabolism, oxidative stress, impaired skin barrier function, and abnormal composition of nerve factors. From a histological perspective, UVR can cause basement membrane collapse, melanocyte sinking, and disorders of skin lipid metabolism. Emerging therapies have focused on these pathological alterations in melasma, including platelet-rich plasma, mesotherapy, and phytochemicals. Understanding the role of UVR in the development of melasma can facilitate early prevention and highlight the future direction of melasma treatment.
Collapse
Affiliation(s)
- Jian Yang
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinrong Zeng
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Tarshish E, Hermoni K, Sharoni Y, Wertz PW, Dayan N. Effects of golden tomato extract on skin appearance-outlook into gene expression in cultured dermal fibroblasts and on trans-epidermal water loss and skin barrier in human subjects. J Cosmet Dermatol 2022; 21:3022-3030. [PMID: 34668310 PMCID: PMC9545714 DOI: 10.1111/jocd.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
SCOPE Two experiments were performed to test the effects of rich tomato extract (Golden Tomato Extract, GTE) on human skin. In one experiment, the effects of this extract on gene expression in cultured human dermal fibroblasts were examined. In a second experiment, human subjects consumed the extract and trans-epidermal water loss (TEWL), and aspects of skin appearance were monitored. METHODS AND RESULTS Primary human dermal fibroblasts in culture were treated with the extract. After six hours, RNA was extracted, and gene expression was examined using Affymetrix Human Clariom D array processing. For the clinical study, 65 human subjects consumed a capsule once a day for 16 weeks, and various skin parameters were assessed at predetermined time intervals. Among the genes upregulated by GTE are genes that augment innate immunity, enhance DNA repair, and the ability to detoxify xenobiotics. GTE significantly reduced TEWL in subjects who had high TEWL at baseline, but it had no effect on TEWL in subjects who had lower TEWL at baseline. CONCLUSIONS Golden tomato extract may provide benefits to the skin by enhancing innate immunity and other defense mechanisms in the dermis and by providing antioxidants to the skin surface to optimize TEWL and the appearance of the skin.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | | | |
Collapse
|
49
|
Kowalska J, Banach K, Rzepka Z, Rok J, Karkoszka M, Wrześniok D. Changes in the Oxidation-Reduction State of Human Dermal Fibroblasts as an Effect of Lomefloxacin Phototoxic Action. Cells 2022; 11:cells11121971. [PMID: 35741100 PMCID: PMC9222184 DOI: 10.3390/cells11121971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phototoxicity induced by antibiotics is a real problem in health care. The discontinuation of antibiotic therapy due to a phototoxic reaction can lead to the development of resistant strains. Fluoroquinolones are widely used antibiotics that exhibit phototoxic activity under UVA radiation. The purpose of the study was to examine the redox status of human dermal fibroblasts exposed to UVA radiation and treated with lomefloxacin, the most phototoxic fluoroquinolone. Lomefloxacin alone was found to have an antiproliferative activity on fibroblasts by affecting the cell cycle. In addition, the drug caused a redox imbalance associated with the decreased expression of catalase and glutathione peroxidase. UVA radiation increased the drug cytotoxicity and oxidative stress induced by lomefloxacin. The decrease in cell viability was accompanied by a high level of reactive oxygen species and extensive changes in the antioxidant levels. The revealed data indicate that the phototoxic action of lomefloxacin results from both increased reactive oxygen species production and an impaired antioxidant defense system. Considering all of the findings, it can be concluded that lomefloxacin-induced phototoxic reactions are caused by an oxidoreductive imbalance in skin cells.
Collapse
|
50
|
Jiang B, Wang L, Luo M, Zhu W, Fu J, Dong Z. Molecular and functional analysis of the microphthalmia-associated transcription factor (mitf) gene duplicates in red tilapia. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111257. [PMID: 35691494 DOI: 10.1016/j.cbpa.2022.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
In vertebrates, the microphthalmia-associated transcription factor (mitf) is at the hub of the melanin synthesis regulation network. However, little information is known about its molecular characterization, expression, location, or function in skin color differentiation and variation of red tilapia. The full-length cDNA sequences (1977 bp and 1999 bp) of mitfa and mitfb, encoding polypeptides of 491 and 514 amino acids, were effectively identified from red tilapia in this study. The Mitfa and Mitfb sequences of red tilapia clustered first with O. aureus, then with other teleost fish, according to phylogenetic analysis. Mitfa and mitfb mRNA were highly expressed in the brain, dorsal skin and eye tissues using quantitative real-time PCR. The mRNA expressions of mitfa and mitfb were the highest in the cleavage stage during the early development of red tilapia. Among three different colors of red tilapia, the expression levels of mitfa and mitfb were highest in the PB (pink with scattered black spots) dorsal skin. After overwintering, the mitfa and mitfb mRNA expressions were high in the dorsal skin of PB (color changed from pink to black). Mitfa and mitfb were mostly found in the epidermal layer of the dorsal skin, according to in situ hybridization (ISH) analysis. After injecting mitf-dsRNA duplicates along the tail vein of red tilapia, the activity of tyrosinase and the level of melanin in the dorsal skin both decreased significantly. The mRNA expressions of mitfa and its downstream genes (tyrb, tyrp1a and dct) decreased, whereas the mRNA expression of mitfb increased after mitfa-dsRNA injection. The mRNA expressions of mitfb, tyrb, tyrp1a and dct decreased, whereas the mRNA expression of mitfa increased after injecting mitfb-dsRNA. These findings suggest that mitf gene duplicates may play an important role in red tilapia skin color differentiation and variation via the melanogenesis pathway.
Collapse
Affiliation(s)
- Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|