1
|
Nardin M, Verdoia M, Nardin S, Cao D, Chiarito M, Kedhi E, Galasso G, Condorelli G, De Luca G. Vitamin D and Cardiovascular Diseases: From Physiology to Pathophysiology and Outcomes. Biomedicines 2024; 12:768. [PMID: 38672124 PMCID: PMC11048686 DOI: 10.3390/biomedicines12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is rightly recognized as an essential key factor in the regulation of calcium and phosphate homeostasis, affecting primary adequate bone mineralization. In the last decades, a more complex and wider role of vitamin D has been postulated and demonstrated. Cardiovascular diseases have been found to be strongly related to vitamin D levels, especially to its deficiency. Pre-clinical studies have suggested a direct role of vitamin D in the regulation of several pathophysiological pathways, such as endothelial dysfunction and platelet aggregation; moreover, observational data have confirmed the relationship with different conditions, including coronary artery disease, heart failure, and hypertension. Despite the significant evidence available so far, most clinical trials have failed to prove any positive impact of vitamin D supplements on cardiovascular outcomes. This discrepancy indicates the need for further information and knowledge about vitamin D metabolism and its effect on the cardiovascular system, in order to identify those patients who would benefit from vitamin D supplementation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Internal Medicine, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13875 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 28100 Novara, Italy
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiology, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
| | - Mauro Chiarito
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Elvin Kedhi
- McGill University Health Center, Montreal, QC H3G 1A4, Canada
- Department of Cardiology and Structural Heart Disease, University of Silesia, 40-032 Katowice, Poland
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
2
|
Lee WS, Nam KH, Kim JH, Kim WJ, Kim JE, Shin EC, Kim GR, Choi JM. Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide. Front Immunol 2023; 14:1233514. [PMID: 37818377 PMCID: PMC10560854 DOI: 10.3389/fimmu.2023.1233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of keratinocytes and immune cell infiltration. The IL-17-producing T cells play a key role in psoriasis pathogenesis, while regulatory T (Treg) cells are diminished during psoriatic inflammation. Current psoriasis treatments largely focus on IL-17 and IL-23, however, few studies have explored therapeutic drugs targeting an increase of Treg cells to control immune homeostasis. In this study, we investigated the effects of a cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling peptide (dNP2-ctCTLA-4) in Th17, Tc17, γδ T cells, Treg cells in vitro and a mouse model of psoriasis. Treatment with dNP2-ctCTLA-4 peptide showed a significant reduction of psoriatic skin inflammation with increased Treg cell proportion and reduced IL-17 production by T cells, indicating a potential role in modulating psoriatic skin disease. We compared dNP2-ctCTLA-4 with CTLA-4-Ig and found that only dNP2-ctCTLA-4 ameliorated the psoriasis progression, with increased Treg cells and inhibited IL-17 production from γδ T cells. In vitro experiments using a T cell-antigen presenting cell co-culture system demonstrated the distinct mechanisms of dNP2-ctCTLA-4 compared to CTLA-4-Ig in the induction of Treg cells. These findings highlight the therapeutic potential of dNP2-ctCTLA-4 peptide in psoriasis by augmenting Treg/Teff ratio, offering a new approach to modulating the disease.
Collapse
Affiliation(s)
- Woo-Sung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeong Eun Kim
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Daryabor G, Gholijani N, Kahmini FR. A review of the critical role of vitamin D axis on the immune system. Exp Mol Pathol 2023; 132-133:104866. [PMID: 37572961 DOI: 10.1016/j.yexmp.2023.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
In recent years, the physiological and molecular functions of vitamin D (Vit-D) have been deeply investigated. At first, Vit-D was considered a regulator of mineral and skeletal homeostasis. However, due to the extensive-expression pattern of Vit-D receptor (VDR) in almost every non-skeletal cell, Vit-D is considered mainly a multifunctional agent with broad effects on various tissues, notably the immune system. The expression of VDR in immune cells such as dendritic cells, monocyte/macrophage, neutrophils, B cells and T cells has been well demonstrated. Besides, such immune cells are capable of metabolizing the active form of Vit-D which means that it can module the immune system in both paracrine and autocrine manners. Vit-D binding protein (DBP), that regulates the levels and homeostasis of Vit-D, is another key molecule capable of modulating the immune system. Recent studies indicate that dysregulation of Vit-D axis, variations in the DBP and VDR genes, and Vit-D levels might be risk factors for the development of autoimmune disease. Here, the current evidence regarding the role of Vit-D axis on the immune system, as well as its role in the development of autoimmune disease will be clarified. Further insight will be given to those studies that investigated the association between single nucleotide polymorphisms of DBP and VDR genes with autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Ni H, Chen Y. Differentiation, regulation and function of regulatory T cells in non-lymphoid tissues and tumors. Int Immunopharmacol 2023; 121:110429. [PMID: 37327512 DOI: 10.1016/j.intimp.2023.110429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Regulatory T cells (Tregs) play a substantial role in inhibiting excessive immune response. A large number of studies have focused on the tissue homeostasis maintenance and remodeling characteristics of Tregs in non-lymphoid tissues, such as the skin, colon, lung, brain, muscle, and adipose tissues. Herein, we overview the kinetics of Treg migration to non-lymphoid tissues and adaptation to the specific tissue microenvironment through the development of tissue-specific chemokine receptors, transcription factors, and phenotypes. Additionally, tumor-infiltrating Tregs (Ti-Tregs) play an important role in tumor generation and immunotherapy resistance. The phenotypes of Ti-Tregs are related to the histological location of the tumor and there is a large overlap between the transcripts of Ti-Tregs and those of tissue-specific Tregs. We recapitulate the molecular underpinnings of tissue-specific Tregs, which might shed new light on Treg-based therapeutic targets and biomarkers for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Hongbo Ni
- The First Clinical Medicine Faculty, China Medical University, Shenyang 110001, China
| | - Yinghan Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Autoreactive T-Cells in Psoriasis: Are They Spoiled Tregs and Can Therapies Restore Their Functions? Int J Mol Sci 2023; 24:ijms24054348. [PMID: 36901778 PMCID: PMC10002349 DOI: 10.3390/ijms24054348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, which affects 2-4% of the population worldwide. T-cell derived factors such as Th17 and Th1 cytokines or cytokines such as IL-23, which favors Th17-expansion/differentiation, dominate in the disease. Therapies targeting these factors have been developed over the years. An autoimmune component is present, as autoreactive T-cells specific for keratins, the antimicrobial peptide LL37 and ADAMTSL5 have been described. Both autoreactive CD4 and CD8 T-cells exist, produce pathogenic cytokines, and correlate with disease activity. Along with the assumption that psoriasis is a T-cell-driven disease, Tregs have been studied extensively over the years, both in the skin and in circulation. This narrative review resumes the main findings about Tregs in psoriasis. We discuss how Tregs increase in psoriasis but are impaired in their regulatory/suppressive function. We debate the possibility that Tregs convert into T-effector cells under inflammatory conditions; for instance, they may turn into Th17-cells. We put particular emphasis on therapies that seem to counteract this conversion. We have enriched this review with an experimental section analyzing T-cells specific for the autoantigen LL37 in a healthy subject, suggesting that a shared specificity may exist between Tregs and autoreactive responder T-cells. This suggests that successful psoriasis treatments may, among other effects, restore Tregs numbers and functions.
Collapse
|
6
|
Gingiva-Derived Mesenchymal Stem Cells Attenuate Imiquimod- (IMQ-) Induced Murine Psoriasis-Like Skin Inflammation. Stem Cells Int 2022; 2022:6544514. [PMID: 35813890 PMCID: PMC9262573 DOI: 10.1155/2022/6544514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Human gingiva-derived mesenchymal stem cells (GMSCs) are isolated from the gingival propria with promising regenerative, immunomodulatory, and anti-inflammatory properties. Recently, several studies, including ours, have found that GMSCs have the therapeutic potentials of nerve regeneration and skin disorders in various types such as the cell itself, cell-free conditioned medium, or extracellular vesicles (EVs). However, the mechanobiological behavior of GMSCs is closely related to the culture conditions. Therefore, the purpose of this study was to evaluate the function of human GMSCs on imiquimod- (IMQ-) induced murine psoriasis-like skin inflammation in two-dimensional (2D) and three-dimensional (3D) culture conditions. Here, we isolated and characterized GMSCs in 2D and 3D culture conditions and found that GMSCs in 2D and 3D infusion can significantly ameliorate the IMQ-induced murine psoriasis-like skin inflammation, reduce the levels of Th1- and Th17-related cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-21, and IL-22, and upregulate the percentage of spleen CD25+CD3+ T cells while downregulate the percentage of spleen IL-17+CD3+ T cells. In summary, our novel findings reveal that GMSCs in 2D and 3D infusion may possess therapeutic effects in the treatment of psoriasis.
Collapse
|
7
|
Chen S, Lin Z, He T, Islam MS, Xi L, Liao P, Yang Y, Zheng Y, Chen X. Topical Application of Tetrandrine Nanoemulsion Promotes the Expansion of CD4 +Foxp3 + Regulatory T Cells and Alleviates Imiquimod-Induced Psoriasis in Mice. Front Immunol 2022; 13:800283. [PMID: 35464441 PMCID: PMC9020220 DOI: 10.3389/fimmu.2022.800283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
There is compelling evidence that CD4+Foxp3+ regulatory T cells (Tregs) are indispensable in the inhibition of autoimmune inflammatory responses, including psoriasis. Recently, we showed that systemically treatment with tetrandrine (TET), a two-pore channel inhibitor identified from the Chinese herb Stephania tetrandra S. Moor, could promote the proliferative expansion of Tregs in mice through stimulation of TNF-TNFR2 interaction. We thus hypothesized that topical administration of TET might also expand Tregs and consequently inhibit psoriasis. To this end, we developed a TET nanoemulsion and examined its effect on the expansion of Tregs after topical administration on mouse psoriasis induced by imiquimod. The result of our experiment showed that topical treatment with TET nanoemulsion markedly increased the proportion and number of Tregs in the spleen, as well as TNFR2 and Ki-67 expression by Tregs, in WT and TNFR1 KO mice, but not in TNFR2 KO mice. Consequently, TET nanoemulsion potently inhibited IL-17-expressing cells in the spleen and lymph nodes of imiquimod-treated WT mice, accompanied by decreased serum levels of IL-17A, INF-γ, and TNF and their mRNA levels in the flamed lesion. Importantly, TET nanoemulsion treatment markedly inhibited the development of psoriasis-like disease in WT and TNFR1 KO mice but not in TNFR2 KO mice. Therefore, our study indicates that the topical administration of TET could also stimulate the expansion of Tregs through the TNF-TNFR2 pathway. This effect of TET and its analogs may be useful in the treatment of inflammatory skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Shaokui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Zibei Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China.,Department of Clinical Pharmacy, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Tianzhen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China.,Institute of Special Environmental Medicine, Nantong University, Nantong, China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Ping Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| |
Collapse
|
8
|
Saisyo A, Yamaguchi M, Kashibe K, Ishida H, Hirano Y, Oka T, Tamura M, Takasago M, Uchida Y, Kouda K, Kitahara T. Pharmacoeconomic study of biologics for psoriasis treatment based on real‐world drug survival. Dermatol Ther 2022; 35:e15375. [DOI: 10.1111/dth.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Atsuyuki Saisyo
- Pharmacy Department Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Michiya Yamaguchi
- Department of Dermatology Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Koichi Kashibe
- Medical Informatics and Decision Sciences Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Haku Ishida
- Medical Informatics and Decision Sciences Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Yasushi Hirano
- Medical Informatics and Decision Sciences Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Tomoyuki Oka
- Pharmacy Department Ube‐Kohsan Central Hospital, 750 Nishikiwa, Ube Yamaguchi Japan
| | - Miho Tamura
- Pharmacy Department Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Miwako Takasago
- Pharmacy Department Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Yutaka Uchida
- Pharmacy Department Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Kyoji Kouda
- Pharmacy Department Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| | - Takashi Kitahara
- Pharmacy Department Yamaguchi University Hospital, 1‐1‐1 MinamiKogushi, Ube Yamaguchi Japan
| |
Collapse
|
9
|
Sanlier N, Guney-Coskun M. Vitamin D, the immune system, and its relationship with diseases. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2022; 70:39. [PMCID: PMC9573796 DOI: 10.1186/s43054-022-00135-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Vitamin D is classified as an immunomodulatory hormone that is synthesized because of skin exposure to sunlight. It is known to come into play during the regulation of hormone secretion, immune functions, cell proliferation, and differentiation. Its deficiency can cause many diseases and their associated pleiotropic effects. In addition, in relation to its eminent function as regards adaptive immune response and innate immune response, vitamin D level is associated with immune tolerance. Methods Literature search prior to May 2021 was conducted through selected websites, including the MEDLINE, Embase, Web of Science, Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, Google Scholar, and EFSA. Results Vitamin D is found effective for the regulation of hormone secretion, immune functions, and cell proliferation along with differentiation. Its role as an immune modulator is based on the presence of receptors on many immune cells and the synthesis of its active metabolite from these cells. Vitamin D, an immune system modulator, inhibits cell proliferation and stimulates cell differentiation. A fair number of immune system diseases, encompassing autoimmune disorders alongside infectious diseases, can occur because of low serum vitamin D levels. Supplementation of vitamin D has positive effects in lessening the severity nature of disease activity; there exists no consensus on the dose to be used. Conclusion It is figured out that a higher number of randomized controlled trials are essential to evaluate efficacy pertaining to clinical cases, treatment duration, type, and dose of supplementation and pathophysiology of diseases, immune system functioning, and the effect of vitamin D to be administered.
Collapse
Affiliation(s)
- Nevin Sanlier
- Nutrition and Dietetics Department, Faculty of Health Science, Ankara Medipol University, Ankara, 06050 Turkey
| | - Merve Guney-Coskun
- grid.411781.a0000 0004 0471 9346Nutrition and Dietetics Department, Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
10
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
11
|
Uchida H, Kamata M, Shimizu T, Egawa S, Ito M, Takeshima R, Mizukawa I, Watanabe A, Tada Y. Apremilast downregulates interleukin-17 production and induces splenic regulatory B cells and regulatory T cells in imiquimod-induced psoriasiform dermatitis. J Dermatol Sci 2021; 104:55-62. [PMID: 34548208 DOI: 10.1016/j.jdermsci.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Apremilast, a selective inhibitor of the enzyme phosphodiesterase 4, is efficacious for psoriasis. However, detailed in vivo effects of apremilast on psoriasis remain to be elucidated. OBJECTIVE To examine the in vivo effects of apremilast on psoriasis. METHODS Psoriasiform dermatitis was induced by applying imiquimod (IMQ) on the murine shaved back skin for six days. Mice were treated with apremilast or vehicle intraperitoneally daily. RESULTS Apremilast alleviated IMQ-induced psoriasiform dermatitis clinically and pathologically on days 3-6 by reducing infiltration of antigen-presenting cells and interleukin (IL)-17A-positive cells and increasing infiltration of Foxp3-postive cells into the skin on day 6, although a significant increase in IL-10 mRNA level was not observed on day 2. In addition, mRNA expression of IL-17A, IL-17F, and IL-22 was lower in the skin of IMQ-applied mice treated with apremilast than in those without apremilast on day 2, and apremilast inhibited infiltration of IL-17A-producing γδ T cells into the dermis on day 6. Furthermore, apremilast induced regulatory T cells and regulatory B cells in the spleen but not in the draining lymph nodes. CONCLUSION Apremilast downregulated IL-17 production and induced splenic regulatory B cells and regulatory T cells in an IMQ-induced psoriasiform dermatitis mouse model.
Collapse
Affiliation(s)
- Hideaki Uchida
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Kamata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan.
| | - Teruo Shimizu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shota Egawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Ito
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ryosuke Takeshima
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Itsumi Mizukawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ayu Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Liu JM, Jin QX, Fujimoto M, Li FF, Jin LB, Yu R, Yan GH, Zhu LH, Meng FP, Zhang QG, Jin GH. Dihydroartemisinin Alleviates Imiquimod-Induced Psoriasis-like Skin Lesion in Mice Involving Modulation of IL-23/Th17 Axis. Front Pharmacol 2021; 12:704481. [PMID: 34483908 PMCID: PMC8415163 DOI: 10.3389/fphar.2021.704481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Psoriasis is a T help 17 (Th17) cell-mediated chronic inflammatory skin disease. Recent studies have shown that dihydroartemisinin (DHA) can significantly reduce experimental autoimmune encephalomyelitis and rheumatoid arthritis by regulating Th17 cells. Objective: To verify whether DHA can improve the symptoms of psoriasis and to further explore the possible mechanism. Methods: The efficiency of DHA was preliminary detected on human keratinocytes (HaCaT) cells in psoriatic condition. Then, imiquimod-induced psoriasis-like model in BALB/c mice was established to evaluate the effects of DHA in vivo. Results: Under the stimulation of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), DHA inhibited the proliferation of HaCaT cells and significantly affected the mRNA expression levels of IFN-γ, interleukin (IL), IL-17A and IL-23. DHA treatment reduced the severity of psoriasis-like skin and resulted in less infiltration of immune cells in skin lesions. DHA restored the expression of IFN-γ, IL-17A, and IL-23 in skins, as well as a decrease of cytokines and chemokines in skin supernatant. DHA also altered the cellular composition in the spleen, which is the makeup of the T cells, dendritic cells (DCs), and macrophages. DHA recovered Th17-related profile with decreased frequency of IL-17+CD4+T cells from splenocyte of mice. Furthermore, DHA also inhibited the concentration of IL-17 from Th17 cells and the expression of Th17 cell-related transcription factors retinoid-related orphan receptor-gamma t (ROR-γt) in vitro. In addition, phosphorylation of signal transducer and activator of transcription-3 (STAT3) was significantly reduced in DHA treatment mice, suggesting that the IL-23/Th17 axis plays a pivotal role. Conclusion: DHA inhibits the progression of psoriasis by regulating IL-23/Th17 axis and is expected to be an effective drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jiang-Min Liu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Quan-Xin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University; Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| | - Fang-Fang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Lin-Bo Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University Medical College, Yanji, China
| | - Lian-Hua Zhu
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Fan-Ping Meng
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Dalian University, Dalian, China
| | - Gui-Hua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
13
|
The Defect in Regulatory T Cells in Psoriasis and Therapeutic Approaches. J Clin Med 2021; 10:jcm10173880. [PMID: 34501328 PMCID: PMC8432197 DOI: 10.3390/jcm10173880] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by accelerated tumor necrosis factor-α/interleukin (IL)-23/IL-17 axis. Patients with psoriasis manifest functional defects in CD4+CD25+ forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs), which suppress the excess immune response and mediate homeostasis. Defects in Tregs contribute to the pathogenesis of psoriasis and may attribute to enhanced inhibition and/or impaired stimulation of Tregs. IL-23 induces the conversion of Tregs into type 17 helper T (Th17) cells. IL-17A reduces transforming growth factor (TGF)-β1 production, Foxp3 expression, and suppresses Treg activity. Short-chain fatty acids (SCFAs), butyrate, propionate, and acetate are microbiota-derived fermentation products that promote Treg development and function by inducing Foxp3 expression or inducing dendritic cells or intestinal epithelial cells to produce retinoic acids or TGF-β1, respectively. The gut microbiome of patients with psoriasis revealed reduced SCFA-producing bacteria, Bacteroidetes, and Faecallibacterium, which may contribute to the defect in Tregs. Therapeutic agents currently used, viz., anti-IL-23p19 or anti-IL-17A antibodies, retinoids, vitamin D3, dimethyl fumarate, narrow-band ultraviolet B, or those under development for psoriasis, viz., signal transducer and activator of transcription 3 inhibitors, butyrate, histone deacetylase inhibitors, and probiotics/prebiotics restore the defected Tregs. Thus, restoration of Tregs is a promising therapeutic target for psoriasis.
Collapse
|
14
|
Alagarasu K. Immunomodulatory effect of vitamin D on immune response to dengue virus infection. VITAMINS AND HORMONES 2021; 117:239-252. [PMID: 34420583 DOI: 10.1016/bs.vh.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dengue, an acute febrile illness which in some cases requires hospitalization and occasionally a fatal disease, caused by dengue virus is a potential threat to the public health systems throughout the world. Approved antivirals are not available for treating dengue. Immunomodulators, that can reduce inflammation which if not treated properly results in vascular leakage, are being attempted as therapeutics against severe dengue. Vitamin D, an immunomodulatory hormone, with both antiviral and immunomodulatory effects, is an appropriate choice for investigation as a potential drug against dengue. Investigations of vitamin D levels by many studies have suggested vitamin D levels as a potential marker for predicting severe dengue. In-vitro studies have shown that 1, 25 dihydroxy vitamin D3 (1,25(OH)2D3), active form of vitamin D, can reduce the expression of dengue virus entry receptors, restrict the viral replication and can modulate the expression of inflammatory cytokines in dengue virus infected cells. The results from in-vitro studies also have cautioned that insufficient levels of vitamin D supplementation might increase the virus replication. Available evidence suggests vitamin D based therapeutics against dengue and provides ray of light for treating dengue patients but, the available evidence needs to be supported by beneficial outcomes in clinical trials.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India.
| |
Collapse
|
15
|
Hu M, Liao K, Lei W, Zhang R, Tu C. The addition of topical calcipotriol to phototherapy enhance the efficacy of treatment in patients with vitiligo: A systematic review and meta-analysis. Int Immunopharmacol 2021; 98:107910. [PMID: 34198237 DOI: 10.1016/j.intimp.2021.107910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Treatment of vitiligo has several challenges. Phototherapy and topical calcipotriol have been reported to be effective in combination with other therapies, but there is no consensus on the combination use. OBJECTIVE To perform a systematic review and meta-analysis that elucidates the efficacy of the combination of phototherapy and topical calcipotriol. METHODS This systematic review was performed by searching PubMed, EMBASE, Web of Science, Cochrane Library databases, Chinese National Knowledge Infrastructure (CNKI), WanFang and VIP databases for relevant publications till February 28, 2021. Relative risk (RR) and its 95% confidence interval (CI) were used to evaluate the data. Bias assessment, heterogeneity and sensitivity analysis were conducted in this meta-analysis. RESULTS After screening, nine studies with 700 participants were included. The meta-analysis indicated that the combination of phototherapy and topical calcipotriol showed significantly higher effective rate (RR 1.11, 95% CI 1.02-1.22; p < 0.05) and apparent effective rate (RR 1.35, 95% CI 1.15-1.59; p < 0.01) than phototherapy monotherapy in the treatment of vitiligo. In addition, the side effects were minor, transient and tolerable. CONCLUSIONS This meta-analysis provides evidence supporting phototherapy combined with topical calcipotriol as a valuable treatment modality for patients with vitiligo, which has better efficacy than monotherapy.
Collapse
Affiliation(s)
- Mengjie Hu
- Department of Dermatology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, Liaoning Province 116027, PR China
| | - Kexin Liao
- Department of Dermatology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, Liaoning Province 116027, PR China
| | - Wenyi Lei
- Department of Dermatology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, Liaoning Province 116027, PR China
| | - Rongxin Zhang
- Department of Dermatology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, Liaoning Province 116027, PR China; Institute of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, Liaoning Province 116044, PR China.
| | - Caixia Tu
- Department of Dermatology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, Liaoning Province 116027, PR China; Institute of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, Liaoning Province 116044, PR China.
| |
Collapse
|
16
|
McCullough PJ, McCullough WP, Lehrer D, Travers JB, Repas SJ. Oral and Topical Vitamin D, Sunshine, and UVB Phototherapy Safely Control Psoriasis in Patients with Normal Pretreatment Serum 25-Hydroxyvitamin D Concentrations: A Literature Review and Discussion of Health Implications. Nutrients 2021; 13:1511. [PMID: 33947070 PMCID: PMC8146035 DOI: 10.3390/nu13051511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin D, sunshine and UVB phototherapy were first reported in the early 1900s to control psoriasis, cure rickets and cure tuberculosis (TB). Vitamin D also controlled asthma and rheumatoid arthritis with intakes ranging from 60,000 to 600,000 International Units (IU)/day. In the 1980s, interest in treating psoriasis with vitamin D rekindled. Since 1985 four different oral forms of vitamin D (D2, D3, 1-hydroxyvitaminD3 (1(OH)D3) and 1,25-dihydroxyvitaminD3 (calcitriol)) and several topical formulations have been reported safe and effective treatments for psoriasis-as has UVB phototherapy and sunshine. In this review we show that many pre-treatment serum 25(OH)D concentrations fall within the current range of normal, while many post-treatment concentrations fall outside the upper limit of this normal (100 ng/mL). Yet, psoriasis patients showed significant clinical improvement without complications using these treatments. Current estimates of vitamin D sufficiency appear to underestimate serum 25(OH)D concentrations required for optimal health in psoriasis patients, while concentrations associated with adverse events appear to be much higher than current estimates of safe serum 25(OH)D concentrations. Based on these observations, the therapeutic index for vitamin D needs to be reexamined in the treatment of psoriasis and other diseases strongly linked to vitamin D deficiency, including COVID-19 infections, which may also improve safely with sufficient vitamin D intake or UVB exposure.
Collapse
Affiliation(s)
- Patrick J. McCullough
- Medical Services Department, Summit Behavioral Healthcare, Ohio Department of Mental Health and Addiction Services, 1101 Summit Rd, Cincinnati, OH 45237, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | | | - Douglas Lehrer
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | - Steven J. Repas
- Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
17
|
Yu Z, Cheng H, Liang Y, Ding T, Yan C, Gao C, Wen H. Decreased Serum 25-(OH)-D Level Associated With Muscle Enzyme and Myositis Specific Autoantibodies in Patients With Idiopathic Inflammatory Myopathy. Front Immunol 2021; 12:642070. [PMID: 33936057 PMCID: PMC8082096 DOI: 10.3389/fimmu.2021.642070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives To determine whether there is serum vitamin D deficiency and the low levels of serum vitamin D are correlated with serological and immunological indexes in patients with idiopathic inflammatory myopathy (IIM). Methods A total of 63 newly diagnosed patients with IIM, and 55 age- and sex- matched healthy controls were enrolled. Serum levels of 25-(OH)-D were measured by enzyme-linked immunosorbent assay. The correlations of 25-(OH)-D levels with disease indicators and T cell subsets were analyzed. Result The levels of serum 25-(OH)-D in IIM were significantly lower than those in healthy controls (9.36 ± 5.56 vs 26.56 ± 5.37 ng/ml, p<0.001). The levels of serum liver enzyme ALT and AST and muscle enzyme CK, CKMB, LDH and HBDH were elevated as deficiency of vitamin D. In addition, the serum 25-(OH)-D levels were negatively correlated to ALT (r = -0.408, p = 0.001) and AST (r = -0.338, p = 0.007). The 25-(OH)-D levels in IIM patients in presence of anti-Jo-1 were significantly lower than those in patients without anti-Jo-1 (5.24 ± 3.17 vs 9.32 ± 5.60 ng/ml; p = 0.037). Similar results were found in patients with or without anti-Mi-2 antibody. The serum 25-(OH)-D levels were positively associated with total T (r = 0.203, p = 0.012) and Treg cells (r = 0.331, p = 0.013). The patients with deficient levels of vitamin D were more likely to have heliotrope, gastrointestinal and liver involvement. Conclusions Vitamin D deficiency existed in IIM patients, which was significantly correlated with muscle enzyme, presence of anti-Jo-1 and anti-Mi-2 antibody, and the absolute numbers of total T and Treg cells in IIM. It is suggested that vitamin D may play an important role in the immunological pathogenesis of IIM.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Yuying Liang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Tingting Ding
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chenglan Yan
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
18
|
De Martinis M, Ginaldi L, Sirufo MM, Bassino EM, De Pietro F, Pioggia G, Gangemi S. IL-33/Vitamin D Crosstalk in Psoriasis-Associated Osteoporosis. Front Immunol 2021; 11:604055. [PMID: 33488605 PMCID: PMC7819870 DOI: 10.3389/fimmu.2020.604055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased risk of developing osteoporosis (OP). It has been shown that OP is among the more common pathologies associated with Pso, mainly due to the well-known osteopenizing conditions coexisting in these patients. Pso and OP share common risk factors, such as vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2 axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor differentiation towards macrophage and dendritic cells and inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the expression of anti-osteoclastic genes. However, while the vitamin D protective functions in OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through hormonal influences and immune-mediated effects, as well as cellular and metabolic functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol 2021; 184:14-24. [PMID: 32628773 DOI: 10.1111/bjd.19380] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease with a strong genetic component that can be triggered by environmental factors. Disease pathogenesis is mainly driven by type 1 and type 17 cytokine-producing cells which, in healthy individuals, are modulated by regulatory T cells (Tregs). Tregs play a fundamental role in immune homeostasis and contribute to the prevention of autoimmune disease by suppressing immune responses. In psoriasis, Tregs are impaired in their suppressive function leading to an altered T-helper 17/Treg balance. Although Treg dysfunction in patients with psoriasis is associated with disease exacerbation, it is unknown how they are functionally regulated. In this review, we discuss recent insights into Tregs in the setting of psoriasis with an emphasis on the effect of current treatments on Tregs and how already available therapeutics that modulate Treg frequency or functionality could be exploited for treatment of psoriasis.
Collapse
Affiliation(s)
- L Nussbaum
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Y L Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G S Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Fukuda M, Nobeyama Y, Asahina A. Antigenic competition: IgA vasculitis distributing away from psoriatic plaque. J Dermatol 2020; 48:e130-e131. [PMID: 33368676 DOI: 10.1111/1346-8138.15742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Masahiro Fukuda
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Kalekar LA, Rosenblum MD. Regulatory T cells in inflammatory skin disease: from mice to humans. Int Immunol 2020; 31:457-463. [PMID: 30865268 DOI: 10.1093/intimm/dxz020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ in the body and one of the primary barriers to the environment. In order to optimally protect the host, the skin is home to numerous immune cell subsets that interact with each other and other non-immune cells to maintain organ integrity and function. Regulatory T cells (Tregs) are one of the largest immune cell subsets in skin. They play a critical role in regulating inflammation and facilitating organ repair. In doing so, they adopt unique and specialized tissue-specific functions. In this review, we compare and contrast the role of Tregs in cutaneous immune disorders from mice and humans, with a specific focus on scleroderma, alopecia areata, atopic dermatitis, cutaneous lupus erythematosus and psoriasis.
Collapse
Affiliation(s)
- Lokesh A Kalekar
- Department of Dermatology, Medical Sciences Building, University of California, San Francisco, CA, USA
| | - Michael D Rosenblum
- Department of Dermatology, Medical Sciences Building, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Zhang X, Li J, Yu Y, Lian P, Gao X, Xu Y, Geng L. Shikonin Controls the Differentiation of CD4 +CD25 + Regulatory T Cells by Inhibiting AKT/mTOR Pathway. Inflammation 2020; 42:1215-1227. [PMID: 31028576 DOI: 10.1007/s10753-019-00982-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CD4+CD25+ regulatory T (Treg) cells maintain the function of immune tolerance and the balance of immune cells. Defects in the number and function of Treg cells can induce the development and progression of inflammatory disease. Shikonin, the main active ingredient of Lithospermum, has anti-inflammatory and anti-tumor effects. Shikonin is also an effective drug for the treatment of psoriasis, which is a chronic inflammatory skin disease. However, the underlying mechanism is not yet clear. To evaluate the role of shikonin on the induction of Treg cells, we tested the number and function of Treg cells in vivo and in vitro. Shikonin can effectively promote the differentiation of iTreg cells by inhibiting the AKT/mTOR pathway in vitro. Moreover, in vivo, intragastrically administered shikonin effectively improved lesions in mice with imiquimod-induced psoriasis and increased the number of iTreg cells in the spleen and their secretion. Shikonin significantly increases the expression of Foxp3mRNA in skin of the psorisic mice. Therefore, we expect that shikonin can prevent the development of inflammation and treat psoriasis by regulating iTreg cells. Novel ideas for the treatment of psoriasis are also proposed.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, 110001, China.,Department of Dermatology, The first affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jianping Li
- Liaoning Blood Center, Shenyang, 110001, China
| | - Yajie Yu
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, 110001, China
| | - Peng Lian
- Jinzhou City Animal Disease Control and Prevention Center, Jinzhou, 120001, China
| | - Xinghua Gao
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, 110001, China
| | - Yuanyuan Xu
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, 110001, China
| | - Long Geng
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
23
|
Takeoka S, Shimizu T, Kamata M, Hau CS, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Ohnishi T, Tada Y. Calcipotriol and betamethasone dipropionate exhibit different immunomodulatory effects on imiquimod‐induced murine psoriasiform dermatitis. J Dermatol 2019; 47:155-162. [DOI: 10.1111/1346-8138.15155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Shintaro Takeoka
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Teruo Shimizu
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Masahiro Kamata
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Carren Sy Hau
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Saki Fukaya
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Kotaro Hayashi
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Atsuko Fukuyasu
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Takamitsu Tanaka
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Takeko Ishikawa
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Takamitsu Ohnishi
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| | - Yayoi Tada
- Department of Dermatology Teikyo University School of Medicine Tokyo Japan
| |
Collapse
|
24
|
Illescas-Montes R, Melguizo-Rodríguez L, Ruiz C, Costela-Ruiz VJ. Vitamin D and autoimmune diseases. Life Sci 2019; 233:116744. [PMID: 31401314 DOI: 10.1016/j.lfs.2019.116744] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
The prevalence of autoimmune diseases (ADs) has increased over the past few decades. Vitamin D deficiency is a common factor in many of these diseases, whose etiology remains poorly understood. The objective of this study was to review published data on the role of vitamin D in ADs. Vitamin D insufficiency has been described as an important factor in the development of some ADs, generally attributed to the key role of this vitamin in the immune system. Most studies show that adequate supplementation can prevent and improve the development of some of these diseases, although the optimal vitamin D dose remains controversial. We highlight the importance of measuring serum vitamin D levels of the population and developing strategies to improve and maintain levels with no health risks.
Collapse
Affiliation(s)
- Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda, Ilustración 60, 18016 Granada, Spain; Instituto Investigación Biosanitaria, ibs.Granada, C/Doctor Azpitarte 4, 4ª planta, 18012, Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda, Ilustración 60, 18016 Granada, Spain; Instituto Investigación Biosanitaria, ibs.Granada, C/Doctor Azpitarte 4, 4ª planta, 18012, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda, Ilustración 60, 18016 Granada, Spain; Instituto Investigación Biosanitaria, ibs.Granada, C/Doctor Azpitarte 4, 4ª planta, 18012, Granada, Spain; Institut of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de la Salud (PTS) Avda, del Conocimiento S/N, 18016, Armilla, Granada, Spain.
| | - Víctor J Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda, Ilustración 60, 18016 Granada, Spain; Instituto Investigación Biosanitaria, ibs.Granada, C/Doctor Azpitarte 4, 4ª planta, 18012, Granada, Spain
| |
Collapse
|
25
|
Shimizu T, Kamata M, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Ohnishi T, Tada Y. Anti-IL-17A and IL-23p19 antibodies but not anti-TNFα antibody induce expansion of regulatory T cells and restoration of their suppressive function in imiquimod-induced psoriasiform dermatitis. J Dermatol Sci 2019; 95:90-98. [PMID: 31362906 DOI: 10.1016/j.jdermsci.2019.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. Anti-TNFα, IL-17A and IL-23p19 antibodies are effective for psoriasis. However, the contribution of regulatory T cells (Treg) in their effectiveness remains to be elucidated. OBJECTIVE We investigated the effects of TNFα, IL-17A and IL-23p19 inhibition on Tregs in imiquimod-induced psoriasiform dermatitis. METHODS Psoriasiform dermatitis was induced by imiquimod application on murine shaved back skin for six days. Mice were treated with anti-TNFα, IL-17A or IL-23p19 monoclonal antibodies every other day from one day before imiquimod application. RESULTS Administration of anti-TNFα, IL-17A or IL-23p19 antibodies improved the clinical score and downregulated Th17-related cytokines and chemokines, while IL-23p19 antibodies upregulated IL-10 mRNA expression. Anti-IL-17A or IL-23p19 antibody-treated imiquimod-applied mice showed a significant increase in the number of Foxp3+ IL-10+ Tregs. Recipient mice adoptively transferred with Tregs derived from donor mice treated with antibodies demonstrated clinical and pathological improvement in imiquimod-induced psoriasiform dermatitis. Anti-IL-17A or IL-23p19 antibody-induced Tregs significantly increased the number of Foxp3+ cells and IL-10 expression in imiquimod-induced psoriasiform dermatitis in recipient mice but anti-TNFα antibody-induced Tregs did not. CONCLUSION Anti-IL-17A or IL-23p19 antibody inhibits the IL-17/IL-23 signaling pathway, and induces expansion of Tregs and their suppressive capacity in imiquimod-induced psoriasiform dermatitis.
Collapse
Affiliation(s)
- Teruo Shimizu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Kamata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan.
| | - Saki Fukaya
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kotaro Hayashi
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsuko Fukuyasu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takamitsu Tanaka
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takeko Ishikawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takamitsu Ohnishi
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
26
|
Extra-Skeletal Effects of Vitamin D. Nutrients 2019; 11:nu11071460. [PMID: 31252594 PMCID: PMC6683065 DOI: 10.3390/nu11071460] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
The vitamin D receptor is expressed in multiple cells of the body (other than osteoblasts), including beta cells and cells involved in immune modulation (such as mononuclear cells, and activated T and B lymphocytes), and most organs in the body including the brain, heart, skin, gonads, prostate, breast, and gut. Consequently, the extra-skeletal impact of vitamin D deficiency has been an active area of research. While epidemiological and case-control studies have often suggested a link between vitamin D deficiency and conditions such as type 1 and type 2 diabetes, connective tissue disorders, inflammatory bowel disorders, chronic hepatitis, food allergies, asthma and respiratory infections, and cancer, interventional studies for the most part have failed to confirm a causative link. This review examines available evidence to date for the extra-skeletal effects of vitamin D deficiency, with a focus on randomized controlled trials and meta-analyses.
Collapse
|