1
|
Osipov N, Kudryavtsev I, Spelnikov D, Rubinstein A, Belyaeva E, Kulpina A, Kudlay D, Starshinova A. Differential Diagnosis of Tuberculosis and Sarcoidosis by Immunological Features Using Machine Learning. Diagnostics (Basel) 2024; 14:2188. [PMID: 39410592 PMCID: PMC11476257 DOI: 10.3390/diagnostics14192188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Despite the achievements of modern medicine, tuberculosis remains one of the leading causes of mortality globally. The difficulties in differential diagnosis have particular relevance in the case of suspicion of tuberculosis with other granulomatous diseases. The most similar clinical and radiologic changes are sarcoidosis. The aim of this study is to apply mathematical modeling to determine diagnostically significant immunological parameters and an algorithm for the differential diagnosis of tuberculosis and sarcoidosis. Materials and methods: The serum samples of patients with sarcoidosis (SD) (n = 29), patients with pulmonary tuberculosis (TB) (n = 32) and the control group (n = 31) (healthy subjects) collected from 2017 to 2022 (the average age 43.4 ± 5.3 years) were examined. Circulating 'polarized' T-helper cell subsets were analyzed by multicolor flow cytometry. A symbolic regression method was used to find general mathematical relations between cell concentrations and diagnosis. The parameters of the selected model were finally fitted through multi-objective optimization applied to two conflicting indices: sensitivity to sarcoidosis and sensitivity to tuberculosis. Results: The difference in Bm2 and CD5-CD27- concentrations was found to be more significant for the differential diagnosis of sarcoidosis and tuberculosis than any individual concentrations: the combined feature Bm2 - [CD5-CD27-] differentiates sarcoidosis and tuberculosis with p < 0.00001 and AUC = 0.823. An algorithm for differential diagnosis was developed. It is based on the linear model with two variables: the first variable is the difference Bm2 - [CD5-CD27-] mentioned above, and the second is the naïve-Tregs concentration. The algorithm uses the model twice and returns "dubious" in 26.7% of cases for patients with sarcoidosis and in 16.1% of cases for patients with tuberculosis. For the remaining patients with one of these two diagnoses, its sensitivity to sarcoidosis is 90.5%, and its sensitivity to tuberculosis is 88.5%. Conclusions: A simple algorithm was developed that can distinguish, by certain immunological features, the cases in which sarcoidosis is likely to be present instead of tuberculosis. Such cases may be further investigated to rule out tuberculosis conclusively. The mathematical model underlying the algorithm is based on the analysis of "naive" T-regulatory cells and "naive" B-cells. This may be a promising approach for differential diagnosis between pulmonary sarcoidosis and pulmonary tuberculosis. The findings may be useful in the absence of clear differential diagnostic criteria between pulmonary tuberculosis and sarcoidosis.
Collapse
Affiliation(s)
- Nikolay Osipov
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, 191023 St. Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Dmitry Spelnikov
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
| | - Artem Rubinstein
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Belyaeva
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
| | - Anastasia Kulpina
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
| | - Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Institute of Immunology, 115478 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Starshinova
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
| |
Collapse
|
2
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
3
|
Patterson KC, Miller WT, Hancock WW, Akimova T. FOXP3+ regulatory T cells are associated with the severity and prognosis of sarcoidosis. Front Immunol 2023; 14:1301991. [PMID: 38173720 PMCID: PMC10761433 DOI: 10.3389/fimmu.2023.1301991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale Sarcoidosis is an inflammatory granulomatous disease of unknown etiology with predominant lung involvement. Organ involvement and disease severity, as well as the nature of immune alterations, vary among patients leading to a range of clinical phenotypes and outcomes. Our objective was to evaluate the association of disease course and immune responses in pulmonary sarcoidosis. Methods In this prospective cohort study of 30 subjects, most of whom were followed for one year, we evaluated 14 inflammatory markers in plasma, 13 Treg/T cell flow cytometry markers and 8 parameters of FOXP3+ Treg biology, including suppressive function, epigenetic features and stability. Results We identified a set of 13 immunological parameters that differ in sarcoidosis subjects in comparison with healthy donors. Five of those were inversely correlated with suppressive function of Tregs in sarcoidosis, and six (TNFα, TNFR I and II, sCD25, Ki-67 and number of Tregs) were particularly upregulated or increased in subjects with thoracic lymphadenopathy. Treg suppressive function was significantly lower in patients with thoracic lymphadenopathy, and in patients with higher burdens of pulmonary and systemic symptoms. A combination of five inflammatory markers, Ki-67 expression, Treg function, and lung diffusion capacity evaluated at study entry predicted need for therapy at one year follow-up in 90% of cases. Conclusion Tregs may suppress ongoing inflammation at local and systemic levels, and TNFα, TNFR I and II, sCD25 and Ki-67 emerge as attractive biomarkers for in vivo sarcoid inflammatory activity.
Collapse
Affiliation(s)
- Karen C. Patterson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wallace T. Miller
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Kudryavtsev I, Zinchenko Y, Starshinova A, Serebriakova M, Malkova A, Akisheva T, Kudlay D, Glushkova A, Yablonskiy P, Shoenfeld Y. Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis. Diagnostics (Basel) 2023; 13:1378. [PMID: 37189479 PMCID: PMC10137313 DOI: 10.3390/diagnostics13081378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Over recent years, many researchers have supported the autoimmune theory of sarcoidosis. The presence of uncontrolled inflammatory response on local and system levels in patients with sarcoidosis did not define that the immunoregulatory mechanisms could be affected. The aim of this study was to evaluate the distribution and the disturbance circulating Treg cell subsets in the peripheral blood in patients with sarcoidosis. MATERIALS AND METHODS A prospective comparative study was performed in 2016-2018 (34 patients with sarcoidosis (men (67.6%), women (32.3%)) were examined). Healthy subjects-the control group (n = 40). The diagnosis of pulmonary sarcoidosis was performed according to the standard criteria. We used two ten-color combinations of antibodies for Treg immunophenotyping. The first one contained CD39-FITC, CD127-PE, CCR4-PE/Dazzle™ 594, CD25-PC5.5, CD161-PC7, CD4-APC, CD8-APC-AF700, CD3-APC/Cy7, HLA-DR-PacBlue, and CD45 RA-BV 510™, while the second consisted of CXCR3-Alexa Fluor 488, CD25-РЕ, CXCR5-РЕ/Dazzle™ 594, CCR4-PerСP/Сy5.5, CCR6-РЕ/Cy7, CD4-АPC, CD8 АPC-AF700, CD3-АPC/Cy7, CCR7-BV 421, and CD45 RA-BV 510. The flow cytometry data were analyzed by using Kaluza software v2.3. A statistical analysis was performed with Statistica 7.0 and GraphPad Prism 8 software packages. RESULTS OF THE STUDY Primarily, we found that patients with sarcoidosis had decreased absolute numbers of Treg cells in circulation. We noted that the level of CCR7-expressing Tregs decreased in patients with sarcoidosis vs. the control group (65.55% (60.08; 70.60) vs. 76.93% (69.59; 79.86) with p < 0.001). We noticed that the relative numbers of CD45RA-CCR7+ Tregs decreased in patients with sarcoidosis (27.11% vs. 35.43%, p < 0.001), while the frequency of CD45 RA-CCR7- and CD45RA+ CCR7- Tregs increased compared to the control group (33.3% vs. 22.73% and 0.76% vs. 0.51% with p < 0.001 and p = 0.028, respectively). CXCR3-expressing Treg cell subsets-Th1-like CCR60078CXCR3+ Tregs and Th17.1-like CCR6+ CXCR3+ Tregs-significantly increased in patients with sarcoidosis vs. the control group (14.4% vs. 10.5% with p < 0.01 and 27.9% vs. 22.8% with p < 0.01, respectively). Furthermore, the levels of peripheral blood EM Th17-like Tregs significantly decreased in the sarcoidosis group vs. the control group (36.38% vs. 46.70% with p < 0.001). Finally, we found that CXCR5 expression was increased in CM Tregs cell subsets in patients with sarcoidosis. CONCLUSIONS Our data indicated a decrease in circulating Tregs absolute numbers and several alterations in Treg cell subsets. Moreover, our results highlight the presence of increased levels of CM CXCR5+ follicular Tregs in the periphery that could be linked with the imbalance of follicular Th cell subsets and alterations in B cell, based on the immune response. The balance between the two functionally distinct Treg cell populations-Th1-like and Th17-like Tregs-could be used in sarcoidosis diagnosis and the determination of prognosis and disease outcomes. Furthermore, we want to declare that analysis of Treg numbers of phenotypes could fully characterize their functional activity in peripherally inflamed tissues.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Yulia Zinchenko
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, 194064 St. Petersburg, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Maria Serebriakova
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Akisheva
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Dmitriy Kudlay
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- Institute of Immunology, 115552 Moscow, Russia
| | - Anzhela Glushkova
- Bekhterev National Research Medical Center for Psychiatry and Neurology, 19201 St. Petersburg, Russia
| | - Piotr Yablonskiy
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, 194064 St. Petersburg, Russia
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer 5265601, Israel
| |
Collapse
|
5
|
Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis. Autoimmun Rev 2022; 21:103185. [PMID: 36031049 DOI: 10.1016/j.autrev.2022.103185] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with a poor prognosis. To date, the pathogenesis of SSc is still unclear; moreover, its pathological conditions include microvascular damage, inflammation, and immune abnormalities. Different types of T cells may cause vasculitis and fibrosis in SSc by means of up- and down-regulation of cell surface molecules, abnormal release of pro-fibrotic or pro-inflammatory cytokines and direct contact with fibroblasts. These T cells, which are mainly CD4 + T cells, include the subtypes, T follicular helper (Tfh) cells, regulatory T Cells (Treg), interleukin-17 (IL-17)-producing Th17 cells, CD4+ cytotoxic T lymphocytes (CTLs), and angiogenic T (Tang) cells. In addition to the Th1/Th2 imbalance, which has long been established, there is also a Th17/Treg imbalance in SSc. This imbalance may be closely related to the abnormal immune status of SSc. There is mounting evidence that suggest T cell abnormalities may be crucial to the pathogenesis of SSc. In terms of treatment, existing therapies that target T cells, such as immunosuppressive therapy (tacrolimus), Janus kinase(JAK) inhibitors, and biologics(abatacept), have had some success. Other non-drug therapies, including Mesenchymal stem cells (MSCs), have extensive and complex mechanisms of action actually including T cell regulation. Based on the current evidence, we believe that the study of T cells will further our understanding of the pathogenesis of SSc, and may lead to more targeted treatment optionsfor patients with SSc.
Collapse
Affiliation(s)
- Wei Jin
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yan Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China.
| |
Collapse
|
6
|
CD103 Expression on Regulatory and Follicular T Cells in Lymph Nodes, Bronchoalveolar Lavage Fluid and Peripheral Blood of Sarcoidosis Patients. Life (Basel) 2022; 12:life12050762. [PMID: 35629428 PMCID: PMC9146853 DOI: 10.3390/life12050762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
(1) Background: Sarcoidosis is a chronic multisystem disorder of unknown aetiology, driven by a T-cell mechanism allowing T-cell attachment and transmigration through the endothelium, and endorsed by the expression of an integrin alpha-E beta-7 (CD103). This study aimed to analyse the different distribution and compartmentalisation of CD103 expression on T cell subsets in BAL, peripheral blood mononuclear cells (PBMC) and lymph nodes (LLN) from sarcoidosis patients. (2) Patients: We consecutively and prospectively enrolled 14 sarcoidosis patients. We collected PBMC, LLN and BAL at the same time from all patients. Through flow cytometric analysis, we analysed the expression of CD103 on regulatory and follicular T cell subsets. (3) Results: All patients were in radiological Scadding stage II. The multivariate analysis found that the variables which most influenced the peripheral blood compartment were high CD8+ and low ThReg, CD8+CD103+ and Tfh cell percentages. A principal component analysis plot performed to distinguish LLN, BAL and PBMC showed that they separated on the basis of CD4+, CD4+CD103+, CD8+, CD8+CD103+, TcEffector, TcNaive, ThNaive, ThEffector, Threg, ThregCD103+, Tfh, TcfCXC5+ and CD4+CD103+/CD4+ with 65.96% of the total variance. (4) Conclusions: Our study is the first to report a link between the imbalance in circulating, alveolar and lymph node CD8+ and CD8+CD103+ T cells, ThReg, Tfh and ThNaive and the CD103+CD4+/CD4+ T cell ratio in the development of sarcoidosis. These findings shine a spotlight on the pathogenesis of sarcoidosis and may offer new predictors for diagnosis. Our study provides additional understanding for a personalised, and hopefully more effective treatment of sarcoidosis.
Collapse
|
7
|
Alterations in B- and circulating T-follicular helper cell subsets in immune thrombotic thrombocytopenic purpura. Blood Adv 2022; 6:3792-3802. [PMID: 35507753 PMCID: PMC9631570 DOI: 10.1182/bloodadvances.2022007025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Abnormal B-cell phenotype in acute iTTP with decreased transitional and post–germinal center memory cells and increased plasmablasts. Decreased total and PD1+ circulating T-follicular helper cells and changes in B-cell CD80 expression suggest altered B- and T-cell interactions.
T follicular helper (Tfh) cells regulate development of antigen-specific B-cell immunity. We prospectively investigated B-cell and circulating Tfh (cTfh) cell subsets in 45 patients with immune thrombotic thrombocytopenic purpura (iTTP) at presentation and longitudinally after rituximab (RTX). B-cell phenotype was altered at acute iTTP presentation with decreased transitional cells and post–germinal center (post-GC) memory B cells and increased plasmablasts compared with healthy controls. A higher percentage of plasmablasts was associated with higher anti-ADAMTS13 IgG and lower ADAMTS13 antigen levels. In asymptomatic patients with ADAMTS13 relapse, there were increased naïve B cells and a global decrease in memory subsets, with a trend to increased plasmablasts. Total circulating Tfh (CD4+CXCR5+) and PD1+ Tfh cells were decreased at iTTP presentation. CD80 expression was decreased on IgD+ memory cells and double-negative memory cells in acute iTTP. At repopulation after B-cell depletion in de novo iTTP, post-GC and double-negative memory B cells were reduced compared with pre-RTX. RTX did not cause alteration in cTfh cell frequency. The subsequent kinetics of naïve, transitional, memory B cells and plasmablasts did not differ significantly between patients who went on to relapse vs those who remained in remission. In summary, acute iTTP is characterized by dysregulation of B- and cTfh cell homeostasis with depletion of post-GC memory cells and cTfh cells and increased plasmablasts. Changes in CD80 expression on B cells further suggest altered interactions with T cells.
Collapse
|
8
|
Long Y, Li W, Feng J, Ma Y, Sun Y, Xu L, Song Y, Liu C. Follicular helper and follicular regulatory T cell subset imbalance is associated with higher activated B cells and abnormal autoantibody production in primary anti-phospholipid syndrome patients. Clin Exp Immunol 2021; 206:141-152. [PMID: 34309827 PMCID: PMC8506124 DOI: 10.1111/cei.13647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Primary anti-phospholipid antibody syndrome (pAPS) is a multi-organ autoimmune disease, and autoantibodies are involved in its pathogenesis. Follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr) are critical for B cell maturation and antibody production, but their roles in pAPS remain unknown. We enrolled 32 pAPS patients and 23 healthy controls (HCs) and comprehensively analyzed circulating Tfh and Tfr, as well as their subsets, using flow cytometry. Clinical data including autoantibody levels were collected and their correlations with Tfh and Tfr subsets were analyzed. In addition, correlation analyses between B cell functional subsets and Tfh and Tfr were performed. Changes and potential effects of serum cytokines on Tfr and Tfh were further explored. We found the circulating Tfr was significantly decreased while Tfh and Tfh/Tfr ratios were increased in pAPS patients. Tfh2, inducible T cell co-stimulator (ICOS)+ programmed cell death 1 (PD-1)+ Tfh and Ki-67+ Tfh percentages were elevated, while CD45RA- forkhead box protein 3 (FoxP3)hi , Helios+ , T cell immunoglobulin and ITIM (TIGIT)+ and Ki-67+ Tfr percentages were decreased in pAPS patients. New memory B cells and plasmablasts were increased and altered B cell subsets and serum autoantibodies were positively correlated with Tfh, Tfh2, ICOS+ PD-1+ Tfh cells and negatively associated with Tfr, CD45RA- FoxP3hi Tfr and Helios+ Tfr cells. In addition, pAPS with LA/aCL/β2GPI autoantibodies showed lower functional Tfr subsets and higher activated Tfh subsets. Serum interleukin (IL)-4, IL-21, IL-12 and transforming growth factor (TGF)-β1 were up-regulated and associated with Tfh and Tfr subset changes. Our study demonstrates that imbalance of circulating Tfr and Tfh, as well as their functional subsets, is associated with abnormal autoantibody levels in pAPS, which may contribute to the pathogenesis of pAPS.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Wenyi Li
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Jinghong Feng
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Yinting Ma
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Yuanyuan Sun
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Lijuan Xu
- Department of ImmunologySchool of Basic Medical SciencesPeking University Health Science CentreBeijingChina
| | - Ying Song
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| | - Chen Liu
- Department of Clinical LaboratoryPeking University People’s HospitalBeijingChina
| |
Collapse
|
9
|
Bauer L, Müller LJ, Volkers SM, Heinrich F, Mashreghi MF, Ruppert C, Sander LE, Hutloff A. Follicular Helper-like T Cells in the Lung Highlight a Novel Role of B Cells in Sarcoidosis. Am J Respir Crit Care Med 2021; 204:1403-1417. [PMID: 34534436 PMCID: PMC8865704 DOI: 10.1164/rccm.202012-4423oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rationale Pulmonary sarcoidosis is generally presumed to be a T-helper cell type 1– and macrophage-driven disease. However, mouse models have recently revealed that chronically inflamed lung tissue can also comprise T follicular helper (Tfh)-like cells and represents a site of active T-cell/B-cell cooperation. Objectives To assess the role of pulmonary Tfh- and germinal center–like lymphocytes in sarcoidosis. Methods BAL fluid, lung tissue, and peripheral blood samples from patients with sarcoidosis were analyzed by flow cytometry, immunohistology, RNA sequencing, and in vitro T-cell/B-cell cooperation assays for phenotypic and functional characterization of germinal center–like reactions in inflamed tissue. Measurements and Main Results We identified a novel population of Tfh-like cells characterized by high expression of the B helper molecules CD40L and IL-21 in BAL of patients with sarcoidosis. Transcriptome analysis further confirmed a phenotype that was both Tfh-like and tissue resident. BAL T cells provided potent help for B cells to differentiate into antibody-producing cells. In lung tissue, we observed large peribronchial infiltrates with T and B cells in close contact, and many IgA+ plasmablasts. Most clusters were nonectopic; that is, they did not contain follicular dendritic cells. Patients with sarcoidosis also showed elevated levels of PD-1high CXCR5− CD40Lhigh ICOShigh Tfh-like cells, but not classical CXCR5+ Tfh cells, in the blood. Conclusions Active T-cell/B-cell cooperation and local production of potentially pathogenic antibodies in the inflamed lung represents a novel pathomechanism in sarcoidosis and should be considered from both diagnostic and therapeutic perspectives.
Collapse
Affiliation(s)
- Laura Bauer
- University Hospital Schleswig Holstein, 54186, Institute of Immunology, Kiel, Germany
| | | | - Sarah M Volkers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | | | | | - Clemens Ruppert
- Justus-Liebig-University Giessen, Department of Internal Medicine, Giessen, Germany
| | - Leif E Sander
- Charite Universitatsmedizin Berlin, 14903, Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Andreas Hutloff
- University Hospital Schleswig Holstein, 54186, Institute of Immunology, Kiel, Germany;
| |
Collapse
|
10
|
d'Alessandro M, Bergantini L, Cameli P, Mezzasalma F, Refini RM, Pieroni M, Sestini P, Bargagli E. Adaptive immune system in pulmonary sarcoidosis-Comparison of peripheral and alveolar biomarkers. Clin Exp Immunol 2021; 205:406-416. [PMID: 34107064 PMCID: PMC8374215 DOI: 10.1111/cei.13635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
Sarcoidosis is a multi‐systemic granulomatous disease of unknown origin. Recent research has focused upon the role of autoimmunity in its development and progression. This study aimed to determine and define the disturbance and distribution of T and B cell subsets in the alveolar and peripheral compartments. Thirteen patients were selected for the study [median age, interquartile range (IQR) = 57 years (48–59); 23% were male]. Twelve healthy controls [median age, IQR = 53 years (52–65); 16% male] were also enrolled into the study. Cellular and cytokine patterns were measured using the cytofluorimetric approach. Peripheral CD8 percentages were higher in sarcoidosis patients (SP) than healthy controls (HC) (p = 0.0293), while CD4 percentages were lower (p = 0.0305). SP showed low bronchoalveolar lavage (BAL) percentages of CD19 (p = 0.0004) and CD8 (p = 0.0035), while CD19+CD5+CD27− percentages were higher (p = 0.0213); the same was found for CD4 (p = 0.0396), follicular regulatory T cells (Treg) (p = 0.0078) and Treg (p < 0.0001) cells. Low T helper type 17 (Th17) percentages were observed in BAL (p = 0.0063) of SP. Peripheral CD4+ C‐X‐C chemokine receptor (CXCR)5+CD45RA−) percentages and follicular T helper cells (Tfh)‐like Th1 (Tfh1) percentages (p = 0.0493 and p = 0.0305, respectively) were higher in the SP than HC. Tfh1 percentages and Tfh‐like Th2 percentages were lower in BAL than in peripheral blood (p = 0.0370 and p = 0.0078, respectively), while CD4+ C‐X‐C motif CXCR5+CD45RA− percentages were higher (p = 0.0011). This is the first study, to our knowledge, to demonstrate a link between an imbalance in circulating and alveolar Tfh cells, especially CCR4‐, CXCR3‐ and CXCR5‐expressing Tfh subsets in the development of sarcoidosis. These findings raise questions about the pathogenesis of sarcoidosis and may provide new directions for future clinical studies and treatment strategies.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Fabrizio Mezzasalma
- Diagnostic and Interventional Bronchoscopy Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Maria Pieroni
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Piersante Sestini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| |
Collapse
|
11
|
Ly NTM, Ueda-Hayakawa I, Nguyen CTH, Huynh TNM, Kishimoto I, Fujimoto M, Okamoto H. Imbalance toward TFH 1 cells playing a role in aberrant B cell differentiation in systemic sclerosis. Rheumatology (Oxford) 2021; 60:1553-1562. [PMID: 33175976 DOI: 10.1093/rheumatology/keaa669] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/07/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE SSc is a connective tissue disease with multisystem disorder induced by the inflammation and fibrosis following T and B cell abnormalities. Follicular helper CD4+ T (TFH) cells play a crucial role in the formation of germinal centres and specialize in interacting to aid B cell differentiation. We aimed to investigate TFH cells and their subsets to evaluate their involvement with B cell alteration in SSc. METHOD Circulating TFH cells (cTFH), B cells and their subsets were assessed by flow cytometry. The concentration of serum cytokines was measured by cytokine array assay. Immunohistochemistry and IF were performed to evaluate the migration of TFH cells in SSc skin lesions. RESULTS The proportion of cTFH cells did not differ from controls, but their subsets were imbalanced in SSc patients. The frequency of TFH 1 was increased and correlated with ACA titre, serum IgM or CRP levels of patients, and cytokine concentrations of IL-21 and IL-6 that induce B cell differentiation in SSc. cTFH cells from SSc showed activated phenotype with expressing higher cytokine levels compared with controls. The frequency of TFH 17 was also increased, but was not correlated with a high level of Th17 cytokines in patients' sera. Furthermore, infiltration of TFH cells was found in skin lesion of SSc patients. CONCLUSION We here describe an imbalance of cTFH toward TFH 1 that may induce B cell alteration through IL-21 and IL-6 pathways and promote inflammation, contributing to the pathogenesis of SSc disease.
Collapse
Affiliation(s)
- Nhung Thi My Ly
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
- Department of Dermatology and Venereology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam, Japan
| | - Ikuko Ueda-Hayakawa
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
- Department of Dermatology, Osaka University, Suita, Japan
| | - Chuyen Thi Hong Nguyen
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
- Department of Dermatology and Venereology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam, Japan
| | | | - Izumi Kishimoto
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
| | | | - Hiroyuki Okamoto
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
12
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Current perspectives on the immunopathogenesis of sarcoidosis. Respir Med 2020; 173:106161. [PMID: 32992264 DOI: 10.1016/j.rmed.2020.106161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Sarcoidosis is an inflammatory systemic disease that commonly affects the lungs or lymph nodes but can manifest in other organs. Herein, we review the latest evidence establishing how innate and adaptive immune responses contribute to the pathogenesis and clinical course of sarcoidosis. We discuss the possible role of microbial organisms as etiologic agents in sarcoidosis and the evidence supporting sarcoidosis as an autoimmune disease. We also discuss how animal and in vitro human models have advanced our understanding of the immunopathogenesis of sarcoidosis. Finally, we discuss therapeutics for sarcoidosis and the effects on the immune system.
Collapse
|
14
|
Garman L, Montgomery CG, Rivera NV. Recent advances in sarcoidosis genomics: epigenetics, gene expression, and gene by environment (G × E) interaction studies. Curr Opin Pulm Med 2020; 26:544-553. [PMID: 32701681 PMCID: PMC7735660 DOI: 10.1097/mcp.0000000000000719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We aim to review the most recent findings in genomics of sarcoidosis and highlight the gaps in the field. RECENT FINDINGS Original explorations of sarcoidosis subphenotypes, including cases associated with the World Trade Center and ocular sarcoidosis, have identified novel risk loci. Innovative gene--environment interaction studies utilizing modern analytical techniques have discovered risk loci associated with smoking and insecticide exposure. The application of whole-exome sequencing has identified genetic variants associated with persistent sarcoidosis and rare functional variations. A single epigenomics study has provided background knowledge of DNA methylation mechanisms in comparison with gene expression data. The application of machine-learning techniques has suggested new drug repositioning for the treatment of sarcoidosis. Several gene expression studies have identified prominent inflammatory pathways enriched in the affected tissue. SUMMARY Certainly, sarcoidosis research has recently advanced in the exploration of disease subphenotypes, utilizing novel analytical techniques, and including measures of clinical variation. Nevertheless, large-scale and diverse cohorts investigated with advanced sequencing methods, such as whole-genome and single-cell RNA sequencing, epigenomics, and meta-analysis coupled with cutting-edge analytic approaches, when employed, will broaden and translate genomics findings into clinical applications, and ultimately open venues for personalized medicine.
Collapse
Affiliation(s)
- Lori Garman
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Courtney G. Montgomery
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Natalia V. Rivera
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|