1
|
Villagómez-Olea G, Uribe-Querol E, Marichi-Rodríguez FJ, Meléndez-Zajgla J, Alvaréz-Pérez MA, Rosales C. Periodontal ligament tissues support neutrophil differentiation and maturation processes. Front Immunol 2024; 15:1446541. [PMID: 39588378 PMCID: PMC11586715 DOI: 10.3389/fimmu.2024.1446541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Periodontal ligament is the soft connective tissue joining the roots of teeth with alveolar bone. The periodontal ligament presents significant cellular heterogeneity, including fibroblasts, endothelial cells, cementoblasts, osteoblasts, osteoclasts, and immune cells such as macrophages and neutrophils. These cells have crucial roles for periodontium homeostasis and function. However, certain cell types, such as neutrophils, remain poorly characterized in this tissue, despite their natural abundance and relevance in processes and diseases affecting the periodontal ligament. Methods In order to characterize neutrophils present in periodontal ligament, and get some insight into their functions, single-cell RNA sequencing data from published reports was analyzed to integrate and create a comprehensive map of neutrophil heterogeneity within the murine periodontal ligament under steady-state conditions. Results Four distinct neutrophil populations were identified based on their unique transcriptional signatures. Comparison and trajectory analysis revealed that these populations represent discrete stages of neutrophils undergoing maturation. These neutrophil populations were also classified, based on their granule content-associated signatures, as azurophil, specific, a transitional stage between specific and gelatinase (specific/gelatinase), and gelatinase. This reflects the sequential order of granule formation during neutrophil development (granulopoiesis) in the bone marrow. Discussion Together, our findings indicate that the periodontal ligament may serve as a microenvironment where the ordered and sequential maturation of neutrophils takes place. This suggests that similarly to other niches, the murine periodontal ligament can support, to some extent, hematopoietic processes such as granulopoiesis.
Collapse
Affiliation(s)
- Guillermo Villagómez-Olea
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Javier Marichi-Rodríguez
- Departamento de Ortodoncia, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Meléndez-Zajgla
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marco Antonio Alvaréz-Pérez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Li Z, Li J, Dai S, Liu R, Guo Q, Liu F. Research Status and Trends in Periodontal Ligament Stem Cells: A Bibliometric Analysis over the Past Two Decades. Stem Cells Int 2024; 2024:9955136. [PMID: 39372680 PMCID: PMC11452234 DOI: 10.1155/2024/9955136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Currently, the summaries of research on periodontal ligament stem cells (PDLSCs) are mainly reviews, and the systematic evaluation of all relevant studies is lacking. The aim of our study was to reveal the research status and developmental trends of PDLSCs using bibliometric analyses. Methods Publications on PDLSC from 2004 to 2023 in the PubMed database were searched and then screened according to certain inclusion and exclusion criteria. Two researchers browsed the included papers and recorded information such as the research type and research model. The VOSviewer software was used to analyze the distribution of authors, journals, and institutions. The contents and directions of PDLSC research were summarized by analyzing high-frequency keywords. The CiteSpace software was used to monitor burst words, determine hot factors, and indicate developmental trends. Results During the past two decades, the number of studies on PDLSCs increased. China published the most related papers. The primary type of article was basic research. Among core journals, the Journal of Periodontal Research had the highest number of publications. The Fourth Military Medical University (China) was leading in the number of articles on PDLSCs. Research topics mainly included mechanism of periodontal diseases, tissue engineering and regeneration, biological characteristics of PDLSCs, and comparison with other stem cells. Infectious inflammation and mechanical stimulation were important pathological conditions and research topics. Conclusion The research of PDLSCs is still in a rapid development stage. Our study provides new insights into the current research status and future trend in this field.
Collapse
Affiliation(s)
- Zhengyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Jinyi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Shanshan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Qingyu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Sexton B, Han Y, Dal-Fabbro R, Xu J, Kaigler D, Bottino MC. The role of fibroblast growth factor-2 in modulating the differentiation of periodontal ligament and alveolar bone-derived stem cells. Arch Oral Biol 2024; 165:106027. [PMID: 38870610 DOI: 10.1016/j.archoralbio.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.
Collapse
Affiliation(s)
- Benjamin Sexton
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuanyuan Han
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Sam YH, Nibali L, Ghuman M. Periodontal granulation tissue - To remove or not to remove, that is the question. J Periodontal Res 2024; 59:636-646. [PMID: 38686698 DOI: 10.1111/jre.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
Formation of granulation tissue is a fundamental phase in periodontal wound healing with subsequent maturation leading to regeneration or repair. However, persistently inflamed granulation tissue presents in osseous defects as a result of periodontitis and is routinely disrupted and discarded with non-surgical and surgical therapy to facilitate wound healing or improve chances of regeneration. Histological assessment suggests that granulation tissue from periodontitis-affected sites is effectively a chronic inflammatory tissue resulting from impaired wound healing due to persistence of bacterial dysbiotic bioflim. Nevertheless, the immunomodulatory potential and stem cell characteristics in granulation tissue have also raised speculation about the tissue's regenerative potential. This has led to the conception and recent implementation of surgical techniques which preserve granulation tissue with the intention of enhancing innate regenerative potential and improve clinical outcomes. As knowledge of fundamental cellular and molecular functions regulating periodontitis-affected granulation tissue is still scarce, this review aimed to provide a summary of current understanding of granulation tissue in the context of periodontal wound healing. This may provide new insights into clinical practice related to the management of granulation tissue and stimulate further investigation.
Collapse
Affiliation(s)
- Ye Han Sam
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Sawada K, Shimomura J, Takedachi M, Murata M, Morimoto C, Kawasaki K, Kawakami K, Iwayama T, Murakami S. Activation of periodontal ligament cell cytodifferentiation by juxtacrine signaling from cementoblasts. J Periodontol 2024; 95:256-267. [PMID: 37492992 DOI: 10.1002/jper.23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts. METHODS To analyze the role of human cementoblast-like cells (HCEMs) on human periodontal ligament cells (HPDLs), we mixed cell suspensions of enhanced green fluorescent protein-tagged HPDLs and HCEMs, and then seeded and cultured them in single wells (direct co-cultures). We sorted co-cultured HPDLs and analyzed their characteristics, including the expression of cementum-related genes. In addition, we cultured HPDLs and HCEMs in a non-contact environment using a culture system composed of an upper insert and a lower well separated by a semi-permeable membrane (indirect co-cultures), and similar analysis was performed. Gene expression of integrin-binding sialoprotein (IBSP) in cementoblasts was confirmed in mouse periodontal tissues. We also investigated the effect of Wingless-type (Wnt) signaling on the differentiation of HPDLs into cementoblasts. RESULTS Direct co-culture of HPDLs with HCEMs significantly upregulated the expression of cementoblast-related genes in HPDLs, whereas indirect co-culture exerted no effect. Wnt3A stimulation significantly upregulated IBSP expression in HPDLs, whereas inhibition of canonical Wnt signaling suppressed the effects of co-culture. CONCLUSION Our results suggest that direct cell interactions with cementoblasts promote periodontal ligament cell differentiation into cementoblasts. Juxtacrine signaling via the canonical Wnt pathway plays a role in this interaction.
Collapse
Affiliation(s)
- Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
7
|
Wu W, Li G, Dong S, Huihan Chu C, Ma S, Zhang Z, Yuan S, Wu J, Guo Z, Shen Y, Wang J, Tang C. Bomidin attenuates inflammation of periodontal ligament stem cells and periodontitis in mice via inhibiting ferroptosis. Int Immunopharmacol 2024; 127:111423. [PMID: 38141410 DOI: 10.1016/j.intimp.2023.111423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
AIM Periodontitis is a prevalent oral immunoinflammatory condition that is distinguished by the compromised functionality of periodontal ligament stem cells (PDLSCs). Bomidin, a new recombinant antimicrobial peptide (AMP), exhibits antibacterial properties and modulates immune responses. Nevertheless, the precise anti-inflammatory impact of bomidin in periodontitis has yet to be fully elucidated. Thus, the study aimed to clarified the role of bomidin in modulating inflammation and its underlying mechanisms. METHODS TNF-α was applied to treating PDLSCs for establishing a cell model of periodontitis. Bomidin, RSL3, ML385 and cycloheximide were also used to treat PDLSCs. Transcriptome sequencing, RT-qPCR, western blot, immunofluorescence, immunohistochemistry, Fe2+ detection probe, molecular docking, Co-IP assay, ubiquitination assay and murine models of periodontitis were used. RESULTS Our study demonstrated that bomidin effectively suppressed inflammation in PDLSCs stimulated by TNF-α, through down-regulating the MAPK and NF-κB signaling pathways. Furthermore, bomidin exerted inhibitory effects on ferroptosis and activated the Keap1/Nrf2 pathway in the TNF-α group. There is a strong likelihood of bonding bomidin with Keap1 protein, which facilitated the degradation of Keap1 protein via the ubiquitin-proteasome pathway, leading to an enhanced translocation of Nrf2 protein to the nucleus. CONCLUSIONS Bomidin can directly bond to Keap1 protein, resulting in the degradation of Keap1 through the ubiquitin-proteasome pathway, thereby further activating the Keap1/Nrf2 pathway. The upregulation of the Keap1/Nrf2 signaling pathway was found to contribute to the suppression of ferroptosis, ultimately alleviating inflammation in treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuo Dong
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Catherine Huihan Chu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Ma
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shanshan Yuan
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zixiang Guo
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Shen
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
8
|
Ponnaiyan D, Rughwani RR, Shetty G, Mahendra J. The effect of adjunctive LASER application on periodontal ligament stem cells. Front Cell Dev Biol 2024; 11:1341628. [PMID: 38283989 PMCID: PMC10811063 DOI: 10.3389/fcell.2023.1341628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Periodontal regeneration involves the composite action of cell, scaffolds and signaling molecules. There are numerous autologous sources of regenerative cells which are present close to the vicinity of the periodontally debilitated site, the primary one being the periodontal ligament stem cell, which is believed to have a key role in regeneration. Various methods can be harnessed to optimize and enhance the regenerative potential of PDLSCs such as the application of LASERs. In the last few years there have been various studies which have evaluated the effect of different types of LASERs on PDLSCs and the present review summarizes the photo-biomodulative activity of LASERs in general and its beneficial role in the stimulation of PDLSC specifically.
Collapse
Affiliation(s)
| | | | | | - Jaideep Mahendra
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Xu K, Li YD, Ren LY, Song HL, Yang QY, Xu DL. Long non-coding RNA X-Inactive Specific Transcript (XIST) interacting with USF2 promotes osteogenic differentiation of periodontal ligament stem cells through regulation of WDR72 transcription. J Periodontal Res 2023; 58:1235-1247. [PMID: 37712743 DOI: 10.1111/jre.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) are the most potential cells in periodontal tissue regeneration and bone tissue regeneration. Our prior work had revealed that WD repeat-containing protein 72 (WDR72) was crucial for osteogenic differentiation of PDLSCs. Here, we further elucidated its underlying mechanism in PDLSC osteogenic differentiation. METHODS Human PDLSCs, isolated and identified by flow cytometry, were prepared for osteogenic differentiation induction. Levels of WDR72, long non-coding RNA X-Inactive Specific Transcript (XIST), upstream stimulatory factor 2 (USF2), and osteogenic marker genes (Runx2, Osteocalcin, and Collagen I) in human PDLSCs and clinical specimens were detected by RT-qPCR. Protein expressions of WDR72, Runx2, Osteocalcin, and Colla1 were tested by Western blot. The interactions among the molecules were verified by RIP, RNA pull-down, ChIP, and luciferase reporter assays. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS WDR72 was decreased in periodontal tissues of periodontitis patients, and overexpression reversed TNF-α-mediated suppressive effects on PDLSC osteogenic differentiation. Mechanically, XIST recruited the enrichment of USF2 to the WDR72 promoter region, thereby positively regulating WDR72. WDR72 silencing overturned XIST-mediated biological effects in PDLSCs. CONCLUSION WDR72, regulated by the XIST/USF2 axis, enhances osteogenic differentiation of PDLSCs, implying a novel strategy for alleviating periodontitis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ya-Dong Li
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liu-Yang Ren
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Long Song
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiao-Yun Yang
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dong-Liang Xu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
10
|
Chiu K, Karpat M, Hahn J, Chang K, Weber M, Wolf M, Aveic S, Fischer H. Cyclic Stretching Triggers Cell Orientation and Extracellular Matrix Remodeling in a Periodontal Ligament 3D In Vitro Model. Adv Healthc Mater 2023; 12:e2301422. [PMID: 37703581 PMCID: PMC11469025 DOI: 10.1002/adhm.202301422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Indexed: 09/15/2023]
Abstract
During orthodontic tooth movement (OTM), the periodontal ligament (PDL) plays a crucial role in regulating the tissue remodeling process. To decipher the cellular and molecular mechanisms underlying this process in vitro, suitable 3D models are needed that more closely approximate the situation in vivo. Here, a customized bioreactor is developed that allows dynamic loading of PDL-derived fibroblasts (PDLF). A collagen-based hydrogel mixture is optimized to maintain structural integrity and constant cell growth during stretching. Numerical simulations show a uniform stress distribution in the hydrogel construct under stretching. Compared to static conditions, controlled cyclic stretching results in directional alignment of collagen fibers and enhances proliferation and spreading ability of the embedded PDLF cells. Effective force transmission to the embedded cells is demonstrated by a more than threefold increase in Periostin protein expression. The cyclic stretch conditions also promote extensive remodeling of the extracellular matrix, as confirmed by increased glycosaminoglycan production. These results highlight the importance of dynamic loading over an extended period of time to determine the behavior of PDLF and to identify in vitro mechanobiological cues triggered during OTM-like stimulus. The introduced dynamic bioreactor is therefore a useful in vitro tool to study these mechanisms.
Collapse
Affiliation(s)
- Kuo‐Hui Chiu
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Mert Karpat
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Johannes Hahn
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Kao‐Yuan Chang
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Michael Weber
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
11
|
Kim A, Kim AR, Jeon YE, Yoo YJ, Yang YM, Bak EJ. TRPC expression in human periodontal ligament cells and the periodontal tissue of periodontitis mice: a preliminary study. Lab Anim Res 2023; 39:19. [PMID: 37653550 PMCID: PMC10472569 DOI: 10.1186/s42826-023-00171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Transient receptor potential canonical (TRPC) channels are non-selective cationic channels with permeability to Ca2+ and Na+. Despite their importance, there are currently few studies on TRPC in the periodontal ligament (PDL) and bone cells in the dental field. To provide biological information regarding TRPC in PDL cells and periodontal tissue, we evaluated TRPC channels expression in the osteoblast differentiation of PDL cells and periodontitis-induced tissue. Human PDL cells were cultured in osteogenic differentiation media for 28 days, and the expression of Runx2, osteocalcin (OCN), and TRPC1, 3, 4, and 6 was evaluated by real-time PCR. In ligature-induced periodontitis mice, the alveolar bone and osteoid areas, the osteoclast number, and the expression of Runx2, OCN, TRPC3, and TRPC6 was evaluated by H&E staining, TRAP staining, and immunohistochemistry, respectively. RESULTS In the PDL cell differentiation group, TRPC6 expression peaked on day 7 and TRPC3 expression generally increased during differentiation. During the 28 days of periodontitis progression, alveolar bone loss and osteoclast numbers increased compared to the control group during the experimental period and the osteoid area increased from day 14. TRPC6 expression in the periodontitis group increased in the PDL area and in the osteoblasts compared to the control group, whereas TRPC3 expression increased only in the PDL area on days 7 and 28. CONCLUSIONS These results indicate changes of TRPC3 and TRPC6 expression in PDL cells that were differentiating into osteoblasts and in periodontitis-induced tissue, suggesting the need for research on the role of TRPC in osteoblast differentiation or periodontitis progression.
Collapse
Affiliation(s)
- Aeryun Kim
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Sinchon Dong, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Oral Health Research Institute, Apple Tree Dental Hospital, Bucheon, 14642, Republic of Korea
| | - Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Sinchon Dong, Seodaemun-gu, Seoul, 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Sinchon Dong, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Sinchon Dong, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Sinchon Dong, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, 134 Sinchon Dong, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Di Vito A, Bria J, Antonelli A, Mesuraca M, Barni T, Giudice A, Chiarella E. A Review of Novel Strategies for Human Periodontal Ligament Stem Cell Ex Vivo Expansion: Are They an Evidence-Based Promise for Regenerative Periodontal Therapy? Int J Mol Sci 2023; 24:ijms24097798. [PMID: 37175504 PMCID: PMC10178011 DOI: 10.3390/ijms24097798] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Periodontitis is a gingiva disease sustained by microbially associated and host-mediated inflammation that results in the loss of the connective periodontal tissues, including periodontal ligament and alveolar bone. Symptoms include swollen gingiva, tooth loss and, ultimately, ineffective mastication. Clinicians utilize regenerative techniques to rebuild and recover damaged periodontal tissues, especially in advanced periodontitis. Human periodontal ligament stem cells (hPDLSCs) are considered an appealing source of stem cells for regenerative therapy in periodontium. hPDLSCs manifest the main properties of mesenchymal stem cells, including the ability to self-renew and to differentiate in mesodermal cells. Significant progress has been made for clinical application of hPDLSCs; nevertheless, some problems remain, including the small number of cells isolated from each sample. In recent decades, hPDLSC ex vivo expansion and differentiation have been improved by modifying cell culture conditions, especially with the supplementation of cytokines' or growth factors' mix, chemicals, and natural compounds, or by using the decellularized extracellular matrix. Here, we analyzed the changes in stemness properties and differentiation potential of hPDLSCs when culturing in alternative media. In addition, we focused on the possibility of replacing FBS with human emoderivates to minimize the risks of xenoimmunization or zoonotic transmission when cells are expanded for therapeutic purposes.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Bria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Antonelli
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Study of the inflammatory activating process in the early stage of Fusobacterium nucleatum infected PDLSCs. Int J Oral Sci 2023; 15:8. [PMID: 36754953 PMCID: PMC9908923 DOI: 10.1038/s41368-022-00213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 02/10/2023] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells (PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and the host inflammatory response at the early stage of F. nucleatum infection.
Collapse
|
14
|
Pharmacological Activation of YAP/TAZ by Targeting LATS1/2 Enhances Periodontal Tissue Regeneration in a Murine Model. Int J Mol Sci 2023; 24:ijms24020970. [PMID: 36674487 PMCID: PMC9866423 DOI: 10.3390/ijms24020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal regeneration therapy is not expected to exhibit an effective prognosis since mechanical forces, such as traumatic occlusion, also exacerbate periodontal tissue degeneration and loss. Herein, we established a standardized murine periodontal regeneration model and evaluated the regeneration process associated with cementum remodeling. By administering a kinase inhibitor of YAP/TAZ suppressor molecules, such as large tumor suppressor homolog 1/2 (LATS1/2), we found that the activation of YAP/TAZ, a key downstream effector of mechanical signals, accelerated periodontal tissue regeneration due to the activation of PDLF cell proliferation. Mechanistically, among six kinds of MAP4Ks previously reported as upstream kinases that suppressed YAP/TAZ transcriptional activity through LATS1/2 in various types of cells, MAP4K4 was identified as the predominant MAP4K in PDLF and contributed to cell proliferation and differentiation depending on its kinase activity. Ultimately, pharmacological activation of YAP/TAZ by inhibiting upstream inhibitory kinase in PDLFs is a valuable strategy for improving the clinical outcomes of periodontal regeneration therapies.
Collapse
|
15
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
16
|
Iwayama T, Iwashita M, Miyashita K, Sakashita H, Matsumoto S, Tomita K, Bhongsatiern P, Kitayama T, Ikegami K, Shimbo T, Tamai K, Murayama MA, Ogawa S, Iwakura Y, Yamada S, Olson LE, Takedachi M, Murakami S. Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development 2022; 149:277273. [DOI: 10.1242/dev.201203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
ABSTRACT
Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1−Ibsp+Sparcl1+ and Plap-1−Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Mizuho Iwashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | | | - Hiromi Sakashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
| | - Shuji Matsumoto
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Kiwako Tomita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Phan Bhongsatiern
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Tomomi Kitayama
- StemRIM Inc. 2 , Ibaraki, Osaka 567-0085 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | | | - Takashi Shimbo
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Katsuto Tamai
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Masanori A. Murayama
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Satoru Yamada
- Tohoku University Graduate School of Dentistry 6 Department of Periodontology and Endodontology , , Sendai, Miyagi 980-8575 , Japan
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation 7 , Oklahoma City, OK 73104 , USA
| | - Masahide Takedachi
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Shinya Murakami
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| |
Collapse
|