1
|
Dusseldorp F, Bruins-van-Sonsbeek LGR, Buskermolen M, Niphuis H, Dirven M, Whelan J, Oude Munnink BB, Koopmans M, Fanoy EB, Sikkema RS, Tjon-A-Tsien A. SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021. Euro Surveill 2023; 28:2200741. [PMID: 37440347 PMCID: PMC10347891 DOI: 10.2807/1560-7917.es.2023.28.28.2200741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 07/15/2023] Open
Abstract
In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers' viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.
Collapse
Affiliation(s)
| | | | | | - Henk Niphuis
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | - Jane Whelan
- Public Health Services Rotterdam Rijnmond, the Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Ewout B Fanoy
- Public Health Services Rotterdam Rijnmond, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | | |
Collapse
|
2
|
Changula K, Simulundu E, Lombe BP, Nakayama E, Miyamoto H, Takahashi Y, Sawa H, Simukonda C, Hang’ombe BM, Takada A. Serological Evidence of Filovirus Infection in Nonhuman Primates in Zambia. Viruses 2021; 13:v13071283. [PMID: 34209295 PMCID: PMC8309988 DOI: 10.3390/v13071283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/01/2022] Open
Abstract
Ebolaviruses and marburgviruses are filoviruses that are known to cause severe hemorrhagic fever in humans and nonhuman primates (NHPs). While some bat species are suspected to be natural reservoirs of these filoviruses, wild NHPs often act as intermediate hosts for viral transmission to humans. Using an enzyme-linked immunosorbent assay, we screened two NHP species, wild baboons and vervet monkeys captured in Zambia, for their serum IgG antibodies specific to the envelope glycoproteins of filoviruses. From 243 samples tested, 39 NHPs (16%) were found to be seropositive either for ebolaviruses or marburgviruses with endpoint antibody titers ranging from 100 to 25,600. Interestingly, antibodies reactive to Reston virus, which is found only in Asia, were detected in both NHP species. There was a significant difference in the seropositivity for the marburgvirus antigen between the two NHP species, with baboons having a higher positive rate. These results suggest that wild NHPs in Zambia might be nonlethally exposed to these filoviruses, and this emphasizes the need for continuous monitoring of filovirus infection in wild animals to better understand the ecology of filoviruses and to assess potential risks of outbreaks in humans in previously nonendemic countries.
Collapse
Affiliation(s)
- Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (K.C.); (B.M.H.)
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.S.); (H.S.)
- Macha Research Trust, P.O. Box 630166, Choma 20100, Zambia
| | - Boniface Pongombo Lombe
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (H.M.); (Y.T.)
- Central Veterinary Laboratory of Kinshasa, Kinshasa BP 8842, Democratic Republic of the Congo
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa BP 8815, Democratic Republic of the Congo
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (H.M.); (Y.T.)
| | - Yuji Takahashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (H.M.); (Y.T.)
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.S.); (H.S.)
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Chuma Simukonda
- Department of National Parks and Wildlife, Chilanga 10101, Zambia;
| | - Bernard M. Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (K.C.); (B.M.H.)
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.S.); (H.S.)
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (H.M.); (Y.T.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Correspondence: ; Tel.: +81-11-706-9502
| |
Collapse
|
3
|
Detection of Ebola Virus Antibodies in Fecal Samples of Great Apes in Gabon. Viruses 2020; 12:v12121347. [PMID: 33255243 PMCID: PMC7761173 DOI: 10.3390/v12121347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023] Open
Abstract
Based on a large study conducted on wild great ape fecal samples collected in regions of Gabon where previous human outbreaks of Ebola virus disease have occurred between 1994 and 2002, we provide evidence for prevalence of Zaire ebolavirus (EBOV)-specific antibodies of 3.9% (immunoglobulin G (IgG)) and 3.5% (immunoglobulin M (IgM)) in chimpanzees and 8.8% (IgG) and 2.4% (IgM) in gorillas. Importantly, we observed a high local prevalence (31.2%) of anti-EBOV IgG antibodies in gorilla samples. This high local rate of positivity among wild great apes raises the question of a spatially and temporally localized increase in EBOV exposure risk and the role that can be played by these animals as sentinels of the virus’s spread or reemergence in a given area.
Collapse
|
4
|
Systematic Review of Important Viral Diseases in Africa in Light of the 'One Health' Concept. Pathogens 2020; 9:pathogens9040301. [PMID: 32325980 PMCID: PMC7238228 DOI: 10.3390/pathogens9040301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging and re-emerging viral diseases are of great public health concern. The recent emergence of Severe Acute Respiratory Syndrome (SARS) related coronavirus (SARS-CoV-2) in December 2019 in China, which causes COVID-19 disease in humans, and its current spread to several countries, leading to the first pandemic in history to be caused by a coronavirus, highlights the significance of zoonotic viral diseases. Rift Valley fever, rabies, West Nile, chikungunya, dengue, yellow fever, Crimean-Congo hemorrhagic fever, Ebola, and influenza viruses among many other viruses have been reported from different African countries. The paucity of information, lack of knowledge, limited resources, and climate change, coupled with cultural traditions make the African continent a hotspot for vector-borne and zoonotic viral diseases, which may spread globally. Currently, there is no information available on the status of virus diseases in Africa. This systematic review highlights the available information about viral diseases, including zoonotic and vector-borne diseases, reported in Africa. The findings will help us understand the trend of emerging and re-emerging virus diseases within the African continent. The findings recommend active surveillance of viral diseases and strict implementation of One Health measures in Africa to improve human public health and reduce the possibility of potential pandemics due to zoonotic viruses.
Collapse
|