1
|
Chen W, Li J, Guo J, Li L, Wu H. Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes. Adv Colloid Interface Sci 2024; 332:103253. [PMID: 39067260 DOI: 10.1016/j.cis.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.
Collapse
Affiliation(s)
- Wenting Chen
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiahui Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
2
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Wang C, Liu M, Zhang D, Li P, Wang D, Sun S, Wei W. Detection of β-amyloid peptide aggregates by quartz crystal microbalance based on dual-aptamer assisted signal amplification. Anal Chim Acta 2023; 1244:340857. [PMID: 36737146 DOI: 10.1016/j.aca.2023.340857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
β-amyloid peptide (Aβ) aggregates are regarded as a typical neuropathology hallmark for the diagnosis of Alzheimer's disease (AD). Aβ40 aggregates include soluble oligomers (Aβ40O) and insoluble fibrils (Aβ40F). Both of them can simultaneously bind to two different kinds of its aptamer (Apt1 and Apt2). As a mass-sensitive sensing platform, quartz crystal microbalance (QCM) converts changes in mass on the Au chip surface into frequency shift. Here, a dual-aptamer assisted Aβ40 aggregates assay was developed. Taking Aβ40O detection as an example, Apt2 was modified on the surface of Au chip by Au-S bond. Subsequently, the solution consisted of Aβ40O and gold nanoparticles-Apt1 (AuNPs-Apt1) were injected into the QCM chamber. As a result, Aβ40O was specifically recognized and captured by Apt2. AuNPs-Apt1 were also combined on the surface of the Au chip because Aβ40O can simultaneously bind to Apt1. Then, a significant frequency shift occurred because of the large weight of AuNPs. Similarly, this procedure can be used to detect Aβ40F. This QCM biosensor was able to detect Aβ40O with a range of 0.2-10 pM with a detection limit of 0.11 pM, while the linear range for Aβ40F was 0.1-10 pM with a detection limit of 0.02 pM. This QCM biosensor was simple and highly sensitive, which provided a new method for Aβ40 aggregates detection.
Collapse
Affiliation(s)
- Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Mengke Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Duoduo Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Gai Z, Li F, Yang X. Electrochemiluinescence monitoring the interaction between human serum albumin and amyloid-β peptide. Bioelectrochemistry 2022; 149:108315. [DOI: 10.1016/j.bioelechem.2022.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
6
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Potentiometric Biosensor Based on Artificial Antibodies for an Alzheimer Biomarker Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a potentiometric biosensor for the detection of amyloid β-42 (Aβ-42) in point-of-care analysis. This approach is based on the molecular imprint polymer (MIP) technique, which uses covalently immobilised Aβ-42 to create specific detection cavities on the surface of single-walled carbon nanotubes (SWCNTs). The biosensor was prepared by binding Aβ-42 to the SWCNT surface and then imprinting it by adding acrylamide (monomer), N,N’-methylene-bis-acrylamide (crosslinker) and ammonium persulphate (initiator). The target peptide was removed from the polymer matrix by the proteolytic action of an enzyme (proteinase K). The presence of imprinting sites was confirmed by comparing a MIP-modified surface with a negative control (NIP) consisting of a similar material where the target molecule had been removed from the process. The ability of the sensing material to rebind Aβ-42 was demonstrated by incorporating the MIP material as an electroactive compound in a PVC/plasticiser mixture applied to a solid conductive support of graphite. All steps of the synthesis of the imprinted materials were followed by Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The analytical performance was evaluated by potentiometric transduction, and the MIP material showed cationic slopes of 75 mV-decade−1 in buffer pH 8.0 and a detection limit of 0.72 μg/mL. Overall, potentiometric transduction confirmed that the sensor can discriminate Aβ-42 in the presence of other biomolecules in the same solution.
Collapse
|
8
|
Zhang L, Du X, Su Y, Niu S, Li Y, Liang X, Luo H. Quantitative assessment of AD markers using naked eyes: point-of-care testing with paper-based lateral flow immunoassay. J Nanobiotechnology 2021; 19:366. [PMID: 34789291 PMCID: PMC8597216 DOI: 10.1186/s12951-021-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Aβ42 is one of the most extensively studied blood and Cerebrospinal fluid (CSF) biomarkers for the diagnosis of symptomatic and prodromal Alzheimer's disease (AD). Because of the heterogeneity and transient nature of Aβ42 oligomers (Aβ42Os), the development of technologies for dynamically detecting changes in the blood or CSF levels of Aβ42 monomers (Aβ42Ms) and Aβ42Os is essential for the accurate diagnosis of AD. The currently commonly used Aβ42 ELISA test kits usually mis-detected the elevated Aβ42Os, leading to incomplete analysis and underestimation of soluble Aβ42, resulting in a comprised performance in AD diagnosis. Herein, we developed a dual-target lateral flow immunoassay (dLFI) using anti-Aβ42 monoclonal antibodies 1F12 and 2C6 for the rapid and point-of-care detection of Aβ42Ms and Aβ42Os in blood samples within 30 min for AD diagnosis. By naked eye observation, the visual detection limit of Aβ42Ms or/and Aβ42Os in dLFI was 154 pg/mL. The test results for dLFI were similar to those observed in the enzyme-linked immunosorbent assay (ELISA). Therefore, this paper-based dLFI provides a practical and rapid method for the on-site detection of two biomarkers in blood or CSF samples without the need for additional expertise or equipment.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewei Du
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqi Niu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.
- , Wuhan, China.
| |
Collapse
|
9
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
10
|
Zhang J, Zhang X, Gao Y, Yan J, Song W. Integrating CuO/g-C3N4 p-n heterojunctioned photocathode with MoS2 QDs@Cu NWs multifunctional signal amplifier for ultrasensitive detection of AβO. Biosens Bioelectron 2021; 176:112945. [DOI: 10.1016/j.bios.2020.112945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/03/2023]
|
11
|
Zeng F, Li Y, Xu Y, Yang J, Liu Z, Li X, Ren L. Strategies Targeting Soluble β-Amyloid Oligomers and their Application to Early Diagnosis of Alzheimer's Disease. Curr Alzheimer Res 2020; 16:1132-1142. [PMID: 31670622 DOI: 10.2174/1567205016666191031163504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common neurodegenerative disorder, and it is still incurable. Early diagnosis and intervention are crucial for delaying the onset and progression of the disease. Mounting evidence indicates that the neurotoxic effects might be attributed to Soluble β-Amyloid Oligomers (SAβO). The SAβO are believed to be neurotoxic peptides more predominant than Aβ plaques in the early stage, and their key role in AD is self-evident. Unfortunately, identification of SAβO proves to be difficult due to their heterogeneous and transient nature. In spite of many obstacles, multiple techniques have recently been developed to target SAβO effectively. This review focuses on the recent progress in the approaches towards SAβO detection in order to shed some light on the future development of SAβO assays. METHODS Literatures were obtained from the following libraries: Web of Science, PubMed, EPO, SIPO, USPTO. Articles were critically reviewed based on their titles, abstracts, and contents. RESULTS A total of 85 papers are referenced in the review. Results are divided into three categories based on the types of detection methods: small molecule fluorescence probes, oligomer-specific antibodies and electrochemical biosensors. Finally, the improvements and challenges of these approaches applied in the early diagnosis of AD were discussed. CONCLUSION This review article covers three kinds of strategies that could be translated into clinic practice and lead to earlier diagnosis and therapeutic interventions of AD.
Collapse
Affiliation(s)
- Fantian Zeng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Yuyan Li
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Yungen Xu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Yang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengshi Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaofang Li
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Longfei Ren
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Carneiro P, Morais S, do Carmo Pereira M. Biosensors on the road to early diagnostic and surveillance of Alzheimer's disease. Talanta 2020; 211:120700. [PMID: 32070618 DOI: 10.1016/j.talanta.2019.120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a debilitating and largely untreatable condition with subtle onset and slow progression over an extensive period of time, which culminate in increasing levels of disability. As Alzheimer's disease prevalence is expected to grow exponentially in the upcoming decades, there is an urgency to develop analytical technologies for the sensitive, reliable and cost-effective detection of Alzheimer's disease biomarkers. Biosensors are powerful analytical devices that translate events of biological recognition on physical or chemical transducers into electrical, thermal or optical signals. The high sensitivity and selectivity of biosensors associated with easy, rapid and low-cost determination of analytes have made this discipline one of the most intensively studied in the past decades. This review centers on recent advances, challenges and trends of Alzheimer's disease biosensing particularly in the effort to combine the unique properties of nanomaterials with biorecognition elements. In the last decade, impressive progresses have been made towards the development of biosensors, mainly electrochemical and optical, for detection of Alzheimer's disease biomarkers in the pico- and femto-molar range. Nonetheless, advances in multiplexed detection, robustness, stability and specificity are still necessary to ensure an accurate and differentiated diagnosis of this disease.
Collapse
Affiliation(s)
- Pedro Carneiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
13
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
14
|
Wang Y, Zhang Y, Sha H, Xiong X, Jia N. Design and Biosensing of a Ratiometric Electrochemiluminescence Resonance Energy Transfer Aptasensor between a g-C 3N 4 Nanosheet and Ru@MOF for Amyloid-β Protein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36299-36306. [PMID: 31514493 DOI: 10.1021/acsami.9b09492] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A dual-wavelength ratiometric electrochemiluminescence resonance energy transfer (ECL-RET) aptasensor based on the carbon nitride nanosheet (g-C3N4 NS) and metal-organic frameworks (Ru@MOFs) as energy donor-receptor pairs is first designed for the detection of the amyloid-β (Aβ) protein. The cathode ECL of g-C3N4 NS gradually decreased, whereas the anode ECL from Ru@MOF pyramidally enhanced along with the increasing concentration of Aβ in a 0.1 M phosphate-buffered saline solution containing 0.1 M S2O82-. Additionally, it is worth noting that 2-amino terephthalic acid from MOF not only can load abundant amounts of luminophor Ru(bpy)32+ but also promote the conversion of more amounts of S2O82- that served as a coreactant accelerator into SO4•-, further enhancing the ECL signal of Ru@MOF. Besides, the ECL intensity from the g-C3N4 NS had a tremendous spectrum overlap with the UV-vis spectrum of Ru@MOF, demonstrating the high-efficiency ECL-RET from g-C3N4 NS to Ru@MOF. According to the ratio of ECL460nm/ECL620nm, the constructed aptasensor for the detection of Aβ showed a wide linear range from 10-5 to 500 ng/mL and a low detection limit of 3.9 fg/mL (S/N = 3) with a correction coefficient of 0.9965. The obtained results certified that the dual-wavelength ratiometric ECL sensor could provide a reliable direction and have the potential for application in biosensing and clinical diagnosis fields.
Collapse
Affiliation(s)
- Yinfang Wang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Yao Zhang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Haifeng Sha
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Xin Xiong
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Nengqin Jia
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
15
|
Qin J, Cho M, Lee Y. Ultrasensitive Detection of Amyloid-β Using Cellular Prion Protein on the Highly Conductive Au Nanoparticles–Poly(3,4-ethylene dioxythiophene)–Poly(thiophene-3-acetic acid) Composite Electrode. Anal Chem 2019; 91:11259-11265. [DOI: 10.1021/acs.analchem.9b02266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jieling Qin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Misuk Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Youngkwan Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
16
|
JIANG M, WANG XY, WANG XB. Advances in Detection Methods of β-Amyloid Protein. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61107-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Qin J, Jo DG, Cho M, Lee Y. Monitoring of early diagnosis of Alzheimer's disease using the cellular prion protein and poly(pyrrole-2-carboxylic acid) modified electrode. Biosens Bioelectron 2018; 113:82-87. [DOI: 10.1016/j.bios.2018.04.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/01/2022]
|
18
|
Cadkova M, Kovarova A, Dvorakova V, Metelka R, Bilkova Z, Korecka L. Electrochemical quantum dots-based magneto-immunoassay for detection of HE4 protein on metal film-modified screen-printed carbon electrodes. Talanta 2018; 182:111-115. [PMID: 29501129 DOI: 10.1016/j.talanta.2018.01.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
Abstract
A novel enzyme-free electrochemical immunosensor was developed for highly sensitive detection and quantification of human epididymis protein 4 (HE4) in human serum. For the first time, core/shell CdSe/ZnS quantum dots were conjugated with anti-HE4 IgG antibodies for subsequent sandwich-type immunosensing with superparamagnetic microparticles functionalized with anti-HE4 IgG antibodies, which allow rapid and efficient HE4 capture from the sample. Electrochemical detection of anti-HE4 IgG - HE4 - anti-HE4 IgGCdSe/ZnS immunocomplex was performed by recording the current response of Cd(II) ions, released from dissolved quantum dots at screen-printed carbon electrode (SPCE), modified with mercury or bismuth film. The linear range of the detection was from 20 pM to 40 nM with limit of detection of 12 pM using three times the standard deviation of blank criterion at mercury-film SPCE and from 100 pM to 2 nM with limit of detection of 89 pM at bismuth-film SPCE. Proposed electrochemical immunosensor meets the requirements for fast and sensitive quantification of HE4 biomarker in early stage of ovarian cancer and due to the proper sensitivity and specificity presents a promising alternative to enzyme-based probes used routinely in clinical diagnostics.
Collapse
Affiliation(s)
- Michaela Cadkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Aneta Kovarova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Veronika Dvorakova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Radovan Metelka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
19
|
Deng C, Liu H, Zhang M, Deng H, Lei C, Shen L, Jiao B, Tu Q, Jin Y, Xiang L, Deng W, Xie Y, Xiang J. Light-Up Nonthiolated Aptasensor for Low-Mass, Soluble Amyloid-β 40 Oligomers at High Salt Concentrations. Anal Chem 2018; 90:1710-1717. [PMID: 29299912 DOI: 10.1021/acs.analchem.7b03468] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, a light-up nonthiolated aptasensor was developed for low-mass, soluble amyloid-β40 oligomers (LS-Aβ40-O). Au nanoparticles (AuNP) were employed as colorimetric probes, and the nonthiolated aptamers (Apt) were adsorbed on AuNP surfaces, acting as binding elements for LS-Aβ40-O. The aggregation of AuNPs was induced when Apt-modified AuNPs (Apt@AuNPs) were under high-salt conditions. However, upon the addition of LS-Aβ40-O into the Apt@AuNP solution, the salt tolerance of the AuNPs was greatly enhanced. Further studies confirmed that the formed LS-Aβ40-O-Apt complex attached onto the AuNP surfaces via interactions between LS-Aβ40-O and Au, which led to electrostatic and steric stabilization of the AuNPs under high-salt conditions. On the basis of this outcome, a sensitive light-up nonthiolated aptasensor for LS-Aβ40-O was achieved with a detection limit of 10.0 nM and a linear range from 35.0 to 700 nM in a 175 mM NaCl solution. Cerebrospinal-fluid (CSF) samples from healthy persons and Alzheimer's disease (AD) patients were successfully distinguished by using this proposed method. The concentrations of LS-Aβ40-O in the CSF of AD patients were of nanomolar grade, but there was no detectable LS-Aβ40-O in those of the healthy persons. This work provides a new insight into the interaction between Apt@AuNPs and Aβ40-O and also develops a simple, rapid, highly selective and sensitive, and applicable method for LS-Aβ40-O detection in real CSF samples, which is significant for the diagnosis of AD.
Collapse
Affiliation(s)
- Chunyan Deng
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, Hunan, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, Hunan, PR China
| | - Manman Zhang
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, Hunan, PR China
| | - Honghua Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, Hunan, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, Hunan, PR China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University , Changsha 410008, Hunan, PR China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University , Changsha 410008, Hunan, PR China
| | - Qiuyun Tu
- Department of Geratology, the Third Xiangya Hospital, Central South University , Changsha 410013, Hunan, PR China
| | - Yan Jin
- Department of Geratology, the Third Xiangya Hospital, Central South University , Changsha 410013, Hunan, PR China
| | - Lei Xiang
- The Second Hospital of Jingzhou , Jingzhou 434000, Hubei, PR China
| | - Wei Deng
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, Hunan, PR China
| | - Yongfan Xie
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, Hunan, PR China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University , Changsha 410083, Hunan, PR China
| |
Collapse
|
20
|
Shui B, Tao D, Florea A, Cheng J, Zhao Q, Gu Y, Li W, Jaffrezic-Renault N, Mei Y, Guo Z. Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 2018; 147:13-24. [PMID: 29307704 DOI: 10.1016/j.biochi.2017.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a chronic disease amongst people aged 65 and older. Increasing evidence has illustrated that early diagnosis holds the key to effective treatment of AD. A variety of detection techniques have been developed. Biosensors are excellent analytical tools which have applications in detecting the biomarkers of AD. This review includes appropriate bioreceptors to achieve highly sensitive and selective quantification of AD biomarkers by using transducers. AD biomarkers such as tau protein, amyloid β peptides and apolipoprotein E4, are firstly summarized. The most commonly used bioreceptors, including aptamers and antibodies, are also reviewed. We introduce aptamers specific to AD biomarkers, list the sequences of aptamers designed to capture AD biomarkers and compare the properties of aptamers with those of antibodies with regard to their efficiency as bio-recognition elements. We discuss the recent progress of aptamer systems' applications in AD biomarkers in biosensing. The review also discusses novel strategies used for signal amplification in sensing AD biomarkers.
Collapse
Affiliation(s)
- Bingqing Shui
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Anca Florea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania.
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Qin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Yingying Gu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Wen Li
- School of Arts, Wuhan Business University, Wuhan 430056, PR China.
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, Rue de La Doua, Villeurbanne 69100, France.
| | - Yong Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
21
|
Ke H, Sha H, Wang Y, Guo W, Zhang X, Wang Z, Huang C, Jia N. Electrochemiluminescence resonance energy transfer system between GNRs and Ru(bpy) 32+: Application in magnetic aptasensor for β-amyloid. Biosens Bioelectron 2017; 100:266-273. [PMID: 28938186 DOI: 10.1016/j.bios.2017.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
Electrochemiluminescent (ECL) assay has gradually drawn increasing interest in the biomedical analysis. This paper proposed a new methodology for ultrasensitive and facile detection of Alzheimer's disease marker β-amyloid (Aβ) by fabricating a sandwich-type ECL sensing platform. Herein, electrochemiluminescence resonance energy transfer (ECL-RET) was employed to determine Aβ concentration, which can be attributed to the quenching effect from RET between Ru(bpy)32+ and gold nanorods (GNRs) acting as ECL-RET electron donor and acceptor, respectively. In this protocol, mesoporous carbon nanospheres were adopted to immobilize ECL reactant Ru(bpy)32+ and antibody via nafion to acquire the RET donor nanocomposites (MOCs/nafion/Ru(bpy)32+/antibody), which were tightly interconnected with epoxy group functionalized Fe3O4 nanoparticles. It is of vital importance that GNRs with exquisite rod shape were synthesized and exhibited a typical absorption peak at 650nm to quench ECL signal of Ru(bpy)32+ effectively. In addition, the ECL emission decreased linearly with the logarithm of Aβ concentration in a wide linear range from 1.0 × 10-5 to 100ng/mL with a detection limit of 4.2 × 10-6ng/mL. Furthermore, distinctive and desirable properties were verified to declare the promise for being applicable to analyze the Aβ content in real Alzheimer's cerebrospinal fluid samples with satisfactory results.
Collapse
Affiliation(s)
- Hong Ke
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Haifeng Sha
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yinfang Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Weiwei Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Xin Zhang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Zhiming Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China.
| |
Collapse
|
22
|
Mandli J, Attar A, Ennaji MM, Amine A. Indirect competitive electrochemical immunosensor for hepatitis A virus antigen detection. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Olajos G, Bartus É, Schuster I, Lautner G, Gyurcsányi RE, Szögi T, Fülöp L, Martinek TA. Multivalent foldamer-based affinity assay for selective recognition of Aβ oligomers. Anal Chim Acta 2017; 960:131-137. [PMID: 28193356 DOI: 10.1016/j.aca.2017.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Mimicking the molecular recognition functionality of antibodies is a great challenge. Foldamers are attractive candidates because of their relatively small size and designable interaction surface. This paper describes a sandwich type enzyme-linked immunoassay with a tetravalent β-peptide foldamer helix array as capture element and enzyme labeled tracer antibodies. The assay was found to be selective to β-amyloid oligomeric species with surface features transiently present in ongoing aggregation. In optimized conditions, with special emphasis on the foldamer immobilization, a detection limit of 5 pM was achieved with a linear range of 10-500 pM. These results suggest that protein mimetic foldamers can be useful tools in biosensors and affinity assays.
Collapse
Affiliation(s)
- Gábor Olajos
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary
| | - Éva Bartus
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary
| | - Ildikó Schuster
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Gergely Lautner
- MTA-BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| | - Róbert E Gyurcsányi
- MTA-BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| | - Titanilla Szögi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary.
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary.
| |
Collapse
|
24
|
Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 2016; 85:625-632. [DOI: 10.1016/j.bios.2016.05.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
|
25
|
Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Anal Chim Acta 2016; 940:21-37. [DOI: 10.1016/j.aca.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
|
26
|
Xia N, Wang X, Zhou B, Wu Y, Mao W, Liu L. Electrochemical Detection of Amyloid-β Oligomers Based on the Signal Amplification of a Network of Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19303-19311. [PMID: 27414520 DOI: 10.1021/acsami.6b05423] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amyloid-β oligomers (AβOs) are the most important toxic species in the brain of Alzheimer's disease (AD) patient. AβOs, therefore, are considered reliable molecular biomarkers for the diagnosis of AD. Herein, we reported a simple and sensitive electrochemical method for the selective detection of AβOs using silver nanoparticles (AgNPs) as the redox reporters and PrP(95-110), an AβOs-specific binding peptide, as the receptor. Specifically, adamantine (Ad)-labeled PrP(95-110), denoted as Ad-PrP(95-110), induced the aggregation and color change of AgNPs and the follow-up formation of a network of Ad-PrP(95-110)-AgNPs. Then, Ad-PrP(95-110)-AgNPs were anchored onto a β-cyclodextrin (β-CD)-covered electrode surface through the host-guest interaction between Ad and β-CD, thus producing an amplified electrochemical signal through the solid-state Ag/AgCl reaction by the AgNPs. In the presence of AβOs, Ad-PrP(95-110) interacted specifically with the AβOs, thus losing the capability to bind AgNPs and to induce the formation of an AgNPs-based network on the electrode surface. Consequently, the electrochemical signal decreased with an increase in the concentration of AβOs in the range of 20 pM to 100 nM. The biosensor had a detection limit of 8 pM and showed no response to amyloid-β monomers (AβMs) and fibrils (AβFs). On the basis of the well-defined and amplified electrochemical signal of the AgNPs-based network architecture, these results should be valuable for the design of novel electrochemical biosensors by marrying specific receptors.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Xin Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Binbin Zhou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Yangyang Wu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Wenhui Mao
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| |
Collapse
|
27
|
Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management. Biosens Bioelectron 2016; 80:273-287. [PMID: 26851586 PMCID: PMC4786026 DOI: 10.1016/j.bios.2016.01.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
28
|
Hianik T. Affinity Biosensors for Detection Immunoglobulin E and Cellular Prions. Antibodies vs. DNA Aptamers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics; Comenius University; Mlynska dolina F1 842 48 Bratislava Slovakia
- OpenLab “DNA-Sensors” of Kazan Federal University; 18 Kremlevskaya Street Kazan 420008 Russian Federation
| |
Collapse
|